WO2013034116A1 - 对atp结合位点进行突变的血管内皮抑制素突变体 - Google Patents

对atp结合位点进行突变的血管内皮抑制素突变体 Download PDF

Info

Publication number
WO2013034116A1
WO2013034116A1 PCT/CN2012/081210 CN2012081210W WO2013034116A1 WO 2013034116 A1 WO2013034116 A1 WO 2013034116A1 CN 2012081210 W CN2012081210 W CN 2012081210W WO 2013034116 A1 WO2013034116 A1 WO 2013034116A1
Authority
WO
WIPO (PCT)
Prior art keywords
mutant
seq
endostatin
amino acid
activity
Prior art date
Application number
PCT/CN2012/081210
Other languages
English (en)
French (fr)
Inventor
罗永章
刘鹏
鲁薪安
陈阳
付彦
常国栋
周代福
Original Assignee
清华大学
北京普罗吉生物科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 北京普罗吉生物科技发展有限公司 filed Critical 清华大学
Priority to RU2014113924/10A priority Critical patent/RU2014113924A/ru
Priority to CN201280078261.4A priority patent/CN108291248B/zh
Priority to CN202410186085.0A priority patent/CN117987505A/zh
Priority to US14/343,694 priority patent/US10647968B2/en
Priority to CA2848118A priority patent/CA2848118C/en
Priority to EP12830317.9A priority patent/EP2754718B1/en
Priority to AU2012306826A priority patent/AU2012306826B2/en
Priority to JP2014528847A priority patent/JP6336389B2/ja
Publication of WO2013034116A1 publication Critical patent/WO2013034116A1/zh
Priority to IL231419A priority patent/IL231419A0/en
Priority to HK18110856.2A priority patent/HK1251864A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to novel antitumor drugs. Specifically, the present invention provides a mutant of endostatin which has reduced ATPase activity and increased neovascularization inhibitory activity. The present invention also provides the use of the mutant in the treatment of a neovascular related disease such as a tumor. Background technique
  • ES endogenous vascular inhibitor
  • collagen XVIII having a carboxyl terminal molecular weight of 20 kDa, which has an activity of inhibiting endothelial cell migration, proliferation, and formation of a lumen.
  • Recombinant endostatin can inhibit or even cure a variety of mouse tumors without drug resistance (Folkman J. et al. Cell 1997; 88:277-285; Folkman J. et al. Nature 1997; 390:404-407 ).
  • Endo human endostatin expressed in E. coli (trade name: Endo) has become an anti-tumor drug, and its efficacy has been extensively proven in clinical trials with non-small cell lung cancer as the main indication.
  • Endo is an ES variant with an additional amino acid sequence (MGGSHHHHH) at the N-terminus, which has better thermodynamic stability and biological activity than the native human ES expressed by yeast (Fu Y. et Al. Biochemistry 2010; 49:6420-6429).
  • Multi-site PEG modification of oES is usually achieved by modifying the Lys side chain ⁇ -amino group, although prolonging the pharmacogen half-life but the biology of ES The activity was significantly reduced ( ⁇ , Shandong University PhD thesis, CNKL 2005).
  • the ⁇ -end single point PEG Modification not only enhances the in vivo stability of ES, but also enhances the biological activity of ES (ZL200610011247.9), and its related products have entered the clinical trial stage.
  • ES endothelial cell activity
  • endothelial cell migration including inhibition of endothelial cell migration, proliferation and formation of lumens, and induction of endothelial cell apoptosis.
  • Nucleolin on the cell membrane surface acts as a functional receptor for ES, which mediates ES endocytosis and downstream signaling pathways in endothelial cells (Shi HB, et al., Blood, 2007). , 110:2899-2906).
  • nucleolin is also expressed on the surface of MDA-MB-435 membrane, a highly proliferating breast cancer cell, and can mediate the endocytosis of its ligand protein in MDA-MB-435 (Sven Christian, et al ., JCB, 2003, 163(4): 871-878).
  • ES-binding proteins that can serve as potential ES receptors including integrins, tropomyosin, glypicans, laminin, and matrix metalloproteinase 2 (MMP-2) (Sudhakar, A., et al., 2003, Proc. Natl Acad. Sci.
  • the classical ES biological activity assay is based on its inhibition of endothelial cell activity, including experiments that inhibit endothelial cell migration, proliferation, and lumen formation.
  • the endothelial cells used mainly include human microvascular endothelial cells (HMEC) and human umbilical vein endothelial cells (HUVEC).
  • HMEC human microvascular endothelial cells
  • HAVEC human umbilical vein endothelial cells
  • these methods are high in requirements for cell culture, complex in operation and subjective, accurate and reproducible. Poor (Li YH, et aL, 2011, Chin J Biologicals March, Vol. 24 No. 3: 320-323). Therefore, finding and improving the biological activity evaluation methods of ES and its variants is of great significance for ES drug development and quality monitoring.
  • Adipic acid adenosine is the most basic energy substance in living organisms. Participating in various physiological and biochemical reactions in living organisms is of great significance for maintaining normal life activities. ATP can be produced by a variety of cellular metabolic pathways: The most typical eukaryotic organisms are synthesized by tribasic adenosine synthase in the main mitochondria under normal physiological conditions by oxidation, or by photosynthesis in the chloroplast of plants. . The main energy source for ATP synthesis is glucose and fatty acids. Under normal physiological conditions, the molar concentrations of ATP in cells and blood are 1-10 mM and 100 ⁇ , respectively.
  • ATPase also known as triuretic adenosine
  • ADP diuretic adenosine
  • Pi pity chloride
  • the energy produced by the reaction can be used to drive another chemical reaction that requires energy by transfer, a process that is widely used by all known life forms.
  • high-energy bonds contained in GTP can also provide energy for protein biosynthesis.
  • ATPases Although various ATPases differ in sequence and tertiary structure, they usually contain a P-loop structure as a binding motif for binding to ATP (Andrea T. Deyrup, et al, 1998, JBC, 273(16): 9450 -9456), and this P-loop structure has the following typical sequences: GXXGXXK (Driscoll, WJ, et al., 1995, Proc. Natl. Acad. Sci.
  • cancer cells and proliferative phase including endothelial cells need to consume large amounts of ATP; on the other hand, cancer cells and proliferating cells use glucose to produce ATP with low efficiency. This is due to the fact that most cancer cells and proliferating cells produce ATP by the Warburg effect. Although the efficiency of ATP production in this way is very low, there are a large number of stacked units that can be used for cell structure assembly in the process. Blocks), but more conducive to cell proliferation (Matthew G., et al., 2009, Science, 324: 1029-1033). Summary of invention
  • the present invention relates to a novel activity of protein ES, i.e., ATPase activity, i.e., ATPase activity. New uses and ES drug designs based on this new activity were also announced.
  • ES has a strong ATPase activity.
  • Myosin pig heart extraction
  • the present invention discloses a novel method for detecting and evaluating ES biological activity, which can determine the conformation and organism of recombinantly prepared ES by biochemical means such as extracellular detection of ATPase activity of ES. Learning activity.
  • biochemical means such as extracellular detection of ATPase activity of ES. Learning activity.
  • the enzyme activity detection method is sensitive, accurate, quick and reproducible, and can be widely applied to the biological activity and quality evaluation of ES and its variants.
  • the invention provides a method of detecting the biological activity of endostatin, or a variant thereof, a mutant or a PEG-modified product, the step comprising detecting the endostatin, or a variant thereof, a mutant or a PEG modification ATPase activity of the product.
  • the ATPase activity of a product such as endostatin, or a variant thereof, a mutant or a PEG-modified product can be detected by a malachite green acid salt detection method or an ATP bioluminescence detection method, thereby determining the conformation of the recombinantly prepared ES product.
  • biological activity for example, the ATPase activity of a product such as endostatin, or a variant thereof, a mutant or a PEG-modified product can be detected by a malachite green acid salt detection method or an ATP bioluminescence detection method, thereby determining the conformation of the recombinantly prepared ES product. And biological activity.
  • ES can be endocytosed into vascular endothelial cells by nucleolin.
  • nucleolin To test whether ES can exert ATPase activity in cells, one embodiment of the present invention detects ES ATPase activity in an in vivo environment such as endothelium cell lysate. The results indicate that ES can also exert ATPase activity in endothelial cell lysates.
  • the present inventors have found that the amino acid sequence Gly-Ser-Glu-Gly-Pro-Leu-Lys at position 89-95 in the native ES sequence (SEQ ID NO. 1) has a conserved amino acid sequence GXXGXXK of the ATP-binding motif. (Driscoll, W. J" et al, 1995, Proc. Natl. Acad. Sci. USA, 92: 12328-12332). Among them, three amino acid residues (2 G and 1 K) in various genera It is highly conserved. The ATPase activity of ES can be altered by site-directed mutagenesis of the amino acid in the ATP-binding motif.
  • the present invention compares in one embodiment for ES variant proteins having different N-terminal sequences. It was found that ES (N-4) with 4 amino acid residues deleted at the N-terminus has significantly higher ATPase activity than full-length ES, while N-4 has significantly lower cytological activity than ES and inhibits tumors in animals in previous reports. Activity (Fu Y. et al. Biochemistry 2010; 49: 6420-6429).
  • mouse ES can completely cure mouse tumors (Folkman J. et al. Nature 1997; 390:404-407).
  • mouse ES(MM) does not contain the classical ATP-binding motif in human ES (Fig. 1). Therefore, we first tested the ATPase activity of MM and found that the ATPase activity of MM was significantly lower than that of human ES. Only about one-fifth of the activity of human ES was observed, but the activity of inhibiting tumor was higher than that of human ES.
  • ES mutants having the sequences set forth in SEQ ID NOS. 6-11, 13, 14, 15-27, and 30-31 all exhibit lower ATPase activity than ES and are equivalent or significant Higher than ES activity to inhibit endothelial cell migration.
  • ES is an angiogenesis inhibitor protein whose basic function is to inhibit neovascularization by inhibiting endothelial cell activity, thereby treating diseases associated with neovascularization (such as tumor, macular degeneration, obesity). And diabetes, etc.), we believe that these ES mutants can have a stronger activity in inhibiting neovascularization-related diseases such as tumors.
  • molecular cloning can be used to further design (eg, reduce) ATPase activity to design ES mutants, thereby achieving better inhibition of tumor and neovascular related diseases.
  • ES drug eg, a compound having a high phospholipase activity.
  • the present invention also provides a method of increasing the biological activity of endostatin, which comprises reducing ATPase activity of endostatin or a variant thereof. Specifically, it can be passed through genetic workers.
  • the method comprises mutating the ATP-binding motif GXXGXXK of endostatin or a variant thereof, thereby obtaining an endostatin mutant having reduced ATPase activity, the endostatin mutant having enhanced biological activity, For example, an increased activity of inhibiting endothelial cell migration and an increased activity of inhibiting tumors.
  • the present invention also provides an endostatin mutant having increased anti-angiogenic activity, wherein the mutant comprises a mutation at its ATP-binding site, and is associated with a corresponding wild-type endostatin or The mutant has a reduced ATPase activity compared to its variant.
  • the mutant has a decrease in ATPase activity of at least about 30%, such as a decrease of at least about 50%, a decrease of at least about 70%, or a decrease of at least about 90, compared to the corresponding wild-type endostatin or a variant thereof. %.
  • the ATPase activity of the mutant is retained only up to about 60-70%, such as up to about 50-60%, and up to about 40-50%, compared to the corresponding wild-type endostatin or a variant thereof. , retain up to approximately 30-40%, retain up to approximately 20-30%, retain up to approximately 10-20%, or retain less than 10% or less.
  • the mutant does not have ATPase activity.
  • the mutant comprises a mutation in its ATP binding motif as compared to the corresponding wild type endostatin or a variant thereof.
  • the mutant comprises a mutation in a sequence corresponding to a Gly-Ser-Glu-Gly-Pro-Leu-Lys motif consisting of amino acid residues 89-95 of SEQ ID NO. 1, wherein The mutation is selected from the group consisting of a substitution, deletion or addition of one or several amino acid residues or a combination thereof, wherein the mutation results in a decrease or elimination of the ATPase activity of the mutant.
  • the sequence of the mutant corresponding to the Gly-Ser-Glu-Gly-Pro-Leu-Lys motif consisting of amino acid residues 89-95 of SEQ ID NO. 1 is partially or
  • the endostatin mutant of the invention comprises the following mutations: (a) the Gly amino acid residue corresponding to position 89 of SEQ ID NO. 1 is substituted with an amino acid selected from the group consisting of an uncharged amino acid or an aromatic Or deleted; or (b) the Gly amino acid residue corresponding to position 92 of SEQ ID NO. 1 is substituted or deleted from an uncharged amino acid; or (c) corresponds to the first of SEQ ID NO.
  • the Lys amino acid residue at position 95 is substituted or deleted by an amino acid selected from a positively charged or uncharged amino acid; or (d) any combination of (a) to (c).
  • the endostatin mutant of the present invention comprises the following mutations: (a) the Gly amino acid residue corresponding to position 89 of SEQ ID NO. 1 is substituted with an amino acid selected from the group consisting of Ala and Pro Or deleted; or (b) the Gly amino acid residue corresponding to position 92 of SEQ ID NO. 1 is substituted or deleted by Ala; or (c) the Lys amino acid residue corresponding to position 95 of SEQ ID NO. The group is substituted or deleted by an amino acid selected from Arg and Gin; or (d) any combination of (a)-(c).
  • substituted amino acid can also be selected for the above substitution without affecting the charge distribution and conformation of the mutant protein molecule.
  • the endostatin mutant of the invention comprises a sequence selected from the group consisting of SEQ ID NO. 6 - IK 13, 14, 15-27 and 30-31.
  • the endostatin mutant of the present invention comprises a sequence selected from the group consisting of SEQ ID N0.6, SEQ ID ⁇ 10, 8 ( ⁇ 10 27 and 8 ( ⁇ 10 30).
  • the above-described endostatin mutant of the present invention is a mutant of human endostatin.
  • the present invention also provides a pharmaceutical composition comprising the endostatin mutant of the present invention as described above.
  • the endostatin may be covalently linked to a PEG molecule.
  • the molecular weight of the PEG molecule is, for example, 5-40 kD, such as 5-20 kD, or 20-40 kD, preferably the molecular weight of the PEG molecule is 20 kD, for example 20 kD monomethoxy polyethylene glycol For example, monomethoxy polyethylene glycol propionaldehyde (mPEG-ALD).
  • the PEG molecule is covalently linked to the N-terminal alpha amino group of the endostatin.
  • the present invention also provides a method of treating a tumor comprising administering to a tumor patient an endostatin mutant of the present invention as described above or a pharmaceutical composition of the present invention as described above.
  • the present invention also relates to the use of an endostatin mutant as described above for the preparation of a medicament for treating a neovascular related disease.
  • the neovascular related disease is a tumor.
  • Figure 1 Sequence alignment of human and murine ES.
  • Figure 2 Preparation of ES, ES mutants, ES variants and their mPEG modified products.
  • FIG. 3 ES, ES variants and their mPEG modified products have ATPase activity.
  • Figure 4 ES, ES variants and their mPEG-modified products in endothelial cell whole cell lysates It has ATPase activity.
  • ATPase activity assay can be used to quickly and accurately determine the biological activity of ES, ES variants and their mPEG modified products.
  • Figure 7 Comparison of the activity of ATP in whole cell lysates of endothelial cells degraded by ES mutants.
  • Figure 8 Comparison of ES mutants inhibiting endothelial cell migration activity.
  • Figure 9 Comparison of ATPase activity and inhibition of endothelial cell migration activity of Endu mutants.
  • Figure 10 Natural human ES sequence.
  • Figure 11 Human ES sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 12 Human N-4 sequence recombinantly expressed in E. coli, where the first amino acid at the N-terminus and the last amino acid K at the C-terminus are randomly deleted during recombinant expression.
  • Figure 13 Endu sequence recombinantly expressed in E. coli, in which the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 14 ES001 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 15 ES003 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 16 ES004 sequence recombinantly expressed in E. coli, in which the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 17 ES005 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 18 ES006 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted upon recombinant expression. Can be randomly deleted during recombinant expression.
  • Figure 35 Z009 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 36 Z101 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 37 Z103 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 38 Z104 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 39 ZN1 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 40 ZN2 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 41 ZN3 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 42 ZN4 sequence recombinantly expressed in E. coli, wherein the first amino acid M at the N-terminus can be randomly deleted during recombinant expression.
  • Figure 43 Comparison of ES mutants, ES01 ES012, inhibiting endothelial cell migration activity.
  • Figure 44 Comparison of ES mutants S01, S02, S09, S10 inhibiting endothelial cell migration activity.
  • Figure 45 Comparison of ES mutant S12 inhibition of endothelial cell migration activity.
  • Figure 46 Comparison of ES mutant Z005, Z006, Z008, Z009 inhibiting endothelial cell migration activity.
  • Figure 47 Comparison of ES mutant Z101, Z103, Z104, ZN1, ZN2, ZN3, ZN4 inhibiting endothelial cell migration activity.
  • Figure 48 Inhibitory effect of ES mutants on tumor growth in non-small cell lung cancer A549 at the animal level, (A) tumor volume, (B) tumor weight.
  • ES refers to a natural endostatin, such as human endostatin having the sequence of SEQ ID NO. 1 (Fig. 10).
  • An ES variant refers to a form of addition or deletion of 1-15 amino acids at the N-terminus or C-terminus based on the native ES sequence.
  • the ES variant may be naturally produced, for example, when human ES is recombinantly expressed in E. coli, its first amino acid M can be randomly deleted, resulting in an ES variant having the sequence of SEQ ID NO. 2 (Fig. 11) .
  • an ES variant (N-4) having a N-terminal deletion of 4 amino acids can be produced due to random cleavage at the N-terminus, having the sequence shown in SEQ ID NO. ⁇ lj (; Fig. 12), further, wherein the K at the C-terminus can also be randomly deleted.
  • ES variants can also be artificially produced, for example, to promote protein expression and improve stability, Endu adds 9 additional amino acid residues of the sequence MGGSHHHHH at the N-terminus of the native ES, the variant has The sequence shown in SEQ ID NO. 4 (Fig. 13), wherein the first amino acid M can be randomly deleted upon recombinant expression.
  • an ES variant refers to a naturally occurring one that has the same or similar activity of inhibiting neovascularization as the corresponding native ES, and has the same ATP-binding motif and the same or similar ATPase activity as the corresponding native ES. Or artificially produced ES variants.
  • a mutant of ES refers to a mutant protein obtained by modifying an ATP-binding site of a native ES or ES variant, such as an amino acid site-directed mutation of an ATP-binding motif.
  • ES, ES variants and ES mutant proteins used in the present invention were purchased from Xiansheng Maidjin Company except for Endu, and the rest were supplied by Beijing Proji Company.
  • Polyethylene glycol (PEG) modified ES, Endu and N-4 were named mPEG-ES, mPEG-Endu and mPEG-N-4, respectively, which were a monomethoxy polyethylene glycol with a molecular weight of 20 kDa.
  • Propionaldehyde (mPEG-ALD) is a product obtained by modifying an ES, Endu or N-4 molecule. The site of coupling is the activated mPEG-ALD aldehyde group and the N-terminal ⁇ -amino group of ES, Endu or N-4.
  • ATPase activity This is a widely accepted and used method for detecting ATPase activity.
  • the principle is that under acidic conditions, malachite green, molybdate and inorganic pity acid react to form a green substance, which can be detected in the wavelength range of 600-660 nm, and its absorbance and pitiate content are linear in a certain range. relationship.
  • ATPase releases ADP and pity acid (Pi) during the hydrolysis of ATP, and the activity of ATPase is calculated by the amount of pity acid measured by the kit.
  • This method is convenient and rapid, and is widely used in the analysis of Phosphatase activity, lipase activity, Nucleoside Triphosphatase activity and Phosphate content. Large flux drug screen Selected.
  • the ATP binding motif usually has a P-loop structure.
  • the P-loop structure has the following typical sequences: GXXGXXK, (G/A) XXXXGK (T/S), GXXXXGKS and GXXGXGKS.
  • the ATP binding motif refers to the sequence of GXXGXXK. Among them, amino acid residues not substituted with X are more conservative in comparison. Typically, these ATP binding motifs can also bind to GTP.
  • ATPase-binding protein molecule that binds to ATP, including the classical ATP-binding motif and the ATP-binding amino acid site other than the ATP-binding motif. These amino acids may be distant from the above ATP-binding motifs in the primary sequence of the protein, but amino acids involved in the interaction of ES with ATP/GTP in the tertiary structure, or substitutions or deletions of these amino acid positions may indirectly affect the conformation of the protein. ES interacts with ATP/GTP to alter the ATPase activity of ES.
  • the present invention is based on the discovery of ES new activity (ATPase activity), and discloses a new method for evaluating the biological activity of ES, which is more convenient, accurate and reproducible than the existing method using endothelial cell migration measurement.
  • ES new activity ATPase activity
  • This provides an important research method for ES and its variants, mechanism studies of mutants, drug development and quality control.
  • the invention provides a method of detecting the biological activity of endostatin, or a variant thereof, a mutant or a PEG-modified product, the step comprising detecting the endostatin, or a variant thereof, a mutant or a PEG modification ATPase activity of the product.
  • the ATPase activity of a product such as endostatin, or a variant thereof, a mutant or a PEG-modified product can be detected by a malachite green acid salt detection method or an ATP bioluminescence detection method, thereby determining the conformation of the recombinantly prepared ES product.
  • biological activity for example, the ATPase activity of a product such as endostatin, or a variant thereof, a mutant or a PEG-modified product can be detected by a malachite green acid salt detection method or an ATP bioluminescence detection method, thereby determining the conformation of the recombinantly prepared ES product. And biological activity.
  • the N-terminal ⁇ -amino group of ES and Endu was significantly modified by mPEG single-point modification, and the activity of inhibiting endothelial cell migration was significantly enhanced (ZL200610011247.9). Therefore, in one embodiment of the present invention, the ATPase activities of mPEG-ES, mPEG-Endu and mPEG-N-4 were simultaneously detected and found to be significantly lower than before the modification (Fig. 3).
  • the present invention also provides a method of increasing the biological activity of endostatin, which comprises reducing ATPase activity of endostatin or a variant thereof.
  • the ATP-binding motif GXXGXXK of endostatin or a variant thereof can be mutated by genetic engineering means to obtain an endostatin mutant having reduced ATPase activity, and the endostatin mutant has Increased biological activity, such as increased activity of inhibiting endothelial cell migration and increased tumor suppressor activity.
  • ES can be endocytosed by endothelial cells, thereby degrading ATP in cells, living cells can quickly compensate for the consumption of ATP.
  • the prior art usually detects ATP content in living cells by detecting ATP degradation of whole cell lysates. .
  • the ATPase activities of the mutants ES003, ES006, ES007 and ES008 were still significantly lower than ES (Fig. 7A).
  • the ATPase activities of the mutants ES001, ES004 and ES005 were comparable to those of ES (Fig. 7B). This may be due to the interaction of the P-loop structure caused by the mutation affecting the interaction of the entire protein with ATP.
  • the present invention also provides an endostatin mutant having enhanced anti-angiogenic activity, wherein the mutant comprises a mutation at its ATP-binding site, and is associated with a corresponding wild-type vascular endothelial inhibition ATPase activity of the mutant compared to its variant or its variant Lower.
  • the mutant has a decrease in ATPase activity of at least about 30%, such as a decrease of at least about 50%, a decrease of at least about 70%, or a decrease of at least about 90, compared to the corresponding wild-type endostatin or a variant thereof. %.
  • the ATPase activity of the mutant is retained only up to about 60-70%, such as up to about 50-60%, and up to about 40-50%, compared to the corresponding wild-type endostatin or a variant thereof. , retain up to approximately 30-40%, retain up to approximately 20-30%, retain up to approximately 10-20%, or retain less than 10% or less.
  • the mutant does not have ATPase activity.
  • the mutant comprises a mutation in its ATP binding motif as compared to the corresponding wild type endostatin or a variant thereof.
  • the mutant comprises a mutation in a sequence corresponding to a Gly-Ser-Glu-Gly-Pro-Leu-Lys motif consisting of amino acid residues 89-95 of SEQ ID NO. 1, wherein The mutation is selected from the group consisting of a substitution, deletion or addition of one or several amino acid residues or a combination thereof, wherein the mutation results in a decrease or elimination of the ATPase activity of the mutant.
  • the sequence of the mutant corresponding to the Gly-Ser-Glu-Gly-Pro-Leu-Lys motif consisting of amino acid residues 89-95 of SEQ ID NO. 1 is partially or
  • the endostatin mutant of the invention comprises the following mutations: (a) the Gly amino acid residue corresponding to position 89 of SEQ ID NO. 1 is substituted with an amino acid selected from the group consisting of an uncharged amino acid or an aromatic Or deleted; or (b) the Gly amino acid residue corresponding to position 92 of SEQ ID NO. 1 is substituted or deleted from an uncharged amino acid; or (c) corresponds to the first of SEQ ID NO.
  • the Lys amino acid residue at position 95 is substituted or deleted by an amino acid selected from a positively charged or uncharged amino acid; or (d) any combination of (a) to (c).
  • the endostatin mutant of the present invention comprises the following mutations: (a) the Gly amino acid residue corresponding to position 89 of SEQ ID NO. 1 is substituted or deleted by an amino acid selected from Ala and Pro; (b) a Gly amino acid residue corresponding to position 92 of SEQ ID NO. 1 is substituted or deleted by Ala; or (c) a Lys amino acid residue corresponding to position 95 of SEQ ID NO. 1 is selected from Arg And amino acid substitutions or deletions of Gin; or (d) any combination of (a)-(c).
  • the endostatin mutant of the invention comprises a sequence selected from the group consisting of SEQ ID NO. 6 - IK 13, 14, 15-27 and 30-31.
  • the endostatin mutant of the invention comprises a sequence selected from the group consisting of: SEQ ID N0.6, SEQ ID ⁇ 10, SEQ ID N0.27 and SEQ ID NO.
  • the above-described endostatin mutant of the present invention is a mutant of human endostatin.
  • the present invention also provides a pharmaceutical composition comprising the endostatin mutant of the present invention as described above.
  • the endostatin may be covalently linked to a PEG molecule.
  • the molecular weight of the PEG molecule is, for example, 5-40 kD, such as 5-20 kD, or 20-40 kD, preferably the molecular weight of the PEG molecule is 20 kD, for example 20 kD monomethoxy polyethylene glycol For example, monomethoxy polyethylene glycol propionaldehyde (mPEG-ALD).
  • the PEG molecule is covalently linked to the N-terminal alpha amino group of the endostatin.
  • the present invention also provides a method of treating a tumor comprising administering to a tumor patient an endostatin mutant of the present invention as described above or a pharmaceutical composition of the present invention as described above.
  • the present invention also relates to the use of an endostatin mutant as described above for the preparation of a medicament for treating a neovascular related disease.
  • the neovascular related disease is a tumor.
  • Endostatin was cloned from the cDNA of human hepatoma cell line A549 and ligated into the pET30a plasmid.
  • the 5'-end primer used for gene amplification is GGAATTCCATATGCACAGCCACCGCGACTTC, and the end-end bow is CCGCTCGAGT TACTTGGAGGCAGTCATGAAGCTG.
  • the endonucleases are Ndel and XhoI, respectively.
  • Example 2 Construction of an ES or Endu mutant strain with ATP binding site mutation
  • the ATP binding site of wild-type human ES was mutated, and the specific method and the upstream and downstream primers and transformation methods were the same as those in Example 1.
  • the mutant numbers are as follows:
  • ES003 is taken as an example to describe the expression and preparation method of ES and its mutant and Endu mutant as follows: ES and its mutant strains were incubated in LB medium for overnight incubation and then inoculated into 5L fermentor. Fermentation was carried out (Sartorius), and IPTG induction was added as appropriate, and the cells were collected after about 4 hours of culture (Fig. 2A). The cells were resuspended in buffer and thoroughly crushed by a high-pressure homogenizer, and repeatedly crushed three times, each time being centrifuged to leave a precipitate.
  • the prepared sample or control sample was added to a final concentration of 500 ⁇ M, and placed in a 37 ° C water bath for 30 min, and then quenched in an ice bath for 5 min.
  • the sample processing of the ES and its variants was performed in the same manner as the first group and in parallel with the first group.
  • the two groups of samples are respectively diluted to appropriate multiples, and sequentially added to a 96-well microtiter plate, using a Malachite Green Phosphate Assay Kits (BioAssay Systems), and passed through a microplate reader (Multiskan mk3).
  • ES, Endu and their mPEG modified products can significantly reduce ATP content in human vascular endothelial cell whole cell homogenate, thereby exerting ATPase activity.
  • human vascular endothelial cells are first collected, and the cells are lysed into a whole cell lysis component in the form of a solution using a cell lysate, and the precipitate, impurities, and fragments of the cell homogenate are removed by centrifugation at a low temperature (the above operation is performed on ice).
  • the cells were lysed into four groups and treated differently.
  • the method of grouping was as follows. The first group: the negative control group, adding an equal volume of protein-free buffer; the second group, adding ES (50 g / mL) treatment; the third group, adding ES (100 g / mL) treatment; the fourth group, adding ES (200 g/mL) treatment.
  • polyethylene glycol modified ES can also significantly decompose and reduce ATP levels in human vascular endothelial cell lysing fraction, only at the same dose of ES and mPEG-ES (respectively When 50, 100, 200 g/mL was added and the treatment time was the same, the activity of mPEG-ES to degrade ATP was slightly lower than that of ES (Fig. 4A).
  • the ES may also be replaced with a protein having the same mechanism of action as ES or a variant thereof, Endu. Similar results were observed in a parallel comparison of Endu and its mPEG-modified product (mPEG-Endu) (i.e., mPEG-ALD, 20 kDa modified on the N-terminal with MGGSHHHHH additional amino acids).
  • mPEG-Endu mPEG-modified product
  • the whole cell lysate fraction of human vascular endothelial cells was obtained by the same experimental method as described in the present example, and divided into seven groups and treated differently.
  • the treatment grouping method was as follows.
  • the first group negative control group, no treatment; the second group, negative control group, treated with bovine serum albumin BSA (100 g/mL), BSA is a known protein without ATPase activity, often used as Negative control protein in this type of experiment; the third group, the positive control group, was treated with porcine myosin (100 g/mL), a known protein with high ATPase activity.
  • the fourth group added ES (100 g / mL) treatment; the fifth group, added mPEG-ES (100 g / mL) treatment; the sixth group, added Endu (100 g / mL) treatment; Seven groups were treated with mPEG-Endu (100 g/mL).
  • mPEG-ES the native sequence ES has the highest ATPase activity, close to Myosin; mPEG-ES has the second highest ATPase activity, slightly lower than ES; Endu and mPEG-Endu ATPase activity was lower (Fig. 4B).
  • Example 6 Evaluation of ATPase activity is a convenient, accurate, and reproducible method for measuring the activity of ES.
  • ES, Endu, mPEG-ES and mPEG-Endu were diluted with sample dilution in a bath condition to form a series of concentration gradient samples to be tested (specific concentrations are shown in Figure 5).
  • the diluted sample was added to a 96-well microtiter plate, and each sample was examined for OD 63 using a Malachite Green Phosphate Assay Kits (BioAssay Systems). Absorbance value. Calculate the dilution based on the dilution factor of the sample After the sample concentration, and calculate the corresponding A OD 63 . .
  • a OD 630 S1 (OD 630 )- S2 (OD 630 )
  • Example 5 Human vascular endothelial cells were collected, and the cells were lysed into a whole cell lysis component in the form of a solution using a cell lysate, and the precipitate, impurities and fragments of the cell homogenate were removed by centrifugation at a low temperature; The lysis components are divided into arrays and processed differently.
  • the processing grouping method is as follows.
  • Group 1 Negative control group, no ES (addition of equal buffer solution); Group 2, ES (100 g/mL) treatment; Group 3, add mouse-derived endostatin MM (100 g /mL) treatment; the fourth group, added ES mutant ES003 (100 g / mL) treatment; the fifth group, added ES mutant ES006 (100 g / mL) treatment; the sixth group, added ES mutant ES007 (100 g/mL) treatment; Group 7, was treated with ES mutant ES008 (100 g/mL).
  • the ATP content in the homogenate of each group was detected using an ATP bioluminescence assay kit Sigma-Aldrich.
  • HMEC Human microvascular endothelial cells
  • the same concentration of ES (20 g/mL) was added to the upper and lower layers of the basket.
  • the cells were allowed to migrate by incubating for 6 hours at 37 ° C and 5% CO 2 .
  • glutaraldehyde fixation and crystal violet staining 5 magnified fields of view were randomly selected for each well, and the number of cells that completely migrated through the membrane to the underlying layer was calculated and averaged, and cell migration was calculated compared with the control group.
  • the number of cases decreased (ie, the inhibition rate of each histone).
  • Each set was paralleled with three wells and the experiment was repeated at least twice independently.
  • endothelial cell HMEC was divided into the following groups to be treated differently.
  • Group 1 Negative control group, no ES (addition of equal buffer solution);
  • Group 3, add mouse-derived endostatin MM (20 g /mL) treatment;
  • the fourth group added ES mutant ES003 (20 g / mL) treatment;
  • the fifth group added ES mutant ES006 (20 g / mL) treatment;
  • the sixth group added ES mutant ES007 (20 g/mL) treatment;
  • Group 7 was treated with ES mutant ES008 (20 g/mL).
  • the results showed that the activity of MM, mutants ES003, ES006, ES007, and ES008 to inhibit endothelial cell migration was significantly increased compared with ES (Fig. 8A).
  • Example 1 Mutating the ATP-binding motif of wild-type ES and its surrounding sequences, To mutants with reduced ATP activity
  • Example 12 Effect of ES mutants on migration of HMEC cells
  • the cell migration assay was evaluated using the Transwell Assay method described in Example 9. Since many mutant proteins inhibit the activity of endothelial cell migration significantly, in order to more clearly reflect the difference in activity between each mutant protein, this example can still see significant inhibition by treating cells with a reduced dose of 5 g/mL. effect.
  • the experimental results are shown in Figures 43-47. In addition to the lowering of ATPase activity of Z103, Z104, ZN3 and ZN4, the activity of inhibiting endothelial cell migration was also decreased. All other mutants showed comparable or significantly increased activity of inhibiting endothelial cell migration with ES, in line with ATPase. The activity is inversely related to the activity of inhibiting endothelial cell migration.
  • Example 13 Inhibitory effect of Endostatin mutant on tumor growth of non-small cell lung cancer A549 cells at the animal level
  • this experiment used a reduced dose of 12 mg / kg to treat tumor-bearing mice (usually 24 mg / kg) o
  • Group 1 Negative control group, no drug treatment, Only the same amount of normal saline was injected; the second group, the mPEG-ES administration group, was treated with mPEG-ES; the third group, the M003 administration group, was treated with M003; the fourth group, the M007 administration group, The M007 administration treatment was carried out; the fifth group, the MZ101 administration group, was subjected to MZ101 administration treatment.
  • the results of the tumor volume growth assay showed (as shown in Figure 48A) that compared with the tumor volume of the first group of controls without drug treatment: the tumor volume inhibition rate of the second group of mPEG-ES administration was 45%; The tumor volume inhibition rate of the three groups of M003 and the fourth group of M007 was similar to that of mPEG-ES; the tumor volume inhibition rate of the fifth group of MZ101 administration was 71.2%, and the tumor volume of this group was the smallest. The drug has the highest tumor inhibition rate.
  • the tumors of the tumor-bearing nude mice were taken out for weighing (as shown in Fig. 48B), and the inhibitory effect of each group of drug treatment on tumor weight was consistent with the results of the tumor volume determination experiment.
  • the tumor weight inhibition rate of the second group of MS03 administration was 42%
  • the tumor weight inhibition rate of the third group of M003 and the fourth group of M007 administration and mPEG-ES was 64%, and the tumor weight of this group was the smallest and the drug inhibition rate was the highest.
  • the results of this example demonstrate that Endostatin mutants at a dose of 12 mg/kg/week have a good inhibitory effect on tumor growth in tumor-bearing animal experiments.
  • the inhibition rate of mPEG-ES is about 40%; the inhibition rate of M003 and M007 is close to and slightly lower than that of mPEG-ES; the anti-tumor effect of MZ101 is better than that of mPEG-ES, the best effect and the highest tumor inhibition rate (about 60-70%).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Oncology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明披露了新的抗肿瘤药物,其包含血管内皮抑制素突变体,所述突变体在ATP结合位点上进行突变,具有降低的ATPase活性和提高的新生血管生成抑制活性。

Description

对 ATP结合位点进行突变的血管内皮抑制素突变体 技术领域
本发明涉及新的抗肿瘤药物。 具体而言, 本发明提供血管内皮抑制素 的突变体, 所述突变体具有降低的 ATPase活性和提高的新生血管生成抑制 活性。 本发明还提供所述突变体在治疗肿瘤等新生血管相关疾病中的用途。 背景技术
1997年, 美国哈佛大学 Judah Folkman教授发现了内源性血管抑制剂 ——血管内皮抑制素 (Endostatin, 以下简称 ES)。 ES是胶原 XVIII羧基端分 子量为 20 kDa的酶切产物, 具有抑制内皮细胞迁移、 增殖和形成管腔的活 性。 重组血管内皮抑制素可以抑制甚至治愈多种小鼠肿瘤且不产生耐药性 (Folkman J. et al. Cell 1997; 88:277-285; Folkman J. et al. Nature 1997; 390:404-407)。
ES抑制肿瘤的机理是抑制肿瘤新生血管生成、 阻断肿瘤营养和氧气供 给。 在中国, 大肠杆菌表达的重组人血管内皮抑制素 (商品名: 恩度)已成为 抗肿瘤药物, 其疗效在以非小细胞肺癌为主要适应症的临床试验中得到了 广泛验证。 恩度是一种 N-末端带有附加氨基酸序列 (MGGSHHHHH)的 ES 变体, 和酵母表达的天然型人 ES相比, 具有更好的热动力学稳定性和生物 学活性 (Fu Y. et al. Biochemistry 2010; 49:6420-6429)。 另有报道显示, ES蛋 白 N-末端的 27个氨基酸与完整 ES相比具有相类似的抑制新生血管生成的 活性 (Robert Tjin Tham Sjin, et al, Cancer Res. 2005; 65(9):3656-63), 因此, 也有很多研究者以 N-末端 27个氨基酸的活性为基础进行药物设计。
除此之外, 为了延长 ES 在体内的药代半衰期, 本领域研究人员还对 ES进行了多种分子改造和药物设计,其中包括单点或多点的 PEG修饰以及 和抗体 Fc 片段的融合 (Tong- Young Lee, et al, Clin Cancer Res 2008; 14(5): 1487-1493)oES的多位点 PEG修饰通常通过修饰 Lys侧链 ε氨基实现, 虽然延长了药代半衰期但 ES 的生物学活性却明显地降低 (牟国营, 山东大 学博士论文, CNKL 2005)。 与这种修饰技术相比, Ν-末端单一定点 PEG 修饰不但增强了 ES 的体内稳定性, 还提高了 ES 的生物学活性 (ZL200610011247.9), 其相关产品已经进入临床试验阶段。
ES被发现至今, 不同实验室对 ES抑制肿瘤活性的研究得到了不同的 结果。 Folkman教授实验室利用 ES完全治愈了小鼠肿瘤 (Folkman J. et al, 1997, Nature, 390:404-407), 然而很多实验室无法重复此结果 (News Focus, 2002, Science, 295:2198-2199)。 同时, 由于原核表达 ES产生的包含体极难 复性, 很多人利用酵母表达可溶的 ES, 但效果却不甚理想。后续研究发现, 酵母表达的 ES在 N-末端发生氨基酸缺失, 主要缺失形式是 N-l, N-3和 N-4。 而 N-末端的完整性对于 ES的稳定性和生物学活性至关重要, 这在很 大程度上解释了利用酵母表达的 ES 得到的令人困惑的结果 (Fu Y. et al. Biochemistry 2010; 49:6420-6429)。
ES的主要生物学功能是抑制内皮细胞活性, 包括抑制内皮细胞迁移、 增殖和形成管腔以及诱导内皮细胞凋亡等。 ES分子作用机理研究显示, 细 胞膜表面的核仁素 (Nucleolin)作为 ES的功能性受体, 可介导 ES在内皮细 胞中的内吞和下游信号通路 (Shi HB, et al., Blood, 2007, 110:2899-2906)。 另 有报道显示, 核仁素在旺盛增值的乳腺癌细胞 MDA-MB-435膜表面也有表 达,并可以介导其配体蛋白在 MDA-MB-435中的内吞作用 (Sven Christian, et al., JCB, 2003, 163(4):871-878)。 其他研究还发现了包括 integrins, tropomyosin, glypicans , laminin以及 matrix metalloproteinase 2 (MMP-2)等 在内可作为潜在 ES受体的 ES结合蛋白(Sudhakar, A., et al., 2003, Proc. Natl. Acad. Sci. USA 100:4766^771; Javaherian, K., et al., 2002, J. Biol. Chem., 277:45211^5218; Karumanchi, S., et al, 2001, Mol. Cell, 7:811-822; Lee, S. J. et al" 2002, FEBS Lett., 519: 147-152; MacDonald, N. J., et al" 2001, J. Biol. Chem., 276:25190-25196; Kim, Y. Μ·, et al, 2002, J. Biol. Chem., 277:27872-27879) 此外, 制霉菌素 (Nystatin)的处理可显著增加 ES在内皮 细胞中的内吞和摄取,从而增强 ES抑制内皮细胞迁移和抑制动物肿瘤生长 的生物学活性 (Chen Y, et al., 2011, Blood, 117:6392-6403)。
经典的 ES生物学活性测定方法以其抑制内皮细胞的活性为基础,主要 包括抑制内皮细胞迁移、 增殖和形成管腔等实验。 采用的内皮细胞主要包 括人微血管内皮细胞 (HMEC)和人脐静脉内皮细胞 (HUVEC)。然而, 这些方 法由于对细胞培养状态要求高、 操作复杂和主观性强, 准确度和重现性都 比较差 (Li YH, et aL, 2011, Chin J Biologicals March, Vol. 24 No. 3:320-323)。 因此, 寻找和改进 ES及其变体的生物学活性评价方法对于 ES药物研发和 质量监控具有重要意义。
三憐酸腺苷 (ATP)是生命体最基本的能量物质, 参与生物体内的多种生 理生化反应, 对于维持正常的生命活动具有非常重要的意义。 ATP 可通过 多种细胞代谢途径产生: 最典型的如真核生物在正常生理条件下主要在线 粒体中通过氧化憐酸化由三憐酸腺苷合酶合成, 或者在植物的叶绿体中通 过光合作用合成。 ATP 合成的主要能源为葡萄糖和脂肪酸, 正常生理条件 下, ATP在细胞和血液中的摩尔浓度分别是 1-10 mM和 100 μΜ。
ATP酶 (ATPase)又称三憐酸腺苷酶, 是一类可以催化 ATP水解产生二 憐酸腺苷 (ADP)和憐酸根离子 (Pi)的酶, 同时释放能量。 在大多数情况下, 反应产生的能量可以通过传递而被用于驱动另一个需要能量的化学反应, 这一过程被所有已知的生命形式广泛利用。 除此之外, 三憐酸鸟苷 (GTP)所 含的高能键也可以为蛋白质的生物合成提供能量。 包括 Hsp90, myosin等 在内的许多蛋白在行使生物学活性时都依赖于 ATP, 因此这些蛋白本身通 常都具有 ATP酶 (ATPase)活性。尽管各种 ATPase在序列和三级结构上各异, 但通常都含有 P-loop结构作为结合 ATP的部位 (binding motif) (Andrea T. Deyrup, et al, 1998, JBC, 273(16):9450-9456), 而这个 P-loop结构主要有以 下几种典型序列: GXXGXXK (Driscoll, W. J., et al., 1995, Proc. Natl. Acad. Sci. U.S.A., 92:12328-12332), (G/A)XXXXGK(T/S) (Walker, J" et al, 1982, EMBO J., 1:945—951), GXXXXGKS (Satishchandran, C, et al, 1992, Biochemistry, 31:11684— 11688)和 GXXGXGKS (Thomas, P. Μ·, et al, 1995, Am. J. Hum. Genet, 59:510-518) 其中,没有用 X取代的氨基酸残基相比之 下更加保守。 通常, 这些 ATPase中的 ATP结合部位也可以结合 GTP, 因 此 ATPase和 GTPase在很多情况下具有通用性。
癌细胞和处于旺盛增殖期的细胞包括内皮细胞的代谢异常旺盛, 且代 谢方式和正常成熟细胞相比也存在着很大差异。 一方面, 癌细胞和增殖期 的细胞需要消耗大量 ATP; 另一方面, 癌细胞和增殖期的细胞利用葡萄糖 产生 ATP的效率却很低。 这是由于大多数癌细胞和增殖期的细胞通过有氧 糖酵解的方式 (the Warburg effect)产生 ATP。 虽然这种方式产生 ATP的效率 很低,但由于该过程中会产生大量可用于细胞结构组装的堆砌单位 (building blocks) , 反而更有利于细胞增殖(Matthew G., et al., 2009, Science, 324:1029-1033)。 发明概述
本发明涉及蛋白 ES的新活性, 即 ATP酶活性, 即 ATPase活性。 并公 开了以该种新活性为基础的新用途和 ES药物设计。
本发明发现, ES具有很强的 ATPase活性。 在体外生化试验中, ES的 ATPase酶活水平和自然界已知具有高 ATPase活性的 Myosin (猪心提取)相 比仅略有降低, 但二者降解内皮细胞裂解物中 ATP的活性没有显著差异。
基于 ES的 ATPase活性, 本发明公开了一种新的 ES生物学活性检测 及评价方法, 该方法可通过在胞外检测 ES的 ATPase活性这样的生物化学 手段来判断重组制备的 ES的构象和生物学活性。 和现有的 ES细胞学测活 方法相比, 该酶活检测方法灵敏准确, 操作快捷, 重现性好, 可以广泛适 用于 ES及其变体的生物学活性及质量评价研究。
因此, 本发明提供检测血管内皮抑制素、 或其变体、 突变体或 PEG修 饰产物的生物学活性的方法, 其步骤包括检测所述血管内皮抑制素、 或其 变体、 突变体或 PEG修饰产物的 ATPase活性。 例如, 可以利用孔雀绿憐 酸盐检测法或 ATP生物发光检测法检测血管内皮抑制素、 或其变体、 突变 体或 PEG修饰产物等产品的 ATPase活性, 由此判断重组制备的 ES产品的 构象和生物学活性。
现有技术表明, ES 可以经核仁素内吞进入血管内皮细胞。 为检测 ES 是否可以在细胞中发挥 ATPase活性, 本发明的一个实施例检测了 ES在内 皮细胞裂解物这种类体内环境下的 ATPase活性。 结果表明, ES在内皮细 胞裂解物中同样可以行使 ATPase活性。
本发明发现天然 ES 序列(SEQ ID NO. 1)中第 89-95 位氨基酸 Gly-Ser-Glu-Gly-Pro-Leu-Lys具有 ATP经典结合基序 (ATP-binding motif)的 保守氨基酸序列 GXXGXXK (Driscoll, W. J" et al, 1995, Proc. Natl. Acad. Sci. U.S.A., 92:12328-12332)。 其中, 三个氨基酸残基 (2个 G和 1个 K)在各种 属生物中高度保守。 通过对该 ATP结合基序中的氨基酸进行定点突变, 可 以改变 ES的 ATPase活性。 尽管 ES的晶体结构已知, 但是目前并没有 ES 与 ATP或 GTP结合的复合物的晶体结构。 所以, 在以后的研究中, 很可能 可以通过共结晶等手段发现 ES蛋白中除该经典结合基序以外的与 ATP或 GTP相互作用的氨基酸位点, 通过对这些位点进行删除、 替换等改造同样 可以得到改变 ES的 ATPase活性及抑制内皮细胞活性的效果。
基于已知 ES晶体结构,我们发现 ES的 ATP结合部位在三级结构上与 ES的 C-末端邻近,而 ES的 N-末端在三级结构上与 C-末端也非常靠近。因 此, 本发明在一个实施例中对于具有不同 N-末端序列的 ES变体蛋白做了 比较。 发现 N-末端缺失 4个氨基酸残基的 ES (N-4)具有显著高于全长 ES 的 ATPase活性, 而 N-4在以往报道中具有显著低于 ES的细胞学活性及抑 制动物肿瘤的活性 (Fu Y. et al. Biochemistry 2010; 49:6420-6429)。
以往报道显示, 鼠源的 ES 可以完全治愈小鼠肿瘤 (Folkman J. et al. Nature 1997; 390:404-407)。然而我们通过氨基酸序列比对发现,鼠源 ES(MM) 并不含有人 ES中的经典 ATP结合基序 (图 1)。 因此, 我们首先检测了 MM 的 ATPase活性, 发现 MM的 ATPase活性与人 ES相比明显降低, 只有人 ES的大约 1/5的活性, 但抑制肿瘤的活性却高于人 ES。
因此, 为了进一步验证 ATPase活性与 ES细胞学活性的关系, 我们对 人 ES的 ATP结合位点中的某些氨基酸残基进行了定点突变。 发现, 这些 突变不但可以改变 ES的 ATPase活性,还可以改变 ES抑制内皮细胞迁移的 活性。 而且, 多个 ES的突变体尽管 ATPase活性降低, 但抑制内皮细胞迁 移的活性却显著提高, 除个别情况外, ATPase活性与细胞学活性负相关。
在本发明的一些实施例中, 具有 SEQ ID NO. 6-11、 13、 14、 15-27和 30-31所示序列的 ES突变体均显示出低于 ES的 ATPase活性和相当于或显 著高于 ES的抑制内皮细胞迁移的活性。 根据现有技术, 即 ES是一个血管 抑制剂蛋白, 其最基本的功能是通过抑制内皮细胞活性来抑制新生血管生 成, 从而治疗与新生血管生成相关的疾病 (如肿瘤、 视网膜黄斑变性、 肥胖 症和糖尿病等等), 我们认为这些 ES突变体可以具有更强的抑制新生血管 生成相关疾病 (如肿瘤)的活性。
此外, 基于 ES的抗新生血管活性与其 ATPase活性相关性的发现, 可 以利用分子克隆手段进一步通过改变 (如降低) ATPase 活性来设计 ES 突变 体, 从而得到更好的抑制肿瘤和新生血管相关疾病的 ES药物。
因此, 本发明还提供提高血管内皮抑制素的生物学活性的方法, 其包 括降低血管内皮抑制素或其变体的 ATPase活性。 具体地, 可以通过基因工 程手段对血管内皮抑制素或其变体的 ATP结合基序 GXXGXXK进行突变, 从而获得具有降低的 ATPase活性的血管内皮抑制素突变体, 所述血管内皮 抑制素突变体具有提高的生物学活性, 例如提高的抑制内皮细胞迁移的活 性和提高的抑制肿瘤的活性。
本发明还提供血管内皮抑制素突变体, 所述突变体具有提高的抗新生 血管生成的活性, 其中所述突变体在其 ATP结合位点包含突变, 且与相应 的野生型血管内皮抑制素或其变体相比, 所述突变体的 ATPase活性降低。
优选地, 与相应的野生型血管内皮抑制素或其变体相比, 所述突变体 的 ATPase活性降低至少大约 30%, 例如降低至少大约 50%, 降低至少大约 70%, 或降低至少大约 90%。 例如, 与相应的野生型血管内皮抑制素或其 变体相比, 所述突变体的 ATPase活性仅保留至多大约 60-70%, 例如保留 至多大约 50-60%, 保留至多大约 40-50%, 保留至多大约 30-40%, 保留至 多大约 20-30%, 保留至多大约 10-20%, 或保留不足 10%或更低。 在一个 实施方式中, 所述突变体不具有 ATPase活性。
在一些实施方式中, 与相应的野生型血管内皮抑制素或其变体相比, 所述突变体在其 ATP结合基序中包含突变。 例如, 所述突变体在相应于由 SEQ ID NO. 1的第 89-95位氨基酸残基组成的 Gly-Ser-Glu-Gly-Pro-Leu-Lys 基序的序列中包含突变, 其中所述突变选自一或几个氨基酸残基的取代、 缺失或添加或其组合, 其中所述突变导致所述突变体的 ATPase活性降低或 消除。
在一些实施方式中, 所述突变体的相应于由 SEQ ID NO. 1的第 89-95 位氨基酸残基组成的 Gly-Ser-Glu-Gly-Pro-Leu-Lys 基序的序列被部分或全 优选地, 本发明的血管内皮抑制素突变体包含以下突变: (a) 相应于 SEQ ID NO. 1的第 89位的 Gly氨基酸残基由选自不带电荷的氨基酸或芳香 族的氨基酸取代或被缺失; 或 (b) 相应于 SEQ ID NO. 1的第 92位的 Gly 氨基酸残基由选自不带电荷的氨基酸取代或被缺失; 或(c) 相应于 SEQ ID NO. 1的第 95位的 Lys氨基酸残基由选自带正电荷的氨基酸或不带电荷的 氨基酸取代或被缺失; 或(d) (a)- (c)的任意组合。
更优选地, 本发明的血管内皮抑制素突变体包含以下突变: (a) 相应于 SEQ ID NO. 1的第 89位的 Gly氨基酸残基由选自 Ala和 Pro的氨基酸取代 或被缺失;或(b) 相应于 SEQ ID NO. 1的第 92位的 Gly氨基酸残基由 Ala 取代或被缺失; 或(c) 相应于 SEQ ID NO. 1的第 95位的 Lys氨基酸残基 由选自 Arg和 Gin的氨基酸取代或被缺失; 或 (d) (a)- (c)的任意组合。
当然, 在不影响突变体蛋白质分子的电荷分布和构象的前提下, 也可 以选取带电荷的氨基酸进行上述的取代。
在具体的实施方式中, 本发明的血管内皮抑制素突变体包含选自如下 一组的序列: SEQ ID NO. 6- IK 13、 14、 15-27和 30-31。 优选地, 本发明 的血管内皮抑制素突变体包含选自如下一组的序列: SEQ ID N0.6、 SEQ ID ΝΟ·10、 8 (^ 10 27和8 (^ 10 30。
优选地, 本发明的上述血管内皮抑制素突变体是人血管内皮抑制素的 突变体。
本发明还提供药物组合物, 其包含如上所述的本发明的血管内皮抑制 素突变体。 在本发明的药物组合物中, 所述血管内皮抑制素可以共价连接 于 PEG分子。所述 PEG分子的分子量例如为 5-40 kD, 例如 5-20 kD, 或者 20-40 kD,优选地所述 PEG分子的分子量为 20 kD,例如为 20 kD的单甲氧 基聚乙二醇, 例如单甲氧基聚乙二醇丙醛 (mPEG-ALD)。优选地, 所述 PEG 分子共价连接于所述血管内皮抑制素的 N-末端 α氨基。
本发明还提供治疗肿瘤的方法, 包括给肿瘤患者施用如上所述的本发 明的血管内皮抑制素突变体或如上所述的本发明的药物组合物。
本发明还涉及如上所述的血管内皮抑制素突变体在制备治疗新生血管 相关疾病的药物中的用途。 优选地, 所述新生血管相关疾病是肿瘤。 附图说明
图 1 : 人和鼠 ES的序列比对。
图 2: ES、 ES突变体、 ES变体及它们的 mPEG修饰产物的制备。
(A)工程菌表达;
(B)包含体蛋白纯化;
(C)复性蛋白纯化;
(D)修饰后蛋白纯化;
图 3 : ES, ES变体及它们的 mPEG修饰产物具有 ATPase活性。
图 4: ES, ES变体及它们的 mPEG修饰产物在内皮细胞全细胞裂解液 中具有 ATPase活性。
(A) ES和 mPEG-ES可降解内皮细胞全细胞裂解液中的 ATP。
(B) ES, Endu及它们的 mPEG修饰产物可降解内皮细胞全细胞裂解液 中的 ATP。
图 5:利用 ATPase活性检测可以快捷准确的对 ES、 ES变体及其 mPEG 修饰产物进行生物学活性测定。
(A)基于 ATPase活性检测 ES和 Endu活性的标准曲线。
(B)基于 ATPase活性检测 mPEG-ES和 mPEG-Endu活性的标准曲线。 图 6: ES突变体的 ATPase活性比较。
图 7: ES突变体降解内皮细胞全细胞裂解液中 ATP的活性比较。
图 8: ES突变体抑制内皮细胞迁移活性的比较。
图 9: Endu突变体的 ATPase活性及抑制内皮细胞迁移活性的比较。
(A) Endu突变体的 ATPase活性比较。
(B) Endu突变体抑制内皮细胞迁移活性的比较。
图 10: 天然人 ES序列。
图 11 : 大肠杆菌重组表达的人 ES序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 12: 大肠杆菌重组表达的人 N-4序列, 其中 N-末端第一个氨基酸 M 和 C-末端最后一个氨基酸 K可在重组表达时被随机删除。
图 13 : 大肠杆菌重组表达的 Endu序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 14:大肠杆菌重组表达的 ES001序列,其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 15:大肠杆菌重组表达的 ES003序列,其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 16:大肠杆菌重组表达的 ES004序列,其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 17:大肠杆菌重组表达的 ES005序列,其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 18:大肠杆菌重组表达的 ES006序列,其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。 可在重组表达时被随机删除。
图 35: 大肠杆菌重组表达的 Z009序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 36: 大肠杆菌重组表达的 Z101序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 37: 大肠杆菌重组表达的 Z103序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 38: 大肠杆菌重组表达的 Z104序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 39: 大肠杆菌重组表达的 ZN1序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 40: 大肠杆菌重组表达的 ZN2序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 41 : 大肠杆菌重组表达的 ZN3序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 42: 大肠杆菌重组表达的 ZN4序列, 其中 N-末端第一个氨基酸 M 可在重组表达时被随机删除。
图 43 : ES突变体 ES010、 ES01 ES012抑制内皮细胞迁移活性的比 较。
图 44: ES突变体 S01、 S02、 S09、 S10抑制内皮细胞迁移活性的比较。 图 45: ES突变体 S12抑制内皮细胞迁移活性的比较。
图 46: ES突变体 Z005、 Z006、 Z008、 Z009抑制内皮细胞迁移活性的 比较。
图 47: ES突变体 Z101、 Z103、 Z104、 ZN1、 ZN2、 ZN3、 ZN4抑制内 皮细胞迁移活性的比较。
图 48: ES突变体在动物体水平上对非小细胞肺癌 A549肿瘤生长的抑 制效果, (A) 肿瘤体积, (B)肿瘤重量。 发明详述
除非另有说明, 否则本说明书中所使用的科学及技术术语应具有本领 域普通技术人员通常所了解的含义。 通常, 本说明书中所使用的与细胞及 组织培养、 分子生物学、 免疫学、 微生物学、 遗传学及蛋白质与核酸化学 有关的命名及其技术是本领域公知和常用的。
除非另有说明, 否则本说明书中所使用的方法及技术一般根据本领域 公知的和常规的方法和本说明书中所阐述的或引用的各种参考文献中所述 的方式来进行。 例如参见 Sambrook J.及 Russell D. Molecular Cloning: A Laboratory Manual,第 3片反, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2000); Ausubel等人, Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, John & Sons, Inc. (2002); Harlow及 Lane Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1998);及 Coligan等人, Short Protocols in Protein Science, Wiley, John & Sons, Inc. (2003)。
在本说明书及权利要求书中, "包含"一词应理解为既可表示仅包括所 述的元件或元件的组, 也可表示在所述的元件或元件的组的基础上不排除 任何其它元件或元件的组。除非另有说明,否则当本说明书使用术语"一"、 "一个"或 "一种" 时, 其意味着 "至少一个 (种) "或 "一或多个 (种) "。
本说明书中所引用的所有出版物、 专利及专利申请均以全文引用的方 式并入本说明书中。
ES、 ES变体、 ES突变体及 PEG修饰产物
ES (Endostatin)指天然的血管内皮抑制素,例如具有 SEQ ID NO. 1的序 列的人血管内皮抑制素 (图 10)。 ES变体指在天然 ES序列的基础上, 其 N- 末端或 C-末端添加或缺失 1-15个氨基酸的形式。 ES变体可以是天然产生 的, 例如, 当人 ES在大肠杆菌中重组表达时, 其第一个氨基酸 M可被随 机删除, 产生具有 SEQ ID NO. 2的序列的 ES变体 (图 11)。 再例如, 当 ES 在酵母中重组表达时, 由于 N-末端发生随机剪切, 可产生 N-末端缺失 4个 氨基酸的 ES变体 (N-4), 具有 SEQ ID NO. 3所示的序歹 lj (;图 12), 进一步地, 其中 C-末端的 K还可被随机删除。 ES变体也可以是人工产生的, 例如, 为 了促进蛋白表达和提高稳定性,恩度 (Endu)在天然 ES的 N-末端添加了序列 为 MGGSHHHHH的 9个附加氨基酸残基, 该变体具有 SEQ ID NO. 4所示 的序列 (图 13), 其中第一个氨基酸 M可在重组表达时被随机删除。 在本申 请中, ES变体是指与相应的天然 ES具有相同或相似的抑制新生血管生成 的活性, 且与相应的天然 ES具有相同的 ATP结合基序以及相同或相似的 ATP酶活性的天然存在的或人工产生的 ES变体。
在本申请中, ES的突变体指的是对天然 ES或 ES变体的 ATP结合位 点进行改造, 例如对 ATP结合基序进行氨基酸定点突变, 而获得的突变蛋 白质。
本发明中使用的 ES、 ES变体及 ES突变体蛋白除 Endu购自先声麦得 津公司, 其余均由北京普罗吉公司提供。
聚乙二醇 (PEG)修饰的 ES、 Endu 和 N-4 分别命名为 mPEG-ES、 mPEG-Endu和 mPEG-N-4, 它们分别是一个分子量为 20 kDa的单甲氧基聚 乙二醇丙醛 (mPEG-ALD)修饰一个 ES、 Endu或 N-4分子得到的产物, 偶联 的位点是活化的 mPEG-ALD 醛基与 ES、 Endu或 N-4的 N-末端 α-氨基。
ΑΤΡ生物发光检测试剂盒 Sigma-Aldrich)
这是一种被广泛认可和使用的 ATP检测方法, 具有极高的灵敏度。 原 理如下: 萤火虫荧光素酶 (Firefly luciferase)通过催化其底物荧光素 (luciferin) 氧化发射出光子, 该过程需利用 ATP的能量。 因此, 萤火虫荧光素酶催化 的发光反应中, 发光强度与被检测体系中的 ATP浓度具有很好的线性依赖 关系。所以,我们利用生物发光分析仪 (Berthold Technologies Centra LB 960) 检测各组反应物中的发光反应强度, 就可以准确计算出反应体系中的 ATP 浓度。 孔雀绿磷酸盐检测试剂盒 (Malachite Green Phosphate Assay Kits, BioAssay Systems)
这是一种被广泛认可和使用的 ATP酶活性检测方法。 原理是在酸性条 件下孔雀绿、钼酸盐和无机憐酸反应形成绿色的物质,可在 600~660 nm的 波长范围内检测, 其吸光值与憐酸盐含量在一定范围内呈很好线性关系。 ATP酶在催化 ATP水解的过程中释放出 ADP和憐酸 (Pi), 利用该试剂盒测 得的憐酸含量计算 ATP酶的活性。 这种方法既方便又迅速, 被广泛应用于 憐酸酯酶 (Phosphatase)活性、脂肪酶 (Lipase)活性、三憐酸核苷酶 (Nucleoside Triphosphatase)活性和无机憐酸盐 (Phosphate)含量分析以及大通量药物筛 选。
ATP结合基序 (ATP-binding motif)
指具有 ATPase活性的蛋白分子中与 ATP结合的典型一级序列。 ATP 结合基序通常具有 P-loop结构,这个 P-loop结构主要有以下几种典型序列: GXXGXXK, (G/A)XXXXGK(T/S) , GXXXXGKS 和 GXXGXGKS。 对人
ES而言, ATP结合基序指 GXXGXXK这段序列。 其中, 没有用 X取代的 氨基酸残基相比之下更加保守。通常,这些 ATP结合基序也可以结合 GTP。
ATP结合位点 (ATP-binding site)
指具有 ATPase活性的蛋白分子中可以结合 ATP的部位, 包括经典的 ATP结合基序 (ATP-binding motif)和 ATP结合基序以外参与 ATP结合的氨基 酸位点。 这些氨基酸在蛋白一级序列上可以远离上述 ATP结合基序, 但在 三级结构上参与 ES与 ATP/GTP相互作用的氨基酸, 或者这些氨基酸位点 的取代或缺失可以通过影响蛋白构象间接影响到 ES与 ATP/GTP相互作用, 从而改变 ES的 ATPase活性。 本发明基于对 ES新活性 (ATPase活性)的发现, 公开了一种评价 ES生 物学活性的新方法, 与现有利用内皮细胞迁移测活的方法相比具有更加便 捷、 准确和重复性好的特点。 这为 ES及其变体、 突变体的机理研究、 药物 研发和质量控制提供了重要研究方法。
因此, 本发明提供检测血管内皮抑制素、 或其变体、 突变体或 PEG修 饰产物的生物学活性的方法, 其步骤包括检测所述血管内皮抑制素、 或其 变体、 突变体或 PEG修饰产物的 ATPase活性。 例如, 可以利用孔雀绿憐 酸盐检测法或 ATP生物发光检测法检测血管内皮抑制素、 或其变体、 突变 体或 PEG修饰产物等产品的 ATPase活性, 由此判断重组制备的 ES产品的 构象和生物学活性。
同时, 通过与现有报道的几种作为 ATP 结合基序 (ATP-binding motif) 的 P-loop结构氨基酸序列比较,我们发现 ES—级序列中第 89-95位氨基酸 Gly-Ser-Glu-Gly-Pro-Leu-Lys具有符合 GXXGXXK的典型 ATP结合基序, 可作为 ES行使 ATPase活性的结构基础 (图 10)。 基于 ES的晶体结构信息,我们发现由于 ES的 ATP结合基序在三维结 构上距离 N-末端较近,所以 N-末端序列改变带来的空间位阻变化可能会影 响到 ES的 ATPase活性。 因此, 在本发明的一个实施例中, 我们检测了 ES 变体 Endu (N-末端带有 9个附加氨基酸残基)以及 N-4 (N-末端缺失 4个氨基 酸残基的 ES)的 ATPase活性。 结果显示, ES及其变体 Endu、 N-4都具有 ATPase活性。 其中, Endu的 ATPase活性与 ES相比有明显降低, 但 N-4 的 ATPase活性与 N-末端完整的 ES相比显著升高 (图 3)。 这一结果说明, N-末端完整性不同导致的局部空间位阻变化对于 ES的 ATPase活性的确有 影响。因此,通过共结晶解析获悉的除 GXXGXXK这一典型 ATP结合基序 以外的 ES与 ATP相互作用位点将是潜在的 ATPase活性改造位点。
由于已有数据报道, ES和 Endu的 N-末端 α-氨基在被 mPEG单一定点 修饰后, 抑制内皮细胞迁移的活性得到了显著的增强 (ZL200610011247.9)。 因此, 本发明的一个实施例中, 同时检测了 mPEG-ES, mPEG-Endu 和 mPEG-N-4的 ATPase活性, 发现与修饰前相比都显著降低 (图 3)。 因此, 我 们发现这一组 ES、 ES变体及它们的 mPEG修饰产物的 ATPase活性与抑制 内皮细胞迁移的活性负相关, 即 ATPase活性越高, 抑制内皮细胞迁移的活 性越低。 这一结果在 ES变体 N-4中已得到验证: N-4的 ATPase活性高于 ES和 Endu (图 3), 而其细胞学活性与 ES和 Endu相比显著降低 (Fu Y. et al. Biochemistry 2010; 49:6420-6429)。
从以上数据中, 我们发现了所检测的 ES、 ES变体及它们的 mPEG修 饰产物的 ATPase活性与抑制内皮细胞迁移的活性负相关的规律。基于此项 发现, 为了得到具有更高抗内皮细胞迁移活性的 ES, 我们可以通过对 ES 的 ATP结合位点进行氨基酸定点突变的方法降低 ES的 ATPase活性。
因此, 本发明还提供提高血管内皮抑制素的生物学活性的方法, 其包 括降低血管内皮抑制素或其变体的 ATPase活性。 具体地, 可以通过基因工 程手段对血管内皮抑制素或其变体的 ATP结合基序 GXXGXXK进行突变, 从而获得具有降低的 ATPase活性的血管内皮抑制素突变体, 所述血管内皮 抑制素突变体具有提高的生物学活性, 例如提高的抑制内皮细胞迁移的活 性和提高的抑制肿瘤的活性。
因此, 在本发明的一个实施例中, 针对 ES中的 ATP结合位点引入了 如下突变形式: ES001—— ES-K96R (SEQ ID NO. 5) (图 14)
ES003—— ES-G90A (SEQ ID NO. 6) (图 15)
ES004—— ES-G93 A&K96R (SEQ ID NO. 7) (图 16)
ES005—— ES-G90A&G93A&K96R (SEQ ID NO. 8) (图 17)
ES006—— ES-G93A (SEQ ID NO. 9) (图 18)
ES007—— ES-G90A&E92K&G93A&K96R (SEQ ID NO. 10) (图 19) ES008—— ES-E92Q&P94Q&K96Q (SEQ ID NO. 11) (图 20)
利用生化方法检测 ATPase活性时,突变体的 ATPase活性与 ES相比明 显升高,而突变体 ES003 , ES004, ES005, ES006, ES007和 ES008的 ATPase 活性和 ES相比则发生显著降低 (图 6)。虽然 ES可以被内皮细胞内吞, 从而 降解细胞内的 ATP, 但活细胞可以迅速代偿 ATP的消耗, 现有技术通常通 过检测全细胞裂解液的 ATP降解情况来代替活细胞内的 ATP含量检测。在 全细胞裂解液的条件下, 突变体 ES003 , ES006, ES007和 ES008的 ATPase 活性仍然明显低于 ES (图 7A)。但是突变体 ES001, ES004和 ES005的 ATPase 活性却和 ES相当 (图 7B)。 这也许由于突变造成的 P-loop结构的改变影响 了整个蛋白与 ATP的相互作用所致。
接下来, 我们继续验证了这些 ES突变体抑制内皮细胞迁移的活性, 发 现与预期基本吻合, 即除个别例外, 多数 ES突变体的 ATPase活性与其抑 制内皮细胞迁移的活性负相关 (图 8)。
此外, 在本发明的一个实施例中, 还对于 ES的变体 Endu也进行了相 同方式的突变:
EnduOOl—— Endu-K104R (SEQ ID NO. 12) (图 21)
Endu003—— Endu-G98 A (SEQ ID NO. 13) (图 22)
Endu008—— Endu-E100Q&P102Q&K104Q (SEQ ID NO. 14) (图 23) 发现 ATP结合位点突变对 Endu的 ATPase活性和抑制内皮细胞迁移活 性的改变与相同突变方式对 ES相关活性的改变相类似。 因此, 我们认为针 对 ES的 ATP结合位点进行突变, 改变 ES的 ATPase活性及抑制内皮细胞 迁移活性的方法也适用于 ES变体。
因此, 本发明还提供血管内皮抑制素突变体, 所述突变体具有提高的 抗新生血管生成的活性, 其中所述突变体在其 ATP结合位点包含突变, 且 与相应的野生型血管内皮抑制素或其变体相比, 所述突变体的 ATPase活性 降低。
优选地, 与相应的野生型血管内皮抑制素或其变体相比, 所述突变体 的 ATPase活性降低至少大约 30%, 例如降低至少大约 50%, 降低至少大约 70%, 或降低至少大约 90%。 例如, 与相应的野生型血管内皮抑制素或其 变体相比, 所述突变体的 ATPase活性仅保留至多大约 60-70%, 例如保留 至多大约 50-60%, 保留至多大约 40-50%, 保留至多大约 30-40%, 保留至 多大约 20-30%, 保留至多大约 10-20%, 或保留不足 10%或更低。 在一个 实施方式中, 所述突变体不具有 ATPase活性。
在一些实施方式中, 与相应的野生型血管内皮抑制素或其变体相比, 所述突变体在其 ATP结合基序中包含突变。 例如, 所述突变体在相应于由 SEQ ID NO. 1的第 89-95位氨基酸残基组成的 Gly-Ser-Glu-Gly-Pro-Leu-Lys 基序的序列中包含突变, 其中所述突变选自一或几个氨基酸残基的取代、 缺失或添加或其组合, 其中所述突变导致所述突变体的 ATPase活性降低或 消除。
在一些实施方式中, 所述突变体的相应于由 SEQ ID NO. 1的第 89-95 位氨基酸残基组成的 Gly-Ser-Glu-Gly-Pro-Leu-Lys 基序的序列被部分或全 优选地, 本发明的血管内皮抑制素突变体包含以下突变: (a) 相应于 SEQ ID NO. 1的第 89位的 Gly氨基酸残基由选自不带电荷的氨基酸或芳香 族的氨基酸取代或被缺失; 或 (b) 相应于 SEQ ID NO. 1的第 92位的 Gly 氨基酸残基由选自不带电荷的氨基酸取代或被缺失; 或(c) 相应于 SEQ ID NO. 1的第 95位的 Lys氨基酸残基由选自带正电荷的氨基酸或不带电荷的 氨基酸取代或被缺失; 或(d) (a)- (c)的任意组合。
更优选地, 本发明的血管内皮抑制素突变体包含以下突变: (a) 相应于 SEQ ID NO. 1的第 89位的 Gly氨基酸残基由选自 Ala和 Pro的氨基酸取代 或被缺失;或(b) 相应于 SEQ ID NO. 1的第 92位的 Gly氨基酸残基由 Ala 取代或被缺失; 或(c) 相应于 SEQ ID NO. 1的第 95位的 Lys氨基酸残基 由选自 Arg和 Gin的氨基酸取代或被缺失; 或 (d) (a)- (c)的任意组合。
在具体的实施方式中, 本发明的血管内皮抑制素突变体包含选自如下 一组的序列: SEQ ID NO. 6- IK 13、 14、 15-27和 30-31。 优选地, 本发明 的血管内皮抑制素突变体包含选自如下一组的序列: SEQ ID N0.6、 SEQ ID ΝΟ·10、 SEQ ID N0.27和 SEQ ID NO.30。
优选地, 本发明的上述血管内皮抑制素突变体是人血管内皮抑制素的 突变体。
本发明还提供药物组合物, 其包含如上所述的本发明的血管内皮抑制 素突变体。 在本发明的药物组合物中, 所述血管内皮抑制素可以共价连接 于 PEG分子。所述 PEG分子的分子量例如为 5-40 kD, 例如 5-20 kD, 或者 20-40 kD,优选地所述 PEG分子的分子量为 20 kD,例如为 20 kD的单甲氧 基聚乙二醇, 例如单甲氧基聚乙二醇丙醛 (mPEG-ALD)。优选地, 所述 PEG 分子共价连接于所述血管内皮抑制素的 N-末端 α氨基。
本发明还提供治疗肿瘤的方法, 包括给肿瘤患者施用如上所述的本发 明的血管内皮抑制素突变体或如上所述的本发明的药物组合物。
本发明还涉及如上所述的血管内皮抑制素突变体在制备治疗新生血管 相关疾病的药物中的用途。 优选地, 所述新生血管相关疾病是肿瘤。
通过以下非限制性的实施例进一步阐述本发明, 应该理解, 本发明并 不限于这些实施例中。 实施例
实施例 构建 ES重组菌株
本实施例中, 从人肝癌细胞 A549的 cDNA中克隆出 Endostatin, 并连 接 到 pET30a 质 粒 中 。 基 因 扩 增 使 用 的 5' 端 引 物 为 GGAATTCCATATGCACAGCCACCGCGACTTC , 3, 端 弓 | 物 为 CCGCTCGAGT TACTTGGAGGCAGTCATGAAGCTG。 内切酶分别是 Ndel 和 XhoI。
将上述重组质粒按照常规技术转化到大肠杆菌中, 并进行表达。 实施例 2: 构建 ATP结合位点突变的 ES或 Endu突变体菌株
本实施例中, 对野生型人 ES的 ATP结合位点进行突变改造, 具体方 法以及上、 下游引物及转化方法同实施例 1。 突变体编号如下:
ES001—— ES-K96R (SEQ ID NO. 5) (图 14)
ES003—— ES-G90A (SEQ ID NO. 6) (图 15)
ES004—— ES-G93A&K96R (SEQ ID NO. 7) (图 16) ES005—— ES-G90A&G93A&K96R (SEQ ID NO. 8) (图 17) ES006—— ES-G93A (SEQ ID NO. 9) (图 18)
ES007—— ES-G90A&E92K&G93A&K96R (SEQ ID NO. 10) (图 19) ES008—— ES-E92Q&P94Q&K96Q (SEQ ID NO. 11) (图 20)
同时, 作为对照, 我们还以 Endu的序列为基础, 用上述同样方法构建 了 ATP结合位点的突变体: EnduOOl , Endu003和 Endu008。
EnduOOl—— Endu-K104R (SEQ ID NO. 12) (图 21)
Endu003—— Endu-G98A (SEQ ID NO. 13) (图 22)
Endu008—— Endu-E100Q&P102Q&K104Q (SEQ ID NO. 14) (图 23) 实施例 3 : 重组 ES及其突变体、 Endu突变体的表达制备
本实施例中, 以 ES003为例简述 ES及其突变体、 Endu突变体的表达 及制备方法如下: ES及其突变体的菌种经 LB培养基摇瓶扩培过夜后接种 到 5L发酵罐 (Sartorius)发酵, 适时加入 IPTG诱导, 培养约 4小时后收集菌 体 (图 2A)。 菌体用缓冲液重悬, 并用高压均质机彻底破碎, 反复破碎 3次, 每一次均离心留沉淀。 然后用 DEAE或者 Q柱 (GE Healthcare), CM或者 SP柱 (GE Healthcare), 在 pH 4.0~10.0的范围梯度洗脱, 分别纯化复性前后 的蛋白样品, 得到纯度大于 95%的复性蛋白 (图 2B、 C) o将复性蛋白浓縮后 对 PBS或者 NaAc-HAc透析, 用平均分子量为 20 kD的单甲氧基聚乙二醇 丙醛 (mPEG-ALD, 20 kDa, 北京键凯科技有限公司)按照产品说明书提示的 操作方法对复性蛋白进行 N-末端单修饰, 修饰产物用 CM或者 SP柱 (GE Healthcare)纯化, 并在 pH 4.0~10.0的范围梯度洗脱,得到目标组分 (;图 2D)。 实施例 4: ES及其变体是高效的 ATP酶
本实施例中,首先配制 50 mM HEPES, 1 mM EDTA, 0.02% NaN3, H 7.4的样品稀释液, 用样品稀释液将 ES及其变体 Endu, N-4稀释到终浓度 500 g/mL。第一组: 阴性对照组, 样品稀释液加入等体积的无蛋白缓冲液; 第二组, ES及其变体 Endu, N-4, 终浓度 500 g/mL。
将配好的待测样品或对照样品中加入终浓度为 500 μΜ的 ΑΤΡ, 置于 37°C水浴中反应 30 min, 然后冰浴 5 min终止反应。 ES及其变体的样品处 理操作同第一组, 且与第一组平行进行。 以上操作完成后将两组样品分别稀释适当倍数, 依次加入到 96孔酶标 板中, 使用孔雀绿憐酸盐检测试剂盒 (Malachite Green Phosphate Assay Kits, BioAssay Systems), 通过酶标仪 (Multiskan mk3, Thermo Scientific)检测 96 孔板中各组样品的吸光度, 计算出反应体系中的憐酸盐浓度, 再根据生成 的憐酸盐量计算出 ES的 ATP酶活性:
ATP酶活性 (nM/mg/min)= Δ憐酸盐浓度 (nM/ml)/反应时间 (30 min)/ES 或其变体浓度mg/ml)
结果显示, ES, Endu和 N-4都具有很强的 ATPase活性, 其中 N-4的 ATPase活性最高。
我们用同样的方法检测了经 mPEG修饰的 ES, Endu和 N-4的 ATPase 活性, 发现 mPEG-ES, mPEG-Endu和 mPEG-N-4的 ATPase活性与 ES, Endu和 N-4相比均分别有所下降。
以上试验采用公认的自然界中具有较高 ATPase活性的蛋白 Myosin (提 取自猪心, Sigma)作为阳性对照。 结果显示, ES及其变体是高效的 ATP酶 (图 3)。 实施例 5: ES、 Endu及其 mPEG修饰产物能够显著降低人血管内皮细胞全 细胞匀浆液中的 ATP含量, 从而发挥 ATPase活性
本实施例中, 人血管内皮细胞首先被收集, 并使用细胞裂解液将细胞 溶解成为溶液形式的全细胞裂解组分, 低温离心去除细胞匀浆的沉淀、 杂 质和碎片等 (以上操作在冰上低温条件下完成);再将细胞裂解组分平均分成 四组加以不同处理, 处理分组方法如下。 第一组: 阴性对照组, 加入等体 积无蛋白缓冲液; 第二组, 加入 ES (50 g/mL)处理; 第三组, 加入 ES (100 g/mL)处理; 第四组, 加入 ES (200 g/mL)处理。 加入 ES后立刻将各组放 置于室温条件下进行反应, 25分钟后再次放回冰上以终止反应。 使用 ATP 生物发光检测试剂盒 (Sigma-Aldrich)对各组细胞匀浆中的 ATP 含量进行检 测。 结果显示, 与对照组相比, ES处理能够显著分解并降低人血管内皮细 胞裂解组分中的 ATP水平。 这一结果与实施例 4的发现相一致, 这也证明 了 ES的降解 ATP功能是可以在细胞裂解液这类较复杂体系中进行的。 同 时, 我们发现聚乙二醇修饰的 ES (mPEG-ES)也可以显著分解并降低人血管 内皮细胞裂解组分中的 ATP水平, 只是在 ES和 mPEG-ES剂量相同 (分别 加入 50, 100, 200 g/mL)、 处理时间也相同的情况下, mPEG-ES降解 ATP 的活性稍低于 ES (图 4A)。
在本实施例中, ES还可以被替换为与 ES作用机理相同的蛋白或其变 体 Endu。 在 Endu 及其 mPEG 修饰产物 (mPEG-Endu) (即在 N-末端带 MGGSHHHHH附加氨基酸的 ES基础上再进行 mPEG-ALD, 20 kDa修饰) 的平行比较实验中, 也观察到了类似的结果。 利用本实施例中所述的相同 实验方法获得人血管内皮细胞的全细胞裂解组分, 并平均分成七组加以不 同处理, 处理分组方法如下。 第一组: 阴性对照组, 无处理; 第二组, 阴 性对照组, 加入牛血清白蛋白 BSA (100 g/mL)处理, BSA是一种已知的不 具有 ATP酶活性的蛋白质, 常用作此类实验中的阴性对照蛋白; 第三组, 阳性对照组, 加入猪心肌球蛋白 Myosin (100 g/mL)处理, 肌球蛋白是一种 已知的具有很高 ATP酶活性的蛋白质, 用作阳性对照蛋白; 第四组, 加入 ES (100 g/mL)处理; 第五组, 加入 mPEG-ES (100 g/mL)处理; 第六组, 加入 Endu (100 g/mL)处理; 第七组, 加入 mPEG-Endu (100 g/mL)处理。 分别加入 ES、 Endu或其 mPEG修饰产物后立刻将各组放置于室温条件下 进行反应, 25分钟后再次放回冰上以终止反应。实验结果显示,在 Myosin, BSA, ES, mPEG-ES, Endu及 mPEG-Endu剂量相同、 反应条件完全相同 的情况下, Myosin的 ATP降解活性即 ATP酶活性最高, ES, mPEG-ES, Endu及 mPEG-Endu也都显示出各自的 ATP降解活性即 ATP酶活性。在 ES, mPEG-ES, Endu及 mPEG-Endu之中: 天然序列 ES的 ATP酶活性最高, 接近 Myosin; mPEG-ES 的 ATP酶活性第二高, 比 ES略有下降; Endu及 mPEG-Endu的 ATP酶活性分别更低一些 (图 4B)。 实施例 6: ATPase活性评价是一种便捷准确、重现性好的 ES的活性测定方 法
本实施例中,采用实施例 4所述的实验方法,建立了 ES及其变体、 PEG 修饰产物 ATPase活性测定的方法。其中, ES, Endu, mPEG-ES和 mPEG-Endu 分别在冰浴条件下用样品稀释液稀释成一系列浓度梯度的待测样品 (具体浓 度如图 5所示)。 以上操作完成后,将稀释后的样品加入到 96 孔酶标板中, 使用孔雀绿憐酸盐检测试剂盒 (Malachite Green Phosphate Assay Kits , BioAssay Systems)检测各样品 OD63。吸光值。根据样品稀释倍数计算出稀释 后的样品浓度, 并计算出对应的 A OD63。。
A OD630 = S1 (OD630)- S2 (OD630)
以样品浓度为横坐标, 以对应的 A OD63。为纵坐标做曲线。 以同样的步 骤平行的对 mPEG-ES、 Endu、 mPEG-Endu 检测和作图, 结果显示 ES、 mPEG-ES、 Endu、 mPEG-Endu 四种样品浓度和 Δ OD63。之间均有良好的线 性关系, 其 R2均大于 0.99 (图 5)。 因此, 在确定线性范围的前提下, 该方 法可以广泛用于 ES, ES变体及它们的 PEG修饰产物的活性测定。 实施例 Ί ES中 ATP结合位点的突变导致 ES的生化 ATPase活性发生改变 利用实施例 4所述的方法, 检测了 ES的 ATP结合位点发生突变后的 ATP酶活。结果显示, 除突变体 ES001的酶活性较 ES有所升高以外, 突变 体 ES003-ES008的 ATPase活性和 ES相比都显著降低, 与鼠血管内皮抑制 素 (MM)的 ATPase活性相当 (图 6)。 实施例 8 : ES中 ATP结合位点的突变导致 ES在全细胞裂解液中的 ATPase 活性发生改变
利用实施例 5 中的实验方法, 收集人血管内皮细胞, 并使用细胞裂解 液将细胞溶解成为溶液形式的全细胞裂解组分, 低温离心去除细胞匀浆的 沉淀、 杂质和碎片等; 再将细胞裂解组分平均分成数组加以不同处理, 处 理分组方法如下。 第一组: 阴性对照组, 无 ES (加入等量缓冲溶液)处理; 第二组, 加入 ES (100 g/mL)处理; 第三组, 加入小鼠来源的血管内皮抑制 素 MM (100 g/mL)处理;第四组,加入 ES突变体 ES003 (100 g/mL)处理; 第五组, 加入 ES突变体 ES006 (100 g/mL)处理; 第六组, 加入 ES突变体 ES007 (100 g/mL)处理; 第七组, 加入 ES突变体 ES008 (100 g/mL)处理。 使用 ATP生物发光检测试剂盒 Sigma-Aldrich)对各组细胞匀浆中的 ATP含 量进行检测。 结果显示, 野生型人 ES具有明显的 ATP降解活性, 而小鼠 来源的 MM由于没有典型的 ATP结合区域, 因而 ATP酶活性天生就很低, ES突变体 ES003、 ES006、 ES007、 ES008由于 ATP结合区域发生了不同程 度的突变, 其降解 ATP的活性与野生型 ES相比均显著下降, 其中突变体 ES003和 ES008的 ATPase活性降低幅度最为显著(图 7A)。
另一组实验中, 我们利用相同的方法检测了 ES突变体 ES001、 ES004、 ES005全细胞裂解液中的 ATPase活性, 发现它们具有与 ES相当或略高的 ATPase活性(图 7B)。 实施例 9: ATP结合位点的突变导致 ES抑制内皮细胞迁移的活性发生改变 细胞迁移的测定方法: 人微血管内皮细胞 (HMEC, 来自于 ATCC)每孔 2 X 104个细胞接种到 Transwell™吊篮 (8 μηι孔径, Costar)的上层含 1 %胎 牛血清的 DMEM (Hyclone)培养基中。同时在吊篮的上层和下层加入相同浓 度的 ES (20 g/mL)。 在 37° C和 5% C02条件下培养 6小时使细胞迁移。 然后, 用戊二醛固定和结晶紫染色, 每个孔随机选取 5个放大视野, 计算 其中完全穿过膜迁移到板下层的细胞数并取平均值, 再与对照组相比计算 出细胞迁移数目减少的情况 (即各组蛋白的抑制率)。每一组平行三个孔, 实 验独立重复至少两次。
本实施例中, 内皮细胞 HMEC被分成如下各组加以不同处理。第一组: 阴性对照组, 无 ES (加入等量缓冲溶液)处理; 第二组, 加入 ES (20 g/mL) 处理; 第三组, 加入小鼠来源的血管内皮抑制素 MM (20 g/mL)处理; 第 四组,加入 ES突变体 ES003 (20 g/mL)处理;第五组,加入 ES突变体 ES006 (20 g/mL)处理; 第六组, 加入 ES突变体 ES007 (20 g/mL)处理; 第七组, 加入 ES突变体 ES008 (20 g/mL)处理。 结果显示, MM, 突变体 ES003、 ES006、ES007、ES008抑制内皮细胞迁移的活性与 ES相比显著增加(图 8A)。
在另一组实验中, 我们用相同方法比较了 ES001 , ES003 , ES004 和 ES005抑制内皮细胞的活性, 发现除 ES003的活性比 ES显著升高以外, 其 余突变体的活性都比 ES有所降低 (图 8B)。 实施例 10: ATP结合位点的突变导致 Endu的 ATPase活性和抑制内皮细胞 迁移的活性发生改变
利用实施例 4和实施例 9中所述的方法,本实施例分别比较了 Endu突 变体的 ATPase活性 (图 9A)和抑制内皮细胞迁移的活性 (图 9B)。 结果显示, 通过 ATP结合位点突变带来的 Endu的 ATPase活性和抑制内皮细胞迁移活 性的改变与相同突变方式对 ES相关活性的改变具有相类似的效果。 实施例 l 将野生型 ES的 ATP结合基序及其周边序列进行突变改造, 得 到不同 ATP活性降低的突变体
本实施例中,利用两步 PCR技术对 ES的 ATP结合基序进行突变改 PCR循环以及两端引物同实施例 1。 突变位点归纳如下: 名称 突变位点 序列编号
ES010 MES-R5M SEQ ID N0.15 (图 24)
ES011 MES-R5Q SEQ ID N0.16 (图 25)
ES012 MES-R5Q&E92Q&P94Q&K96Q SEQ ID N0.17 (图 26)
S01 MES-AN2-5(HSHR)&Insert S97 SEQ ID NO.18 (图 27)
S02 MES-AN2-5(HSHR)&Insert T97 SEQ ID NO.19 (图 28)
S09 MES-Insert S97 SEQ ID NO.20 (图 29)
S10 MES-Insert T97 SEQ ID NO.21 (图 30)
S12 MES-ACl-4 SEQ ID N0.22 (图 31)
Z005 MES-AG90&AG93&K96Q SEQ ID NO.23 (图 32)
Z006 MES-AG90&R5Q SEQ ID N0.24 (图 33)
Z008 MES-AG90&R5Q&AG93 SEQ ID N0.25 (图 34)
Z009 MES-AG90&R5Q&K96Q SEQ ID N0.26 (图 35)
Z101 MES-AG90&K107R&K118R&K184R SEQ ID NO.27 (图 36)
Z103 ES008-K76R&K107R&K184R SEQ ID N0.28 (图 37)
Z104 ES008-K76R&K118R&K184R SEQ ID N0.29 (图 38)
ZN1 Z101-K76R SEQ ID NO.30 (图 39)
ZN2 MES-G90A&K76R&K107R&K118R&K184R SEQ ID N0.31 (图 40)
ZN3 ZN2-G93A SEQ ID N0.32 (图 41)
ZN4 ZN2-A90P SEQ ID N0.33 (图 42) 按照实施例 4的方法测定了实施例 2和实施例 11中的 ES变体、 突 体及其 mPEG修饰物的 ATP酶活性, 结果见表 1。 1
Figure imgf000025_0001
实施例 12: ES突变体对 HMEC细胞迁移的影响
细胞迁移试验采用实施例 9中所述的 Transwell Assay方法进行评价。 由于很多突变体蛋白抑制内皮细胞迁移的活性增强显著, 为了更明显地体 现各突变体蛋白之间活性的差异, 本实施例采用降低的剂量 5 g/mL处理 细胞, 仍能够看到明显的抑制效果。 实验结果见图 43-47。 除 Z103、 Z104、 ZN3和 ZN4的 ATPase活性较 ES降低,其抑制内皮细胞迁移的活性也发生 了降低,其他各个突变体均显示了与 ES相当或显著提高的抑制内皮细胞迁 移的活性, 符合 ATPase活性与抑制内皮细胞迁移的活性负相关的规律。 而 上述四个突变体 Z103、 Z104、 ZN3和 ZN4的例外很可能是由于突变位点过 多对蛋白整体结构造成影响所致。 实施例 13 : Endostatin突变体在动物体水平上对非小细胞肺癌 A549细胞肿 瘤生长的抑制效果
培养处于增殖状态的人源肺腺癌 A549细胞 (ATCC保藏号为 CCL-185) 接种至 6 〜 8周龄的裸鼠 (北京维通利华实验动物技术有限公司)皮下。 当肿 瘤生长至体积约为 80-100 mm3时, 开始给药。 荷瘤裸鼠分为五组进行不同 的给药处理。 同样的, 由于突变体抗新生血管活性增强, 本实验采用了降 低的剂量 12 mg/kg处理荷瘤鼠 (通常剂量 24 mg/kg) o 第一组: 阴性对照 Control组,无给药处理,仅注射等量生理盐水; 第二组, mPEG-ES给药组, 进行 mPEG-ES给药处理; 第三组, M003给药组, 进行 M003给药处理; 第四组, M007给药组, 进行 M007给药处理; 第五组, MZ101给药组, 进 行 MZ101 给药处理。 上述四种 Endostatin 突变体 mPEG-ES、 M003 (mPEG-ES003)、 M007(mPEG-ES007)、 MZlOl(mPEG-ZlOl)的用药剂量均为 12 mg/kg, 每周尾静脉注射给药一次, 治疗时间为 21天 (3周)。在实验过程 中使用电子游标卡尺对各组所有肿瘤的长径和短径, 由公式计算出肿瘤体 积 = 0.5 X长径 X短径 2 (mm3) o
肿瘤体积生长测定实验的结果显示 (如图 48A所示),与第一组对照组未 经药物治疗的肿瘤体积相比较:第二组 mPEG-ES给药的肿瘤体积抑制率为 45%; 第三组 M003和第四组 M007给药的肿瘤体积抑制率与 mPEG-ES相 近; 第五组 MZ101给药的肿瘤体积抑制率为 71.2%, 该组的肿瘤体积最小、 药物抑瘤率最高。
实验结束后取出荷瘤裸鼠的肿瘤进行称重 (如图 48B所示),各组药物治 疗对于肿瘤重量的抑制效果与肿瘤体积测定实验的结果较为一致。 与第一 组对照组未经治疗的肿瘤重量相比较: 第二组 MS03 给药的肿瘤重量抑制 率为 42%;第三组 M003和第四组 M007给药的肿瘤重量抑制率与 mPEG-ES 相近;第五组 MZ101给药的肿瘤重量抑制率为 64%,该组的肿瘤重量最小、 药物抑瘤率最高。
本实施例的结果证明在荷瘤动物实验中, 剂量为 12 mg/kg/week下的 Endostatin突变体对肿瘤生长有良好的抑制效果。 其中 mPEG-ES的抑瘤率 约为 40%; M003和 M007的抑瘤率接近并略低于 mPEG-ES; MZ101的抑 瘤效果优于 mPEG-ES, 疗效最好、 抑瘤率最高 (约为 60-70%)。

Claims

权 利 要 求 书
1、 一种检测血管内皮抑制素、或其变体、突变体或 PEG修饰产物的 生物学活性的方法, 其步骤包括检测所述血管内皮抑制素、 或其变体、 突 变体或 PEG修饰产物的 ATPase活性。
2、 权利要求 1的方法,其中所述的血管内皮抑制素具有 SEQ ID NO. 1或 SEQ ID NO. 2所示的序列。
3、 权利要求 1的方法,其中所述的血管内皮抑制素变体具有 SEQ ID NO. 3或 SEQ ID NO. 4所示的序列。
4、 权利要求 1的方法, 其中所述的血管内皮抑制素突变体具有选自 SEQ ID NO. 6-11、 15-27和 30-31的序列。
5、 权利要求 1的方法, 其中所述的血管内皮抑制素变体的突变体具 有 SEQ ID NO. 13或 SEQ ID NO. 14所示的序列。
6、 权利要求 1的方法, 其中所述的血管内皮抑制素、 变体或突变体 的 PEG修饰产物是血管内皮抑制素、 变体或突变体被单甲氧基聚乙二醇进 行 N-末端单一定点修饰得到的产物。
7、 权利要求 6的方法, 其中所述的单甲氧基聚乙二醇是单甲氧基聚 乙二醇丙醛 (mPEG-ALD)。
8、 权利要求 1方法,其中利用孔雀绿憐酸盐检测法或 ATP生物发光 检测法检测血管内皮抑制素的 ATPase活性。
9、 一种提高血管内皮抑制素的生物学活性的方法, 其包括降低血管 内皮抑制素或其变体的 ATPase活性。
10、 权利要求 9所述的方法, 包括通过基因工程手段对血管内皮抑制 素或其变体的 ATP结合基序 GXXGXXK进行突变, 从而获得具有降低的 ATPase活性的血管内皮抑制素突变体。
11、 权利要求 9或 10的方法, 其中所述血管内皮抑制素突变体具有 提高的抑制内皮细胞迁移的活性。
12、 权利要求 9或 10的方法, 其中所述血管内皮抑制素突变体具有 提高的抑制肿瘤的活性。
13、 权利要求 9-12任一项所述的方法,其中所述血管内皮抑制素突变 体具有选自 SEQ ID NO. 6-11、 13、 14、 15-27和 30-31的序列。
14、 一种血管内皮抑制素或其变体的突变体, 所述突变体具有提高的 抗新生血管生成的活性, 其中所述突变体在其 ATP结合位点包含突变, 且 与相应的野生型血管内皮抑制素或其变体相比, 所述突变体的 ATPase活性 降低。
15、 权利要求 14 的突变体, 其中与相应的野生型血 :内皮抑制素或 其变体相比, 所述突变体的 ATPase活性降低至少大约 30%
16、 权利要求 15 的突变体, 其中与相应的野生型血 :内皮抑制素或 其变体相比, 所述突变体的 ATPase活性降低至少大约 50%
17、 权利要求 16 的突变体, 其中与相应的野生型血 :内皮抑制素或 其变体相比, 所述突变体的 ATPase活性降低至少大约 70%
18、 权利要求 17 的突变体, 其中与相应的野生型血 :内皮抑制素或 其变体相比, 所述突变体的 ATPase活性降低至少大约 90%
19、 权利要求 18的突变体, 其中所述突变体不具有 ATPase活性。
20、 权利要求 14-19任一项的突变体, 其中与相应的野生型血管内皮 抑制素或其变体相比, 所述突变体在其 ATP结合基序中包含突变。
21、 权利要求 20的突变体,其中所述突变体在相应于由 SEQ ID NO. 1 的第 89-95位氨基酸残基组成的 Gly-Ser-Glu-Gly-Pro-Leu-Lys基序的序列中 包含突变, 其中所述突变选自一或几个氨基酸残基的取代、 缺失或添加或 其组合, 其中所述突变导致所述突变体的 ATPase活性降低或消除。
22、 权利要求 21的突变体,其中所述突变体的相应于由 SEQ ID NO. 1 的第 89-95位氨基酸残基组成的 Gly-Ser-Glu-Gly-Pro-Leu-Lys基序的序列被 部分或全部缺失。
23、 权利要求 21的突变体, 其中所述突变体的相应于 SEQ ID NO. 1 的第 89、 92和 95位氨基酸残基中的一或多个氨基酸残基被取代或缺失。
24、 权利要求 23的突变体, 其中:
(a) 相应于 SEQ ID NO. 1的第 89位的 Gly氨基酸残基由选自不带电荷 的氨基酸或芳香族的氨基酸取代或被缺失; 或
(b) 相应于 SEQ ID NO. 1的第 92位的 Gly氨基酸残基由选自不带电荷 的氨基酸取代或被缺失; 或
(c) 相应于 SEQ ID NO. 1的第 95位的 Lys氨基酸残基由选自带正电荷 的氨基酸或不带电荷的氨基酸取代或被缺失; 或 (d) (a)- (c)的任意组合。
25、 权利要求 24的突变体, 其中:
(a) 相应于 SEQ ID NO. 1的第 89位的 Gly氨基酸残基由选自 Ala和 Pro 的氨基酸取代或被缺失; 或
(b) 相应于 SEQ ID NO. 1的第 92位的 Gly氨基酸残基由 Ala取代或被 缺失; 或
(c) 相应于 SEQ ID NO. 1的第 95位的 Lys氨基酸残基由选自 Arg和 Gin的氨基酸取代或被缺失; 或
(d) (a)- (c)的任意组合。
26、 权利要求 25 的突变体, 其中所述突变体包含选自如下一组的序 列: SEQ ID NO. 6- 11、 13、 14、 15-27和 30-31。
27、 权利要求 26 的突变体, 其中所述突变体包含选自如下一组的序 列: SEQ ID NO.6. SEQ ID NO.10. SEQ ID N0.27和 SEQ ID ΝΟ·30。
28、 权利要求 14-27的血管内皮抑制素或其变体的突变体, 其是人血 管内皮抑制素或其变体的的突变体。
29、 药物组合物, 其包含权利要求 14-28任一项所述的突变体。
30、 权利要求 29的药物组合物, 其中所述突变体共价连接于 PEG分
3 1、 权利要求 30的药物组合 ^ 其中所述 PEG分子的分子量为 5-40 kD t
32、 权利要求 3 1的药物组合^ 其中所述 PEG分子共价连接于所述 突变体的 N-末端 α氨基。
33、 权利要求 32的药物组合^ 其中所述 PEG分子是单甲氧基聚乙 二醇。
34、 权利要求 33 的药物组合 4 I, 其中所述单甲氧基聚乙二醇是单甲 氧基聚乙二醇丙醛 (mPEG-ALD)。
35、 治疗肿瘤的方法, 包括给 J ]瘤患者施用权利要求 14-28任一项所 述的突变体或权利要求 29-34任一项的药物组合物。
36、 权利要求 14-28任一项所述的突变体在制备治疗新生血管相关 病的药物中的用途。
37、 权利要求 36的用途, 其中所述新生血管相关疾病是肿瘤。
PCT/CN2012/081210 2011-09-09 2012-09-10 对atp结合位点进行突变的血管内皮抑制素突变体 WO2013034116A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2014113924/10A RU2014113924A (ru) 2011-09-09 2012-09-10 Мутанты эндостатина с мутациями в сайтах связывания атф
CN201280078261.4A CN108291248B (zh) 2011-09-09 2012-09-10 对atp结合位点进行突变的血管内皮抑制素突变体
CN202410186085.0A CN117987505A (zh) 2011-09-09 2012-09-10 对atp结合位点进行突变的血管内皮抑制素突变体
US14/343,694 US10647968B2 (en) 2011-09-09 2012-09-10 Endostatin mutants with mutations at ATP binding sites
CA2848118A CA2848118C (en) 2011-09-09 2012-09-10 Endostatin mutants with mutations at atp binding sites
EP12830317.9A EP2754718B1 (en) 2011-09-09 2012-09-10 Vascular endothelial myostatin mutant that mutates at atp binding sites
AU2012306826A AU2012306826B2 (en) 2011-09-09 2012-09-10 Endostatin mutants with mutations at ATP binding sites
JP2014528847A JP6336389B2 (ja) 2011-09-09 2012-09-10 Atp結合部位に変異を有するエンドスタチン変異体
IL231419A IL231419A0 (en) 2011-09-09 2014-03-09 Mutations of endo-statin with mutations in atp binding sites
HK18110856.2A HK1251864A1 (zh) 2011-09-09 2018-08-23 對atp結合位點進行突變的血管內皮抑制素突變體

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110280441.8 2011-09-09
CN201110280441 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013034116A1 true WO2013034116A1 (zh) 2013-03-14

Family

ID=47831548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081210 WO2013034116A1 (zh) 2011-09-09 2012-09-10 对atp结合位点进行突变的血管内皮抑制素突变体

Country Status (10)

Country Link
US (1) US10647968B2 (zh)
EP (1) EP2754718B1 (zh)
JP (1) JP6336389B2 (zh)
CN (2) CN117987505A (zh)
AU (1) AU2012306826B2 (zh)
CA (1) CA2848118C (zh)
HK (1) HK1251864A1 (zh)
IL (1) IL231419A0 (zh)
RU (1) RU2014113924A (zh)
WO (1) WO2013034116A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139511A1 (zh) * 2014-03-19 2015-09-24 北京仁和天通生物科技有限公司 Endostatin突变体、Endostatin突变体与聚乙二醇的交联物以及它们的应用
WO2016127948A1 (zh) * 2015-02-13 2016-08-18 清华大学 一种重组蛋白质药物的分子设计
CN107148277A (zh) * 2014-11-03 2017-09-08 清华大学 一种抑制脂肪细胞分化和胰岛素耐受的药物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110452295B (zh) * 2015-11-10 2022-10-11 孙嘉琳 抗肿瘤蛋白内皮抑素的衍生物
JP7140454B2 (ja) * 2016-11-10 2022-09-21 ベイジン プロトゲン リミテッド ペグ化エンドスタチン類似体およびその適用
WO2019024814A1 (zh) * 2017-07-30 2019-02-07 清华大学 抑制dna依赖蛋白激酶催化亚基的药物
CN114645025B (zh) * 2022-04-13 2023-12-22 南开大学 一种人源atp合成酶的纯化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324818A (zh) * 2000-05-22 2001-12-05 烟台荣昌生物工程有限公司 生产内皮抑制素的方法
CN101002946A (zh) * 2006-01-20 2007-07-25 清华大学 一种治疗肿瘤的药物及其应用
US7339027B2 (en) * 2002-05-31 2008-03-04 Ghc Research Development Corporation Human prolactin antagonist-angiogenesis inhibitor fusion proteins
CN101256139A (zh) * 2008-04-18 2008-09-03 山东先声麦得津生物制药有限公司 一种血管内皮抑制素生物活性的检测方法
US20110092441A1 (en) * 2008-04-04 2011-04-21 Procell Therapeutics Inc Cell-permeable endostatin recombinant protein, a polynucleotide encoding the same, and an anti-cancer preparation containing the same as an active component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015867A (ko) * 1997-12-08 2001-02-26 베쓰 이스라엘 디코니스 메디칼 센터 항-혈관형성 활성을 지니고 있는, 엔도스타틴의 변이체인"em 1" 및 이것을 사용하는 방법
AU4982200A (en) * 1999-05-06 2000-11-21 Burnham Institute, The Antiangiogenic endostatin peptides, endostatin variants and methods of use
CN101143894A (zh) * 2007-06-22 2008-03-19 中国药科大学 高效抑制血管生成多肽及其物理化学修饰方法和应用
CN101890155B (zh) * 2010-05-25 2012-07-25 江苏先声药物研究有限公司 一种药物组合物及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1324818A (zh) * 2000-05-22 2001-12-05 烟台荣昌生物工程有限公司 生产内皮抑制素的方法
US7339027B2 (en) * 2002-05-31 2008-03-04 Ghc Research Development Corporation Human prolactin antagonist-angiogenesis inhibitor fusion proteins
CN101002946A (zh) * 2006-01-20 2007-07-25 清华大学 一种治疗肿瘤的药物及其应用
CN100475270C (zh) 2006-01-20 2009-04-08 清华大学 一种治疗肿瘤的药物及其应用
US20110092441A1 (en) * 2008-04-04 2011-04-21 Procell Therapeutics Inc Cell-permeable endostatin recombinant protein, a polynucleotide encoding the same, and an anti-cancer preparation containing the same as an active component
CN101256139A (zh) * 2008-04-18 2008-09-03 山东先声麦得津生物制药有限公司 一种血管内皮抑制素生物活性的检测方法

Non-Patent Citations (28)

* Cited by examiner, † Cited by third party
Title
ANDREA T. DEYRUP ET AL., JBC, vol. 273, no. 16, 1998, pages 9450 - 9456
AUSUBEL ET AL.: "Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology", 2002, WILEY, JOHN& SONS, INC.
CHEN Y ET AL., BLOOD, vol. 117, 2011, pages 6392 - 6403
COLIGAN ET AL.: "Short Protocols in Protein Science", 2003, WILEY, JOHN& SONS, INC.
DRISCOLL, W. J. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 92, 1995, pages 12328 - 12332
FOLKMAN J. ET AL., CELL, vol. 88, 1997, pages 277 - 285
FOLKMAN J. ET AL., NATURE, vol. 390, 1997, pages 404 - 407
FU Y. ET AL., BIOCHEMISTRY, vol. 49, 2010, pages 6420 - 6429
GUOYING MOU, DISSERTATION OF SHANDONG UNIVERSITY, 2005
HARLOW; LANE: "Using Antibodies: A Laboratory Manual", 1998, COLD SPRING HARBOR LABORATORY PRESS
JAVAHERIAN, K. ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 45211 - 45218
KARUMANCHI, S. ET AL., MOL. CELL, vol. 7, 2001, pages 811 - 822
KIM, Y. M. ET AL., J. BIOL. CHEM., vol. 277, 2002, pages 27872 - 27879
LEE, S. J. ET AL., FEBS LETT., vol. 519, 2002, pages 147 - 152
LI YH ET AL., CHIN J BIOLOGICAL, vol. 24, no. 3, March 2011 (2011-03-01), pages 320 - 323
MACDONALD, N. J. ET AL., J. BIOL. CHEM., vol. 276, 2001, pages 25190 - 25196
MATTHEW G. ET AL., SCIENCE, vol. 324, 2009, pages 1029 - 1033
ROBERT TJINTHAMSJIN ET AL., CANCER RES., vol. 65, no. 9, 2005, pages 3656 - 63
SAMBOOK J.; RUSSELL D.: "Molecular Cloning: A Laboratory Manual", 2000, COLD SPRING HARBOR LABORATORY PRESS
SATISHCHANDRAN, C. ET AL., BIOCHEMISTRY, vol. 31, 1992, pages 11684 - 11688
SCIENCE, vol. 295, 2002, pages 2198 - 2199
SHI HB ET AL., BLOOD, vol. 110, 2007, pages 2899 - 2906
SUDHAKAR, A. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 4766 - 4771
SVEN CHRIDTIAN ET AL., JBC, vol. 163, no. 4, 2003, pages 871 - 878
THOMAS, P.M. ET AL., AM. J. HUM. GENET., vol. 59, 1995, pages 510 - 518
TONG-YOUNG LEE ET AL., CLIN CANCER RES, vol. 14, no. 5, 2008, pages 1487 - 1493
WALKER, J. ET AL., EMBO J., vol. 1, 1982, pages 945 - 951
YUAN, SHAOPENG: "Studies on the Mechanism of Human Endostatin-induced Endothelial Cell Apoptosis", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE (E-JOURNAL), MEDICINE & HYGIENE 2009, no. 8, 15 August 2009 (2009-08-15), pages 35, XP008173764 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015139511A1 (zh) * 2014-03-19 2015-09-24 北京仁和天通生物科技有限公司 Endostatin突变体、Endostatin突变体与聚乙二醇的交联物以及它们的应用
CN107148277B (zh) * 2014-11-03 2022-03-22 清华大学 一种抑制脂肪细胞分化和胰岛素耐受的药物
CN107148277A (zh) * 2014-11-03 2017-09-08 清华大学 一种抑制脂肪细胞分化和胰岛素耐受的药物
JP2018501195A (ja) * 2014-11-03 2018-01-18 清華大学Tsinghua University 脂肪細胞分化およびインスリン抵抗性を阻害するための薬物
JP2020172546A (ja) * 2014-11-03 2020-10-22 清華大学Tsinghua University 脂肪細胞分化およびインスリン抵抗性を阻害するための薬物
CN114558111A (zh) * 2014-11-03 2022-05-31 清华大学 一种抑制脂肪细胞分化和胰岛素耐受的药物
US20220409703A1 (en) * 2014-11-03 2022-12-29 Tsinghua University Drug for inhibiting adipose cell differentiation and insulin resistance
JP7227197B2 (ja) 2014-11-03 2023-02-21 清華大学 脂肪細胞分化およびインスリン抵抗性を阻害するための薬物
CN107428809A (zh) * 2015-02-13 2017-12-01 清华大学 一种重组蛋白质药物的分子设计
US20180200337A1 (en) * 2015-02-13 2018-07-19 Tsinghua University Molecular design of recombinant protein drug
US10869910B2 (en) 2015-02-13 2020-12-22 Tsinghua University Molecular design of recombinant protein drug
CN107428809B (zh) * 2015-02-13 2021-10-01 清华大学 一种重组蛋白质药物的分子设计
WO2016127948A1 (zh) * 2015-02-13 2016-08-18 清华大学 一种重组蛋白质药物的分子设计
CN114249816A (zh) * 2015-02-13 2022-03-29 清华大学 一种重组蛋白质药物的分子设计

Also Published As

Publication number Publication date
CA2848118C (en) 2023-09-05
EP2754718B1 (en) 2017-12-13
CN108291248A (zh) 2018-07-17
CN117987505A (zh) 2024-05-07
US10647968B2 (en) 2020-05-12
AU2012306826A1 (en) 2014-04-03
JP2014531897A (ja) 2014-12-04
IL231419A0 (en) 2014-04-30
HK1251864A1 (zh) 2019-04-26
US20140308263A1 (en) 2014-10-16
CA2848118A1 (en) 2013-03-14
JP6336389B2 (ja) 2018-06-06
EP2754718A4 (en) 2015-04-22
AU2012306826B2 (en) 2018-01-04
CN108291248B (zh) 2024-03-08
RU2014113924A (ru) 2015-10-20
US20150197733A9 (en) 2015-07-16
EP2754718A1 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2013034116A1 (zh) 对atp结合位点进行突变的血管内皮抑制素突变体
US8334101B2 (en) Intracellular DNA receptor
DK2406399T3 (en) MIRAC PROTEINS
RU2756318C2 (ru) Мутеины липокалина 2 человека с аффинностью в отношении глипикана-3 (gpc3)
Yadav et al. Molecular insights on cytochrome c and nucleotide regulation of apoptosome function and its implication in cancer
JP2021534776A (ja) リコンビナントタンパク質変異体
KR20220058586A (ko) 치료용 융합 단백질
US20100285033A1 (en) COMPOSITIONS AND METHODS FOR CaMKII INHIBITORS AND USES THEREOF
US20210309984A1 (en) ChiA Enzyme
JPWO2010116899A1 (ja) Ptenのリン酸化抑制剤又は脱リン酸化剤
TW202142241A (zh) 用於治療疾病或病症之方法及組合物
WO2020165570A1 (en) Methods relating to disrupting the binding of af9 partner proteins to af9 and/or enl
Ali et al. Leishmania mexicana: expression, characterization and activity assessment of E. coli-expressed recombinant CRK3
US7060456B2 (en) Regulation of human protein phosphatase IIc-like enzyme
JP4232423B2 (ja) 新規ユビキチン特異プロテアーゼ
JPWO2006070804A1 (ja) テロメレース活性阻害方法および阻害剤
WO2008029807A1 (fr) Nouveau polypeptide ayant une cytotoxicité contre le cancer, procédé pour cribler le polypeptide et utilisation du polypeptide
JPWO2005110476A1 (ja) テロメレース活性阻害方法および阻害剤
Weng et al. Both IRAK3 and IRAK1 Activate the MyD88–TRAF6 Pathway in Zebrafish
Kim et al. Functional analysis of duplicated genes and N-terminal splice variant of phospholipase C-δ1 in Paralichthys olivaceus
Rolfes Apoptosis and cell cycle regulation in a basal model system: insights from the placozoan Trichoplax adhaerens
WO2015174641A1 (ko) Aimp2-dx2-34s 단백질 및 이의 제조방법
CA2390371A1 (en) Antibiotics based upon bacteriophage lysis proteins
JP2005192567A (ja) チロシンキナーゼ遺伝子およびその遺伝子産物
US20070020269A1 (en) Phosphokinase and the usage thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528847

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2848118

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 231419

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012830317

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012306826

Country of ref document: AU

Date of ref document: 20120910

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014113924

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201280078261.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14343694

Country of ref document: US