WO2013031969A1 - 成形用材料及びその製造方法並びに該成形用材料を用いた圧縮成形体 - Google Patents

成形用材料及びその製造方法並びに該成形用材料を用いた圧縮成形体 Download PDF

Info

Publication number
WO2013031969A1
WO2013031969A1 PCT/JP2012/072214 JP2012072214W WO2013031969A1 WO 2013031969 A1 WO2013031969 A1 WO 2013031969A1 JP 2012072214 W JP2012072214 W JP 2012072214W WO 2013031969 A1 WO2013031969 A1 WO 2013031969A1
Authority
WO
WIPO (PCT)
Prior art keywords
molding material
lacquer
kneading
manufacturing
mixer
Prior art date
Application number
PCT/JP2012/072214
Other languages
English (en)
French (fr)
Inventor
稔夫 木下
嘉美 神谷
博志 上野
研介 瓦田
博史 荒川
哲哉 中山
Original Assignee
地方独立行政法人 東京都立産業技術研究センター
ヤマト化工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人 東京都立産業技術研究センター, ヤマト化工株式会社 filed Critical 地方独立行政法人 東京都立産業技術研究センター
Priority to EP12828428.8A priority Critical patent/EP2752461B1/en
Priority to JP2013531433A priority patent/JP6140607B2/ja
Publication of WO2013031969A1 publication Critical patent/WO2013031969A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J193/00Adhesives based on natural resins; Adhesives based on derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2393/00Characterised by the use of natural resins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a molding material, a production method thereof, and a compression molded body using the molding material.
  • Urushiol (catechol derivative), the main component of urushiol, is a resin liquid that exudes from lacquer wood. Normal temperature / high humidity (15-25 ° C) due to the action of a small amount of enzyme (laccase) contained in lacquer. / 65 to 85% RH) to cure by oxidative polymerization.
  • laccase enzyme contained in lacquer.
  • the main component of lacquer is the urushiol described above, but in lacquer trees grown in Taiwan and Vietnam, the main component of lacquer is Lucol, In lacquer trees grown in Thailand and Vietnamese, the main component of lacquer is thiol.
  • lacquer and thiol are also cured by oxidative polymerization in the same manner as urushiol.
  • lacquerware which is a lacquered product
  • the lacquer coating that is cured and formed mainly on the surface of a wooden material protects the substrate and exhibits a unique deep color tone. Used for crafts.
  • the manufacturing process of lacquered products is a work that requires a lot of processes such as undercoating, intermediate coating, top coating, etc.
  • the raw material lacquer itself is expensive.
  • the processing form of the wood used as the material of the lacquer ware is not necessarily suitable for mass production in the case of tableware or the like, and the production scale of lacquer ware and their uses are limited.
  • the lacquer coating work may cause a skin disease (lacquer rash) caused by an allergic reaction caused by urushiol to the worker.
  • petroleum synthetic materials such as phenol resin, urea resin, and polycarbonate that are suitable for compression molding have been used for general tableware as mass-produced products in recent years. These materials contain ingredients that are toxic to the human body. Some have been suspected of releasing or leaching environmental hormones, and their use has become a social problem.
  • Patent Document 1 discloses that the present inventors use only natural resources such as lacquer and plant fibers without using any chemical substances derived from petroleum.
  • the molding materials and molded bodies that can be mass-produced, are stable and easy to handle are described.
  • Patent Document 2 describes a device in which a surface of a wood base formed by mixing wood powder and a polylactic acid resin is subjected to surface processing with natural lacquer.
  • Patent Document 3 in a lacquer ware having a wood powder-containing coating layer, the hue of the first colored lacquer coating layer M1 applied to the surface of the fabric first, and then the second layer of colored lacquer coating applied.
  • a method is described in which the hue of the film layer M2 is simultaneously exposed in a speckled pattern to create a new visual quality and improve the tactile sensation and temperature transfer characteristics.
  • Patent Document 4 a main material obtained by refining 100% natural material such as plant fiber and a binder made of 100% natural material such as urushi are mixed through water, and dried and solidified into a predetermined shape. Biodegradable plastics constructed are described.
  • Patent No. 3779290 JP 2004-276463 A Japanese Patent Laid-Open No. 2005-7680 Japanese Patent Laying-Open No. 2005-23262
  • the present invention is a molding material using only natural resources (biomass) such as lacquer and vegetable fiber as raw materials, the powdery molding material having a good particle size as an industrial material can be made more efficient and The purpose is to provide it stably.
  • Another object of the present invention is to provide a compression molded body obtained from such a powdery molding material, particularly a compression molded body excellent in bending strength.
  • the present inventors can obtain a powdery molding material having a good particle size more efficiently by mixing lacquer and plant fibers by a specific kneading method. As a result, the present invention has been completed.
  • the present invention provides a powdery molding material obtained by three-dimensionally kneading lacquer and plant fibers while heating.
  • the molding material obtained by three-dimensionally kneading lacquer and plant fibers with one or a plurality of rotary blades provided in the mixer, and the power supplied to drive the rotary blades are measured, and the power Any one of the above molding materials obtained by stopping kneading based on the change over time of any of the above values, any of the above molding materials kneaded at a heating temperature of 90 to 180 ° C., and a powder passing through a 10 to 120 mesh sieve. Any one of the above molding materials containing 9-15% by mass of an acetone-soluble component is provided.
  • the present invention also relates to a powdery molding material comprising a polymer of one or more monomers selected from the group consisting of urushiol, laccol, and thiol, and a vegetable fiber, comprising a 10-120 mesh sieve.
  • a molding material is provided that contains a passing powder.
  • this invention provides the manufacturing method of the powder-form molding material including the process of knead
  • the manufacturing method of three-dimensionally kneading lacquer and plant fibers with one or a plurality of rotary blades provided in the mixer, the step of measuring the power supplied to drive the rotary blades, The manufacturing method according to any one of the above, further comprising the step of recording the value of the electric power and the step of stopping kneading based on the change over time of the recorded value of the electric power, wherein the heating temperature is 90 to 180 ° C.
  • the present invention also provides a compression molded body obtained by compression molding one of the above molding materials, and the compression molded body obtained by coating lacquer on the surface of the compression molded body.
  • this invention is equipped with the container for accommodating a lacquer and a vegetable fiber, and the 1 or several rotary blade provided in the said container, and knead
  • any one of the above manufacturing apparatuses that stops kneading based on a change in the value of the recorded electric power with time, any one of the above manufacturing apparatuses having a heating temperature of 90 to 180 ° C., and 10 to 120 mesh sieve. Any one of the above manufacturing apparatuses for manufacturing a powdered molding material, and measuring any power value for driving the rotary blade, and adjusting the acetone dissolved content to produce a powdered molding material Manufacturing equipment.
  • a powdery molding material having a good particle size can be obtained more efficiently.
  • a compression molded body obtained from such a powdery molding material in particular, a compression molded body excellent in bending strength can be obtained.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • the molding material of this embodiment is a powdery molding material obtained by three-dimensionally kneading lacquer and plant fibers while heating.
  • Patent Document 1 The kneaded product usually has a tendency that the inherent viscosity of lacquer tends to agglomerate without being sufficiently polymerized with dietary fiber, so that the mass of the kneaded product is further pulverized.
  • three-dimensional kneading is not kneading in which a two-dimensional movement, which can be called planar, is dominant, but in multiple directions such as vertical, horizontal, and diagonal, that is, three-dimensional.
  • Examples of such a mixer capable of three-dimensional kneading include a fluid mixer (Henschel mixer), a high-speed fluid mixer, and a Shugie mixer. The following can be considered as the main factors that cause the molding material obtained by three-dimensionally kneading a mixture of lacquer and plant fibers into a powder having an appropriate particle size without going through a pulverization step. .
  • the factor is not limited to this. That is, by kneading the mixture three-dimensionally, it exerts strong convection, diffusion and shear mixing action on the kneaded product, and by breaking or bonding or rounding the kneaded product, an appropriate particle size can be obtained. It is thought that the powder which has can be formed.
  • the mixer for example, a fluid mixer used in the present embodiment preferably has a mixing tank having a jacket structure, and a structure in which high-temperature oil or water vapor circulates in the jacket. .
  • a mixing tank having a jacket structure, and a structure in which high-temperature oil or water vapor circulates in the jacket.
  • the molding material of the present embodiment is preferably a molding material in which lacquer and plant fibers are three-dimensionally kneaded by one or a plurality of rotary blades provided in the mixer.
  • the mixer includes two or more rotating blades. If the mixer is provided with two or more rotating blades, the mixture can be more reliably three-dimensionally kneaded, so that a powdery molding material having a good particle size can be obtained more reliably. it can.
  • two or more rotary blades are provided so as to have the same rotation axis.
  • a mixer include a fluid mixer (Henschel mixer; Mitsui FM mixer manufactured by Mitsui Mining Co., Ltd.), a high-speed fluid mixer (such as a mixer manufactured by Kawata Corporation), and a Shugie mixer (Kanto). And vertical mixers manufactured by Blender Kogyo Co., Ltd.).
  • Rotational speed of the rotary blade can be changed as appropriate depending on the type and scale of the mixer provided with the rotary blade.
  • the rotation speed is not particularly limited, but can be, for example, 100 rpm to 1000 rpm.
  • a powdery molding material having a good particle size can be obtained by three-dimensional kneading of lacquer and plant fibers. This is considered to be because the convection and diffusion action by the rotating blades can be performed more sufficiently and the flow resistance of the kneaded material can be suppressed, but the factor is not limited to this.
  • the molding material of the present embodiment is preferably kneaded at a heating temperature of 90 to 180 ° C., more preferably kneaded at a heating temperature of 120 to 160 ° C.
  • the heating temperature is within the above range, the polymerization monomer in the lacquer component is appropriately thermally polymerized, and a high-quality molding material can be obtained.
  • the treatment time for the kneading depends on the heating temperature and the like, and is preferably set as appropriate in the range of 30 to 120 minutes.
  • the molding material of this embodiment is preferably obtained by measuring the power supplied to drive the rotating blades and stopping kneading based on the change over time in the value of the power. Thereby, the suitable molding material which has a favorable particle size can be obtained more reliably. This point will be described in detail below.
  • the polymerization of a polymerization monomer such as urushiol in the lacquer component proceeds by heating, and the molecular weight of the polymer increases, so that the fluidity of the mixture decreases (viscosity increases) and the power value increases.
  • the fluidity of the mixture increases again (viscosity decreases) after a certain point (maximum point) has passed, and the power value decreases.
  • the maximum point at this time is considered to be the time when the mixture of lacquer and plant fibers is powdered.
  • the fluidity of the mixture increases (viscosity decreases) and the power continues to decrease, but it is preferable to set the kneading stop point thereafter.
  • the molding material of the present embodiment preferably contains 9 to 15% by mass of acetone-soluble matter, and more preferably 10.5 to 13% by mass.
  • the acetone-soluble component was considered to be an indicator of polymerizable monomers such as urushiol (see, for example, Japanese Patent No. 3779290), but the present inventors reduced the polymerizable monomer by thermal polymerization. As the amount of the polymer increases, the amount of acetone dissolved is reduced, and the relationship between the productivity of the molding material of the present embodiment and this acetone dissolved is clarified. Molding materials can now be produced efficiently. By using a molding material containing an acetone-soluble component within the above range, it is possible to stably obtain a molded article having further superior bending strength.
  • the acetone-soluble matter can be measured by the method described in the examples described later.
  • the value of the electric power supplied to drive the rotary blade is considered to have a correlation with the acetone dissolved content of the obtained molding material.
  • a correlation indicated by a linear regression equation for raw lacquer from each country obtained in the same lot it is considered that there is a correlation indicated by a linear regression equation for raw lacquer from each country obtained in the same lot.
  • FIG. 1 An example is shown in FIG. According to FIG. 1, the correlation between the two is 0.970 as a correlation function, which is very good.
  • the particle size of the powder is better (appropriate) as the number of powders having the same diameter increases.
  • the gap between the molds that should not be filled with the molding material for example, when the mold has a plurality of mold members, This is based on the viewpoint of preventing the molding material from entering excessively into the gap formed between the members.
  • the molding material of this embodiment is preferably a powder that passes through a 10 to 120 mesh sieve.
  • the molding material containing the powder that passes through the 10-120 mesh sieve has good moldability, that is, the molding material can be prevented from entering the gaps in the mold. Is preferred.
  • the molding material of the present embodiment is a powdery molding material containing a polymer of one or more monomers selected from the group consisting of urushiol, raccol and thiol, and plant fibers,
  • a molding material containing powder passing through a mesh sieve is preferable, and a molding material containing powder passing through a 60 to 100 mesh sieve is more preferable. Since such a molding material has a good particle size, excessive entry into the mold gap is further suppressed.
  • a certain burr may be formed, and an appropriate degassing effect may be obtained.
  • Such a molding material can be obtained, for example, by the manufacturing method described above.
  • plant fibers used in the present embodiment include celluloses of common tree species such as cedar, cypress, tsuga, drill, pine, and spruce in the case of wood fibers.
  • wood materials bamboo, reed, cotton
  • the use of those containing plant fibers such as The particle size of the plant fiber powder is suitably 10 to 120 mesh.
  • the plant fiber is refined by a grinder, it becomes a fibrillated fiber, and the lacquer is easily permeable during kneading to obtain a uniform mixture of lacquer and plant fiber.
  • lacquer used in the present embodiment for example, lacquer containing at least one monomer selected from the group consisting of urushiol, laccol, and thiol, and / or a polymer thereof.
  • the mixing ratio of lacquer and vegetable fiber is preferably 1: 9 to 6: 4, more preferably 4: 6 to 6: 4, by weight.
  • a powdery molding material having an appropriate particle size tends to be obtained, and the molded body obtained by compression molding the molding material has a bending strength. It tends to be excellent.
  • lacquer and plant fibers may be put into a mixer.
  • the timing of charging the lacquer and the plant fiber into the mixer may be the same or different, but it is preferable to first input the plant fiber into the mixer and then into the lacquer.
  • a powdery molding material having an appropriate particle size tends to be obtained.
  • the heating temperature in the preliminary kneading is preferably 50 to 90 ° C, and more preferably 60 to 80 ° C.
  • the rotational speed of the rotary blade in the said preliminary kneading is smaller than the rotational speed of the rotary blade in the said kneading process.
  • the molding material of the present embodiment is a powdery molding material having a good particle size even if only natural resources such as lacquer and plant fiber are used as raw materials, not only lacquer whose main component is urushiol, Even if a molding material using lacquer whose main component is lacquer or thiol is a raw material, a molding can be obtained by compression molding the molding material.
  • the manufacturing method of the powdery molding material of this embodiment will not be specifically limited if it includes the process of knead
  • a powdery molding material having an appropriate particle size and excellent moldability can be obtained without performing a pulverization step and without undergoing a massing stage. That is, according to the manufacturing method of the present embodiment, it is possible to efficiently obtain a powdery molding material having a good particle size even with a molding material using only natural resources such as lacquer and plant fibers as raw materials. Can do.
  • the molding material is not only lacquer whose main component is urushiol, but also lacquer whose main component is Lucol or thiol. Even so, a molded body can be obtained.
  • the method for producing a powdery molding material of the present embodiment includes a step of measuring power supplied to drive the rotary blade, a step of recording the value of the power, and the recorded power It is preferable that the method further includes a step of stopping kneading based on a change with time of the value.
  • the powdery molding material manufacturing apparatus of the present embodiment includes a container for housing lacquer and plant fibers, and one or a plurality of rotating blades provided in the container, and includes lacquer and plant fibers.
  • a controller for controlling As described above, the manufacturing apparatus can stably and efficiently obtain a powdery molding material having an appropriate particle size and excellent moldability.
  • the controller calculates an appropriate rotation speed of the rotating blades from the obtained electric power value, and controls the rotation speed manually or automatically based on the calculated rotation speed.
  • the mixer is not particularly limited as long as it includes the container and the rotating blades, and may be a known one.
  • the power meter and the data logger are not particularly limited as long as they are connected to each other so that the power supplied to drive the rotating blades can be measured and the value of the power can be recorded.
  • Each may be a known one.
  • the controller is not particularly limited as long as it can control the rotation speed of the rotating blades, and may be a known controller.
  • the rotation speed of the rotary blade can be appropriately changed according to the type and scale of the manufacturing apparatus.
  • the rotation speed is not particularly limited, but for example, it is preferable to stop kneading based on the change over time of the recorded value of power, and the heating temperature is preferably 90 to 180 ° C.
  • the powdery molding material manufacturing apparatus of the present embodiment is preferably a manufacturing apparatus for manufacturing a powdery molding material containing powder that passes through a 10-120 mesh sieve, and drives the rotary blades. It is preferable to use a manufacturing apparatus that measures the value of the electric power to be produced and adjusts the acetone-soluble content to produce a powder-form molding material. It is more preferable to contain the mass%.
  • the compression-molded body of the present embodiment is obtained by compression-molding the above-described molding material, preferably at a pressure of 10 to 70 MPa.
  • the compression-molded body thus obtained can be suitably used for each application even when the main component is not only lacquer whose main component is urushiol, but also lacquer whose main component is Lucol or thiol. .
  • the compression molded body of the present embodiment has, for example, the feel of a wood material when wood fiber is used as plant fiber, and can be used as it is, for example, as a fixture or various industrial materials.
  • lacquer coating it is preferable to apply lacquer coating to the surface.
  • the main component of the molding material as a raw material of the molded body is lacquer, the familiarity with the compound material at the time of lacquer coating is extremely good, and various base processes in conventional coating processing are omitted. Can do.
  • the lacquer coating film is completely cured to improve the adhesion with the base, and further, for example, an active group of urushiol, lacquer or thiol. Disappears and the risk of lacquer rash to the user is almost eliminated.
  • the obtained molded body is sufficient for actual use as, for example, tableware.
  • Plant fiber Type of plant fiber Japanese cedar wood flour (produced by Tonami Prefectural Tonami Forestry Association, manufactured from 100% thinned wood, 100 mesh pass product)
  • Particle size over 330 mesh 19.7% by mass, 330-200 mesh 22.6% by mass, 200-150 mesh 25.4% by mass, 150-100 mesh 25.9% by mass, 100-80 mesh 6% by mass, less than 80 mesh 0.8% by mass
  • Moisture content 7.0% by mass
  • the above (i) to (iii) are values based on data of Tonami Forest Association.
  • the bending strength (MPa) and the flexural modulus (GPa) were determined.
  • the test was performed three times, and the average value of the three tests was defined as the bending strength (MPa) and the flexural modulus (GPa) of the compression molded body.
  • the distance between fulcrums was 70 mm, and the crosshead speed was 5 mm / min.
  • an autograph AG-10TD manufactured by Shimadzu Corporation was used.
  • a molding material was manufactured as follows using a fluid mixer (Mitsui FM20C / I, manufactured by Mitsui Mining Co., Ltd.).
  • the mixer is as schematically shown in FIG. 3 and has a container (mixing tank: 20 L capacity) for containing lacquer and plant fibers, and the same rotating shaft in the container.
  • a rotating machine provided with two rotating blades (type of blades: upper blade CK, lower blade AO, rotating blade dimensions: (upper side) ⁇ 27 cm, (lower side) 26 cm), and driving the rotating blades
  • a controller that controls the rotational speed of the rotating blades based on the value of the power.
  • the power supplied to drive the rotary blade was measured, and the value of the power was recorded.
  • the mixture of lacquer and vegetable fiber is pulverized based on the change over time of the recorded value of power, and the kneading is continued to some extent from the time when it is determined that the mixture becomes an appropriate molding material, the rotation of the rotating blades And the heating in a mixer was stopped and kneading
  • the kneading time of lacquer and plant fiber was 54 minutes.
  • the molding material was taken out from the outlet of the mixer and allowed to cool immediately.
  • the acetone dissolved content of the obtained molding material was measured and found to be 13.05% by mass.
  • the obtained molding material was a powder containing a urushiol polymer (confirmed by a decrease in the amount of acetone dissolved) and plant fibers.
  • a compression molded body was manufactured as follows using the molding material obtained above.
  • the compression method was adopted as the molding method.
  • As the mold a prototype flat plate mold was used.
  • As the molding machine a 200-t press for compression molding was used.
  • the mold surface temperature is set to 145 ° C., and pressurization and degassing operations are repeated alternately. Then, it was molded with a maximum pressure of 62.3 MPa. Thereafter, the mold was degassed, and the molded body was taken out of the mold. The obtained compression-molded body was dried in a hot air drying furnace (150 ° C.) for 3 hours.
  • a hot air drying furnace 150 ° C.
  • Table 1 shows the results of the acetone-soluble content of the molding material, the yield of the powder of less than 60 mesh, and the bending strength of the compression molded body.
  • the bending strength (MPa) of the obtained compression molded body was measured. The measurement results are shown in FIG.
  • Example 2 to 4 Except for changing the kneading conditions (kneading temperature and kneading time) between lacquer and plant fibers as shown in Table 1, a molding material was produced in the same manner as in Example 1, and the resulting molding material acetone was used. The dissolved content and the yield of powder less than 60 mesh were measured. The measurement results are shown in Table 1. Further, a compression molded body was produced in the same manner as in Example 1 except that the obtained molding material was used, and the bending strength (MPa) of the compression molded body was measured. The measurement results are shown in Table 1.
  • the molding material of the present invention is used as a material suitable for mass production of molded products made of lacquer and plant fibers, and the molded product obtained thereby has a use as a base material that can be easily processed by lacquer. .
  • the molding material of the present invention is useful as a material for making tableware.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

 本発明の成形用材料は、漆と植物繊維とを加熱しながら3次元的に混練することにより得られる粉末状の成形用材料である。また、本発明の圧縮成形体は、成形用材料を圧縮成形して得られる。

Description

成形用材料及びその製造方法並びに該成形用材料を用いた圧縮成形体
 本発明は、成形用材料及びその製造方法並びに該成形用材料を用いた圧縮成形体に関する。
 漆は漆の木から滲出した樹脂液であり、その主成分であるウルシオール(カテコール誘導体)は漆の中に含まれる微量の酵素(ラッカーゼ)の作用により常温/高湿度(15~25℃)/65~85%RH)で酸化重合して硬化する。また、日本及び中国などで育成される漆の木では、漆の主成分は上述のウルシオールであるが、台湾及びベトナムなどで育成される漆の木では、漆の主成分がラッコールであり、タイ及びミャンマーなどで育成される漆の木では、漆の主成分がチチオールである。これらのラッコール及びチチオールも、ウルシオールと同様に酸化重合して硬化する。漆塗工品である漆器においては、主として木質素材の表面にこのように硬化形成された漆被膜が素地を保護しかつ固有の深みのある色調を呈するので、食器や家具・調度等の什器や工芸品等に用いられている。
 しかし、漆塗工品の製造工程は、例えば、素材としての木地に対する下地処理を含めて下塗り、中塗り、上塗り等多数の工程と乾燥時間を要しかつ高度の熟練を必要とする作業である上、原料の漆自体が高価である。また漆器の素材として用いられている木はたとえば食器等の場合必ずしもその加工形態が量産に適しておらず、漆器の生産規模およびそれらの用途が限定されている。さらに、漆の塗工作業は作業者に対してウルシオールによるアレルギー反応に起因する皮膚疾患(漆かぶれ)を生じさせるおそれもある。
 一方、近年量産品としての一般の食器の素材には圧縮成形加工に適したフェノール樹脂やユリア樹脂、ポリカーボネート等の石油合成材料が用いられているが、これらの材料には人体に有毒な成分を放出したり、又は環境ホルモンを溶出させる疑いのあるものもあり、その使用が社会的問題となっている。
 したがって、これら食器等の素材としてはやはり天然資源である漆および木材その他の植物繊維材料を用いることが望ましく、天然資源を成型用材料とした場合にも外観や品質の点で従来の漆器に相当する量産品を得ることのできる加工技術の開発が漆の用途の拡大および関連産業の発達に有用であると考えられる。
 天然資源のみを原料として用いた成形用材料として、例えば、特許文献1には、本発明者らによる、石油に由来する化学物質をまったく使用せずに、漆、植物繊維といった天然資源のみを原料として用いても、量産可能かつ安定で取扱いの容易な成形用材料及び成形体が記載されている。
 また、特許文献2には、木粉とポリ乳酸系樹脂とを混合して成形した木地の表面に天然漆による表面加工を施した器類が記載されている。
 さらに、特許文献3には、木粉含有塗膜層を有する漆器において、生地の表面に最初に塗った第1層の着色漆塗膜層M1の色相と、次いで塗る第2層の着色漆塗膜層M2の色相とを斑模様をなして同時に表出し、新規の視覚的品質感を創出するとともに、触感および温度伝達特性を改善する方法が記載されている。
 またさらに、特許文献4には、植物繊維等の100%天然素材を微細化した主材と、ウルシ等の100%天然素材からなるバインダーとを水を介して混合し、所定形状に乾燥固化して構成した生分解性プラスチックが記載されている。
特許第3779290号 特開2004-276463号公報 特開2005-7680号公報 特開2005-23262号公報
 前述したように、現在、有機系の成形用材料において、将来枯渇する地下資源である石油を用いない有機系の成形用材料の開発は人類の課題となっている。また、プラスチック製什器類の中には、人体に有害なホルムアルデヒドや環境ホルモンの溶出が問題になっているものもあり、人体への化学物質への影響は社会問題になっている。
 これに対し、前出の特許文献1に記載されているように、本発明者らは、石油に由来する化学物質をまったく使用せず、漆、植物繊維といった天然資源のみを原料として用いた成形用材料及び成形体を既に開発している。
 しかしながら、この天然資源のみを原料として用いた成形用材料については、成形体を形成する原料として適切な粒度及び粒度分布を有する粉末とするために粉砕工程を行う必要があったため、その製造工程をさらに簡素化することが望ましい。
 本発明は、上述した漆、植物繊維といった天然資源(バイオマス)のみを原料として用いた成形用材料であっても、工業材料として良好な粒度を有する粉末状の成形用材料をより一層効率的かつ安定的に提供することを目的とする。また、本発明は、そのような粉末状の成形用材料から得られる圧縮成形体、特に、曲げ強度に優れた圧縮成形体を提供することを目的とする。
 本発明者らは、上記課題に鑑み、鋭意検討した結果、特定の混練方法で漆と植物繊維とを混合することにより、良好な粒度を有する粉末状の成形材料がより一層効率良く得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、漆と植物繊維とを加熱しながら3次元的に混練することにより得られる粉末状の成形用材料を提供する。
 さらに、混合機に設けられた1つ又は複数の回転羽根により漆と植物繊維とを3次元的に混練した前記成形用材料、回転羽根を駆動するために供給される電力を測定し、該電力の値の経時変化に基づいて混練を停止して得られる前記いずれかの成形用材料、加熱温度90~180℃で混練した前記いずれかの成形用材料、10~120メッシュ篩を通過する粉末を含む前記いずれかの成形用材料、アセトン溶解分を9~15質量%含む前記いずれかの成形用材料を提供する。
 また、本発明は、ウルシオール、ラッコール及びチチオールからなる群より選ばれる1種以上のモノマーの重合体と、植物繊維と、を含む粉末状の成形用材料であって、10~120メッシュ篩を通過する粉末を含有する、成形用材料を提供する。
 また、本発明は、漆と植物繊維とを加熱しながら3次元的に混練する工程を含む、粉末状の成形用材料の製造方法を提供する。
 さらに、混合機に設けられた1つ又は複数の回転羽根により漆と植物繊維とを3次元的に混練する前記製造方法、前記回転羽根を駆動するために供給される電力を測定する工程と、前記電力の値を記録する工程と、記録された前記電力の値の経時変化に基づいて混練を停止する工程とを更に含む、前記いずれかの製造方法、加熱温度が90~180℃である前記いずれかの製造方法、前記成形用材料は10~120メッシュ篩を通過する前記いずれかの製造方法、前記成形用材料はアセトン溶解分を9~15質量%含む前記いずれかの製造方法を提供し、さらには、前記いずれかの成形用材料を圧縮成形して得られる圧縮成形体、および前記圧縮成形体の表面に漆を塗工した前記圧縮成形体をも提供する。
 そして、本発明は、漆と植物繊維とを収容するための容器、及び前記容器内に設けられた1つ又は複数の回転羽根を備え、漆と植物繊維とを加熱しながら3次元的に混練する混合機と、
 前記回転羽根を駆動するために供給される電力を測定する電力計と、
 前記電力の値に基づき、前記回転羽根の回転速度を制御するコントローラーと、
を備える、粉末状の成形用材料の製造装置を提供する。
 さらに、記録された前記電力の値の経時変化に基づいて混練を停止する前記いずれかの製造装置、加熱温度が90~180℃である前記いずれかの製造装置、10~120メッシュ篩を通過する粉末状の成型用材料を製造する前記いずれかの製造装置、前記回転羽根を駆動する電力の値を計測して、これをもってアセトン溶解分を調整して粉末状の成形用材料を製造する前記いずれかの製造装置を提供する。
 本発明によれば、漆、植物繊維といった天然資源のみを原料として用いた成形用材料であっても、良好な粒度を有する粉末状の成形用材料をより一層効率的に得ることができる。また、本発明によれば、そのような粉末状の成形用材料から得られる圧縮成形体、特に、曲げ強度に優れた圧縮成形体を得ることができる。
漆と植物繊維とを混練する際に用いられる回転羽根を駆動するために供給される電力とアセトン溶解分との関係の一例を示す、プロット図である。 本実施形態の成形体の例を示す写真である。 漆と植物繊維とを混練する装置の一例を示す模式図である。 実施例における圧縮成形体の曲げ強度結果を示す図である。
 以下、本発明を実施するための形態(以下「本実施形態」と言う。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
 ≪成形用材料≫
 本実施形態の成形用材料は、漆と植物繊維とを加熱しながら3次元的に混練することにより得られる粉末状の成形用材料である。
 従来、本発明者らは特許文献1にて漆と植物繊維とを混練することで天然資源のみを原料として用いた成形用材料及び成形体を既に提案しているが、漆と植物繊維との混練物は、通常、漆が本来持つ粘性が食物繊維に十分に重合せずに凝集してしまい固まりとなる傾向があったために、さらに混練物の固まりを粉砕する工程を行っている。
 これに対し、本実施形態では、混練による混合物の動きの中で3次元的(立体的とも呼べる)な動きが支配的になる3次元的な混練方法を採用しているので、得られる漆と植物繊維との混合物が、成形用材料として適切な粒度を有する粉末となるため、粉砕工程を行う必要がない。
 すなわち、本実施形態において、「3次元的に混練」とは、混合物の平面的とも呼べる2次元的な動きが支配的になる混練ではなく、縦、横、斜め等の多方向、つまり立体的な動きが支配的になる混練のことをいう。このような3次元的に混練することが可能となる混合機としては、例えば、流動式混合機(ヘンシェルミキサー)、高速流動型ミキサー、シュギーミキサー等が挙げられる。漆と植物繊維との混合物を3次元的に混練することにより、得られる成形用材料が、粉砕工程を経なくても適切な粒度を有する粉末になる要因としては、おおよそ下記のことが考えられる。ただし、要因はこれに限定されない。すなわち、混合物を3次元的に混練することにより、混練物に対して、強力な対流、拡散及び剪断混合作用を及ぼし、混練物を破断したり結合したり丸めたりすることにより、適切な粒度を有する粉末を形成することができると考えられる。
 また、本実施形態に用いる混合機(例えば、流動式混合機)は、好ましくは混合槽がジャケット構造になっており、また、ジャケット内を高温のオイルまたは水蒸気が循環する構造であることが好ましい。こうすることで、3次元的に混練するだけではなく、混合槽の側面からも混合物を加熱することが可能となるため、適切な粒度を有する粉末の形成に優れた効果を奏する。
 また、本実施形態の成形用材料は、混合機に設けられた1つ又は複数の回転羽根により漆と植物繊維とを3次元的に混練した成形用材料であることが好ましい。回転羽根の回転に伴う作用(対流、拡散、剪断混合)により、良好な粒度を有する粉末状の成形用材料をより一層効率的に得ることができる。また、前記混合機は、2つ以上の前記回転羽根を備えることがより好ましい。混合機が2つ以上の回転羽根を備えると、混合物の3次元的な混練をより確実に行うことが可能になるので、良好な粒度を有する粉末状の成形用材料をより確実に得ることができる。同様の観点から、2つ以上の回転羽根が同じ回転軸を有するように設けられると更に好ましい。このような混合機としては、例えば、流動式混合機(ヘンシェルミキサー;三井鉱山株式会社製の三井FMミキサーなど)、高速流動型ミキサー(株式会社カワタ製の混合機など)、シュギーミキサー(関東混合機工業株式会社製の縦型ミキサーなど)が挙げられる。
 前記回転羽根の回転速度は、それが備えられる混合機の種類及びスケールによって適宜に変更することができる。その回転速度は特に限定されないが、例えば、100rpm~1000rpmとすることができる。漆と植物繊維との3次元的な混練により良好な粒度を有する粉末状の成形用材料を得ることができる。これは、回転羽根による対流及び拡散作用をより十分に行うことができ、しかも混練物の流動抵抗を抑制することができるためと考えられるが、要因はこれに限定されない。
 本実施形態の成型用材料は、加熱温度90~180℃で混練したものであることが好ましく、加熱温度120~160℃で混練したものであることがより好ましい。加熱温度が前記範囲内であると、漆成分中の重合モノマーが適切に熱重合し、高品質の成形用材料を得ることができる。
 前記混練の処理時間は、前記加熱温度等に依存し、30~120分の範囲で適宜設定することが好ましい。
 本実施形態の成型用材料は、回転羽根を駆動するために供給される電力を測定し、該電力の値の経時変化に基づいて混練を停止して得られることが好ましい。これにより、良好な粒度を有する好適な成形用材料をより確実に得ることができる。下記にこの点について詳述する。
 漆と植物繊維とを回転羽根を備えた混合機内で加熱しながら3次元的に混練した場合、混合機内の漆と植物繊維との混合物の流動性(粘度)の変化に伴い、回転羽根を駆動するために供給される電力の値も変化する。そして、当該電力の値の経時変化を観察することにより、漆と植物繊維との混合物が適切な粉末状態になった時点、すなわち混練の停止時点を判断することができる。
 当該電力の値の経時変化の一例について、以下説明する。まず、植物繊維だけを含む混合機内に徐々に漆を投入すると、漆が植物繊維に混合し始めたことにより、混合物の流動性が低下(粘度が上昇)し、電力の値が上昇する。漆の植物繊維への混合が終わると、混合物の流動性は上昇(粘度は低下)し、電力の値が低下する。これは漆中の水分の蒸発や混合機内の温度の上昇によるものと考えられる。その後、加熱により漆成分中のウルシオール等の重合モノマーの重合が進み、該重合体の分子量が増大することで、混合物の流動性は低下(粘度が上昇)し、電力の値が上昇する。更に混練を続けると、ある時点(極大点)を過ぎたところから、再び混合物の流動性は上昇(粘度は低下)し、電力の値が低下する。このときの極大点が漆と植物繊維との混合物が粉末化する時点であると考えられる。その後、混合物の流動性は上昇(粘度は低下)し、電力は低下し続けるが、これ以降に混練の停止時点を設定することが好ましい。
 本実施形態の成形用材料は、アセトン溶解分を9~15質量%含むことが好ましく、10.5~13質量%含むことがより好ましい。なお、アセトン溶解分は、ウルシオール等の重合性モノマーの指標となるものと考えられていた(例えば、特許第3779290号公報参照)が、本発明者らによって、重合性モノマーが熱重合により減少して重合体が増加することにより、アセトン溶解分が少なくなり、本実施形態の成形用材料の生産性とこのアセトン溶解分との関係性が明確になるとともに、この関係性から本実施形態の成形用材料を効率よく生産することができるようになった。前記範囲内でアセトン溶解分を含む成形用材料を用いることにより、一層曲げ強度に優れた成形体を安定して得ることができる。
 本実施形態において、アセトン溶解分は、後述の実施例に記載の方法により測定することができる。
 前記回転羽根を駆動するために供給される電力の値は、得られる成形用材料のアセトン溶解分と相関関係があると考えられる。例えば、同一ロットで入手した各国の生漆に関して、一次回帰式で示す相関関係があると考えられる。ここで、流動式混合機を用いた場合の、漆と植物繊維との成形用材料を製造した時の回転羽根を駆動するために供給される電力とアセトン溶解分との関係(プロット図)の一例を、図1に示す。この図1によると、両者の相関性は、相関関数で0.970となり、非常に良好であることが分かる。
 したがって、成形用材料の製造時に前記回転羽根を駆動するために供給される電力の値を管理することにより、適切な範囲のアセトン溶解分を有する成形用材料を安定的に得ることができる。
 本実施形態において、粉末の粒度は、同程度の径を有する粉末が多いほど良好(適切)である。これは、粉末状の成形用材料を金型に充填して成形する場合、本来成形用材料を充填すべきでない金型の隙間(例えば、金型が複数の型部材を有する場合に、各型部材間に生じる隙間)に、過剰に成形用材料が入り込むのを防ぐ観点に基づく。例えば、本実施形態の成形用材料は、10~120メッシュ篩を通過する粉末であることが好ましい。10~120メッシュ篩を通過する粉末を含む成形用材料は、成形性が良好、すなわち成形用材料が金型の隙間に入り込むのを防ぐことができるので、後述の圧縮成形体を形成する材料として好適である。
 本実施形態の成形用材料は、ウルシオール、ラッコール及びチチオールからなる群より選ばれる1種以上のモノマーの重合体と、植物繊維と、を含む粉末状の成形用材料であって、10~120メッシュ篩を通過する粉末を含有する成形用材料であることが好ましく、60~100メッシュ篩を通過する粉末を含有する成形用材料であることがより好ましい。このような成形用材料は良好な粒度を有するので、金型の隙間に過剰に入り込むのがより十分抑制される。なお、適当量の成形用材料が隙間に入り込むことは、一定のバリを形成させ、適切なガス抜き効果が得られてよい。このような成形用材料は、例えば、上述した製造方法により得ることができる。
 本実施形態に用いる植物繊維としては、例えば木質繊維の場合、スギ、ヒノキ、ツガ、キリ、マツ、スプルース等の一般的な樹種のセルロースが挙げられ、また木質素材以外にもタケやアシ、綿等の植物性繊維を含むものの使用も考えられる。植物繊維粉末の粒度としては10~120メッシュのものが適している。植物繊維はたとえば摩砕機により微細化したものではフィブリル化した繊維となり、混練時に漆が容易に滲透して均一な漆と植物繊維との混合物が得られる。
 本実施形態に用いる漆としては、例えば、ウルシオール、ラッコール及びチチオールからなる群より選ばれる1種以上のモノマー、及び/又はその重合体を含む漆が挙げられる。
 漆と植物繊維との配合比は重量比で1:9~6:4であることが好ましく、4:6~6:4であることがより好ましい。漆及び植物繊維の配合比が前記範囲であると、適切な粒度を有する粉末状の成形用材料が得られる傾向にあり、該成形用材料を圧縮成形して得られた成形体は曲げ強度に優れる傾向にある。
 本実施形態において、前記3次元的な混練に先立って、漆と植物繊維とを混合機に投入してもよい。漆と植物繊維との混合機への投入時期は同時であってもよく、別々であってもよいが、植物繊維を先に混合機に投入し、次に漆を投入することが好ましい。植物繊維を先に混合機に投入することにより、適切な粒度を有する粉末状の成形用材料が得られる傾向にある。
 植物繊維を先に混合機に投入した場合、植物繊維を加熱しながら3次元的に予備混練することが好ましい。該予備混練における加熱温度は、50~90℃であることが好ましく、60~80℃であることがより好ましい。また、混合機が回転羽根を備える場合、前記予備混練における回転羽根の回転速度は、前記混練する工程における回転羽根の回転速度よりも小さいことが好ましい。
 植物繊維を先に混合機に投入し、次に漆を投入し、上述のような条件で製造すると、より適切な粒度を有し、成形性に優れた粉末状の成形用材料が得られる傾向にあり、該成形用材料を圧縮成形して得られた成形体は曲げ強度に優れる傾向にある。
 本実施形態の成形用材料は、漆、植物繊維といった天然資源のみを原料として用いても、良好な粒度を有する粉末状の成形用材料であり、主成分がウルシオールである漆だけでなく、主成分がラッコール又はチチオールである漆を用いた成形用材料が原料であっても、該成形用材料を圧縮成形して成形体を得ることができる。
 ≪成形用材料の製造方法≫
 本実施形態の粉末状の成形用材料の製造方法は、漆と植物繊維とを加熱しながら3次元的に混練する工程を含むものであれば、特に限定されない。本実施形態の製造方法によれば、粉砕工程を行うことなく、固まりの段階を経ることなく、適切な粒度を有し、成形性に優れた粉末状の成形用材料が得られる。
つまり、本実施形態の製造方法によれば、漆、植物繊維といった天然資源のみを原料として用いた成形用材料であっても、良好な粒度を有する粉末状の成形用材料を効率的に得ることができる。また、本実施形態の製造方法で得られる成形用材料を用いることにより、その成形用材料が、主成分がウルシオールである漆だけでなく、主成分がラッコール又はチチオールである漆を用いた場合であっても、成形体を得ることができる。
 本実施形態の粉末状の成形用材料の製造方法は、混合機に設けられた1つ又は複数の回転羽根により漆と植物繊維とを3次元的に混練することが好ましい。
 また、本実施形態の粉末状の成形用材料の製造方法は、前記回転羽根を駆動するために供給される電力を測定する工程と、前記電力の値を記録する工程と、記録された前記電力の値の経時変化に基づいて混練を停止する工程と、を更に含むことが好ましい。
 なお、本実施形態の粉末状の成形用材料の製造方法における混合機や各条件等は、上記≪成形用材料≫の段落で述べたものと同様である。
 本実施形態の粉末状の成形用材料の製造装置は、漆と植物繊維とを収容するための容器、及び前記容器内に設けられた1つ又は複数の回転羽根を備え、漆と植物繊維とを加熱しながら3次元的に混練する混合機と、前記回転羽根を駆動するために供給される電力を測定する電力計と、そして、前記電力の値に基づいて、前記回転羽根の回転速度を制御するコントローラーと、を備えることが好ましい。当該製造装置により、適切な粒度を有し、成形性に優れた粉末状の成形用材料を安定的に効率良く得ることができるのは、上述で説明したとおりである。ここで、このコントローラーは、得られた電力の値から適切な回転羽根の回転速度を算出して、これに基づいて回転速度を手動または自動で制御する。この製造装置において、混合機は、前記容器と回転羽根とを備えているものであれば特に限定されず、公知のものであってもよい。また、電力計及びデータロガーも、それぞれ回転羽根を駆動するために供給される電力を測定でき、電力の値を記録できるように、混合機及び互いに接続されているものであれば特に限定されず、それぞれ公知のものであってもよい。さらに、コントローラーも回転羽根の回転速度を制御できるものであれば特に限定されず、公知のものであってもよい。
 また、本実施形態の粉末状の成形用材料の製造装置において、前記回転羽根の回転速度は、製造装置の種類及びスケールによって適宜に変更することができる。その回転速度は特に限定されないが、例えば、記録された前記電力の値の経時変化に基づいて混練を停止することが好ましく、加熱温度が90~180℃であることが好ましい。さらに、本実施形態の粉末状の成形用材料の製造装置は、10~120メッシュ篩を通過する粉末を含む粉末状の成型用材料を製造する製造装置であることが好ましく、前記回転羽根を駆動する電力の値を測定して、これをもってアセトン溶解分を調整して粉末状の成形用材料を製造する製造装置であることが好ましく、上記粉末状の成形用材料がアセトン溶解分を9~15質量%含むことがより好ましい。
 ≪圧縮成形体≫
 本実施形態の圧縮成形体は、上述の成形用材料を、好ましくは10~70MPaの加圧圧力にて圧縮成形して得られる。このようにして得られる圧縮成形体は、主成分がウルシオールである漆だけでなく、主成分がラッコール又はチチオールである漆を用いた場合であっても、各用途に好適に用いることができる。本実施形態の圧縮成形体は、例えば植物繊維として木質繊維を用いた場合木質素材の感触を備えたものとなり、そのままでも例えば什器や各種の工業材料として用いることができるが、美観や耐水性の向上が必要な用途によってはさらにその表面に漆の塗装加工を施すことが好ましい。この場合、成形体の原料としての上述の成形用材料の主成分が漆であるため、漆塗りの際のコンパウンド素材とのなじみが極めて良好で従来の塗装加工における種々の下地工程を省略することができる。
 さらにこのようにして得られた成形体に最終的な加熱処理を施すと、漆塗工膜が完全に硬化して下地との密着性が向上し、さらに例えばウルシオール、ラッコール又はチチオールの活性基が消失してユーザに対する漆かぶれのおそれがほとんどなくなるものと考えられる。得られた成形体は、例えば、食器などとして、実際の使用に充分なものである。
 なお、混合機として、たとえば株式会社カワタ製の高速流動型ミキサーを用いる場合、回転羽根の回転によって生じる流動運動と混合容器を振動させながら攪拌させることとにより、3次元的な混練が可能である。したがって、これらの混合機を用いた場合であっても、漆、植物繊維といった天然資源(バイオマス)のみを原料として用い、良好な粒度を有する粉末状の成形用材料を得ることができる。そして、そのような成形用材料が原料であれば、主成分がウルシオールである漆だけでなく、主成分がラッコール又はチチオールである漆を用いた場合であっても、成形体を得ることができる。図2に、成形体の例として、皿、椀、鉢などの食器類を例示する。
 以下、実施例に基づき本発明を具体的に説明するが、本発明がこれらの例によって限定されるものではない。実施例及び比較例において使用した成分は以下のものである。
 1)漆
 漆の種類:中国産生漆
 漆の組成:ウルシオール 75.6質量%、水分 13.5質量%、含窒素分 9.0質量%、ゴム質 1.9質量%
 なお、漆の組成は、漆液組成分析方法(物質工学連合部会塗装工学分科会作成)に準拠して測定した。
 2)植物繊維
 植物繊維の種類:スギ木粉(富山県砺波森林組合産、100%間伐材から製造、100メッシュパス品)
(i)粒度:330メッシュ超 19.7質量%、330~200メッシュ 22.6質量%、200~150メッシュ 25.4質量%、150~100メッシュ 25.9質量%、100~80メッシュ 5.6質量%、80メッシュ未満 0.8質量%
(ii)含水率:7.0質量%
(iii)かさ比重 1000cm/180g
 なお、上記(i)~(iii)は、砺波森林組合のデータによる値である。
 〔各特性の測定方法〕
 〈アセトン溶解分〉
 成形用材料中のアセトン溶解分(質量%)の測定は、以下のとおり行った。
 25mLアセトンを入れたガラス容器中に成形用材料を1g入れ一晩放置した。その後濾過し、濾過残物をさらにアセトン25mLに入れ2時間放置した後、濾過した。計2回濾過したアセトン溶解物を5日間自然放置して揮発成分を取り除いた。揮発成分を取り除いたアセトン溶解物の重量を測定して、該測定値と元の成形用材料の重量(1g)とから成形用材料中のアセトン溶解分(質量%)を算出した。
 〈粒度分布〉
 振動式ふるい機(佐藤式振動ふるい機 CB40-3SH 晃栄産業(株)製)を用いて、成形用材料を分粒し、粒度分布を測定し、成形用材料の60メッシュ未満の粉末の収率を求めた。
 〈曲げ強度及び曲げ弾性率〉
 圧縮成形体を用いて試験片(幅=10±1mm、厚さ=4.0±0.2mm、長さ=80mm以上)を作製し、JIS K 7171-1994 プラスチック-曲げ特性の試験方法に準じ、曲げ強度(MPa)、曲げ弾性率(GPa)を求めた。当該試験は3回行い、該3回の試験の平均値を圧縮成形体の曲げ強度(MPa)、曲げ弾性率(GPa)とした。なお、当該試験において、支点間距離は、70mmとし、クロスヘッドスピードは、5mm/minとした。また、測定装置は、島津製作所製オートグラフAG-10TDを使用した。
 [実施例1]
 〔成形用材料の製造〕
 流動式混合機(三井FM20C/I、三井鉱山(株)製)を用いて成形用材料を以下のとおり製造した。なお、該混合機は、図3に模式的に示すようなものであり、漆と植物繊維とを収容するための容器(混合槽:20L容量)と、前記容器内に同じ回転軸を有するように設けられた2つの回転羽根(羽根の種類:上羽根CK、下羽根AO、回転羽根の寸法:(上側)φ27cm、(下側)26cm)と、を含む混合機と、前記回転羽根を駆動するために供給される電力を測定する電力計(クランプ電力計)と、前記電力の値に基づき、前記回転羽根の回転速度を制御するコントローラーと、を備えていた。
 植物繊維1kgを前記混合機内の容器に投入し、該容器の蓋を閉めた。前記容器内に設けられた2つの回転羽根をいずれも200rpmの速さで回転させ、植物繊維を3次元的に混練しながら、漆1kgを前記容器に2~15分間かけて徐々に投入した。次に、2つの回転羽根の回転速度をいずれも600rpmに上昇させ、漆と植物繊維との混合物を混合機内で130℃の温度で加熱しながら3次元的に混練した。
 当該混練中、前記回転羽根を駆動するために供給される電力を測定し、前記電力の値を記録した。記録された前記電力の値の経時変化に基づいて、漆と植物繊維との混合物が粉体化し、適切な成形用材料となったと判断した時点からある程度混練を続けた時点で、回転羽根の回転及び混合機内の加熱を停止して、漆と植物繊維との混練を停止した。漆と植物繊維との混練時間は54分間であった。前記混合機の排出口から成形用材料を取出し、直ちに放冷した。
 得られた成形用材料のアセトン溶解分を測定したところ、13.05質量%であった。また、得られた成形用材料は、ウルシオールの重合体(アセトン溶解分の減少により確認)と植物繊維とを含む粉末であった。
 〔圧縮成形体の製造〕
 上記で得られた成形用材料を用いて圧縮成形体を以下のとおり製造した。
 成形方法は、圧縮成形法を採用した。金型は、試作した平板成形用金型を用いた。成型機は、圧縮成型用200tプレス機を用いた。
 上記で得られた成形用材料のうち60メッシュ篩を通過した粉末114gを前記金型内に入れ、金型の表面温度を145℃に設定し、加圧操作とガス抜き操作とを交互に繰り返して、62.3MPaの最大加圧力で成形した。その後、金型内のガス抜きを行い、成形体を金型から取り出した。得られた圧縮成形体は熱風乾燥炉(150℃)で3時間乾燥した。
 なお、図示していないが、例えば、ぐい呑みなどを成形する際のぐい呑み用金型を用いる場合、最大加圧力はおよそ12.75MPaとすると成形性がよい。
 さらに、混練時間を表1に記載のように変更した以外は上記と同様にして、上記とは異なる2種類又は3種類の成形用材料及び圧縮成形体を得た。成形用材料のアセトン溶解分及び60メッシュ未満の粉末の収率、並びに圧縮成形体の曲げ強度の結果を表1に示す。
 得られた圧縮成形体の曲げ強度(MPa)を測定した。測定結果を図4に示す。
 [実施例2~4]
 漆と植物繊維との混練条件(混練温度及び混練時間)を表1に示すとおりに変更した以外は、実施例1と同様にして、成形用材料を製造し、得られた成形用材料のアセトン溶解分及び60メッシュ未満の粉末の収率を測定した。測定結果を表1に示す。また、得られた成形用材料を用いた以外は、実施例1と同様にして圧縮成形体を製造し、圧縮成形体の曲げ強度(MPa)を測定した。測定結果を表1に示す。
 [参考例1]
 〔成形用材料の製造〕
 植物繊維と漆とを1:1の割合で混合し、自動乳鉢(製品名:自動乳鉢ANM1000型)、日陶科学(株)製)で混練し(混練条件:約20分間)、加熱処理(5~10間隔ごとに撹拌しながら、熱風乾燥炉で120℃90分、加熱処理をして成形用材料を製造した。得られた成形用材料は、漆の粘性により植物繊維同士が凝集してしまい固まりとなるため、そのままでは、圧縮成形体を形成する材料として用いることができなかった。
Figure JPOXMLDOC01-appb-T000001
 本発明の成形用材料は漆及び植物繊維を素材とする成形品の量産に適した材料として用いられ、それによって得られる成形品はそれ自体でまた漆塗装加工の容易な素地としての用途を有する。特に本発明の成形用材料は、食器を作るための材料として有用である。

Claims (20)

  1.  漆と植物繊維とを加熱しながら3次元的に混練することにより得られる粉末状の成形用材料。
  2.  混合機に設けられた1つ又は複数の回転羽根により漆と植物繊維とを3次元的に混練した、請求項1に記載の成形用材料。
  3.  回転羽根を駆動するために供給される電力を測定し、該電力の値の経時変化に基づいて混練を停止して得られる、請求項2に記載の成形用材料。
  4.  加熱温度90~180℃で混練した、請求項1~3のいずれか一項に記載の成形用材料。
  5.  10~120メッシュ篩を通過する粉末を含む、請求項1~4のいずれか一項に記載の成形用材料。
  6.  アセトン溶解分を9~15質量%含む、請求項1~5のいずれか一項に記載の成形用材料。
  7.  ウルシオール、ラッコール及びチチオールからなる群より選ばれる1種以上のモノマーの重合体と、植物繊維と、を含む粉末状の成形用材料であって、10~120メッシュ篩を通過する粉末を含有する、成形用材料。
  8.  漆と植物繊維とを加熱しながら3次元的に混練する工程を含む、粉末状の成形用材料の製造方法。
  9.  混合機に設けられた1つ又は複数の回転羽根により漆と植物繊維とを3次元的に混練する、請求項8に記載の製造方法。
  10.  前記回転羽根を駆動するために供給される電力を測定する工程と、前記電力の値を記録する工程と、記録された前記電力の値の経時変化に基づいて混練を停止する工程と、を更に含む、請求項8又は9に記載の製造方法。
  11.  加熱温度が90~180℃である、請求項8~10のいずれか一項に記載の製造方法。
  12.  前記成形用材料は、10~120メッシュ篩を通過する請求項8~11いずれか一項に記載の製造方法。
  13.  前記成形用材料は、アセトン溶解分を9~15質量%含む、請求項8~12のいずれか一項に記載の製造方法。
  14.  請求項1~7のいずれか一項に記載の成形用材料を圧縮成形して得られる圧縮成形体。
  15.  前記圧縮成形体の表面に漆を塗工した、請求項14に記載の圧縮成形体。
  16.  漆と植物繊維とを収容するための容器、及び前記容器内に設けられた1つ又は複数の回転羽根を備え、漆と植物繊維とを加熱しながら3次元的に混練する混合機と、
     前記回転羽根を駆動するために供給される電力を測定する電力計と、
     前記電力の値に基づき、前記回転羽根の回転速度を制御するコントローラーと、
    を備える、粉末状の成形用材料の製造装置。
  17.  記録された前記電力の値の経時変化に基づいて混練を停止する、請求項16に記載の製造装置。
  18.  加熱温度が90~180℃である、請求項16又は17に記載の製造装置。
  19. 10~120メッシュ篩を通過する粉末状の成形用材料を製造する、請求項16~18のいずれか一項に記載の製造装置。
  20.  前記回転羽根を駆動する電力の値を計測して、これをもってアセトン溶解分を調整して粉末状の成形用材料を製造する、請求項16~19のいずれか一項に記載の製造装置。
PCT/JP2012/072214 2011-08-31 2012-08-31 成形用材料及びその製造方法並びに該成形用材料を用いた圧縮成形体 WO2013031969A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12828428.8A EP2752461B1 (en) 2011-08-31 2012-08-31 Material to be molded, manufacturing method for same, and compression-molded article using said material to be molded
JP2013531433A JP6140607B2 (ja) 2011-08-31 2012-08-31 成形用材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-190197 2011-08-31
JP2011190197 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031969A1 true WO2013031969A1 (ja) 2013-03-07

Family

ID=47756443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072214 WO2013031969A1 (ja) 2011-08-31 2012-08-31 成形用材料及びその製造方法並びに該成形用材料を用いた圧縮成形体

Country Status (3)

Country Link
EP (1) EP2752461B1 (ja)
JP (1) JP6140607B2 (ja)
WO (1) WO2013031969A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107953511B (zh) * 2017-11-30 2019-11-19 南通鹿波汽车零部件有限公司 一种基于塑料制品制备用的注塑机混合加热装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276463A (ja) 2003-03-17 2004-10-07 Kurea Life:Kk 器類
JP2005007680A (ja) 2003-06-18 2005-01-13 Kanai Toru 木粉含有塗膜層を有する漆器
JP2005023262A (ja) 2003-07-01 2005-01-27 Kichinosuke Nagashio 生分解性プラスチック及びその製造方法
JP2005089538A (ja) * 2003-09-16 2005-04-07 Tokyo Metropolis 漆および植物繊維を用いた成形用材料、前記成形用材料を用いて得られる漆/植物繊維成形体
JP2006008887A (ja) * 2004-06-28 2006-01-12 Sachiko Tsunoda 漆粘土およびこの漆粘土を用いた成形品の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2615855A (en) * 1949-05-09 1952-10-28 Council Scient Ind Res Manufacture of molding powders from shellac and resinols like bhilawan shell liquid or cashew shell liquid
JPS5856585B2 (ja) * 1981-12-18 1983-12-15 文二郎 山本 漆器素地
KR20010037767A (ko) * 1999-10-19 2001-05-15 김우식 재조합 옻 도료 및 그 제조방법
KR100734913B1 (ko) * 2005-07-25 2007-07-03 한국내쇼날주식회사 잉크와 옻액 혼합액을 이용한 합성수지 혼합 사출물의제조방법 및 상기 방법에 의해 제조된 합성수지 혼합사출물
JP2007197639A (ja) * 2006-01-30 2007-08-09 National Institute Of Advanced Industrial & Technology 漆用常温硬化促進剤及びそれを用いた常温硬化性漆粘土組成物
JP4699559B1 (ja) * 2010-05-28 2011-06-15 日本ユピカ株式会社 ポリエステル樹脂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276463A (ja) 2003-03-17 2004-10-07 Kurea Life:Kk 器類
JP2005007680A (ja) 2003-06-18 2005-01-13 Kanai Toru 木粉含有塗膜層を有する漆器
JP2005023262A (ja) 2003-07-01 2005-01-27 Kichinosuke Nagashio 生分解性プラスチック及びその製造方法
JP2005089538A (ja) * 2003-09-16 2005-04-07 Tokyo Metropolis 漆および植物繊維を用いた成形用材料、前記成形用材料を用いて得られる漆/植物繊維成形体
JP3779290B2 (ja) 2003-09-16 2006-05-24 東京都 漆および植物繊維を用いた成形用材料、前記成形用材料を用いて得られる漆/植物繊維成形体
JP2006008887A (ja) * 2004-06-28 2006-01-12 Sachiko Tsunoda 漆粘土およびこの漆粘土を用いた成形品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752461A4

Also Published As

Publication number Publication date
JP6140607B2 (ja) 2017-05-31
EP2752461A4 (en) 2015-04-01
EP2752461B1 (en) 2022-08-17
JPWO2013031969A1 (ja) 2015-03-23
EP2752461A1 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
CN103897295B (zh) 一种生物质pvc复合材料及其制备方法
CN104402306B (zh) 人造石英石板及其制备方法
CN104987630B (zh) 改性聚三氟氯乙烯及其模压工艺
CN106084392B (zh) 一种高导热石墨烯/石墨树脂复合材料
CN105237948B (zh) 一种耐湿性酚醛模塑料
Hirpara et al. Development of potato starch based biodegradable packaging film
JP6140607B2 (ja) 成形用材料及びその製造方法
CN100382917C (zh) 一种复杂形状多孔钛的凝胶注模成型方法
CN101693784B (zh) 一种木塑复合材料及其制备方法
CN107880523A (zh) 聚醚酮酮/可熔性氟塑料合金及其制备方法
JP6080762B2 (ja) 成形体の製造方法
CN103025681A (zh) 用于制造用于陶瓷材料的陶瓷物质的方法
CN110041662B (zh) 一种基于3d打印的高分子梯度复合材料的制备方法
TW201512332A (zh) 水晶亮色矽膠組成物及水晶亮色矽膠組成物的加工方法
CN104774022B (zh) 一种多孔陶瓷的制备方法
JP3779290B2 (ja) 漆および植物繊維を用いた成形用材料、前記成形用材料を用いて得られる漆/植物繊維成形体
JP6140608B2 (ja) 成形用材料
CN105802164A (zh) 用于3d打印可抛光的仿金属pha线材及其制备方法和应用
CN110386599A (zh) 一种石墨烯复合材料及其制备方法
CN109082256A (zh) 一种封装胶及其制备方法
CN101864135A (zh) 一种有机玻璃制备磁性与夜荧光珠核的方法
WO2022244743A1 (ja) 三次元造形食品の製造方法
RU2386605C1 (ru) Способ изготовления керамического фильтрующего элемента из композиционного материала
CN106554505A (zh) 高密度聚乙烯粉体材料的制备方法
CN106566233A (zh) 一种纳米滑石粉增强增韧耐高温尼龙复合材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531433

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE