WO2013031911A1 - フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器 - Google Patents

フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器 Download PDF

Info

Publication number
WO2013031911A1
WO2013031911A1 PCT/JP2012/072048 JP2012072048W WO2013031911A1 WO 2013031911 A1 WO2013031911 A1 WO 2013031911A1 JP 2012072048 W JP2012072048 W JP 2012072048W WO 2013031911 A1 WO2013031911 A1 WO 2013031911A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
flexible printed
printed wiring
wiring board
copper
Prior art date
Application number
PCT/JP2012/072048
Other languages
English (en)
French (fr)
Inventor
和樹 冠
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020147008618A priority Critical patent/KR101525368B1/ko
Priority to CN201280042599.4A priority patent/CN103766010B/zh
Publication of WO2013031911A1 publication Critical patent/WO2013031911A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Definitions

  • the present invention relates to a copper foil for a flexible printed wiring board, a copper clad laminate, a flexible printed wiring board, and an electronic device.
  • Flexible printed wiring boards are soft printed wiring boards that can be bent, twisted, wound, and stacked, and can be mounted in narrow spaces, so mobile phones, computer-related products, audio-visual products, cameras, and automobiles. Used for wiring.
  • the characteristics required for a flexible printed wiring board include good bendability represented by MIT bendability and high cycle bendability represented by IPC bendability.
  • copper foil having such characteristics
  • copper-resin substrate laminates have been developed (Patent Documents 1 to 3).
  • Flexible printed wiring boards are sometimes used by being folded to reduce space, but in recent years, the bending radius of such bending has become small, and it is used in such a harsh state that it cannot be evaluated by the MIT flexibility test. Has been. In particular, in a small device represented by a touch panel type smartphone, bending of a flexible printed wiring board connected to the touch panel and a flexible printed wiring board of an LED module is severe.
  • the bending process may be restored to the original state by redoing, etc. If the bending process is severe, the copper foil of the flexible printed wiring board may be broken only by repeating these several times. Moreover, in the MIT bendability test, a copper foil that does not break even if it is bent several hundreds or thousands of times may be broken only by repeating the above-mentioned severe bending process several times.
  • an object of the present invention is to provide a copper foil for a flexible printed wiring board excellent in bending workability, and a copper-clad laminate, a flexible printed wiring board, and an electronic device using the same.
  • the present inventor has found that the bending workability of the copper foil is related to the ratio of the area in which the crystal orientation is in the range of 10 ° centered on the 001 orientation in the cross section of the copper foil. And based on such knowledge, by controlling the ratio of the area where the crystal orientation is in the range of 10 ° centered on the 001 orientation in the cross section of the copper foil, a copper foil for flexible printed wiring boards with excellent bending workability is provided. Found that you can.
  • the present invention completed on the basis of the above knowledge is, in one aspect, a copper foil for a flexible printed wiring board having a cross section in which the ratio of the area A in the range of 10 ° centered on the 001 orientation is 10% or more. is there.
  • a cross section in which the ratio of the area A having a crystal orientation in the range of 10 ° centered on the 001 orientation is 10% or more It is a copper foil for flexible printed wiring boards.
  • the ratio of the area A in the cross section is 60% or more.
  • the substrate having a thickness of 4 to 50 ⁇ m is formed on a substrate having a thickness of 10 to 55 ⁇ m formed of a polyimide resin layer and a thermoplastic polyimide adhesive layer.
  • a copper clad laminate formed by laminating copper foil and formed by thermocompression was subjected to 180 ° contact bending once to fix the bent portion of the copper foil, and obtained by cutting in a direction parallel to the bending direction.
  • the ratio of the area B in which the crystal orientation is in the range of 10 ° around the 001 orientation is 10% or more.
  • the ratio of the area B in the cross section of the bent portion of the copper foil is 60% or more.
  • FIG. 1 Another aspect of the present invention is an electronic device including the flexible printed wiring board according to the present invention and a first substrate and a second substrate electrically connected by the flexible printed wiring board.
  • a rolled copper foil As a material for the copper foil for a flexible printed wiring board, either a rolled copper foil or an electrolytic copper foil may be used, but it is preferable to use a rolled copper foil having good bending workability.
  • a rolled copper foil tough pitch copper (JIS-H3100 C1100) or oxygen-free copper (JIS-H3100 C1020, JIS-H3510 C1011) can be used.
  • “copper foil” includes copper alloy foil, and copper foil formed of “tough pitch copper” and “oxygen-free copper” also includes copper alloy foil based on tough pitch copper and oxygen-free copper. It is.
  • the copper alloy foil based on tough pitch copper and oxygen-free copper contains 20 to 500 mass ppm in total of one or more selected from the group consisting of Ag, In, Au, Pd and Sn. This is preferable because the crystal orientation in the copper foil cross section described later has an effect of increasing the ratio of the area A in the range of 10 ° centered on the 001 orientation. If the total amount of the metals is less than 20 ppm by mass, the desired effect cannot be obtained, and if it exceeds 500 ppm by mass, the development in the range of 10 ° centering on the 001 orientation becomes small and the desired effect cannot be obtained.
  • the copper foil according to the present invention is made of industrially used copper and contains 99.9% by mass or 99.99% by mass of copper and unavoidable impurities.
  • P, Fe, Zr, Mg, S, Ge and Ti as unavoidable impurities are easy to rotate in the crystal orientation by bending the copper foil and easily include a shear band even if a small amount is present. This is not preferable because bending workability is lowered.
  • the copper foil which concerns on this invention makes 1 mass or 2 types or more selected from the group which consists of P, Fe, Zr, Mg, S, Ge, and Ti as an unavoidable impurity to 20 mass ppm or less in total It is preferable to control.
  • the thickness of the copper foil according to the present invention is preferably 4 to 50 ⁇ m, more preferably 6 to 50 ⁇ m. When the thickness of the copper foil is less than 4 ⁇ m, the handling of the copper foil is deteriorated, and when it is more than 50 ⁇ m, the flexibility is lowered.
  • the thickness of the copper foil is more preferably 12 to 35 ⁇ m.
  • the copper foil according to the present invention has a cross section in which the ratio of the area A in which the crystal orientation is in the range of 10 ° centered on the 001 orientation is 10% or more.
  • the crystal orientation of the copper foil rotates when the bending is repeated several times. This rotation of crystal orientation causes cracking. If the 001 orientation of the crystal is in the cross section in the thickness direction of the copper foil and the direction parallel to the cross section is the bending direction, the crystal orientation becomes difficult to rotate, and the bending workability is improved. Moreover, it becomes difficult to enter a shear band which is one of the causes of cracks, and the bending workability is improved.
  • the copper foil according to the present invention has good bending workability.
  • the ratio of the area A in the cross section is more preferably 60% or more.
  • the crystal orientation can be measured by an EBSD (Electron Back Scattering Diffraction) method.
  • the copper foil according to the present invention is formed by laminating a copper foil having a thickness of 6 to 50 ⁇ m on a base material having a thickness of 10 to 55 ⁇ m formed of a polyimide resin layer and a thermoplastic polyimide adhesive layer, and forming the copper foil by thermocompression bonding.
  • the crystal orientation is The ratio of the area B in the range of 10 ° around the 001 orientation may be 10% or more.
  • the aspect of the 180 ° contact bending is shown in FIG.
  • the copper-clad laminate is bent by a bending jig and bent so as to be folded back 180 ° as in state B. Subsequently, the copper clad laminate bent by 180 ° is opened using a return jig as shown in state C, and the bent part is returned to a straight line as shown in state D. This is defined as one 180 ° contact bending. By shifting this to the bending shown in state A again, the second and third times can be repeated.
  • the “bending direction” indicates a direction in which the copper clad laminate is bent as shown in FIG.
  • the ratio of the area B in which the crystal orientation is in the range of 10 ° centered on the 001 orientation is 10% or more, which is good. Has excellent bending workability. Further, the ratio of the area B in the cross section of the bent portion of the copper foil is more preferably 60% or more.
  • a flexible printed wiring board according to the present invention includes an insulating substrate and a wiring pattern formed on the surface of the insulating substrate.
  • the insulating substrate is not particularly limited as long as it has good bendability and bending workability applicable to flexible printed wiring boards, but for example, polyimide film, liquid crystal polymer film, polyethylene naphthalate, etc. should be used. Can do.
  • the thickness of the insulating substrate is preferably 12 to 50 ⁇ m. When the thickness is less than 12 ⁇ m, the handling becomes worse, and when it exceeds 50 ⁇ m, the flexibility is lowered.
  • the wiring pattern is formed using the above-mentioned rolled copper foil for flexible printed wiring boards.
  • the shape of the wiring pattern is not particularly limited, and any shape may be used.
  • the copper foil for flexible printed wiring boards is a rolled copper foil, it can be produced by the following production method.
  • high-purity electrolytic copper with a low content of P, Fe, Zr, Mg, S, Ge, and Ti is used as a copper raw material, and in order to prevent impurities from crucibles, molds, and refractories from being mixed, deoxidation treatment is further performed.
  • One or two or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti as inevitable impurities are added in a total of 20 ppm by mass so that P, Zr, and Mg are not mixed.
  • An ingot is produced under the following control.
  • an ingot may be prepared by adding subcomponents so that one or more selected from the group consisting of Ag, In, Au, Pd, and Sn is 20 to 500 ppm by mass in total. .
  • the oxide is removed by surface grinding, and cold rolling, annealing, and pickling are repeated and processed to a predetermined thickness, whereby a rolled copper foil for a flexible printed wiring board is obtained.
  • the rolling tension of 0.1 mm or less is set to 100 MPa or less.
  • the degree of processing for one pass is 20% or less.
  • the kinematic viscosity of the rolling oil is 1 to 5 mm 2 / s, and the rolling strain rate is 30 to 800 / s.
  • a flexible printed wiring board can be manufactured using the copper foil.
  • the manufacture example of a flexible printed wiring board is shown.
  • a copper-clad laminate is manufactured by laminating a copper foil and an insulating substrate such as a polyimide film or a liquid crystal polymer film having good bendability and foldability.
  • the copper foil may be subjected to a predetermined surface treatment in advance.
  • thermoplastic polyimide adhesive is applied to the thermosetting polyimide film and dried, and then laminated with a copper foil and thermocompression bonded.
  • pressure bonding method there are a method of vacuum hot pressing and a method of laminating with a heat roll.
  • a copper-clad laminate is produced by coating, drying and curing a polyimide precursor on a copper foil.
  • a method well known to those skilled in the art may be used. For example, an etching resist is applied only to a necessary portion as a wiring pattern on a copper foil surface of a copper clad laminate, and unnecessary copper foil is removed by spraying an etching solution onto the copper foil surface to form a circuit pattern. Next, a flexible printed wiring board is produced by peeling and removing the etching resist to expose the wiring pattern.
  • Example 1 Examples 1 to 22
  • Ingots were prepared by adding the elements shown in Table 1 to high-purity electrolytic copper.
  • P, Fe, and Zr as unavoidable impurities are prevented by not mixing impurities from the crucible, the mold, and the refractory, and further preventing P, Zr, and Mg from being mixed by deoxidation treatment.
  • Mg, S, Ge and Ti were controlled so that one or more selected from the group consisting of Mg, S, Ge and Ti would be 20 ppm by mass or less in total.
  • this ingot was processed into a 7 mm thick plate by hot rolling, oxide was removed by surface grinding, and then cold rolling, annealing, and pickling were repeated, and 0.1 mm rolling was performed in all passes.
  • the tension was 100 MPa or less and the processing degree was 20% or less.
  • Examples 3 and 10 have a strain rate of 60 / s, the kinematic viscosity of the rolling oil is 1.5 mm 2 / s, Examples 2 , 4, 9, and 12 have a strain rate of 800 / s and a kinematic viscosity of 1.5 mm 2 / s.
  • Example 2 Comparative Examples 1 and 2
  • a copper-clad laminate was prepared by vacuum hot pressing (heating at 200 to 350 ° C. for 30 minutes).
  • Example 3 Comparative Examples 3 to 4
  • oxygen-free copper (JIS-H3100 C1020) ingots to which the elements shown in Table 1 were added were prepared. At this time, inevitable impurities are not suppressed, and one or two or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti become more than 20 mass ppm in total. It was. Subsequently, this ingot was processed into a plate having a thickness of 7 mm by hot rolling, the oxide was removed by surface grinding, and then cold rolling, annealing, and pickling were repeated and processed to the thickness shown in Table 1. .
  • a pass with a tension exceeding 100 MPa was performed at least once. Rolling was performed at a kinematic viscosity of 6 m 2 / s and a strain rate of 900 / s. Subsequently, a 27 ⁇ m-thick resin layer formed by applying 2 ⁇ m of thermoplastic PI adhesive to Kapton EN (registered trademark) and drying is laminated on a copper foil and vacuum hot pressed (heated at 200 to 350 ° C. for 30 minutes). A copper-clad laminate was prepared.
  • a circuit of (line) / S (space) 300 ⁇ m / 300 ⁇ m was formed to obtain a flexible printed wiring board.
  • all of the comparative examples had no cross section in which the ratio of the area A in the range of 10 ° centered on the 001 orientation was 10% or more as shown in Table 1, it was parallel to the MD (machine direction).
  • 180 ° contact bending is performed once on the flexible printed wiring boards according to the example and the comparative example, and the flexible printed wiring board is bent and fixed with resin, and the CP method (cross method) is used in parallel with the circuit.
  • Session polisher method was used to obtain a copper foil cross section of the bent portion.
  • the EBSD immediately in the area of “copper foil thickness described in Table 1” ⁇ “total width of 100 ⁇ m with 50 ⁇ m width on both sides centering on the bending vertex of the copper foil (see FIG. 2)”
  • Ten cross sections were measured, and the ratio of the area B in the range of 10 ° centered on the 001 orientation in the total area was calculated.
  • the occurrence of breakage was determined as follows.
  • a constant current (0.01 to 0.1 mA) is passed through the copper foil circuit of the flexible printed wiring board, a voltage value required to pass the current is measured, and the copper of the flexible printed wiring board is measured from the measured voltage value.
  • the resistance value of the foil circuit was calculated. When the calculated resistance value was 500% or more of the initial value (resistance value before bending), it was determined that a fracture occurred. The measurement results are shown in Table 1.
  • the total amount of one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge, and Ti as inevitable impurities is 20 ppm by mass or less.
  • the ratio of area A before 180 ° contact bending and the ratio of area B in a state where the bending was performed once and fixed both were 10% or more, and 180 ° contact bending was performed four times or The copper foil was not broken even after repeated 8 times.
  • the total of one or more selected from the group consisting of P, Fe, Zr, Mg, S, Ge and Ti as inevitable impurities is more than 20 ppm by mass.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

 折り曲げ加工性に優れたフレキシブルプリント配線板用銅箔、及び、それを用いた銅張積層板、フレキシブルプリント配線板及び電子機器を提供する。結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有するフレキシブルプリント配線板用銅箔。

Description

フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器
 本発明は、フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器に関する。
 フレキシブルプリント配線板は、曲げ、ねじり、巻き付け及び重ね等が可能な軟らかいプリント配線板であり、又、狭空間に実装可能であるため、携帯電話、コンピュータ関連製品、オーディオ・ビジュアル製品、カメラ及び自動車等の配線に使用されている。
 フレキシブルプリント配線板に求められる特性としては、MIT屈曲性に代表される良好な折り曲げ性、及び、IPC屈曲性に代表される高サイクル屈曲性があり、従来、このような特性を備えた銅箔や銅-樹脂基板積層体が開発されている(特許文献1~3)。
特開2010-100887号公報 特開2009-111203号公報 特開2007-207812号公報
 フレキシブルプリント配線板は、小スペース化のために折り曲げて使用される場合があるが、近年、このような折り曲げの曲げ半径が小さくなっており、MIT屈曲性試験では評価できないほど過酷な状態で使用されている。特にタッチパネル式のスマートフォンに代表される小型機器ではタッチパネルにつながるフレキシブルプリント配線板やLEDモジュールのフレキシブルプリント配線板の折り曲げが過酷となっている。
 上述のように厳しい折り曲げ加工を施したフレキシブルプリント配線板を一度他の部品へ接続した後、やり直し等で、折り曲げ加工を元の状態に戻して、再度同様に厳しい折り曲げ加工を施すことがあるが、折り曲げ加工が厳しいと、これらを数回繰り返すだけでフレキシブルプリント配線板の銅箔が割れてしまうことがある。また、MIT屈曲性試験では数百回、数千回繰り返して曲げ加工を施しても割れない銅箔が、上述の厳しい折り曲げ加工を数回繰り返しただけで割れてしまうことがある。
 そこで、本発明は、折り曲げ加工性に優れたフレキシブルプリント配線板用銅箔、及び、それを用いた銅張積層板、フレキシブルプリント配線板及び電子機器を提供することを課題とする。
 本発明者は、銅箔の折り曲げ加工性が、当該銅箔の断面において結晶方位が001方位を中心に10°の範囲にある面積の割合と関係があることを見出した。そして、このような知見に基づき銅箔断面において結晶方位が001方位を中心に10°の範囲にある面積の割合を制御することで、折り曲げ加工性に優れたフレキシブルプリント配線板用銅箔を提供することができることを見出した。
 以上の知見を基礎として完成した本発明は一側面において、結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有するフレキシブルプリント配線板用銅箔である。
 本発明は別の一側面において、200~350℃で30分間の熱処理が行われたとき、結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有するフレキシブルプリント配線板用銅箔である。
 本発明に係るフレキシブルプリント配線板用銅箔の一実施形態においては、前記断面における前記面積Aの割合が60%以上である。
 本発明に係るフレキシブルプリント配線板用銅箔の別の実施形態においては、ポリイミド樹脂層及び熱可塑性ポリイミド接着層で形成された厚さ10~55μmの基材に、厚さ4~50μmとした前記銅箔を積層して熱圧着により形成した銅張積層板に対し、180°密着曲げを1回実施して前記銅箔の曲げ部を固定し、曲げ方向と平行な方向で切断して得た前記銅箔の曲げ部の断面において、結晶方位が001方位を中心に10°の範囲にある面積Bの割合が10%以上である。
 本発明に係るフレキシブルプリント配線板用銅箔の更に別の実施形態においては、前記銅箔の曲げ部の断面における前記面積Bの割合が60%以上である。
 本発明に係るフレキシブルプリント配線板用銅箔の更に別の実施形態においては、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm以下である。
 本発明に係るフレキシブルプリント配線板用銅箔の更に別の実施形態においては、Ag、In、Au、Pd及びSnからなる群から選択された1種又は2種以上を合計で20~500質量ppm含む。
 本発明は別の一側面において、本発明に係る銅箔を備えた銅張積層板である。
 本発明は更に別の一側面において、本発明に係る銅張積層板を材料としたフレキシブルプリント配線板である。
 本発明は更に別の一側面において、本発明に係るフレキシブルプリント配線板と、前記フレキシブルプリント配線板で電気的に接続された第1の基板及び第2の基板とを備えた電子機器である。
 本発明によれば、折り曲げ加工性に優れたフレキシブルプリント配線板用銅箔、及び、それを用いた銅張積層板、フレキシブルプリント配線板及び電子機器を提供することができる。
180°密着曲げの態様を示す模式図である。 180°密着曲げの銅張積層板の曲げ方向を示す模式図である。
(フレキシブルプリント配線板用銅箔の構成)
 フレキシブルプリント配線板用銅箔の材料としては、圧延銅箔及び電解銅箔のいずれを用いてもよいが、折り曲げ加工性が良好な圧延銅箔を用いることが好ましい。圧延銅箔としては、タフピッチ銅(JIS-H3100 C1100)や無酸素銅(JIS-H3100 C1020、JIS-H3510 C1011)が使用可能である。
 本明細書において「銅箔」には銅合金箔も含まれ、「タフピッチ銅」及び「無酸素銅」で形成した銅箔には、タフピッチ銅及び無酸素銅をベースとした銅合金箔も含まれる。タフピッチ銅及び無酸素銅をベースした銅合金箔は、具体的には、Ag、In、Au、Pd及びSnからなる群から選択された1種又は2種以上を合計で20~500質量ppm含むことが、後述の銅箔断面における結晶方位が001方位を中心に10°の範囲にある面積Aの割合を大きくする効果があるため好ましい。当該金属が合計で20質量ppm未満であれば望ましい効果が得られず、500質量ppm超であれば001方位を中心に10°の範囲の発達が小さくなりこちらも望ましい効果が得られなくなる。
 本発明に係る銅箔は、工業的に使用される銅で形成されており、99.9質量%、又は、99.99質量%の銅、及び、不可避的不純物を含んでいる。このうち、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiは、微少量存在していても、銅箔の折り曲げ加工によって結晶方位が回転し易くなり、剪断帯も入り易く、折り曲げ加工性が低下するため好ましくない。このため、本発明に係る銅箔は、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上を合計で20質量ppm以下に制御することが好ましい。
 本発明に係る銅箔の厚さとしては、4~50μmが好ましく、6~50μmがより好ましい。銅箔の厚さが4μm未満であると銅箔のハンドリングが悪くなり、50μm超であるとフレキシブル性が低下する。銅箔の厚さは、12~35μmがより好ましい。
 本発明に係る銅箔は、結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有する。銅箔は、折り曲げを数回繰り返すと結晶方位が回転する。この結晶方位の回転が亀裂発生の原因となる。結晶の001方位が銅箔の厚さ方向の断面にあり、その断面に平行な方向が曲げ方向であると結晶方位が回転し難くなり、折り曲げ加工性が向上する。また、亀裂の原因の一つである剪断帯も入り難くなり、折り曲げ加工性が向上する。本発明に係る銅箔は、001方位を中心に10°の範囲にある面積Aの割合が10%以上であるためこの折り曲げ加工性が良好となっている。断面における面積Aの割合は、より好ましくは60%以上である。結晶方位は、EBSD(Electron Back Scattering Diffraction)法により測定することができる。
 本発明に係る銅箔は、ポリイミド樹脂層及び熱可塑性ポリイミド接着層で形成された厚さ10~55μmの基材に、厚さ6~50μmとした銅箔を積層して熱圧着により形成した銅張積層板に対し、180°密着曲げを1回実施して前記銅箔の曲げ部を固定し、曲げ方向と平行な方向で切断して得た銅箔の曲げ部の断面において、結晶方位が001方位を中心に10°の範囲にある面積Bの割合が10%以上であってもよい。
 上記180°密着曲げの態様を図1に示す。まず、状態Aに示すように、銅張積層板を折り曲げ治具により折り曲げ、状態Bのように180°折り返されるように折り曲げる。続いて、180°折り曲げた銅張積層板を状態Cに示すように戻し治具を用いて開き、状態Dに示すように曲げ部を直線状に戻す。これを1回の180°密着曲げとする。これを再度状態Aに示す折り曲げへ移行することで、2回目、3回目と繰り返すことができる。
 また、上記「曲げ方向」とは、図2に示すように、銅張積層板を折り曲げていく方向を示す。
 このような構成によれば、180°密着曲げを1回実施した後であっても、結晶方位が001方位を中心に10°の範囲にある面積Bの割合が10%以上であるため、良好な折り曲げ加工性を有している。また、銅箔の曲げ部の断面における前記面積Bの割合は、より好ましくは60%以上である。
(フレキシブルプリント配線板の構成)
 本発明に係るフレキシブルプリント配線板は、絶縁基板と、この絶縁基板の表面に形成された配線パターンとを備えている。絶縁基板は、フレキシブルプリント配線板に適用可能な良好な屈曲性及び折り曲げ加工性を有するものであれば特に制限を受けないが、例えば、ポリイミドフィルム、液晶ポリマーフィルム、ポリエチレンナフタレート等を使用することができる。絶縁基板の厚さは、12~50μmが好ましい。厚さが12μm未満であるとハンドリングが悪くなり、50μm超であるとフレキシブル性が低下する。配線パターンは、上述のフレキシブルプリント配線板用圧延銅箔を用いて形成されている。配線パターンの形状は特に限定されず、どのようなものであってもよい。
(フレキシブルプリント配線板用銅箔の製法)
 フレキシブルプリント配線板用銅箔が圧延銅箔である場合は、以下の製造方法によって作製することができる。
 まず、P、Fe、Zr、Mg、S、Ge及びTiの含有量が少ない高純度電気銅を銅原料にし、坩堝、鋳型、耐火物からの不純物を混入させないように、さらに、脱酸素処理でP、Zr、Mgを混入させないようにして、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm以下に制御してインゴットを作製する。このとき、Ag、In、Au、Pd及びSnからなる群から選択された1種又は2種以上が合計で20~500質量ppmとなるように副成分を添加してインゴットを作製してもよい。
 次に、このインゴットを熱間圧延後、表面研削で酸化物を除去し、冷間圧延、焼鈍、酸洗を繰り返して所定の厚さまで加工することで、フレキシブルプリント配線板用の圧延銅箔を作製する。圧延加工において、結晶方位である001方位を中心に10°の範囲の割合を厚み方向の断面に対して10%以上に制御するために、0.1mm厚以下の圧延の張力を100MPa以下とし圧延1パスの加工度を20%以下とする。さらに、圧延油の動粘度を1~5mm2/sとし、圧延の歪速度を30~800/sとする。
(フレキシブルプリント配線板の製法)
 フレキシブルプリント配線板は、上記銅箔を用いて製造することができる。以下に、フレキシブルプリント配線板の製造例を示す。
 まず、銅箔と、良好な屈曲性及び折れ曲げ性を有するポリイミドフィルム、液晶ポリマーフィルム等の絶縁基板とを貼り合わせて銅張積層板を製造する。銅箔は、あらかじめ所定の表面処理を施しておいてもよい。
 貼り合わせの方法は、ポリイミドフィルムの場合、熱硬化性ポリイミドフィルムに熱可塑性のポリイミド接着剤を塗工、乾燥した後、銅箔と積層させ、熱圧着させる。圧着方法としては真空熱プレスする方法や熱ロールによってラミネートする方法がある。またポリイミドフィルムの場合、銅箔にポリイミドの前駆体を塗工、乾燥、硬化させることで銅張積層板を作製する。
 銅張積層板からフレキシブルプリント配線板を作製する工程は当業者に周知の方法を用いればよい。例えば、エッチングレジストを銅張積層板の銅箔面に配線パターンとしての必要部分だけに塗工し、エッチング液を銅箔面に噴射することで不要銅箔を除去して回路パターンを形成する。次いでエッチングレジストを剥離・除去して配線パターンを露出することで、フレキシブルプリント配線板を作製する。
 このフレキシブルプリント配線板を2つの電子基板間に設けて、それらを電気的に接続させることで、種々の電子機器を作製することができる。電子機器としては、特に限定されず、例えば、液晶ディスプレイ、カーナビゲーション、携帯電話、ゲーム機、CDプレイヤー、デジタルカメラ、テレビ、DVDプレイヤー、電子手帳、電子辞書、電卓、ビデオカメラ、プリンター等が挙げられる。
 以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
(例1:実施例1~22)
 高純度電気銅に表1に記載の元素を添加してインゴットを作製した。また、このとき、坩堝、鋳型、耐火物からの不純物を混入させないように、さらに、脱酸素処理でP、Zr、Mgを混入させないようにすることで、不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm以下となるように制御した。
 続いて、このインゴットを熱間圧延で厚さ7mmの板に加工し、表面研削で酸化物を取り除いた後、冷間圧延、焼鈍、酸洗を繰り返し、0.1mmの圧延は全てのパスで張力を100MPa以下、加工度20%以下として表1に記載の厚さに加工した。実施例3、10は歪速度60/s、圧延油の動粘度1.5mm2/s、実施例2、4、9、12は歪速度800/s、動粘度1.5mm2/s、その他の実施例は歪速度60/s、動粘度5mm2/sで圧延した。
 続いて、銅箔片面に、Cu-Niめっきの粗化処理を行い、その後Cr浸漬めっきを行った。逆面にはクロメート処理を行った。
 続いて、カプトンEN(登録商標)に熱可塑性PI接着剤を2μm塗工、乾燥して形成した27μm厚の樹脂層を銅箔に積層させて真空熱プレス(200~350℃で30分間加熱)によって銅張積層板を作製した。
(例2:比較例1~2)
 比較例1~2は、18μm厚の市販の特殊電解銅箔を用いて、カプトンEN(登録商標)に熱可塑性PI接着剤を2μm塗工、乾燥して形成した27μm厚の樹脂層を銅箔に積層させて真空熱プレス(200~350℃で30分間加熱)によって銅張積層板を作製した。
(例3:比較例3~4)
 比較例3~4は、表1に記載の元素を添加した無酸素銅(JIS-H3100 C1020)のインゴットを作製した。また、このとき、不可避的不純物の抑制は行わず、P、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が、合計で20質量ppm超となった。
 続いて、このインゴットを熱間圧延で厚さ7mmの板に加工し、表面研削で酸化物を取り除いた後、冷間圧延、焼鈍、酸洗を繰り返して表1に記載の厚さに加工した。このとき、0.1mm厚以下の圧延では張力を100MPa超としたパスを少なくとも1回行った。動粘度は6m2/s、歪速度は900/sで圧延した。
 続いて、カプトンEN(登録商標)に熱可塑性PI接着剤を2μm塗工、乾燥して形成した27μm厚の樹脂層を銅箔に積層させて真空熱プレス(200~350℃で30分間加熱)によって銅張積層板を作製した。
 このようにして作製した実施例1~22及び比較例1~4の供試材を、CP法(クロスセッションポリッシャー法)を用いて厚み方向に切断し、銅箔断面を得た。その後、すぐに「表1に記載の銅箔厚み」×「300μm幅」の面積において電子顕微鏡JEOL FE-SEMを用い、TSL社製の解析ソフトを用いてEBSPをとってKAM値を算出し、結晶方位が001方位を中心に10°の範囲にある面積Aの割合を算出した。
 この結果、実施例はいずれも表1に示す通り001方位を中心に10°の範囲にある面積Aの割合が10%以上存在する断面があったため、この断面に対して平行となるようにL(ライン)/S(スペース)=300μm/300μmの回路を形成してフレキシブルプリント配線板とした。
 一方、比較例はいずれも表1に示す通り001方位を中心に10°の範囲にある面積Aの割合が10%以上存在する断面が無かったため、MD(machine direction:圧延平行方向)に平行となるようにL(ライン)/S(スペース)=300μm/300μmの回路を形成してフレキシブルプリント配線板とした。
 次に、実施例及び比較例に係るフレキシブルプリント配線板に180°密着曲げを1回行い、フレキシブルプリント配線板を曲げた状態で樹脂埋めして固定し、回路に平行な方法にCP法(クロスセッションポリッシャー法)を用いて切断し、曲げ部の銅箔断面を得た。その後、酸化膜が形成されないようにすぐに「表1に記載の銅箔厚み」×「銅箔の曲げ頂点を中心に両側へ50μm幅ずつの合計100μm幅(図2参照)」の面積においてEBSD測定を10断面行い、その合計面積における001方位を中心に10°の範囲にある面積Bの割合を算出した。
 また、折り曲げを行っている際に銅箔に破断が生じたか否かについても観察した。
 ここで、破断の発生は以下のように判定した。すなわち、フレキシブルプリント配線板の銅箔回路に一定電流(0.01~0.1mA)を流し、当該電流を流すために必要な電圧値を測定し、測定した電圧値からフレキシブルプリント配線板の銅箔回路の抵抗値を算出した。算出した抵抗値が初期値(上記折り曲げ前の抵抗値)の500%以上となったときに、破断が生じたと判定した。
 測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (評価)
 実施例1~22は、いずれも不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm以下であり、180°密着曲げ前で面積Aの割合、及び、当該曲げを1回行って固定した状態で面積Bの割合をそれぞれ測定した結果、いずれも10%以上であり、180°密着曲げを4回又は8回繰り返しても銅箔に破断が生じなかった。
 比較例1~4は、いずれも不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm超であり、180°密着曲げ前で面積Aの割合、及び、当該曲げを1回行って固定した状態で面積Bの割合をそれぞれ測定した結果、いずれも10%未満であり、180°密着曲げを2回行っただけですぐに銅箔に破断が生じた。
 なお、実施例1、3、14、15、19、20、21、22に用いた銅箔を、樹脂層に積層せずに、200℃~350℃で30分間加熱した。その後、当該銅箔の面積Aの割合(%)を測定した。その結果、当該銅箔の面積Aの割合(%)は、それぞれ表1に記載の実施例1、3、14、15、19、20、21、22の180°密着曲げ前の面積Aの割合(%)と同じ値となった。

Claims (10)

  1.  結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有するフレキシブルプリント配線板用銅箔。
  2.  200~350℃で30分間の熱処理が行われたとき、結晶方位が001方位を中心に10°の範囲にある面積Aの割合が10%以上である断面を有するフレキシブルプリント配線板用銅箔。
  3.  前記断面における前記面積Aの割合が60%以上である請求項1又は2に記載のフレキシブルプリント配線板用銅箔。
  4.  ポリイミド樹脂層及び熱可塑性ポリイミド接着層で形成された厚さ10~55μmの基材に、厚さ4~50μmとした前記銅箔を積層して熱圧着により形成した銅張積層板に対し、180°密着曲げを1回実施して前記銅箔の曲げ部を固定し、曲げ方向と平行な方向で切断して得た前記銅箔の曲げ部の断面において、結晶方位が001方位を中心に10°の範囲にある面積Bの割合が10%以上である請求項1~3のいずれかに記載のフレキシブルプリント配線板用銅箔。
  5.  前記銅箔の曲げ部の断面における前記面積Bの割合が60%以上である請求項4に記載のフレキシブルプリント配線板用銅箔。
  6.  不可避的不純物としてのP、Fe、Zr、Mg、S、Ge及びTiからなる群から選択された1種又は2種以上が合計で20質量ppm以下である請求項1~5のいずれかに記載のフレキシブルプリント配線板用銅箔。
  7.  Ag、In、Au、Pd及びSnからなる群から選択された1種又は2種以上を合計で20~500質量ppm含む請求項1~6のいずれかに記載のフレキシブルプリント配線板用銅箔。
  8.  請求項1~7のいずれかに記載の銅箔を備えた銅張積層板。
  9.  請求項8に記載の銅張積層板を材料としたフレキシブルプリント配線板。
  10.  請求項9に記載のフレキシブルプリント配線板と、前記フレキシブルプリント配線板で電気的に接続された第1の基板及び第2の基板とを備えた電子機器。
PCT/JP2012/072048 2011-09-01 2012-08-30 フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器 WO2013031911A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147008618A KR101525368B1 (ko) 2011-09-01 2012-08-30 플렉시블 프린트 배선판용 동박, 구리 피복 적층판, 플렉시블 프린트 배선판 및 전자 기기
CN201280042599.4A CN103766010B (zh) 2011-09-01 2012-08-30 柔性印刷布线板用的铜箔、覆铜层叠板、柔性印刷布线板以及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011191086A JP5694094B2 (ja) 2011-09-01 2011-09-01 フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器
JP2011-191086 2011-09-01

Publications (1)

Publication Number Publication Date
WO2013031911A1 true WO2013031911A1 (ja) 2013-03-07

Family

ID=47756389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072048 WO2013031911A1 (ja) 2011-09-01 2012-08-30 フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器

Country Status (5)

Country Link
JP (1) JP5694094B2 (ja)
KR (1) KR101525368B1 (ja)
CN (1) CN103766010B (ja)
TW (1) TWI549575B (ja)
WO (1) WO2013031911A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029929A (zh) * 2014-03-31 2016-10-12 古河电气工业株式会社 轧制铜箔、轧制铜箔的制造方法、柔性带状电缆、柔性带状电缆的制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294257B2 (ja) * 2015-03-30 2018-03-14 Jx金属株式会社 フレキシブルプリント基板用銅合金箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
JP2016191091A (ja) * 2015-03-30 2016-11-10 Jx金属株式会社 フレキシブルプリント配線板用圧延銅箔
US10448507B2 (en) 2016-01-15 2019-10-15 Jx Nippon Mining & Metals Corporation Copper foil, copper-clad laminate board, method for producing printed wiring board, method for producing electronic apparatus, method for producing transmission channel, and method for producing antenna
JP6970723B2 (ja) * 2019-10-04 2021-11-24 日東電工株式会社 表示装置及び基材積層体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283078A (ja) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk 銅張積層板用圧延銅箔及びその製造方法
JP2007107036A (ja) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk 屈曲用圧延銅合金箔
JP2008106313A (ja) * 2006-10-26 2008-05-08 Hitachi Cable Ltd 圧延銅箔およびその製造方法
JP2008106312A (ja) * 2006-10-26 2008-05-08 Hitachi Cable Ltd 圧延銅箔およびその製造方法
JP2009108376A (ja) * 2007-10-31 2009-05-21 Nikko Kinzoku Kk 銅箔及びそれを用いたフレキシブルプリント基板
JP2010034541A (ja) * 2008-06-30 2010-02-12 Nippon Steel Chem Co Ltd 可撓性回路基板及びその製造方法並びに可撓性回路基板の屈曲部構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW246680B (en) * 1993-06-25 1995-05-01 Ind Tech Res Inst Polyamic acid - a precursor of polyimide with high copper foil adhesivity, and preparation of polyimide/copper foil laminates
JP4747315B2 (ja) * 2007-11-19 2011-08-17 三菱マテリアル株式会社 パワーモジュール用基板及びパワーモジュール
CN102077698B (zh) * 2008-06-30 2013-03-27 新日铁化学株式会社 挠性电路基板及其制造方法以及挠性电路基板的弯曲部结构
US20120141809A1 (en) * 2009-07-07 2012-06-07 Kazuki Kanmuri Copper foil composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283078A (ja) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk 銅張積層板用圧延銅箔及びその製造方法
JP2007107036A (ja) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk 屈曲用圧延銅合金箔
JP2008106313A (ja) * 2006-10-26 2008-05-08 Hitachi Cable Ltd 圧延銅箔およびその製造方法
JP2008106312A (ja) * 2006-10-26 2008-05-08 Hitachi Cable Ltd 圧延銅箔およびその製造方法
JP2009108376A (ja) * 2007-10-31 2009-05-21 Nikko Kinzoku Kk 銅箔及びそれを用いたフレキシブルプリント基板
JP2010034541A (ja) * 2008-06-30 2010-02-12 Nippon Steel Chem Co Ltd 可撓性回路基板及びその製造方法並びに可撓性回路基板の屈曲部構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029929A (zh) * 2014-03-31 2016-10-12 古河电气工业株式会社 轧制铜箔、轧制铜箔的制造方法、柔性带状电缆、柔性带状电缆的制造方法
US20170018329A1 (en) * 2014-03-31 2017-01-19 Furukawa Electric Co., Ltd. Rolled copper foil, method of manufacturing a rolled copper foil, flexible flat cable, and method of manufacturing a flexible flat cable
EP3128036A4 (en) * 2014-03-31 2018-05-09 Furukawa Electric Co. Ltd. Rolled copper foil, method for producing rolled copper foil, flexible flat cable, and method for producing flexible flat cable
CN106029929B (zh) * 2014-03-31 2019-03-22 古河电气工业株式会社 轧制铜箔、轧制铜箔的制造方法、柔性带状电缆、柔性带状电缆的制造方法
US10522268B2 (en) 2014-03-31 2019-12-31 Furukawa Electric Co., Ltd. Rolled copper foil, method of manufacturing a rolled copper foil, flexible flat cable, and method of manufacturing a flexible flat cable

Also Published As

Publication number Publication date
JP5694094B2 (ja) 2015-04-01
TWI549575B (zh) 2016-09-11
CN103766010B (zh) 2017-06-09
KR20140054417A (ko) 2014-05-08
KR101525368B1 (ko) 2015-06-02
JP2013055163A (ja) 2013-03-21
CN103766010A (zh) 2014-04-30
TW201325332A (zh) 2013-06-16

Similar Documents

Publication Publication Date Title
KR100466062B1 (ko) 적층판용 구리합금박
TWI646207B (zh) 可撓性印刷基板用銅箔、使用其之覆銅積層體、可撓性印刷基板及電子機器
WO2013031911A1 (ja) フレキシブルプリント配線板用銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器
TWI588273B (zh) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
TWI687526B (zh) 可撓性印刷基板用銅箔、使用其之覆銅積層體、可撓性印刷基板及電子機器
TWI663270B (zh) 可撓性印刷基板用銅箔、使用其之覆銅積層體、可撓性印刷基板及電子機器
JP5933943B2 (ja) フレキシブルプリント配線板用圧延銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器
CN107046763B (zh) 柔性印刷基板用铜箔、使用其的覆铜层叠体
JP2017115222A (ja) 圧延銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
JP5753115B2 (ja) プリント配線板用圧延銅箔
JP2003041334A (ja) 積層板用銅合金箔
CN107046768B (zh) 柔性印刷基板用铜箔、使用它的覆铜层叠体、柔性印刷基板和电子器件
JP2002226928A (ja) 積層板用銅合金箔
JP2002249835A (ja) 積層板用銅合金箔
JP2008091431A (ja) フレキシブル銅張積層板の製造方法
JP6647253B2 (ja) フレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
JP2016079423A (ja) 圧延銅箔、銅張積層板、フレキシブルプリント配線板、電子機器及び圧延銅箔の製造方法
JP2003041332A (ja) 積層板用銅合金箔
KR102260207B1 (ko) 플렉시블 프린트 기판용 구리박, 그것을 사용한 동장 적층체, 플렉시블 프린트 기판 및 전자 기기
JP6712561B2 (ja) フレキシブルプリント基板用圧延銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器
KR100652158B1 (ko) 압연 동박 및 그 제조방법
JP6030325B2 (ja) 圧延銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器
JP2013082984A (ja) 圧延銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器
JP2013095933A (ja) 圧延銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器
JP2013067853A (ja) 圧延銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147008618

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12828761

Country of ref document: EP

Kind code of ref document: A1