WO2013031523A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2013031523A1
WO2013031523A1 PCT/JP2012/070511 JP2012070511W WO2013031523A1 WO 2013031523 A1 WO2013031523 A1 WO 2013031523A1 JP 2012070511 W JP2012070511 W JP 2012070511W WO 2013031523 A1 WO2013031523 A1 WO 2013031523A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
positive electrode
secondary battery
nonaqueous electrolyte
electrolyte secondary
Prior art date
Application number
PCT/JP2012/070511
Other languages
English (en)
French (fr)
Inventor
デニスヤウワイ ユ
柳田 勝功
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013031523A1 publication Critical patent/WO2013031523A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a lithium manganese composite oxide having a structure belonging to the space group Pmmn is known (Patent Document 1).
  • This lithium manganese composite oxide is represented by LiMnO 2 , and the composition ratio of Li and Mn is 1: 1.
  • a lithium manganese composite oxide having a structure (spinel structure) belonging to the space group Fd-3m is represented by LiMn 2 O 4 , and the composition ratio of Li and Mn is 1: 2.
  • the number of Li atoms with respect to one Mn atom of LiMnO 2 is twice that of LiMn 2 O 4 , and LiMnO 2 is more advantageous in terms of capacity than LiMn 2 O 4 .
  • lithium manganese composite oxide is cheaper than conventional lithium cobalt oxide and lithium nickel oxide.
  • a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide represented by LiMnO 2 as a positive electrode active material has a problem that a large amount of gas is generated along with charge and discharge and the battery expands.
  • the problem to be solved by the present invention is to suppress the generation of gas accompanying the above-described charging / discharging.
  • a nonaqueous electrolyte secondary battery includes a positive electrode including a positive electrode active material, a negative electrode, and a nonaqueous electrolyte
  • the positive electrode active material has the chemical formula LiMn 1-x M x O 2 (0 ⁇ x ⁇ 0.1
  • M includes a lithium manganese composite oxide represented by (at least one element selected from Al, Co, Ni, Fe, Mg, B, Nb, and W), and the nonaqueous electrolyte includes And at least one compound selected from sultone compounds, isocyanate compounds and nitrile compounds.
  • gas generation accompanying charge / discharge can be suppressed.
  • the positive electrode active material used in the present invention has a chemical formula LiMn 1-x M x O 2 (0 ⁇ x ⁇ 0.1, M is selected from at least Al, Co, Ni, Fe, Mg, B, Nb and W) A lithium manganese composite oxide represented by a kind of element).
  • the lithium manganese composite oxide is preferably contained in an amount of 20% by mass or more, more preferably 50% by mass or more, based on the total amount of the positive electrode active material.
  • the lithium manganese composite oxide preferably has a crystal structure belonging to at least one of the space group C2 / m or Pmmn.
  • At least a boron-containing oxide or a boron-containing hydroxide is attached to the surface of the positive electrode active material particles. In this case, decomposition of the non-aqueous electrolyte is suppressed, and the cycle characteristics are further improved.
  • a negative electrode active material conventionally used in nonaqueous electrolyte secondary batteries can be used.
  • examples thereof include graphite, lithium, silicon, and silicon alloys. Of these, graphite is preferably used.
  • the nonaqueous electrolyte used in the present invention contains at least one compound selected from sultone compounds, isocyanate compounds, and nitrile compounds.
  • the sultone compound is preferably a cyclic sultone compound.
  • the cyclic sultone compound is preferably a saturated cyclic sultone compound. Further, the saturated cyclic sultone compound is preferably 1,3-propane sultone.
  • the isocyanate compound is preferably hexamethylene diisocyanate.
  • the nitrile compound is preferably adiponitrile.
  • the total amount of the sultone compound, isocyanate compound and nitrile compound is preferably 0.01% by mass or more and 20% by mass or less, and more preferably 0.1% by mass or more and 10% by mass or less, based on the total amount of the nonaqueous electrolyte. preferable.
  • the nonaqueous electrolyte used in the present invention preferably contains an unsaturated cyclic carbonate. Furthermore, the unsaturated cyclic carbonate is preferably vinylene carbonate. The unsaturated cyclic carbonate is preferably contained in an amount of 0.01% by mass or more and 20% by mass or less, and more preferably 0.1% by mass or more and 10% by mass or less, based on the total amount of the nonaqueous electrolyte.
  • non-aqueous electrolyte used in the present invention a non-aqueous electrolyte conventionally used in non-aqueous electrolyte secondary batteries can be used in addition to the non-aqueous electrolyte described above.
  • examples thereof include ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate.
  • the non-aqueous electrolyte used in the present invention includes lithium salts conventionally used in non-aqueous electrolyte secondary batteries. Examples thereof include LiPF 6 and LiBF 4 .
  • the non-aqueous electrolyte means a non-aqueous electrolyte obtained by dissolving a supporting salt in a non-aqueous solvent, or a solid electrolyte containing a non-aqueous electrolyte.
  • nonaqueous electrolyte secondary battery of the present invention battery constituent members used in conventional nonaqueous electrolyte secondary batteries can be used as necessary.
  • the present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. In addition, the present invention can be appropriately changed and implemented without changing the gist.
  • Example 1 [Production of positive electrode] A mixture of Mn 2 O 3 and LiOH in a molar ratio of 0.5: 1 was baked in an argon atmosphere at 600 ° C. for 5 hours to obtain LiMnO 2 . This LiMnO 2 was immersed in a 2% by mass H 3 BO 3 aqueous solution and then left standing in air at 215 ° C. for 10 hours to dry, thereby obtaining a positive electrode active material a1. As a result of analyzing the positive electrode active material a1 by the powder X-ray diffraction method, it was confirmed that it had a structure belonging to the space group Pmmn.
  • the obtained positive electrode active material a1, acetylene black and polyvinylidene fluoride were mixed at a mass ratio of 90: 5: 5, and then N-methyl-2-pyrrolidone was added to the mixture to obtain a positive electrode mixture slurry.
  • This positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil, and dried in air at 115 ° C. to produce an electrode. This electrode was rolled, and a positive electrode tab 1 made of aluminum was attached to the cut electrode, and a positive electrode 2 was produced.
  • non-aqueous electrolyte After mixing ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7, 1 mol / liter of lithium hexafluorophosphate was added. A non-aqueous electrolyte was prepared by adding 1% by weight of vinylene carbonate and 1% by weight of 1,3-propane sultone to this mixture.
  • the positive electrode 2 and the negative electrode 4 were inserted into a container 6 made of aluminum laminate so as to face each other with a polyethylene separator 5 interposed therebetween. Next, after injecting the non-aqueous electrolyte prepared in the container 6, the cell A1 was manufactured by sealing. A schematic diagram of the cell is shown in FIG.
  • Example 2 A cell A2 was produced in the same manner as in Example 1 except that the amount of 1,3-propane sultone added was changed to 3% by mass.
  • Example 3 A cell A3 was produced in the same manner as in Example 1 except that the amount of 1,3-propane sultone added was changed to 5% by mass.
  • Example 4 Cell A4 was produced in the same manner as in Example 1 except that 0.5% by mass of hexamethylene diisocyanate was added instead of 1,3-propane sultone.
  • Example 5 Cell A5 was produced in the same manner as in Example 1 except that 1% by mass of hexamethylene diisocyanate was added instead of 1,3-propane sultone.
  • Example 6 Cell A6 was produced in the same manner as in Example 1 except that 1% by mass of adiponitrile was added instead of 1,3-propane sultone.
  • Example 7 Cell A7 was produced in the same manner as in Example 3 except that 1% by mass of adiponitrile was further added.
  • Example 8 Cell A8 was produced in the same manner as in Example 3 except that 3% by mass of adiponitrile was further added.
  • Example 9 Cell A9 was produced in the same manner as in Example 3 except that 0.5% by mass of hexamethylene diisocyanate was further added.
  • Example 10 Cell A10 was produced in the same manner as in Example 3 except that 1% by mass of hexamethylene diisocyanate was further added.
  • Cell B1 was produced in the same manner as in Example 1 except that 1,3-propane sultone was not added.
  • Cell thickness measurement The cells A1 to A10 and B1 are charged at a constant current of 150 mA until the voltage reaches 4.1 V, further charged at a constant voltage of 4.1 V until the current value reaches 30 mA, and the voltage is 2 at a constant current of 150 mA. The battery was discharged until it reached 0V. By measuring the change in cell thickness before and after charging / discharging, the degree of gas generation accompanying charging / discharging was examined. The results are shown in Table 1. The cell thickness change is represented by “+” when the thickness increases.
  • cells A1 to 10 in which the nonaqueous electrolyte contains at least one compound selected from sultone compounds, isocyanate compounds and nitrile compounds are compared with cell B1 which does not contain sultone compounds, isocyanate compounds and nitrile compounds. Thus, it can be seen that the increase in thickness is suppressed.
  • the change in thickness of the cells A7 to 10 in which the nonaqueous electrolyte contains the sultone compound and the nitrile compound, or the sultone compound and the isocyanate compound is greatly suppressed.
  • the thickness change is dramatically suppressed in the cells A9 and 10 in which the nonaqueous electrolyte contains a sultone compound and an isocyanate compound.
  • the cell A7 in which the non-aqueous electrolyte contains a sultone compound and a nitrile compound has a thickness change greatly suppressed as compared with the cell A3 containing the sultone compound but not containing the nitrile compound or the cell A6 containing the nitrile compound but not containing the sultone compound.
  • the cell A9 in which the nonaqueous electrolyte contains a sultone compound and an isocyanate compound has a dramatic change in thickness compared to the cell A3 that contains a sultone compound but does not contain an isocyanate compound or the cell A4 that contains an isocyanate compound but does not contain a sultone compound.
  • the cell A10 in which the non-aqueous electrolyte contains a sultone compound and an isocyanate compound has a dramatic change in thickness as compared with the cell A3 containing the sultone compound but not containing the isocyanate compound or the cell A5 containing the isocyanate compound but not containing the sultone compound. It can be seen that it is suppressed.
  • a cell C1 was produced in the same manner as in Comparative Example 1 except that the positive electrode active material c1 was used instead of the positive electrode active material a1.
  • Example 2 A cell C2 was produced in the same manner as in Example 10 except that the positive electrode active material c1 was used instead of the positive electrode active material a1.
  • the thickness of the cells was measured by the same method as the above-mentioned “cell thickness measurement”. The results are shown in Table 2.
  • the cell thickness does not increase in the cell C1 in which the non-aqueous electrolyte does not contain a sultone compound, an isocyanate compound and a nitrile compound, but the non-aqueous electrolyte is at least one selected from a sultone compound, an isocyanate compound and a nitrile compound.
  • the cell thickness is rather increased.
  • the nonaqueous electrolyte contains at least one compound selected from sultone compounds, isocyanate compounds, and nitrile compounds. If it is, it turns out that the gas generation accompanying charging / discharging is suppressed.
  • the nonaqueous electrolyte is at least one compound selected from sultone compounds, isocyanate compounds, and nitrile compounds. When it contains, it turns out that the gas generation accompanying charging / discharging is rather accelerated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】本願発明が解決しようとする課題は、化学式LiMn1-xx (0≦x≦0.1、MはAl、Co、Ni、Fe、Mg、B、Nb及びWから選択される少なくとも一種の元素)で表されるリチウムマンガン複合酸化物を含む正極活物質を正極に備えた非水電解質二次電池において、充放電に伴うガス発生を抑制することである。 【解決手段】本願発明の1の局面による非水電解質二次電池は、正極活物質を含む正極と、負極と、非水電解質とを備え、前記正極活物質が、化学式LiMn1-xx (0≦x≦0.1、MはAl、Co、Ni、Fe、Mg、B、Nb及びWから選択される少なくとも一種の元素)で表されるリチウムマンガン複合酸化物を含み、前記非水電解質が、スルトン化合物、イソシアネート化合物及びニトリル化合物から選択される少なくとも1種の化合物を含むことを特徴とする。

Description

非水電解質二次電池
 本願発明は、非水電解質二次電池に関するものである。
 正極活物質の一つとして、空間群Pmmnに属する構造を有するリチウムマンガン複合酸化物が知られている(特許文献1)。このリチウムマンガン複合酸化物はLiMnOで表され、LiとMnの組成比は1:1である。一方、空間群Fd-3mに属する構造(スピネル構造)を有するリチウムマンガン複合酸化物はLiMnで表され、LiとMnの組成比は1:2である。このため、LiMnOのMn原子1個に対するLi原子の個数は、LiMnの2倍であり、LiMnOの方がLiMnより容量面で有利である。また、リチウムマンガン複合酸化物は従来のコバルト酸リチウムやニッケル酸リチウムより安価である。
特開2001-302245
 しかしながら、LiMnOで表されるリチウムマンガン複合酸化物を正極活物質に用いた非水電解質二次電池では、充放電に伴い大量のガスが発生し、電池が膨張するという問題があった。本願発明が解決しようとする課題は、上述の充放電に伴うガス発生を抑制することである。
 本願発明の1の局面による非水電解質二次電池は、正極活物質を含む正極と、負極と、非水電解質とを備え、前記正極活物質が、化学式LiMn1-xx (0≦x≦0.1、MはAl、Co、Ni、Fe、Mg、B、Nb及びWから選択される少なくとも一種の元素)で表されるリチウムマンガン複合酸化物を含み、前記非水電解質が、スルトン化合物、イソシアネート化合物及びニトリル化合物から選択される少なくとも1種の化合物を含むことを特徴とする。
 本願発明によれば、充放電に伴うガス発生を抑制することができる。
セルの概略図
 本願発明で用いられる正極活物質は、化学式LiMn1-xx (0≦x≦0.1、MはAl、Co、Ni、Fe、Mg、B、Nb及びWから選択される少なくとも一種の元素)で表されるリチウムマンガン複合酸化物を含む。リチウムマンガン複合酸化物は正極活物質の総量に対し、20質量%以上含まれることが好ましく、50質量%以上含まれることがさらに好ましい。また、リチウムマンガン複合酸化物は、空間群C2/m又はPmmnの少なくとも一方に属する結晶構造を有することが好ましい。
 前記正極活物質粒子の表面は、少なくともホウ素含有酸化物又はホウ素含有水酸化物が付着していることが好ましい。この場合、非水電解質の分解が抑制され、サイクル特性がさらに向上する。
 本願発明で用いられる負極活物質には、非水電解質二次電池に従来使用されている負極活物質を用いることができる。その例として、黒鉛、リチウム、シリコン及びシリコン合金が挙げられる。中でも黒鉛を用いることが好ましい。
 本願発明で用いられる非水電解質は、スルトン化合物、イソシアネート化合物及びニトリル化合物から選択される少なくとも1種の化合物を含む。スルトン化合物は環状スルトン化合物であることが好ましい。また、環状スルトン化合物は飽和環状スルトン化合物であることが好ましい。さらに、飽和環状スルトン化合物は1,3-プロパンスルトンであることが好ましい。イソシアネート化合物はヘキサメチレンジイソシアネートであることが好ましい。ニトリル化合物はアジポニトリルであることが好ましい。
 スルトン化合物、イソシアネート化合物及びニトリル化合物の総量は非水電解質の総量に対し、0.01質量%以上20質量%以下含まれることが好ましく、0.1質量%以上10質量%以下含まれることがさらに好ましい。
 本願発明で用いられる非水電解質は、不飽和環状カーボネートを含むことが好ましい。さらに、不飽和環状カーボネートはビニレンカーボネートであることが好ましい。不飽和環状カーボネートは非水電解質の総量に対し、0.01質量%以上20質量%以下含まれることが好ましく、0.1質量%以上10質量%以下含まれることがさらに好ましい。
 本願発明で用いられる非水電解質には、上述した非水電解質以外に、非水電解質二次電池に従来使用されている非水電解質を用いることができる。その例として、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネートが挙げられる。
 本願発明で用いられる非水電解質には、非水電解質二次電池に従来使用されているリチウム塩が含まれる。その例として、LiPF及びLiBFが挙げられる。
 ここで、非水電解質とは、非水溶媒に支持塩を溶解させた非水電解液、又は固体電解質に非水電解液を含有させたものをいう。
 本願発明の非水電解質二次電池には、必要に応じて従来の非水電解質二次電池に使用されている電池構成部材を使用することができる。
 以下、本願発明を実施例に基づいてさらに詳細に説明する。ただし、本願発明は以下の実施例により何ら限定されるものではない。また、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 <実施例1>
〔正極の作製〕
 MnとLiOHとを0.5:1のモル比で混合したものを600℃のアルゴン雰囲気下で5時間焼成し、LiMnOを得た。このLiMnOを2質量%のHBO水溶液に浸した後、215℃の空気中で10時間放置し乾燥させることで、正極活物質a1を得た。正極活物質a1を粉末X線回折法により解析した結果、空間群Pmmnに帰属される構造を有することが確認された。
 次に、得られた正極活物質a1とアセチレンブラックとポリフッ化ビニリデンとを90:5:5の質量比で混合させた後、この混合物にN-メチル-2-ピロリドンを加えて正極合剤スラリーを作製した。この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に塗布し、これを空気中において115℃で乾燥させて電極を作製した。この電極を圧延し、切り出された電極にアルミニウム製の正極タブ1を取り付け、正極2を作製した。
 〔負極の作製〕
 黒鉛とカルボキシメチルセルロースのナトリウム塩とスチレンブタジエンゴムとを、98:1:1の質量比で混合させた後、この混合物に水を加えて負極合剤スラリーを作製した。この負極合剤スラリーを銅箔からなる負極集電体の両面に塗布し、これを空気中にて110℃で乾燥させて電極を作製した。この電極を圧延し、切り出された電極にニッケル製の負極タブ3を取り付け、負極4を作製した。
 〔非水電解液の作製〕
 エチレンカーボネートとジエチルカーボネートとを3:7の体積比で混合した後、1モル/リットルの六フッ化リン酸リチウムを加えた。この混合物に対し、1質量%のビニレンカーボネート及び1質量%の1,3-プロパンスルトンを添加することで非水電解液を作製した。
 〔セルの作製〕
 正極2と負極4とを、ポリエチレン製のセパレータ5を介して対向させてアルミラミネート製の容器6に挿入した。次に、容器6に作製された非水電解液を注入した後、封止することによりセルA1を作製した。セルの概略図を図1に示す。
 <実施例2>
 添加した1,3-プロパンスルトンの量を3質量%としたこと以外は、実施例1と同様にしてセルA2を作製した。
 <実施例3>
 添加した1,3-プロパンスルトンの量を5質量%としたこと以外は、実施例1と同様にしてセルA3を作製した。
 <実施例4>
 1,3-プロパンスルトンの代わりに0.5質量%のヘキサメチレンジイソシアネートを添加したこと以外は、実施例1と同様にしてセルA4を作製した。
 <実施例5>
 1,3-プロパンスルトンの代わりに1質量%のヘキサメチレンジイソシアネートを添加したこと以外は、実施例1と同様にしてセルA5を作製した。
 <実施例6>
 1,3-プロパンスルトンの代わりに1質量%のアジポニトリルを添加したこと以外は、実施例1と同様にしてセルA6を作製した。
 <実施例7>
 1質量%のアジポニトリルをさらに添加したこと以外は、実施例3と同様にしてセルA7を作製した。
 <実施例8>
 3質量%のアジポニトリルをさらに添加したこと以外は、実施例3と同様にしてセルA8を作製した。
 <実施例9>
 0.5質量%のヘキサメチレンジイソシアネートをさらに添加したこと以外は、実施例3と同様にしてセルA9を作製した。
 <実施例10>
 1質量%のヘキサメチレンジイソシアネートをさらに添加したこと以外は、実施例3と同様にしてセルA10を作製した。
 <比較例1>
 1,3-プロパンスルトンを添加しなかったこと以外は、実施例1と同様にしてセルB1を作製した。
 〔セルの厚み測定〕
 セルA1~A10及びB1について、150mAの定電流で電圧が4.1Vに達するまで充電し、さらに4.1Vの定電圧で電流値が30mAに達するまで充電し、150mAの定電流で電圧が2.0Vに達するまで放電した。充放電前後のセルの厚み変化を測定することで、充放電に伴うガス発生度合を調べた。その結果を表1に示す。なお、セルの厚み変化は、厚みが増加した場合を「+」で表す。
Figure JPOXMLDOC01-appb-T000001
 表1より、非水電解質が、スルトン化合物、イソシアネート化合物及びニトリル化合物から選択される少なくとも1種の化合物を含むセルA1~10は、スルトン化合物、イソシアネート化合物及びニトリル化合物を含まないセルB1と比較して、厚みの増加が抑制されていることが分かる。
 また、非水電解質が、スルトン化合物及びニトリル化合物、又はスルトン化合物及びイソシアネート化合物を含むセルA7~10は、厚み変化が大幅に抑制されていることが分かる。特に、非水電解質が、スルトン化合物及びイソシアネート化合物を含むセルA9及び10は、厚み変化が劇的に抑制されていることが分かる。
 非水電解質が、スルトン化合物及びニトリル化合物を含むセルA7は、スルトン化合物を含むがニトリル化合物を含まないセルA3又はニトリル化合物を含むがスルトン化合物を含まないセルA6より、厚み変化が大幅に抑制されていることが分かる。また、非水電解質が、スルトン化合物及びイソシアネート化合物を含むセルA9は、スルトン化合物を含むがイソシアネート化合物を含まないセルA3又はイソシアネート化合物を含むがスルトン化合物を含まないセルA4より、厚み変化が劇的に抑制されていることが分かる。さらに、非水電解質が、スルトン化合物及びイソシアネート化合物を含むセルA10は、スルトン化合物を含むがイソシアネート化合物を含まないセルA3又はイソシアネート化合物を含むがスルトン化合物を含まないセルA5より、厚み変化が劇的に抑制されていることが分かる。
 <参考例1>
〔正極の作製〕
 MnとLiOHとを1:1のモル比で混合したものを900℃の空気中で24時間焼成し、LiMnで表される正極活物質c1を得た。正極活物質c1を粉末X線回折法により解析した結果、空間群Fd-3mに帰属される構造を有することが確認された。
 正極活物質a1の代わりに正極活物質c1を用いたこと以外は、比較例1と同様にしてセルC1を作製した。
 <参考例2>
 正極活物質a1の代わりに正極活物質c1を用いたこと以外は、実施例10と同様にしてセルC2を作製した。
 セルC1及びC2について、上述の「セルの厚み測定」と同様の方法で、セルの厚みを測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、非水電解質がスルトン化合物、イソシアネート化合物及びニトリル化合物を含まないセルC1ではセルの厚みが増加していないが、非水電解質がスルトン化合物、イソシアネート化合物及びニトリル化合物から選択される少なくとも1種の化合物を含むセルC2では、セルの厚みがむしろ増加していることが分かる。
 以上より、空間群Pmmnに帰属される構造を有するリチウムマンガン複合酸化物を正極活物質に用いた場合、非水電解質がスルトン化合物、イソシアネート化合物及びニトリル化合物から選択される少なくとも1種の化合物を含んでいると、充放電に伴うガス発生が抑制されることが分かる。一方、空間群Fd-3mに帰属される構造を有するリチウムマンガン複合酸化物を正極活物質に用いた場合、非水電解質がスルトン化合物、イソシアネート化合物及びニトリル化合物から選択される少なくとも1種の化合物を含んでいると、充放電に伴うガス発生がむしろ促進されることが分かる。
1・・・正極ダブ
2・・・正極
3・・・負極タブ
4・・・負極
5・・・セパレータ
6・・・容器

Claims (9)

  1.  正極活物質を含む正極と、負極と、非水電解質とを備え、
    前記正極活物質が、化学式LiMn1-xx (0≦x≦0.1、MはAl、Co、Ni、Fe、Mg、B、Nb及びWから選択される少なくとも一種の元素)で表されるリチウムマンガン複合酸化物を含み、
     前記非水電解質が、スルトン化合物、イソシアネート化合物及びニトリル化合物から選択される少なくとも1種の化合物を含むことを特徴とする非水電解質二次電池。
  2.  前記リチウムマンガン複合酸化物が、空間群C2/m又はPmmnの少なくとも一方に属する結晶構造を有することを特徴とする請求項1に記載の非水電解質二次電池。
  3.  前記非水電解質が環状スルトン化合物を含むことを特徴とする請求項1又は2に記載の非水電解質二次電池。
  4.  前記環状スルトン化合物が飽和環状スルトン化合物であることを特徴とする請求項3に記載の非水電解質二次電池。
  5.  前記飽和環状スルトン化合物が1,3-プロパンスルトンであることを特徴とする請求項4に記載の非水電解質二次電池。
  6.  前記非水電解質がヘキサメチレンジイソシアネートを含むことを特徴とする請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記非水電解質がアジポニトリルを含むことを特徴とする請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記非水電解質が、不飽和環状カーボネートを含むことを特徴とする請求項1~7のいずれか1項に記載の非水電解質二次電池。
  9.  前記不飽和環状カーボネートがビニレンカーボネートであることを特徴とする請求項8に記載の非水電解質二次電池。
PCT/JP2012/070511 2011-08-31 2012-08-10 非水電解質二次電池 WO2013031523A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011189591A JP2014211948A (ja) 2011-08-31 2011-08-31 非水電解質二次電池
JP2011-189591 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031523A1 true WO2013031523A1 (ja) 2013-03-07

Family

ID=47756021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070511 WO2013031523A1 (ja) 2011-08-31 2012-08-10 非水電解質二次電池

Country Status (2)

Country Link
JP (1) JP2014211948A (ja)
WO (1) WO2013031523A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519710A (ja) * 2013-05-06 2015-07-09 エルジー・ケム・リミテッド リチウム二次電池用負極及びこれを含むリチウムイオン二次電池
DE112021001189T5 (de) 2020-02-21 2022-12-15 Gs Yuasa International Ltd. Nichtwässriger-elektrolyt-energiespeichervorrichtung und verfahren zum herstellen einer nichtwässriger-elektrolyt-energiespeichervorrichtung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198297A (ja) 2019-05-30 2020-12-10 パナソニックIpマネジメント株式会社 二次電池
CN116490466A (zh) * 2020-12-02 2023-07-25 松下知识产权经营株式会社 正极活性物质、锂二次电池和正极活性物质的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230802A (ja) * 1993-12-24 1995-08-29 Sharp Corp 非水系二次電池およびその正極活物質の製造方法
JP2009032653A (ja) * 2007-06-28 2009-02-12 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2009054319A (ja) * 2007-08-23 2009-03-12 Toshiba Corp 非水電解液電池
JP2009266736A (ja) * 2008-04-28 2009-11-12 Panasonic Corp リチウム電池
JP2010245020A (ja) * 2009-04-01 2010-10-28 Samsung Sdi Co Ltd 添加剤を含むリチウム2次電池用電解液及びこれを含むリチウム2次電池
JP2011519133A (ja) * 2008-04-25 2011-06-30 エルジー・ケム・リミテッド リチウム二次電池用非水電解質及びそれを含むリチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230802A (ja) * 1993-12-24 1995-08-29 Sharp Corp 非水系二次電池およびその正極活物質の製造方法
JP2009032653A (ja) * 2007-06-28 2009-02-12 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2009054319A (ja) * 2007-08-23 2009-03-12 Toshiba Corp 非水電解液電池
JP2011519133A (ja) * 2008-04-25 2011-06-30 エルジー・ケム・リミテッド リチウム二次電池用非水電解質及びそれを含むリチウム二次電池
JP2009266736A (ja) * 2008-04-28 2009-11-12 Panasonic Corp リチウム電池
JP2010245020A (ja) * 2009-04-01 2010-10-28 Samsung Sdi Co Ltd 添加剤を含むリチウム2次電池用電解液及びこれを含むリチウム2次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519710A (ja) * 2013-05-06 2015-07-09 エルジー・ケム・リミテッド リチウム二次電池用負極及びこれを含むリチウムイオン二次電池
US10050250B2 (en) 2013-05-06 2018-08-14 Lg Chem, Ltd. Anode for lithium secondary battery and lithium ion secondary battery including the same
DE112021001189T5 (de) 2020-02-21 2022-12-15 Gs Yuasa International Ltd. Nichtwässriger-elektrolyt-energiespeichervorrichtung und verfahren zum herstellen einer nichtwässriger-elektrolyt-energiespeichervorrichtung

Also Published As

Publication number Publication date
JP2014211948A (ja) 2014-11-13

Similar Documents

Publication Publication Date Title
KR100609789B1 (ko) 비수 전해질 이차 전지
US20140079990A1 (en) Nonaqueous electrolyte battery
JP2011034943A (ja) 非水電解液二次電池
JP5394578B2 (ja) 非水電解質二次電池及び非水電解質二次電池用正極
US9981859B2 (en) Positive electrode composition for non-aqueous electrolyte secondary battery and method of manufacturing thereof
WO2012165212A1 (ja) 非水電解質二次電池
JP2005340055A (ja) 非水電解質二次電池
CN106575764A (zh) 非水电解质二次电池
JP2003282055A (ja) 非水電解液二次電池
JPWO2011068255A1 (ja) ピロリン酸塩化合物およびその製造方法
US9337479B2 (en) Nonaqueous electrolyte secondary battery
JP5036121B2 (ja) 非水電解質二次電池
JP2005340056A (ja) 非水電解質二次電池
WO2012147507A1 (ja) 非水電解質二次電池
US20050266312A1 (en) Non-aqueous electrolyte secondary battery
JP2007048464A (ja) リチウムイオン二次電池
JP2004146363A (ja) 非水電解質二次電池
KR100549139B1 (ko) 비수 전해질 이차 전지
JP6865601B2 (ja) ナトリウムイオン二次電池用正極活物質およびその製造方法、並びにナトリウムイオン二次電池
WO2013031523A1 (ja) 非水電解質二次電池
JP2019114454A (ja) 非水系二次電池用正極材料の製造方法
JP2012209245A (ja) 非水電解質二次電池
JP2014135269A (ja) リチウム二次電池用正極活物質、並びにこれを含むリチウム二次電池用正極及びリチウム二次電池
US10305095B2 (en) Method of producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2014017072A (ja) 正極合剤およびその製造方法、非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP