WO2013031094A1 - 加熱装置 - Google Patents
加熱装置 Download PDFInfo
- Publication number
- WO2013031094A1 WO2013031094A1 PCT/JP2012/004955 JP2012004955W WO2013031094A1 WO 2013031094 A1 WO2013031094 A1 WO 2013031094A1 JP 2012004955 W JP2012004955 W JP 2012004955W WO 2013031094 A1 WO2013031094 A1 WO 2013031094A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- laser
- contact surface
- film material
- laser beam
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/0033—Heating devices using lamps
- H05B3/009—Heating devices using lamps heating devices not specially adapted for a particular application
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/02—Conditioning or physical treatment of the material to be shaped by heating
- B29B13/023—Half-products, e.g. films, plates
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0838—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
Definitions
- the present invention relates to a heating device that heats a film by running a film-like recording medium such as a magnetic tape or a phase change recording film at a constant feed speed and irradiating a line laser beam.
- a film-like recording medium such as a magnetic tape or a phase change recording film
- Patent Document 1 discloses a method of heating a steel plate using a direct-fire type continuous heating furnace that can make the temperature distribution in the width direction of the steel plate uniform.
- the steel sheet is continuously passed through a direct-fired continuous heating furnace and heated.
- a material having an emissivity higher than the emissivity of the steel plate is applied to the center surface and / or the back surface of the steel plate before passing through the direct-fired continuous heating furnace.
- the amount of radiant heat input to the central part in the width direction of the steel sheet is relatively larger than that of the edge part.
- overheating of the end portion in the steel plate width direction is suppressed, and the temperature rise in the central portion is promoted, so that the temperature distribution in the steel plate width direction is made uniform.
- the present disclosure is to provide a heating device and a heating method that suppress uneven temperature distribution in the heated film width direction when manufacturing a film-like recording medium.
- a heating apparatus in the present disclosure is a heating apparatus that heats a long film material by irradiating a laser beam in manufacturing a film-shaped recording medium, and has a film contact surface that contacts one surface of the film material.
- a film feed mechanism that moves the film material in the longitudinal direction of the film, a laser light source, and a laser irradiation unit that radiates a laser beam from the laser light source toward the film contact surface.
- a laser controller that controls irradiation of the laser beam.
- the film contact surface has a first contact surface and a second contact surface formed of materials having different thermal conductivities of the film material.
- the second contact surface is disposed at a position where it comes into contact with both ends in the width direction of the film material orthogonal to the longitudinal direction, and the first contact surface is disposed between the second contact surfaces.
- the first contact surface is formed of a material having a lower thermal conductivity than the second contact surface.
- a heating apparatus in the present disclosure is a heating apparatus that heats a long film material by irradiating a laser beam in manufacturing a film-shaped recording medium, and has a film contact surface that contacts one surface of the film material.
- a film feed mechanism that moves the film material in the longitudinal direction of the film, a laser light source, and a laser irradiation that radiates a laser beam from the laser light source toward the film contact surface.
- a laser control unit that controls irradiation of the laser beam.
- a laser irradiation part irradiates a laser spot light toward a film contact surface.
- the laser controller reciprocates the laser spot light at a higher speed relative to both ends of the film contact surface in the width direction perpendicular to the longitudinal direction than the center portion of the film contact surface disposed between both ends. In this way, the laser irradiation unit is controlled.
- the figure which shows schematically the whole laser annealing apparatus in Embodiment 1 The figure which shows the arrangement of the roller and the film in the laser annealing equipment The figure which shows the principal part of the laser annealing apparatus in Embodiment 1.
- FIG. 1 is a diagram schematically showing a configuration of a laser annealing apparatus 10 (an example of a heating apparatus) and a part of a configuration of a film transfer apparatus 11 in the present embodiment.
- the laser annealing apparatus 10 anneals a film 101 (an example of a film material) for manufacturing a film-like recording medium with a line laser beam 102 with a predetermined power.
- the laser annealing apparatus 10 includes a line laser irradiation unit 202 (an example of a laser irradiation unit), a laser light source 204 (an example of a laser light source), and a laser control unit 209 (an example of a laser control unit). And a roller 100 (an example of a film feeding mechanism).
- the line laser irradiation unit 202 includes an optical system such as a mirror and a lens.
- the line laser irradiation unit 202 includes, for example, a collimating lens that converts a laser beam emitted from the laser light source 204 into a parallel light flux, a cylindrical lens having an optical axis orthogonal to the optical axis of the collimating lens, and the like.
- the line laser irradiation unit 202 forms the laser light from the laser light source 204 so as to spread along the width direction of the film 101 (arrow W in FIG. 1).
- the formed line laser beam 102 is applied to the film 101.
- the laser control unit 209 performs control of laser power of the laser light source 204 (for example, ON / OFF of laser irradiation, setting of laser power, etc.), focus control, operation control of a laser driving mechanism, and the like.
- the laser control unit 209 is, for example, a device or an integrated circuit including a processor and a memory, and is realized by a general-purpose DSP or FPGA that executes a program stored in the memory.
- Laser power is controlled by the laser controller 209 and emitted from the laser light source 204. Then, the laser light is spread in the width direction of the film 101 by the optical system of the line laser irradiation unit 202, for example, after being converted into a parallel light beam, and a line laser beam 102 as shown in FIG. 1 is formed. The line laser beam 102 is applied to the film 101 being transferred.
- the film transfer device 11 includes a film transfer unit 110 and a transfer control unit 111.
- the film transfer unit 110 is a drive mechanism such as a drive roller or a transfer belt, and transfers the film 101 in a predetermined direction by being driven.
- the transfer control unit 111 is a device including a processor and a memory that controls the driving of the film transfer unit 110.
- the roller 100 is configured to be rotatable.
- the roller 100 has a film contact surface that contacts the back surface of the film 101 transferred by the film transfer unit 110.
- the roller 100 rotates with the film 101 wound thereon.
- the film 101 is fed in the longitudinal direction without slipping due to the frictional force with the film contact surface of the roller 100.
- the roller 100 further includes a low thermal conductive portion 104 (an example of a first contact surface) that contacts the central portion of the film 101 in the width direction, and high thermal conductive portions 103 and 105 (second contact surfaces) that contact both ends of the film 101.
- the low heat conductive portion 104 is made of a material having low heat conductivity.
- the high heat conduction parts 103 and 105 are made of a material having high heat conductivity.
- the low thermal conductivity portion 104 may be a plastic material such as polyacetal having a thermal conductivity of about 0.23 [W / (m ⁇ k)], or a thermal conductivity of 16.7 to 20.9 [W / (m ⁇ k)].
- the high thermal conductivity portions 103 and 105 are made of aluminum having a thermal conductivity of about 236 [W / (m ⁇ k)], and the thermal conductivity is about 398 [W / (m ⁇ k). )]) And other materials with high thermal conductivity such as copper.
- FIG. 2 is a diagram for explaining the arrangement of the roller 100 and the film 101.
- a predetermined region at both ends in the width direction of the film 101 and a region having a dimension L [mm] from the end contacts the high heat conducting portions 103 and 105 of the roller 100.
- the central portion of the film 101 sandwiched between the predetermined regions at both ends contacts the low heat conducting portion 104 of the roller 100.
- FIG. 3 is a diagram showing a main part of the laser annealing apparatus 10 in the present embodiment.
- the film 101 is wound around the roller 100 so that the back surface of the film 101 contacts the roller 100.
- the film 101 is sent in a predetermined direction (the direction of arrow F in FIG. 3) by the film transfer device 11.
- the film 101 rotates the roller 100 without slipping.
- the film 101 is irradiated with a line laser beam 102 controlled to a predetermined power.
- the line laser beam 102 is applied to the entire width direction of the film 101 in a region where the back surface of the film 101 is in contact with the roller 100. Thereby, the temperature of the laser irradiation portion of the film 101 is raised in a short time, and the film 101 passing through the line laser beam 102 is annealed.
- the film 101 on the roller 100 is in contact with the low heat conducting portion 104 of the roller 100 at the center in the width direction. Therefore, the film 101 as a whole has a heat-insulating structure in which heat does not escape from the back surface of the film 101 to the roller 100.
- the thermal energy irradiated by the line laser beam 102 is effectively used for heating the film 101. Therefore, uniform annealing can be performed over the entire film width direction while preventing thermal damage at the film edge. Therefore, in the present embodiment, efficient and economical annealing can be performed.
- the laser annealing apparatus 10 that heats a long film 101 by irradiating a laser beam in manufacturing a film-shaped recording medium has a film contact surface that contacts one surface of the film 101.
- a roller 100 that winds the film 101 and moves the film 101 in one longitudinal direction thereof, a laser light source 204, and a film contact surface.
- a line laser irradiation unit 202 that irradiates the line laser beam 102 and a laser control unit 209 that controls irradiation of the line laser beam 102 are provided.
- the film contact surface of the roller 100 includes a low heat conductive portion 104 and high heat conductive portions 103 and 105 formed of materials having different thermal conductivities of the film 101.
- the high heat conduction parts 103 and 105 are respectively arranged at positions in contact with both ends in the width direction of the film 101 orthogonal to the longitudinal direction, and the low heat conduction part 104 is arranged between the high heat conduction parts 103 and 105.
- the low heat conduction unit 104 is formed of a material having a lower thermal conductivity than the high heat conduction units 103 and 105.
- the film 101 wound around the roller 100 is in contact with the low heat conduction portion 104 of the roller 100 at the center in the width direction.
- FIG. 4 is a diagram showing a main part of the laser annealing apparatus 20 in the present embodiment.
- the laser annealing apparatus 20 of the present embodiment has a roller 106 made of one kind of material.
- the material of the roller 106 is preferably made of a low heat conductive material in order to effectively use the energy of the laser.
- the low thermal conductivity material for example, a plastic material such as polyacetal having a thermal conductivity of about 0.23 [W / (m ⁇ k)], or a thermal conductivity of 16.7 to 20.9 [W / (m ⁇ k)] It is a material with low thermal conductivity such as stainless steel.
- the laser annealing apparatus 20 of the present embodiment has a line at a position corresponding to a region of a distance L [mm] from the film end near the both ends in the width direction of the film 101.
- An attenuation plate 107 for attenuating the light amount of the laser beam 102 is installed.
- Attenuation plates 107 are provided at positions corresponding to both ends of the film 101 wound around the roller 106.
- the laser beam is irradiated through the attenuation plate 107 in the vicinity of the end portion of the film 101 that is likely to become high temperature due to the edge effect. Therefore, the laser intensity with respect to the end of the film 101 can be attenuated, the temperature rise can be suppressed, and the temperature distribution in the width direction of the film 101 can be suppressed.
- FIG. 5 is a diagram showing a main part of the laser annealing apparatus 30 in the present embodiment.
- the laser annealing apparatus 30 of the present embodiment uses a roller 106 made of one kind of material (low thermal conductivity material).
- the line laser beam 102 is irradiated with the length B [mm] in the width direction of the film 101 set shorter than the width of the film 101 by L [mm] from both ends.
- FIG. 6 is a diagram schematically showing a configuration of the laser annealing apparatus 40 (an example of a heating apparatus) and a part of the configuration of the film transfer apparatus 11 in the present embodiment.
- the laser annealing apparatus 40 anneals the film 101 on the roller 100 by moving the laser spot light 108 with a predetermined power back and forth linearly at a constant speed in the width direction of the film 101.
- the laser annealing apparatus 40 includes an optical pickup 403 (an example of a laser light irradiation unit), a laser light source 404, a mirror 405, an objective lens 406, a head feed mechanism 408, and a laser control unit 409. And a roller 100.
- the optical pickup 403 includes an optical system such as a laser light source 404, a mirror 405, and an objective lens 406.
- the laser spot light 108 irradiated from the laser light source 404 changes its direction by the mirror 405 and is irradiated onto the film 101 through the objective lens 406.
- the laser light source 204 for example, a YAG laser, YV04 laser, semiconductor laser or the like having a wavelength (0.7 to 2.5 ⁇ m) in the near infrared region with good heatability is used.
- the head feed mechanism 408 moves the optical pickup 403 in the width direction of the film 101 (in the direction of arrow W in FIG. 6) using a pulse motor, servo motor, linear motor or the like (not shown) as a drive source.
- the position information is output to the laser control unit 209.
- a laser control unit 409 controls movement of the head feed mechanism 408, focusing of the optical pickup 403, adjustment of laser power by the laser light source 404, and the like.
- the laser control unit 409 is, for example, a device or an integrated circuit including a processor and a memory, and is realized by a general-purpose DSP or FPGA that executes a program stored in the memory.
- the film transfer device 11 includes a film transfer unit 110 and a transfer control unit 111.
- the film transfer unit 110 is a drive mechanism such as a drive roller or a transfer belt, and transfers the film 101 in a predetermined direction by being driven.
- the transfer control unit 111 is a device including a processor and a memory that controls the driving of the film transfer unit 110.
- FIG. 7 shows a main part of the laser annealing apparatus 40 in the present embodiment. Here, redundant description of the configuration substantially the same as that of the first embodiment may be omitted.
- the laser annealing apparatus 40 of the present embodiment uses laser spot light 108 that reciprocates linearly at a constant speed in the width direction of the film 101 instead of the line laser beam 102 used in the first embodiment.
- the optical pickup 403 condenses the laser spot light 108 whose focus is controlled with a predetermined power on the film 101.
- the optical pickup 403 is reciprocated at high speed and linearly in the width direction of the film 101 by the head feed mechanism 408 controlled by the laser controller 409.
- the configuration of the roller 100 is the same as that in the first embodiment.
- the film 101 is transferred at a constant speed and the laser spot light 108 is reciprocated linearly at high speed, the film 101 is heated over the entire surface as in the first embodiment.
- the width of the film 101 is 100 [mm]
- the focused spot diameter of the laser spot light 108 on the film is 0.1 [mm]
- the reciprocating speed is 10,000 [mm / s]
- the traveling speed of the film is 5 Set to [mm / s].
- the laser spot light 108 is applied to the same region on the film 101 by combining the spot diameter of the laser spot light 108, the reciprocating speed, and the traveling speed of the film or any one of them. It can be controlled to irradiate through multiple passes. By such control, it becomes possible to suppress uneven heating that occurs when the laser spot has an intensity distribution.
- the laser spot light 108 is reciprocated linearly moved by the control of the laser control unit 409, but the laser is irradiated only in one direction during the reciprocating linear movement, and the laser is not irradiated when moving in the other direction. It is also possible to control it. By adopting such a configuration, a more uniform temperature distribution is possible over the entire area of the film 101.
- a galvano scanner may be adopted as a mechanism for reciprocating the laser spot light 108 at a high speed. [4-3. Effect] Also in the laser annealing apparatus 40 of the present embodiment, heat is likely to escape to the roller 100 brought into contact with the back surface with a thin material such as a film.
- the film 101 in the vicinity of the end portion is in contact with the high heat conductive portions 103 and 105 of the roller 100, and therefore, is more than the central portion in contact with the low heat conductive portion 104.
- Heat easily escapes and the film temperature hardly rises.
- a uniform annealing process is performed over the entire width direction of the film 101 while preventing thermal damage to the edge portion of the film 101 due to an edge effect in which the edge portion of the film 101 becomes high temperature. Can be done.
- the present embodiment is a modification of the laser annealing apparatus 50 according to the fourth embodiment, and the temperature distribution of the film 101 can be made constant.
- FIG. 8 shows a main part of the laser annealing apparatus 50 in the present embodiment. Here, redundant description of the substantially same configuration as that of the fourth embodiment may be omitted.
- the laser annealing apparatus 50 uses a roller 106 made of one kind of material.
- a material for the roller it is preferable to manufacture the roller with a low heat conductive material in order to effectively use the energy of the laser.
- the low thermal conductivity material for example, a plastic material such as polyacetal having a thermal conductivity of about 0.23 [W / (m ⁇ k)], or a thermal conductivity of 16.7 to 20.9 [W / (m ⁇ k)] It is a material with low thermal conductivity such as stainless steel.
- the laser control unit 409 (FIG. 6) controls the laser spot light 108 as follows.
- the laser spot light 108 is irradiated by setting the moving speed in the vicinity of both ends of the film 101, that is, in the region of the distance L [mm] from the end higher than the moving speed with respect to the center. .
- the laser irradiation time in the vicinity of the end of the film 101 that tends to become high temperature due to the edge effect is shortened, so that the temperature rise at the end of the film 101 is suppressed.
- a uniform temperature distribution in the width direction of the film 101 becomes possible.
- the width of the film 101 is 100 [mm]
- the moving speed of the central portion of the laser beam is 5000 [mm / s]
- the end of the film Is set to 10,000 [mm / s].
- the laser control unit is configured to irradiate the laser spot light 108 only in one direction during the reciprocating linear movement and not to irradiate the laser spot light 108 during the other direction of movement. 409 can be controlled. By adopting such a configuration, a more uniform temperature distribution is possible over the entire area of the film 101.
- the laser spot light 108 is applied to a plurality of the same region on the film 101 by combining or adjusting any one of the spot diameter of the laser spot light 108, the reciprocating movement speed, and the film traveling speed. It can be controlled to irradiate through multiple passes. By such control, it becomes possible to suppress uneven heating that occurs when the laser spot has an intensity distribution.
- Embodiments 1 to 5 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. Also, it is possible to combine the components described in the first to fifth embodiments to form a new embodiment.
- the roller has been described as an example of the film material feeding mechanism, but the present invention is not limited to this.
- the film material feeding mechanism may be any mechanism that places the film material and moves the film material in one direction in the longitudinal direction. Therefore, the film material feeding mechanism is not limited to a roller, and may be, for example, a transfer belt for horizontally placing and transferring a film material.
- the laser annealing apparatus as the heating apparatus has been described. However, in these embodiments, heating for irradiating a long film material with a laser beam and heating the film-like recording medium is performed. It can also be realized as a method.
- the present disclosure can be applied to a film material heating apparatus used in a manufacturing process of a film-like recording medium such as a magnetic tape or a phase change recording film.
- Laser annealing equipment (example of heating equipment) 11 Film Transfer Device 100 Roller (Example of Film Feed Mechanism) 101 film (an example of film material) 102 Line laser beam 103 High heat conduction part (an example of the second contact surface) 104 Low heat conduction part (example of first contact surface) 105 High thermal conductivity part (example of second contact surface) 106 roller (an example of a film feed mechanism) DESCRIPTION OF SYMBOLS 107 Attenuation plate 108 Laser spot light 110 Film transfer part 111 Transfer control part 202 Line laser irradiation part (an example of a laser irradiation part) 204 Laser light source (an example of a laser light source) 209 Laser control unit (an example of a laser control unit) 403 Optical pickup 404 Laser light source (an example of a laser light source) 409 Laser control unit (an example of a laser control unit)
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
以下に、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
[1-1.構成]
[1-1-1.レーザアニール装置の構成]
図1は、本実施の形態におけるレーザアニール装置10(加熱装置の一例)の構成と、フィルム移送装置11の構成の一部を概略的に示す図である。
レーザ制御部209は、レーザ光源204のレーザパワーの制御(例えば、レーザ照射のON/OFF、レーザパワーの設定等)や、フォーカス制御、レーザ駆動機構の動作制御等を行う。レーザ制御部209は、例えば、プロセッサやメモリを含む装置や集積回路等であり、メモリに格納されたプログラムを実行する汎用のDSPやFPGA等により実現される。
[1-1-2.ローラの構成]
ローラ100は、回転可能に構成される。ローラ100は、フィルム移送部110により移送されるフィルム101の裏面と接触するフィルム接触面を有する。ローラ100は、フィルム101を巻き付けた状態で回転する。フィルム101は、ローラ100のフィルム接触面との摩擦力により滑ることなくその長手方向に送られる。ローラ100は更に、フィルム101の幅方向の中央部分に接触する低熱伝導部104(第1接触面の一例)と、フィルム101の両端部に接触する高熱伝導部103,105(第2接触面の一例)と、を有する。低熱伝導部104は、熱伝導率の低い材料により製作されている。高熱伝導部103,105は、熱伝導率の高い材料で製作されている。例えば、低熱伝導部104は熱伝導率約0.23〔W/(m・k)〕のポリアセタール等のプラスチック材料、または熱伝導率16.7~20.9〔W/(m・k)〕のステンレス鋼等熱伝導率の低い材料で製作し、高熱伝導部103および105は熱伝導率約236〔W/(m・k)〕のアルミニウム、熱伝導率約398〔W/(m・k)〕の銅等熱伝導率の高い材料で製作する。
[1-2.動作]
図3は、本実施の形態におけるレーザアニール装置10の要部を示す図である。
[1.3 効果等]
以上のように、本実施の形態においては、フィルム状記録媒体の製造において長尺のフィルム101にレーザビームを照射して加熱するレーザアニール装置10は、フィルム101の一面に接触するフィルム接触面を有し、フィルム101を巻き付けてフィルム101をその長手方向の一方向に移動させるローラ100と、レーザ光源204と、フィルム接触面に対向して配され、フィルム接触面に向かってレーザ光源204からのラインレーザビーム102を照射するラインレーザ照射部202と、ラインレーザビーム102の照射を制御するレーザ制御部209と、を備える。ローラ100のフィルム接触面は、フィルム101の熱伝導率が異なる材料により形成される低熱伝導部104と高熱伝導部103,105とを有する。高熱伝導部103,105は長手方向に直交するフィルム101の幅方向両端部に接触する位置にそれぞれ配され、低熱伝導部104は高熱伝導部103,105の間に配される。低熱伝導部104は、高熱伝導部103,105よりも熱伝導率が低い材料により形成される。このレーザアニール装置10においては、ローラ100に巻き付けられたフィルム101は、その幅方向の中央大部分がローラ100の低熱伝導部104に接触しているため、フィルム101全体としては、フィルム101の裏面からローラ100に熱の逃げにくい断熱的な構造となる。一方、端部付近のフィルム101は高熱伝導部103,105と接触しているため、フィルム101の両端部は、低熱伝導部104と接触している中央部よりもローラ100に熱が逃げやすくなり、フィルム温度が上昇しにくくなる。この結果、幅広の板材やフィルムを加熱した場合に端部が高温になるエッジ効果による端部の熱的損傷を防止するとともに、フィルム幅方向全体に渡り均一なアニール処理を可能とする。
図4は、本実施の形態におけるレーザアニール装置20の要部を示す図である。ここでは、実施の形態1と実質的に同一の構成に対する重複説明は省略する場合がある。
本実施の形態のレーザアニール装置20は、実施の形態1と異なり、一種類の材料で製作されたローラ106を有する。ローラ106の材料としては、レーザのエネルギを有効に利用するため低熱伝導材料で製作することが好ましい。低熱伝導材料としては、例えば、熱伝導率約0.23〔W/(m・k)〕のポリアセタール等のプラスチック材料、または熱伝導率16.7~20.9〔W/(m・k)〕のステンレス鋼等熱伝導率の低い材料である。また、本実施の形態のレーザアニール装置20は、図4に示すように、フィルム101の幅方向における両端部付近で、フィルム端部からの距離L〔mm〕の領域に対応する位置に、ラインレーザビーム102の光量を減衰させる減衰板107を設置する。
図5は、本実施の形態におけるレーザアニール装置30の要部を示す図である。ここでは、実施の形態2と実質的に同一の構成に対する重複説明は省略する場合がある。
本実施の形態のレーザアニール装置30は、実施の形態2と同様、一種類の材料(低熱伝導材料)で製作されたローラ106を使用する。ラインレーザビーム102は、そのフィルム101の幅方向の長さB〔mm〕をフィルム101の幅より両端部からそれぞれL〔mm〕短く設定して照射する。
(実施の形態4)
[4-1.構成]
図6は、本実施の形態におけるレーザアニール装置40(加熱装置の一例)の構成と、フィルム移送装置11の構成の一部を概略的に示す図である。
レーザ光源204としては、例えば、加熱性のよい近赤外領域の波長(0.7~2.5μm)を有するYAGレーザ、YV04レーザ、半導体レーザ等を使用する。
レーザ制御部409は、ヘッド送り機構408の移動、光ピックアップ403のフォーカシング、レーザ光源404によるレーザパワーの調整等を制御する。レーザ制御部409は、例えば、プロセッサやメモリを含む装置や集積回路等であり、メモリに格納されたプログラムを実行する汎用のDSPやFPGA等により実現される。
[4-2.動作]
図7は、本実施の形態におけるレーザアニール装置40の要部を示す。ここでは、実施の形態1と実質的に同一の構成に対する重複説明は省略する場合がある。
フィルム101が一定速度で移送され、同時にレーザスポット光108が高速で往復直線移動すると、実施の形態1と同様に、フィルム101は全面に渡り加熱される。例えば、フィルム101の幅は100〔mm〕、レーザスポット光108のフィルム上での集光スポット径を0.1〔mm〕、往復移動速度を10000〔mm/s〕、フィルムの走行速度を5〔mm/s〕に設定する。
なお、上記レーザアニール装置40においては、レーザスポット光108を高速に往復動させる機構として、ガルバノスキャナを採用してもよい。
[4-3.効果等]
本実施の形態のレーザアニール装置40においても、フィルムのような薄い材料では裏面に接触させたローラ100へ熱が逃げやすい。フィルム101の中央部と端部付近を比較した場合、端部付近のフィルム101はローラ100の高熱伝導部103、105と接触しているため、低熱伝導部104と接触している中央部よりも熱が逃げやすくなり、フィルム温度が上昇しにくくなる。これにより、フィルム101を加熱した場合に、フィルム101の端部が高温になるエッジ効果によるフィルム101の端部の熱的損傷を防止しつつ、フィルム101の幅方向全体に渡り均一なアニール処理を行なうことができる。
本実施の形態は、実施の形態4のレーザアニール装置50の変形例であり、フィルム101の温度分布を一定にすることができる。
図8は、本実施の形態におけるレーザアニール装置50の要部を示す。ここでは、実施の形態4と実質的に同一の構成に対する重複説明は省略する場合がある。
また、本実施においても、実施の形態4と同様に、往復直線移動時の一方向のみレーザスポット光108を照射し、もう一方向の移動時はレーザスポット光108を照射しないようにレーザ制御部409により制御することができる。このような構成にすることにより、フィルム101の全域に渡りさらに均一な温度分布が可能になる。
以上のように、本出願において開示する技術の例示として、実施の形態1~5を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1~5で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
11 フィルム移送装置
100 ローラ(フィルム送り機構の一例)
101 フィルム(フィルム材料の一例)
102 ラインレーザビーム
103 高熱伝導部(第2接触面の一例)
104 低熱伝導部(第1接触面の一例)
105 高熱伝導部(第2接触面の一例)
106 ローラ(フィルム送り機構の一例)
107 減衰板
108 レーザスポット光
110 フィルム移送部
111 移送制御部
202 ラインレーザ照射部(レーザ照射部の一例)
204 レーザ光源(レーザ光源の一例)
209 レーザ制御部(レーザ制御部の一例)
403 光ピックアップ
404 レーザ光源(レーザ光源の一例)
409 レーザ制御部(レーザ制御部の一例)
Claims (8)
- フィルム状記録媒体の製造において長尺のフィルム材料にレーザビームを照射して加熱する加熱装置であって、
前記フィルム材料の一面に接触するフィルム接触面を有し、前記フィルム材料を載置して前記フィルム材料をその長手方向に移動させるフィルム送り機構と、
レーザ光源と、
前記フィルム接触面に対向して配され、前記フィルム接触面に向かって前記レーザ光源からのレーザビームを照射するレーザ照射部と、
前記レーザビームの照射を制御するレーザ制御部と、
を備え、
前記フィルム接触面は、前記フィルム材料の熱伝導率が異なる材料により形成される第1接触面と第2接触面とを有し、
前記第2接触面は前記長手方向に直交する前記フィルム材料の幅方向両端部に接触する位置にそれぞれ配され、前記第1接触面は前記第2接触面の間に配され、
前記第1接触面は、前記第2接触面よりも熱伝導率が低い材料により形成されてなる、
加熱装置。 - 前記レーザ照射部は、前記幅方向に広がるように形成されるラインレーザビームを前記フィルム接触面に向かって照射する、
請求項1に記載の加熱装置。 - 前記レーザ照射部は、レーザスポット光を照射し、
前記レーザ制御部は、前記レーザスポット光を前記幅方向に往復動させるように前記レーザ照射部を制御する、
請求項1に記載の加熱装置。 - フィルム状記録媒体の製造において長尺のフィルム材料にレーザビームを照射して加熱する加熱装置であって、
前記フィルム材料の一面に接触するフィルム接触面を有し、前記フィルム材料を載置して前記フィルム材料をその長手方向に移動させるフィルム送り機構と、
レーザ光源と、
前記フィルム接触面に対向して配され、前記フィルム接触面に向かって前記レーザ光源からのレーザビームを照射するレーザ照射部と、
前記レーザビームの照射を制御するレーザ制御部と、
を備え、
前記レーザ照射部は、前記フィルム接触面に向かってレーザスポット光を照射し、
前記レーザ制御部は、前記レーザスポット光が、前記長手方向に直交する幅方向における前記フィルム接触面の両端部に対しては、前記両端部の間に配された前記フィルム接触面の中央部よりも高速に往復動するように、前記レーザ照射部を制御する、
加熱装置。 - 前記レーザ制御部は、前記レーザスポット光の往復動のうち、一方向の移動時にレーザ照射を停止するよう前記レーザ照射部を制御する、
請求項3又は4に記載の加熱装置。 - 前記レーザ制御部は、前記レーザスポット光の往復動速度、前記フィルム材料の移動速度、及び前記レーザスポット光のスポット径のうち少なくともうち一つを調整することにより、前記レーザスポット光を前記フィルム接触面の同一領域に向かって複数回照射する、
請求項3又は4に記載の加熱装置。 - フィルム状記録媒体の製造において長尺のフィルム材料にレーザビームを照射して加熱する加熱方法であって、
前記フィルム材料の一面に接触するフィルム接触面を有するフィルム送り機構であって、前記フィルム接触面は、前記フィルム材料の熱伝導率が異なる材料により形成される第1接触面と第2接触面とを有し、前記第2接触面は前記フィルム材料の幅方向両端部に接触する位置にそれぞれ配され、前記第1接触面は前記第2接触面の間に配され、前記第1接触面は前記第2接触面よりも熱伝導率が低い材料により形成されてなるフィルム送り機構を用いて、前記フィルム材料をその長手方向に移動させ、
前記フィルム送り機構により移動される前記フィルム材料に対してレーザビームを照射する、
加熱方法。 - フィルム状記録媒体の製造において長尺のフィルム材料にレーザビームを照射して加熱する加熱方法であって、
前記フィルム材料をその長手方向に移動させ、
移動している前記フィルム材料に対し、前記フィルム材料の幅方向にレーザスポット光を往復動させながら照射し、
前記レーザスポット光が、前記フィルム材料の幅方向両端部に対しては、前記両端部の間に配された前記フィルム材料の中央部よりも高速に往復動するように、前記レーザスポット光を照射する、
加熱方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/234,608 US8886025B2 (en) | 2011-08-30 | 2012-08-03 | Laser film heating apparatus |
JP2013531020A JP5503809B2 (ja) | 2011-08-30 | 2012-08-03 | 加熱装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011187204 | 2011-08-30 | ||
JP2011-187204 | 2011-08-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013031094A1 true WO2013031094A1 (ja) | 2013-03-07 |
Family
ID=47755626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/004955 WO2013031094A1 (ja) | 2011-08-30 | 2012-08-03 | 加熱装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8886025B2 (ja) |
JP (1) | JP5503809B2 (ja) |
WO (1) | WO2013031094A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015206106A (ja) * | 2014-04-23 | 2015-11-19 | 旭硝子株式会社 | 脱ガス装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101758517B1 (ko) * | 2015-12-23 | 2017-07-14 | 주식회사 포스코 | 강판 열처리 장치 및 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08320544A (ja) * | 1995-05-04 | 1996-12-03 | Xerox Corp | フィルム熱処理装置 |
JP2000141474A (ja) * | 1998-09-03 | 2000-05-23 | Toray Ind Inc | ポリエステルフィルムおよびその製造方法 |
JP2006062201A (ja) * | 2004-08-26 | 2006-03-09 | Kobe Steel Ltd | ゴムの表層処理方法及び装置 |
JP2009262484A (ja) * | 2008-04-28 | 2009-11-12 | Shinshu Univ | プロピレン系ポリマーフィルムまたはシートの加熱方法および延伸フィルムの製法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5717191A (en) * | 1995-06-06 | 1998-02-10 | The Boeing Company | Structural susceptor for thermoplastic welding |
JP3482611B2 (ja) * | 1997-02-14 | 2003-12-22 | 株式会社日立製作所 | 加熱装置 |
JP2006274336A (ja) | 2005-03-29 | 2006-10-12 | Jfe Steel Kk | 直火式の連続加熱炉による鋼板の加熱方法 |
US7515842B2 (en) * | 2005-12-22 | 2009-04-07 | Canon Kabushiki Kaisha | Image forming apparatus with resistance controlled transfer member |
US7532378B2 (en) * | 2006-02-21 | 2009-05-12 | Semiconductor Energy Laboratory Co., Ltd. | Laser irradiation apparatus, method of laser irradiation, and method for manufacturing semiconductor device |
US20090218732A1 (en) * | 2008-02-29 | 2009-09-03 | David Cron | System and method for edge heating of stretch film |
-
2012
- 2012-08-03 JP JP2013531020A patent/JP5503809B2/ja not_active Expired - Fee Related
- 2012-08-03 WO PCT/JP2012/004955 patent/WO2013031094A1/ja active Application Filing
- 2012-08-03 US US14/234,608 patent/US8886025B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08320544A (ja) * | 1995-05-04 | 1996-12-03 | Xerox Corp | フィルム熱処理装置 |
JP2000141474A (ja) * | 1998-09-03 | 2000-05-23 | Toray Ind Inc | ポリエステルフィルムおよびその製造方法 |
JP2006062201A (ja) * | 2004-08-26 | 2006-03-09 | Kobe Steel Ltd | ゴムの表層処理方法及び装置 |
JP2009262484A (ja) * | 2008-04-28 | 2009-11-12 | Shinshu Univ | プロピレン系ポリマーフィルムまたはシートの加熱方法および延伸フィルムの製法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015206106A (ja) * | 2014-04-23 | 2015-11-19 | 旭硝子株式会社 | 脱ガス装置 |
Also Published As
Publication number | Publication date |
---|---|
US8886025B2 (en) | 2014-11-11 |
JP5503809B2 (ja) | 2014-05-28 |
JPWO2013031094A1 (ja) | 2015-03-23 |
US20140153911A1 (en) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7188767B2 (ja) | レーザーリフロー装置 | |
JP5611212B2 (ja) | 基板のアニールにおける熱量の管理 | |
TWI544522B (zh) | 光纖雷射之雷射尖峰退火系統及其方法 | |
JP5503809B2 (ja) | 加熱装置 | |
US20160107253A1 (en) | Reel-to-reel manufacturing plant for interlinked continuous and discontinuous processing steps | |
KR102509137B1 (ko) | 톱니형 공간 필터를 사용한 고효율 라인-형성 광학시스템 및 방법 | |
WO2020161998A1 (ja) | コイリングマシン、コイルばねの製造方法およびコイルばね | |
JP2005212364A5 (ja) | ||
TWI572901B (zh) | 高效率之線成形光學系統及方法 | |
JP6769532B2 (ja) | 熱処理装置 | |
JP6692431B2 (ja) | 鋼板の熱処理装置及び方法 | |
JP2009192141A (ja) | 連続加熱装置 | |
JP2009090345A (ja) | ロウ材シートの製造装置 | |
KR101729259B1 (ko) | 버 제거 겸용 절단 장치 | |
KR20200046056A (ko) | 개선된 열처리 장치 | |
KR101643925B1 (ko) | 박판 금속 레이저 열처리 방법 | |
US20090174119A1 (en) | Method of manufacturing patterned resin sheet | |
JP2015115401A (ja) | レーザアニール方法およびレーザアニール装置 | |
JP4971060B2 (ja) | 相変化方法及び相変化装置 | |
JP2013026433A (ja) | レーザアニール装置 | |
JP6750295B2 (ja) | 光加熱方法 | |
JP2005138284A (ja) | プリプレグの切断方法 | |
KR20170076847A (ko) | 강판의 표면처리 장치 및 표면처리 방법 | |
WO2006112566A1 (en) | Cable crosslinking apparatus using infrared | |
KR101638166B1 (ko) | 유리기판 측면 가공장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12826727 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013531020 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14234608 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12826727 Country of ref document: EP Kind code of ref document: A1 |