WO2013030924A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013030924A1
WO2013030924A1 PCT/JP2011/069452 JP2011069452W WO2013030924A1 WO 2013030924 A1 WO2013030924 A1 WO 2013030924A1 JP 2011069452 W JP2011069452 W JP 2011069452W WO 2013030924 A1 WO2013030924 A1 WO 2013030924A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
internal combustion
combustion engine
air
amount
Prior art date
Application number
PCT/JP2011/069452
Other languages
English (en)
French (fr)
Inventor
和久 松田
森田 晃司
崇博 塚越
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/001,610 priority Critical patent/US9399945B2/en
Priority to PCT/JP2011/069452 priority patent/WO2013030924A1/ja
Priority to JP2013530907A priority patent/JP5549784B2/ja
Publication of WO2013030924A1 publication Critical patent/WO2013030924A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • F02D19/088Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine that controls the internal combustion engine.
  • the internal combustion engine may be simply referred to as “engine”.
  • an upstream air-fuel ratio sensor and a downstream side disposed in an exhaust passage on the upstream side and a downstream side of a three-way catalyst (hereinafter also simply referred to as “catalyst”) in an exhaust passage of an internal combustion engine, respectively.
  • an upstream air-fuel ratio sensor and a downstream air-fuel ratio sensor are used to determine the air-fuel ratio of exhaust gas discharged from each cylinder of the internal combustion engine and passing through the exhaust passage (hereinafter referred to as “mixed exhaust gas”). And the air-fuel ratio feedback amount is calculated using the respective air-fuel ratios detected by these angle sensors. Then, the amount of fuel injected to each of the plurality of cylinders is adjusted based on the air-fuel ratio feedback amount, so that feedback control is performed so that the air-fuel ratio of the engine matches the target air-fuel ratio.
  • alcohol such as ethanol may be contained in gasoline supplied to the engine as fuel.
  • gasoline supplied to the engine as fuel.
  • FFV Flexible Fuel Vehicle
  • the main components are “E3” with an ethanol concentration of 3%, “E85” with an ethanol concentration of 85%, and a fuel with 100% ethanol. “E100” is known, and the ethanol concentration has a wide range.
  • alcohol mixed fuel such as “alcohol mixed fuel” or simply “fuel”.
  • a control apparatus for a flex-fuel internal combustion engine in which the valve characteristic of the intake valve is changed so as to increase the flow velocity.
  • the time at which the fuel contacts the intake valve is shortened by increasing the flow rate of the fuel flowing into the combustion chamber through the intake valve, and the fuel is evaporated by the heat of the intake valve. Is supposed to suppress. As a result, the cleaning agent component added to the alcohol-mixed fuel is prevented from depositing and depositing on the intake valve.
  • a control device for an internal combustion engine capable of starting the engine is disclosed.
  • This conventional control device for an internal combustion engine is applied to an internal combustion engine having a variable bubble timing control device, and the valve opening / closing timing of the intake valve and / or the exhaust valve based on the alcohol concentration contained in the fuel.
  • the fuel is atomized by the gas blown back to the intake passage.
  • Patent Document 3 discloses a valve timing control device for an engine that suppresses emission of formaldehyde accompanying combustion of alcohol-mixed fuel by changing the valve timing.
  • This conventional control device is provided with a variable valve timing mechanism capable of changing the opening / closing timing of at least one of the intake valve and the exhaust valve, and the combustion temperature is supplied to the variable valve timing mechanism according to the detected increase in alcohol concentration in the fuel. The overlap period is changed to be longer so that becomes higher.
  • Patent Document 4 discloses an alcohol engine re-combustion control device that suppresses emission of formaldehyde and the like accompanying combustion of alcohol-mixed fuel.
  • this conventional recombustion control device the operating state of the engine is detected, the combustion gas burned in the other cylinders is sucked according to the partial load of the engine, and the sucked combustion gas is completely burned. Yes.
  • the alcohol in the alcohol-mixed fuel has a high latent heat for vaporization, and therefore, particularly at the time of low temperature start, vaporization is not promoted and unburned containing aldehyde which is an intermediate product unstable in chemical structure due to oxidation. Gas is likely to be generated.
  • the intermediate product thus produced is unstable in chemical structure, it has a characteristic of being easily oxidized, that is, easily combusted. For this reason, good startability of the internal combustion engine, in other words, good combustion properties of the internal combustion engine cannot be obtained, especially at low temperatures, positively generating an intermediate product and burning the generated intermediate product Thus, it is considered that the combustibility of the internal combustion engine can be improved.
  • the present invention has been made in order to solve the above-described problems, and its object is to generate an intermediate product from unburned alcohol when an alcohol-mixed fuel is supplied to an engine, and to generate the generated intermediate product. It is an object of the present invention to provide a control device for an internal combustion engine that can use an object for improving the combustibility of the internal combustion engine.
  • a control device for an internal combustion engine (this control device) according to the present invention includes in-cylinder injection means for directly injecting fuel containing at least gasoline in the combustion chamber of the internal combustion engine, and inhalation into the combustion chamber.
  • the present invention is applied to an internal combustion engine having variable valve operating means for continuously changing the opening / closing timing and the valve opening amount of an intake valve disposed in an intake passage through which air passes. That is, the present control device is applied to an internal combustion engine that can be supplied with an alcohol-mixed fuel in which gasoline and alcohol are mixed.
  • the in-cylinder injection means increases the temperature of the catalyst disposed in the exhaust passage through which the exhaust gas discharged from the combustion chamber passes. After the injection, the variable valve operating means opens the intake valve for a predetermined period.
  • the in-cylinder injection means injects fuel to raise the temperature of the catalyst (so-called post-injection), so that unburned fuel exists due to fuel injection before the post-injection (so-called main injection).
  • a large amount of intermediate products can be generated from unburned fuel (alcohol) by post-injection in addition to the fuel (alcohol) of the fuel, and the variable valve means opens the intake valve for a predetermined period. The generated intermediate product can be recovered and stored in the intake passage.
  • an intermediate product generation amount estimating means for estimating an amount of intermediate products generated from unburned fuel among the fuel supplied into the combustion chamber
  • the variable valve means is
  • the intake valve is opened for the predetermined period with a large valve opening amount
  • the estimated generation amount of the intermediate product is When the number is small, the intake valve may be opened for the predetermined period by a small valve opening amount.
  • the intermediate product generated from the unburned fuel is preferably collected and stored in the intake passage and sucked into the combustion chamber by the next intake stroke in the internal combustion engine.
  • the intermediate product may be generated, for example, as the oxidation reaction of the unburned fuel proceeds.
  • the predetermined period may be a period set at least within an exhaust stroke in the internal combustion engine.
  • the internal combustion engine is at least in the exhaust stroke.
  • the intermediate product can be efficiently recovered and stored by blowing it back into the intake passage.
  • the valve opening amount (lift amount) of the intake valve is increased to reduce the flow resistance from the combustion chamber (cylinder) of the internal combustion engine to the intake passage.
  • the generated intermediate product can easily enter the intake passage, and the intermediate product can be efficiently recovered and stored.
  • the intermediate product with excellent flammability recovered and stored in this way can be sucked into the combustion chamber by the next intake stroke, the flammability of the internal combustion engine can be improved satisfactorily.
  • the intermediate product contributes to the improvement of the combustibility, so that the combustibility of the internal combustion engine can be greatly improved.
  • emission of HC, CO, NOx and the like can be reduced from being released to the outside of the vehicle.
  • a certain intermediate product can be reliably recovered and consumed and prevented from being discharged outside the vehicle.
  • Another feature of the present control device is based on the port injection means for injecting the fuel in the intake passage upstream of the intake valve of the internal combustion engine, and the operating state of the internal combustion engine.
  • the cylinder that is the ratio of the in-cylinder injection amount to the sum of the port injection amount that is the amount of fuel injected from the port injection means and the in-cylinder injection amount that is the amount of fuel injected from the in-cylinder injection means
  • In-cylinder injection ratio determining means for determining an internal injection ratio, and based on the in-cylinder injection ratio determined by the in-cylinder injection ratio determination means for the combustion chamber of the internal combustion engine, the cylinder
  • the fuel injected by the internal injection means may be supplied and the fuel injected by the port injection means may be supplied.
  • the in-cylinder injection ratio by appropriately determining the in-cylinder injection ratio, it is possible to ensure that unburned fuel is present by main injection and further unburned fuel can be present by post-injection. It is possible to generate a larger amount of objects. Therefore, the intermediate product generated in this way can be collected and stored, and can be sucked into the combustion chamber by the next intake stroke. By contributing to the above, the combustibility of the internal combustion engine can be greatly improved.
  • the intermediate product generation amount estimation means is supplied to the combustion chamber for a residence time in which the fuel supplied in the combustion chamber stays in an unburned state.
  • the generation amount of the intermediate product is estimated based on at least one of the temperature when the fuel is in an unburned state and the air-fuel ratio of the mixture of fuel and air in the combustion chamber.
  • the intermediate product since it is possible to estimate the generation amount of the intermediate product based on at least one of the residence time, temperature, and air-fuel ratio, which are parameters that can be grasped, the intermediate product is extremely easy and accurate. Can be estimated. And since the intermediate product can be recovered and stored more efficiently by estimating the generation amount with high accuracy, the stored intermediate product can be consumed to improve the combustibility of the internal combustion engine with certainty. it can.
  • an alcohol concentration detecting means for detecting an alcohol concentration which is a concentration of an alcohol component contained in the fuel supplied to the combustion chamber of the internal combustion engine, and the internal combustion engine Temperature detecting means for detecting the operating state temperature of the fuel, the concentration of the alcohol component contained in the fuel detected by the alcohol concentration detecting means is equal to or higher than a predetermined concentration, and the temperature detection
  • the variable valve operating means may open the intake valve for a predetermined period.
  • the intermediate product is preferentially generated and recovered, and the stored intermediate product can be consumed during combustion. Accordingly, the combustibility of the internal combustion engine at the time of cold start can be greatly improved.
  • FIG. 1 is a diagram showing a schematic configuration of a multi-cylinder internal combustion engine to which a control device according to an embodiment of the present invention is applied.
  • FIG. 2 is a view showing a state in which the catalyst, the upstream air-fuel ratio sensor, and the downstream air-fuel ratio sensor shown in FIG. 1 are arranged in the exhaust passage.
  • FIG. 3 is a graph showing the relationship between the output of the upstream air-fuel ratio sensor shown in FIG. 1 and the air-fuel ratio.
  • FIG. 4 is a graph showing the relationship between the output of the downstream air-fuel ratio sensor shown in FIG. 1 and the air-fuel ratio.
  • FIG. 5 is a graph showing changes in concentration of alcohol and aldehyde with respect to residence time.
  • FIG. 6 is a graph showing changes in the concentration of acetaldehyde with respect to the residence time when the gas temperature is changed.
  • FIG. 7 is a graph showing changes in the concentration of acetaldehyde with respect to gas temperature when the air-fuel ratio is changed.
  • FIG. 8 is a flowchart executed by the CPU shown in FIG. 1 and showing a processing routine according to the first embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the magnitude of the lift amount of the intake valve that is changed according to the generation amount of the intermediate product according to the first embodiment of the present invention.
  • FIG. 10 is a flowchart executed by the CPU shown in FIG. 1 and showing a processing routine according to the second embodiment of the present invention.
  • FIG. 11 relates to the second embodiment of the present invention and is a diagram for explaining the magnitude of the lift amount of the intake valve that is changed according to the amount of intermediate product generated.
  • FIG. 1 shows a schematic configuration of a system in which the present apparatus is applied to a 4-cycle, spark ignition type, multi-cylinder (in-line 4-cylinder) internal combustion engine 10.
  • FIG. 1 shows only a cross section of a specific cylinder, but the other cylinders have the same configuration.
  • the internal combustion engine 10 includes a cylinder block portion 20 including a cylinder block, a cylinder block lower case, an oil pan, and the like, a cylinder head portion 30 fixed on the cylinder block portion 20, and alcohol mixed fuel in the cylinder block portion 20.
  • An intake system 40 for supplying an air-fuel mixture, an exhaust system 50 for releasing exhaust gas from the cylinder block 20 to the outside, and a fuel system 60 for supplying fuel to the intake system 40 are provided. .
  • the cylinder block unit 20 includes a cylinder 21, a piston 22, a connecting rod 23, and a crankshaft 24.
  • the piston 22 reciprocates in the cylinder 21, and the reciprocating motion of the piston 22 is transmitted to the crankshaft 24 through the connecting rod 23, whereby the crankshaft 24 rotates.
  • the wall surface of the cylinder 21 and the upper surface of the piston 22 form a combustion chamber 25 together with the lower surface of the cylinder head portion 30.
  • the cylinder head portion 30 includes an intake port 31 communicating with the combustion chamber 25, an intake valve 32 that opens and closes the intake port 31, an intake camshaft that drives the intake valve 32, and a phase angle of the intake camshaft and the intake valve 32.
  • the variable valve mechanism 33 that continuously changes the maximum lift amount, the actuator 33a of the variable valve mechanism 33, the exhaust port 34 that communicates with the combustion chamber 25, the exhaust valve 35 that opens and closes the exhaust port 34, and the exhaust valve 35 are driven.
  • a variable exhaust timing control device 36 that includes an exhaust camshaft and continuously changes the phase angle of the exhaust camshaft, an ignition plug 37, an igniter 38 that includes an ignition coil that generates a high voltage to be applied to the ignition plug 37, and an intake valve 32 Port injection to inject fuel in the intake port 31 upstream 39P, and a direct injection to in-cylinder injection valve 39C fuel in the combustion chamber 25. Therefore, the internal combustion engine 10 according to the first embodiment includes a dual injection system having the port injection valve 39P and the in-cylinder injection valve 39C.
  • each of the port injection valve 39P and the in-cylinder injection valve 39C is provided for each combustion chamber 25. Accordingly, each of the plurality of cylinders includes a port injection valve 39P and an in-cylinder injection valve 39C that supply fuel independently of the other cylinders.
  • the internal combustion engine 10 including the dual injection system in which the two injection valves of the port injection valve 39P and the in-cylinder injection valve 39C are separately provided will be described. It is not limited to such an internal combustion engine. For example, it may be an internal combustion engine having one injection valve that has both an in-cylinder injection function and a port injection function.
  • the intake system 40 includes an intake pipe 41 including an intake manifold connected to an intake port 31 of each cylinder, an air filter 42 provided at an end of the intake pipe 41, and an intake opening area in the intake pipe 41. Is provided with a throttle valve 43 and a throttle valve 43 actuator 43a.
  • the intake port 31 and the intake pipe 32 constitute an intake passage.
  • the exhaust system 50 includes an exhaust manifold 51 connected to the intake port 34 of each cylinder, an exhaust pipe 52 connected to a collection portion of the exhaust manifold 51, and a catalyst 53 (three-way catalyst) disposed in the exhaust pipe 52. I have.
  • the exhaust port 34, the exhaust manifold 51, and the exhaust pipe 52 constitute an exhaust passage.
  • the fuel system 60 includes a fuel tank 61 and a fuel supply pipe 62.
  • the fuel tank 61 stores, for example, “alcohol mixed fuel” obtained by mixing gasoline and ethanol.
  • the fuel tank 61 may be filled with a fuel made of only gasoline that does not contain any ethanol, or a fuel made of only ethanol that does not contain any gasoline.
  • the fuel supply pipe 62 is a pipe that connects the fuel tank 61 to the port injection valve 39P and the in-cylinder injection valve 39C.
  • the fuel in the fuel tank 61 is pumped to the port injection valve 39P and the in-cylinder injection valve 39C through the fuel supply pipe 62 by a fuel pump (not shown) disposed in the fuel tank 61.
  • this system includes a hot-wire air flow meter 71, an intake air temperature sensor 72, a throttle position sensor 73, an intake cam position sensor 74, an exhaust cam position sensor 75, a crank position sensor 76, a water temperature sensor 77, an upstream air-fuel ratio sensor 78, A downstream air-fuel ratio sensor 79, an accelerator opening sensor 81, and an alcohol concentration sensor 82 are provided.
  • the air flow meter 71 corresponds to the mass flow rate of intake air flowing through the intake pipe 41 (the mass of air taken into the engine 10 per unit time (also referred to as “intake air mass” in the present invention)) Ga. Output the signal.
  • the intake air temperature sensor 72 outputs a signal corresponding to the intake air temperature THA of the intake air flowing through the intake pipe 41.
  • the throttle position sensor 73 detects the opening of the throttle valve 43 and outputs a signal representing the throttle valve opening TA.
  • the intake cam position sensor 74 is disposed in the vicinity of the intake cam shaft.
  • the intake cam position sensor 74 generates a signal having one pulse every time the intake cam shaft rotates 90 ° (that is, every time the crankshaft 24 rotates 180 °).
  • the exhaust cam position sensor 75 is disposed in the vicinity of the exhaust cam shaft.
  • the exhaust cam position sensor 75 generates a signal having one pulse every time the exhaust cam shaft rotates 90 ° (that is, every time the crankshaft 24 rotates 180 °).
  • the crank position sensor 76 outputs a signal having a wide pulse every time the crankshaft 24 rotates 360 °. This signal represents the engine speed NE. Further, based on the signals from the intake cam position sensor 74 and the crank position sensor 76, the absolute crank angle CA based on the compression top dead center (TDC) of the reference cylinder (for example, the first cylinder) is acquired. The absolute crank angle CA is set to “0 ° crank angle” at the compression top dead center of the reference cylinder, and increases to “720 ° crank angle” according to the rotation angle of the crank angle. Set to the crank angle.
  • the water temperature sensor 77 detects the temperature of the cooling water corresponding to the operating state temperature of the engine 10 and outputs a signal representing the cooling water temperature THW.
  • the upstream air-fuel ratio sensor 78 is disposed upstream of the catalyst 53 in a collective exhaust passage (specifically, the exhaust pipe 52) formed by collecting exhaust passages extending from the cylinders.
  • the upstream air-fuel ratio sensor 78 is disclosed in, for example, “Limit current type equipped with a diffusion resistance layer” disclosed in JP-A-11-72472, JP-A-2000-65782, JP-A-2004-69547, and the like. "Wide area air-fuel ratio sensor”.
  • the upstream air-fuel ratio sensor 78 passes through the exhaust pipe 52 and flows into the catalyst 53, so that the air-fuel ratio of the mixed exhaust gas (accordingly, the air-fuel ratio of the air-fuel mixture supplied to the engine 10, more specifically, An output value Vabyfs (V) corresponding to the air-fuel ratio of the air-fuel mixture in the combustion chamber 25 of the cylinder is generated.
  • the output value Vabyfs is converted into an upstream air-fuel ratio (hereinafter also referred to as “detected air-fuel ratio”) abyfs represented by the output value Vabyfs using the air-fuel ratio conversion table (map) Mapabyfs shown in FIG. Converted.
  • the downstream air-fuel ratio sensor 79 is disposed downstream of the catalyst 53 in the collective exhaust passage (specifically, the exhaust pipe 52).
  • the downstream air-fuel ratio sensor 79 is a known electromotive force oxygen concentration sensor (a well-known concentration cell type oxygen concentration sensor using stabilized zirconia).
  • the downstream air-fuel ratio sensor 79 is the air-fuel ratio of the mixed exhaust gas flowing out from the catalyst 53 (accordingly, the air-fuel ratio of the air-fuel mixture supplied to the engine 10 (more specifically, the air-fuel ratio in the combustion chamber 25 of each cylinder).
  • An output value Voxs (V) corresponding to the temporal average value of the air-fuel ratio) is generated.
  • the output value Voxs becomes the maximum output value max (for example, about 0.9 V) when the downstream air-fuel ratio afdown is richer than the stoichiometric air-fuel ratio, and the downstream air-fuel ratio afdown becomes the stoichiometric air-fuel ratio.
  • the minimum output value min (for example, about 0.1 V) is obtained when the air-fuel ratio is leaner than Vst, and when the downstream air-fuel ratio afdown is the stoichiometric air-fuel ratio, the voltage Vst (for example, 0) approximately between the maximum output value max and the minimum output value min. .5V).
  • the output value Voxs is changed from the maximum output value max to the minimum output value min when the downstream air-fuel ratio afdown (the air-fuel ratio of the mixed exhaust gas) changes from an air-fuel ratio richer than the stoichiometric air-fuel ratio to a lean air-fuel ratio.
  • the downstream air-fuel ratio afdown the air-fuel ratio of the mixed exhaust gas
  • the accelerator opening sensor 81 outputs a signal indicating the operation amount Accp of the accelerator pedal AP operated by the driver.
  • the alcohol concentration sensor 82 is, for example, a well-known capacitance type sensor (a sensor capable of measuring the relative dielectric constant of a measurement object using a pair of electrodes) as disclosed in JP-A-6-27073. It is.
  • the alcohol concentration sensor 82 utilizes the fact that the relative permittivity of the alcohol-mixed fuel changes according to the alcohol concentration, and the alcohol concentration of the fuel flowing through the portion in the fuel supply pipe 62 where the alcohol concentration sensor 82 is disposed ( In the engine 10 of the first embodiment, an output value corresponding to the ethanol concentration Cetha) is output.
  • the electric braking device 90 includes a CPU 91 connected by a bus, a routine (program) executed by the CPU 91, a ROM 92 pre-stored with tables (maps, functions), constants, and the like, and the CPU 91 temporarily stores data as necessary.
  • the microcomputer includes a RAM 93, a backup RAM 94 that stores data while the power is on, and holds the stored data while the power is shut off, and an interface 95 including an AD converter.
  • the interface 95 is connected to the sensors 71 to 79, 81, and 82 to supply signals from the sensors 71 to 79, 81, and 82 to the CPU 91, and in response to instructions from the CPU 91, the actuator 33a of the variable valve mechanism 33, A drive signal is generated in the igniter 38 of each cylinder, the port injection valve 39P and the in-cylinder injection valve 39C provided corresponding to each cylinder, and the actuator 43a of the throttle valve 43.
  • This apparatus converts the air-fuel ratio of the mixed exhaust gas to a predetermined air-fuel ratio (for example, the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio) based on the output value Vabyfs of the upstream air-fuel ratio sensor 78 and the output value Voxs of the downstream air-fuel ratio sensor 79. Feedback control so as to coincide with a lean air-fuel ratio or a rich air-fuel ratio.
  • a predetermined air-fuel ratio for example, the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio
  • Examples of this feedback control include the following. That is, PID processing is performed on the deviation between the output value Voxs of the downstream side air-fuel ratio sensor 79 and a predetermined air-fuel ratio (for example, theoretical air-fuel ratio) Vst, and a sub feedback correction amount described later is obtained. A value obtained by correcting the output value Vabyfs of the upstream air-fuel ratio sensor 78 by this sub-feedback correction amount is applied to the air-fuel ratio conversion table Mapabyfs shown in FIG. 3 to obtain the apparent air-fuel ratio. An air-fuel ratio feedback amount (main feedback correction amount) is obtained by performing PID processing on the difference between the apparent air-fuel ratio and the theoretical air-fuel ratio.
  • a predetermined air-fuel ratio for example, theoretical air-fuel ratio
  • an amount of fuel obtained by correcting the “basic fuel injection amount obtained based on the engine speed NE, the intake air amount Ga, and the theoretical air-fuel ratio” becomes the port injection valve 39P of each cylinder. And in-cylinder injection valve 39C.
  • the air-fuel ratio of the mixed exhaust gas is feedback-controlled by adjusting the amount of fuel injected from each port injection valve 39P and in-cylinder injection valve 39C based on the air-fuel ratio feedback amount common to all cylinders.
  • the output values of the upstream air-fuel ratio sensor 78 and the downstream air-fuel ratio sensor 79 correspond to sensor target values (specifically, the output values Voxs of the downstream air-fuel ratio sensor 79 are less than the stoichiometric air-fuel ratio.
  • the fuel injection amount by the port injection valve 39P and the in-cylinder injection valve 39C is controlled so as to match the rich air-fuel ratio or the air-fuel ratio leaner than the stoichiometric air-fuel ratio, respectively. Feedback control.
  • determining the basic fuel injection amount Fbase As described above, the target value of the upstream air-fuel ratio sensor output (upstream side) based on the engine speed NE and the throttle valve opening TA, etc., which are the operating states of the internal combustion engine 10.
  • the upstream target air-fuel ratio abyfr that is, the target air-fuel ratio of the engine 10) corresponding to the target value
  • the upstream target air-fuel ratio abyfr is set to a value corresponding to an air-fuel ratio richer than the stoichiometric air-fuel ratio or an air-fuel ratio leaner than the stoichiometric air-fuel ratio according to the output value Voxs of the downstream air-fuel ratio sensor 79 as described above. It is preset so that it can be changed.
  • the upstream target air-fuel ratio abyfr is stored in the RAM 93 while corresponding to the intake stroke of each cylinder.
  • the upstream target air-fuel ratio abyfr is determined in this way, a predetermined table having as arguments the intake air flow rate Ga measured by the air flow meter 71 and the engine speed NE obtained based on the output of the crank position sensor 76 is used.
  • the basic fuel Obtain the injection amount Fbase. That is, the basic fuel injection amount Fbase is a total amount of fuel injection amounts from the port injection valve 39P and the in-cylinder injection valve 39C corresponding to the next combustion cylinder necessary for realizing the upstream target air-fuel ratio abyfr.
  • the ratio of the in-cylinder injection amount Fid to the sum of the in-cylinder injection amount Fid and the port injection amount Fip (more precisely, the sum of the basic in-cylinder injection amount Fbased described later and the basic port injection amount Fbasep described later)
  • In-cylinder injection ratio R (hereinafter also referred to as sharing ratio R), which is a ratio of basic in-cylinder injection amount Fbased), is determined. Thereby, the in-cylinder injection ratio R can be appropriately changed according to the operating state of the engine 10.
  • the basic in-cylinder injection is obtained by multiplying the determined basic fuel injection amount Fbase by the sharing ratio R.
  • the final in-cylinder injection amount Fid is determined by multiplying the basic in-cylinder injection amount Fbased by the sub feedback correction amount described above, and the basic port injection amount Fbasep is multiplied by the sub feedback correction amount and the main feedback correction amount.
  • the final port injection amount Fip is determined.
  • the downstream side based on the output value Voxs of the downstream side air-fuel ratio sensor 79, the engine rotational speed NE, the throttle valve opening degree TA, etc., which is the operating state of the internal combustion engine 10.
  • the deviation from the downstream target value Voxsref which is the target value of the air-fuel ratio sensor output is obtained by PID processing.
  • the downstream target value Voxsref is set so that the downstream target air-fuel ratio corresponding to the downstream target value Voxsref always coincides with the above-described upstream target air-fuel ratio abyfr.
  • the main feedback correction amount specifically, the detected air-fuel ratio at the present time by the upstream air-fuel ratio sensor 78 based on the output value Vabyfs of the upstream air-fuel ratio sensor 78 and the air-fuel ratio conversion table Mapabyfs shown in FIG. While calculating abyfs, it calculates
  • the present device provides the in-cylinder injection valve for the fuel of the in-cylinder injection amount Fid obtained by correcting the basic in-cylinder injection amount Fbased by the sub feedback correction amount with respect to the next fuel cylinder in the current combustion cycle.
  • In-cylinder injection is performed by 39C.
  • the fuel of the port injection amount Fip obtained by correcting the basic port injection amount Fbasep by the sub feedback correction amount and the main feedback correction amount is injected by the port injection valve 39P to the next combustion cylinder in the current combustion cycle.
  • the present apparatus can feedback control the air-fuel ratio of the engine 10 so that the air-fuel ratio is richer than the stoichiometric air-fuel ratio or the air-fuel ratio leaner than the stoichiometric air-fuel ratio.
  • aldehydes More specifically, formaldehyde (HCHO) or acetaldehyde (CH 3 CHO)
  • HCHO formaldehyde
  • CH 3 CHO acetaldehyde
  • aldehydes are intermediate oxides of alcohol and their chemical structure is unstable, and therefore have the property of being easily oxidized (that is, combusted).
  • aldehydes are produced as intermediate products (intermediate oxides) as the oxidation reaction of alcohol proceeds, alcohols that are in an unburned state due to an increase in gas temperature (including ambient temperature) It can be understood that the oxidation reaction proceeds and aldehydes are easily generated as intermediate oxides. And if the aldehydes generated in this way stay in the high-temperature cylinder, the aldehydes disappear due to the progress of the oxidation reaction of the aldehydes. it can. Therefore, in order to supply alcohol mixed fuel to the engine 10 and efficiently generate aldehydes, in addition to preventing the residence time from becoming long as described above, the gas temperature is appropriately set within an appropriate temperature range. It can be said that it is important to maintain it.
  • aldehydes are produced as intermediate products (intermediate oxides) by the progress of the oxidation reaction of alcohol, the oxidation reaction tends to proceed at a lean air-fuel ratio in which oxygen becomes excessive.
  • the residence time is not lengthened and the gas temperature is appropriately maintained within an appropriate temperature range.
  • it can be said that it is important to maintain the air-fuel ratio at a lean air-fuel ratio.
  • the upstream target air-fuel ratio abyfr (the air-fuel ratio of the engine 10) is a lean air-fuel ratio
  • the mixed exhaust gas exhausted from the cylinder after combustion contains nitrogen oxides (NOx). That is, when combustion occurs due to a lean air-fuel ratio, NOx exists in the cylinder after combustion.
  • NOx nitrogen oxides
  • OH radicals generated by NOx behavior (more specifically, NO / NO 2 conversion behavior) may be deeply involved. It is said that aldehydes (specifically, aldehyde (HCHO) and acetaldehyde (CH 3 CHO)) are easily generated under the influence of OH radicals.
  • an alcohol-mixed fuel mixed with ethanol (C 2 H 5 OH) is supplied to the engine 10 to efficiently generate aldehydes (specifically, aldehyde (HCHO) and acetaldehyde (CH 3 CHO)).
  • aldehydes specifically, aldehyde (HCHO) and acetaldehyde (CH 3 CHO)
  • the dwell time is not too long (for example, around 50 ms, which is 80 ms or less considering the rotational speed NE of the engine 10). Based on the graph shown in FIG.
  • the upstream target air-fuel ratio abyfr (the air-fuel ratio of the engine 10) is not excessively high (for example, about 750 K to 850 K in consideration of the temperature of the exhaust gas from the engine 10). It is preferable to maintain the air-fuel ratio leaner than the stoichiometric air-fuel ratio. Then, when these residence time, gas temperature and air-fuel ratio are used as intermediate product generation conditions, and the internal combustion engine 10 is operated so as to satisfy these generation conditions, an aldehyde which is an intermediate product efficiently in the cylinder after combustion. Can be generated.
  • the residence time, gas temperature, air-fuel ratio, and concentration of generated intermediate products (specifically, aldehydes) that constitute the generation conditions of the intermediate products are also shown in the graphs shown in FIGS. Obviously, they are related to each other. Therefore, by fixing (or determining) any one of the residence time, gas temperature, and air-fuel ratio, it is possible to accurately estimate the amount of intermediate product generated in consideration of changes in other factors.
  • the residence time and gas temperature set as the intermediate product generation conditions described above are used.
  • the internal combustion engine 10 by operating the internal combustion engine 10 so as to achieve an air-fuel ratio, it is possible to efficiently generate aldehydes as intermediate products in the cylinder after combustion, and to generate aldehydes as intermediate products to be generated The quantity can be estimated accurately.
  • aldehydes specifically, aldehyde (HCHO) and acetaldehyde (CH 3 CHO)
  • alcohol for example, ethanol (C 2 H 5 OH)
  • it is caused by being oxidized to some extent.
  • aldehydes for example, when the upstream target air-fuel ratio abyfr is set to a large value (that is, set to the lean air-fuel ratio), alcohol Alcohol (for example, ethanol (C 2 H 5 OH)) contained in the mixed fuel is present in a small amount in an unburned state, and aldehydes generated (specifically, aldehyde (HCHO) and acetaldehyde (CH 3 CHO)) ) ) May be reduced.
  • alcohol Alcohol for example, ethanol (C 2 H 5 OH)
  • aldehydes generated specifically, aldehyde (HCHO) and acetaldehyde (CH 3 CHO)
  • the above-described in-cylinder injection amount and port injection are performed.
  • the amount of injection so-called main injection
  • post injection in which only a small amount of fuel is injected may be performed in the exhaust stroke.
  • the in-cylinder injection valve 39C forces a preset post-injection amount Fid_p against the pressure in the cylinder in the exhaust stroke at the time of cold start. Inject.
  • unburned alcohol for example, ethanol (C) in the exhaust stroke or in the cylinder that shifts to the exhaust stroke
  • the post-injection of the alcohol mixed fuel into the cylinder having a high-temperature atmosphere after combustion causes the above-described gas temperature to rise rapidly, and therefore, the alcohol (ethanol (C 2 H 5 OH)) can be oxidized to generate more aldehydes, specifically aldehydes (HCHO) and acetaldehyde (CH 3 CHO), which are intermediate products.
  • the gasoline component of the alcohol-mixed fuel post-injected by the post-injection amount Fid_p is supplied to the catalyst 53 through an exhaust passage including the exhaust port 34, the exhaust manifold 51, and the exhaust pipe 52.
  • the supplied fuel gasoline component
  • the internal temperature (atmosphere temperature) of the catalyst 53 can be raised at an early stage.
  • aldehydes specifically, aldehyde (HCHO) and acetaldehyde (CH), which are intermediate products generated by supplying an alcohol-mixed fuel mixed with ethanol (C 2 H 5 OH) to the engine 10. 3 CHO)
  • HCHO aldehyde
  • CH acetaldehyde
  • the intake valve 32 is forcibly opened to the high pressure cylinder, and a large amount of aldehydes (specifically, aldehyde ( The burnt gas blown back containing HCHO) and acetaldehyde (CH 3 CHO)) is recovered and stored.
  • any control may be employed for the return of burned gas into the intake passage, but as an example, cold VVT control can be used.
  • the opening / closing timing of the intake valve 32 and / or the opening / closing timing and the lift amount of the exhaust valve 35 are compared in the exhaust stroke of the engine 10 (compared with the normal non-cold VVT control).
  • the amount of burned gas in the combustion chamber 25 blown back to the intake passage through the periphery of the intake valve 32 is increased (compared to that in normal non-cold VVT control).
  • Such an operation for increasing the amount of burned-back gas is also referred to as internal EGR.
  • burned gas containing aldehydes specifically, aldehyde (HCHO) and acetaldehyde (CH 3 CHO)
  • aldehydes specifically, aldehyde (HCHO) and acetaldehyde (CH 3 CHO)
  • the in-cylinder injection amount Fid and the port injection amount Fip determined as described above and injected from each in-cylinder injection valve 39C and the port injection valve 39P are set as described above It may be reduced (from the amount adjusted by the feedback correction amount and the main feedback correction amount).
  • FIG. 8 is a flowchart showing an example of the flow of a processing routine executed by the CPU 91 of the present apparatus for “collecting and storing an intermediate product generated from alcohol mixed fuel”.
  • step 1005 based on the output value Cetha of the alcohol concentration sensor 82, the concentration of ethanol contained in the alcohol mixed fuel supplied to the engine 10 is equal to or higher than a predetermined value Cetha0 set in advance. It is determined whether or not there is.
  • the output value Cetha of the alcohol concentration sensor 82 is acquired every time a predetermined short sampling time ts (for example, 4 ms (4 ms)) elapses. If the output value Cetha of the alcohol concentration sensor 82 acquired every sampling time ts is equal to or greater than a predetermined value Cetha0 set in advance, the concentration of ethanol contained in the alcohol-mixed fuel supplied to the engine 10 is an intermediate product. It is determined that the concentration is sufficient to produce aldehydes (“Yes” in step 1005), and in step 1010, the production of intermediate products is promoted and collected (collected and stored). Start controlling.
  • a predetermined short sampling time ts for example, 4 ms (4 ms)
  • the concentration of ethanol contained in the alcohol mixed fuel supplied to the engine 10 is an intermediate product. It is determined that the concentration is not sufficient to generate aldehydes (“No” in step 1005), and the execution of the processing routine is terminated in step 1030.
  • an alcohol mixed fuel is injected into the engine 10 and burned through a compression stroke, and aldehydes that are intermediate products generated by post injection (specifically, Aldehyde (HCHO) and acetaldehyde (CH 3 CHO)) are collected and stored in the intake passage in the exhaust stroke, and the intermediate product stored in the next intake stroke is inhaled. Therefore, in step 1010, based on the high alcohol concentration Cetha contained in the alcohol-mixed fuel, control for promoting and collecting (collecting and storing) the intermediate product is started. It is determined whether or not the coolant temperature THW is equal to or higher than a predetermined value THW0 set in advance.
  • step 1015 the output value THW from the water temperature sensor 77 is acquired. If the acquired output value THW of the water temperature sensor 77 is equal to or greater than a predetermined value THW0 set in advance, it is determined that the engine 10 is already in a steady operation state ("Yes" in step 1015), and the process proceeds to step 1020. The engine 10 that is already in a steady operation state is operated in a normal manner. On the other hand, if the acquired output value THW of the water temperature sensor 77 is less than the preset predetermined value THW0, it is determined that the engine 10 is in a state of being started at a low temperature (“No” in step 1015), and step 1025 is performed. The engine 10 is operated so as to promote and collect (collect and store) the intermediate product.
  • step 1020 since the engine 10 is already in a steady operation state, the fuel injection amount and the share ratio that the in-cylinder injection valve 39C and the port injection valve 39P inject into the cylinder, the fuel injection timing, the intake valve 32, according to the normal mode. Then, the valve opening / closing timing of the exhaust valve 35 and the injection amount and timing of post injection by the in-cylinder injection valve 39C are calculated and determined, respectively, and the engine 10 is operated.
  • the fuel injection amount and the fuel injection timing that the in-cylinder injection valve 39C and the port injection valve 39P inject into the cylinder when the engine 10 is in a steady operation state are determined according to the above-described air-fuel ratio feedback control.
  • the basic in-cylinder injection amount Fbased is determined by multiplying the injection amount Fbase by the sharing ratio R
  • the basic port injection amount Fbasep is determined by multiplying the basic fuel injection amount Fbase by the value (1-R).
  • the sharing ratio R is determined according to the operating state of the engine 10.
  • the final in-cylinder injection amount Fid is determined by multiplying the basic in-cylinder injection amount Fbased by the sub feedback correction amount described above, and the basic port injection amount Fbasep is multiplied by the sub feedback correction amount and the main feedback correction amount. The final port injection amount Fip is determined.
  • the timing at which the in-cylinder injection valve 39C and the port injection valve 39P inject the in-cylinder injection amount Fid and the port injection amount Fip when the engine 10 is in the steady operation state is determined by the engine speed NE and the load state (specifically, Is determined to be during the intake stroke based on the intake air flow rate Ga).
  • the fuel injection timing of the in-cylinder injection valve 39C can be determined, for example, so as to inject the in-cylinder injection amount Fid during the compression stroke.
  • the opening / closing timing of the intake valve 32 and the exhaust valve 35 when the engine 10 is in a steady operation state is also determined based on the engine speed NE and the load state (specifically, intake air flow rate Ga, etc.).
  • the intake valve 32 is opened only during the intake stroke, and is closed during the compression stroke, the expansion stroke, and the exhaust stroke.
  • the lift amount of the intake valve 32 is appropriately changed based on the engine speed NE and the load state (specifically, intake air flow rate Ga, etc.).
  • the exhaust valve 35 is basically opened only during the exhaust stroke, and is closed during the intake stroke, the compression stroke, and the expansion stroke.
  • the lift amount of the exhaust valve 35 is also changed as appropriate based on the engine rotational speed NE and the load state (specifically, intake air flow rate Ga, etc.).
  • the post-injection by the in-cylinder injection valve 39C when the engine 10 is in a steady operation state may be injected for the purpose of, for example, suppressing an increase in the internal temperature (atmosphere temperature) of the catalyst 53.
  • step 1020 the fuel injection amount and the share ratio injected into the cylinder by the in-cylinder injection valve 39C and the port injection valve 39P, the fuel injection timing, and the valve opening / closing of the intake valve 32 and the exhaust valve 35 are performed in a normal manner.
  • the timing and the injection amount and timing of the post-injection by the in-cylinder injection valve 39C are calculated and determined, respectively, and the engine 10 is operated, the execution of the processing routine is terminated at step 1030.
  • the in-cylinder injection valve 39C and the port injection valve 39P are arranged so as to accelerate and collect (collect and store) intermediate products so that the engine 10 can be properly started and operated at a low temperature. Is determined by calculating the fuel injection amount and share ratio injected into the cylinder, the fuel injection timing, the valve opening / closing timing of the intake valve 32 and the exhaust valve 35, and the injection amount and timing of post injection by the in-cylinder injection valve 39C, respectively. Then, the engine 10 is operated.
  • the amount of intermediate products (specifically, aldehydes) generated estimated based on the above-mentioned “conditions for generating intermediate products in an internal combustion engine supplied with alcohol-mixed fuel”.
  • the amount of aldehydes that are intermediate products is still estimated based on the generation conditions of the intermediate products. There are few situations.
  • the in-cylinder injection ratio R is set to a large value to increase the in-cylinder injection amount Fid
  • the timing of injecting into the cylinder is the first half of the compression stroke, and the stratified combustion is performed at an early lean air-fuel ratio.
  • valve opening / closing timing of the exhaust valve 35 is determined so that the residence time in which the fuel after combustion stays in the cylinder matches the generation condition of the intermediate product.
  • the in-cylinder injection valve 39C performs post injection by the post injection amount Fid_p in the exhaust stroke as the post injection amount and timing.
  • the timing of this post-injection specifically, it is preferable to inject in the latter stage of the exhaust stroke in which aldehydes that are generated intermediate products exist in the vicinity of the intake valve 32. Thereby, the aldehydes which are intermediate products can be produced
  • the valve opening / closing timing and the lift amount of the intake valve 32 are determined.
  • a residence time that is one of the generation conditions of the intermediate product has elapsed (that is, aldehydes that are intermediate products are generated), and
  • the pressure is sufficient to blow back the burned gas in the cylinder (that is, a pressure higher than the pressure in the intake passage is obtained).
  • the exhaust stroke is preferably performed from the latter stage of the expansion stroke.
  • the burned gas containing the intermediate products (aldehydes) present in the cylinder can be blown back into the intake passage by opening the intake valve 32.
  • the timing for closing the intake valve 32 is preferably immediately before the transition from the exhaust stroke to the intake stroke, but for example, the valve may be closed when the compression stroke is started. Good.
  • the lift amount of the intake valve 32 is determined based on the estimated generation amount of intermediate products (aldehydes) existing in the cylinder. For example, when the generation condition of the intermediate product is satisfied and the generation amount of aldehydes as intermediate products is estimated to be large, the lift amount is set to recover the generated aldehydes in the intake pipe efficiently. Enlarge. Thereby, the generated intermediate product can be recovered from the cylinder into the intake passage with a small flow resistance. On the other hand, for example, when the generation condition of the intermediate product is not sufficiently satisfied and the generation amount of aldehydes as intermediate products is estimated to be small, the flow rate of the gas from the cylinder toward the intake passage is reduced.
  • the lift amount is reduced in order to recover the aldehydes generated even if slightly increased in the intake passage. As a result, it is possible to generate a good gas flow from the inside of the cylinder toward the intake passage, and it is possible to collect the intermediate product generated in the cylinder by the gas flow in the intake passage.
  • step 1025 the fuel injection amount and injection timing that the in-cylinder injection valve 39C and the port injection valve 39P inject into the cylinder so as to promote and collect the generation of the intermediate product, the intake valve 32
  • the engine 10 is operated by calculating and determining the valve opening / closing timing of the exhaust valve 35 and the injection amount and timing of post-injection by the in-cylinder injection valve 39C, the execution of the processing routine is terminated at step 1030. .
  • the alcohol concentration Cetha of the alcohol-mixed fuel supplied to the engine 10 is large, and the cooling water temperature is
  • the intermediate product is accelerated by post injection and collected (collected and stored) in the exhaust stroke.
  • the operation control of the engine 10 is executed (step 1025). Therefore, an intermediate product (specifically, aldehydes), which is an intermediate oxide of alcohol contained in the alcohol-mixed fuel and has good oxidation (combustion) characteristics, is consumed. Can be greatly improved. Further, in order to improve the low temperature startability of the engine 10 by consuming intermediate products (specifically aldehydes), harmful intermediate products (specifically aldehydes) are released outside the vehicle. Can be effectively prevented.
  • the present apparatus is applied to the internal combustion engine 10 including the dual injection system having the port injection valve 39P and the in-cylinder injection valve 39C.
  • the port injection valve 39P shown in FIG. 1 may be omitted, and the present apparatus may be applied to the internal combustion engine 10 including at least the in-cylinder injection valve 39C.
  • this 2nd Embodiment is described, since it differs only in the point by which the port injection valve 39P is abbreviate
  • the internal combustion engine 10 does not include the port injection valve 39P, but includes only the in-cylinder injection valve 39C. Therefore, the in-cylinder injection amount Fid described above is determined by setting the in-cylinder injection ratio R (sharing ratio R) to “1”, that is, by multiplying the basic fuel injection amount Fbase by the sub feedback correction amount. Changed to
  • FIG. 10 is a flowchart showing an example of a flow of a processing routine executed by the CPU 91 of the apparatus according to the second embodiment to “collect and store the intermediate product generated from the alcohol mixed fuel”.
  • the processing routine according to the second embodiment differs only in that step 1020 and step 1025 of the processing routine according to the first embodiment described above are changed to step 1050 and step 1055. Therefore, in the following description, the modified steps 1050 and 1055 will be described in detail.
  • step 1015 if the output value THW of the water temperature sensor 77 acquired in step 1015 is equal to or greater than a preset predetermined value THW0, it is determined that the engine 10 is already in a steady operation state. ("Yes" at step 1015), the engine 10 already in a steady operation state is operated in a normal manner in step 1050. On the other hand, if the acquired output value THW of the water temperature sensor 77 is less than the preset predetermined value THW0, it is determined that the engine 10 is in a state of being started at a low temperature (“No" in step 1015), and step 1055 is performed. The engine 10 is operated so as to promote and collect (collect and store) the intermediate product.
  • step 1050 since the engine 10 is already in a steady operation state, the fuel injection amount and fuel injection timing that the in-cylinder injection valve 39C injects into the cylinder, and the valve opening / closing timings of the intake valve 32 and the exhaust valve 35 according to the normal mode. And, the injection amount and timing of the post injection by the in-cylinder injection valve 39C are respectively calculated and determined, and the engine 10 is operated.
  • the above-described sub feedback correction amount is added to the basic fuel injection amount Fbase according to the air-fuel ratio feedback control.
  • the in-cylinder injection amount Fid is determined by multiplication.
  • the timing at which the in-cylinder injection valve 39C injects the in-cylinder injection amount Fid when the engine 10 is in a steady operation state depends on the engine speed NE and the load state (specifically, intake air flow rate Ga, etc.). On the basis of this, in principle, it is determined to be during the intake stroke, and specifically, it is determined to inject the in-cylinder injection amount Fid during the compression stroke.
  • ignition is performed in a state before the injected fuel has spread widely in the combustion chamber 25, that is, in a state where a relatively rich fuel mixture has gathered in the vicinity of the spark plug 37. Burn stratified.
  • step 1050 according to a normal mode, the fuel injection amount and fuel injection timing that the in-cylinder injection valve 39C injects into the cylinder, the valve opening / closing timings of the intake valve 32 and the exhaust valve 35, and the in-cylinder injection valve 39C
  • the execution of the processing routine is terminated at step 1030.
  • Step 1055 the in-cylinder injection valve 39C injects into the cylinder so as to accelerate and collect (collect and store) the intermediate product in order to start and operate the engine 10 at a low temperature.
  • the engine 10 is operated by calculating and determining the fuel injection amount and fuel injection timing to be performed, the valve opening and closing timing of the intake valve 32 and the exhaust valve 35, and the injection amount and timing of post injection by the in-cylinder injection valve 39C.
  • the fuel injection amount and fuel injection timing that the in-cylinder injection valve 39C injects into the cylinder, and the valve opening / closing timings of the intake valve 32 and the exhaust valve 35 Is determined based on the generation amount of intermediate products (specifically, aldehydes) estimated based on the above-mentioned “conditions for generating intermediate products in the internal combustion engine to which the alcohol-mixed fuel is supplied”. That is, for example, in a situation where the gas temperature estimated based on the output value THW from the water temperature sensor 77 is low, the amount of aldehydes that are intermediate products is still estimated based on the generation conditions of the intermediate products. There are few situations. For this reason, as schematically shown in FIG. 11, the in-cylinder injection amount Fid is determined to be a lean air-fuel ratio by stratified combustion.
  • the valve opening / closing timing of the exhaust valve 35 is determined so that the residence time in which the fuel after combustion stays in the cylinder matches the generation condition of the intermediate product.
  • the post injection amount Fid_p is post-injected in the exhaust stroke as the injection amount and timing of the post injection by the in-cylinder injection valve 39C.
  • the timing of this post-injection specifically, it is preferable to inject in the latter stage of the exhaust stroke in which aldehydes that are generated intermediate products exist in the vicinity of the intake valve 32. Thereby, the aldehydes which are intermediate products can be produced
  • the valve opening / closing timing and the lift amount of the intake valve 32 are determined.
  • the determination of the valve opening / closing timing and the lift amount of the intake valve 32 is exactly the same as the determination in step 1025 of the processing routine according to the first embodiment, as shown in FIG. Therefore, the description is omitted.
  • step 1055 the fuel injection amount and fuel injection timing injected into the cylinder by the in-cylinder injection valve 39C, the valves of the intake valve 32 and the exhaust valve 35 so as to promote and collect the generation of intermediate products.
  • the opening / closing timing and the injection amount and timing of post-injection by the in-cylinder injection valve 39C are calculated and determined, respectively, and the engine 10 is operated, the execution of the processing routine is terminated at step 1030.
  • the alcohol concentration of the alcohol-mixed fuel supplied to the engine 10 is the same as in the first embodiment.
  • the generation of the intermediate product by post injection is promoted in the exhaust stroke.
  • Operation control of the engine 10 is executed to collect (collect and store) (step 1055). Therefore, an intermediate product (specifically, aldehydes), which is an intermediate oxide of alcohol contained in the alcohol-mixed fuel and has good oxidation (combustion) characteristics, is consumed. Can be greatly improved. Further, in order to improve the low temperature startability of the engine 10 by consuming intermediate products (specifically aldehydes), harmful intermediate products (specifically aldehydes) are released outside the vehicle. Can be effectively prevented.
  • this invention is not limited to the said 1st Embodiment and 2nd Embodiment, A various modified example is employable within the scope of the present invention.
  • the object specifically, aldehydes
  • the burned gas including the intermediate product generated in the cylinder it is possible to carry out the burned gas including the intermediate product generated in the cylinder more easily and surely into the intake passage.
  • the pressure in the cylinder can always be greater than the pressure in the intake passage.
  • burned gas including intermediate products generated in the cylinder can be collected (collected) and stored in the intake passage even outside the exhaust stroke.
  • a so-called tandem control valve (TCV) or swirl control valve (SCV) is provided so that a tandem flow or swirl flow is generated near the combustion chamber 25 in the cylinder, and intake / exhaust valve single valve closing control is performed. It is also possible to implement.
  • TCV tandem control valve
  • SCV swirl control valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

内燃機関にアルコール混合燃料が供給されると、アルコール濃度の大きさが判定され、この判定に基づいて冷却水温の大きさが判定される。そして、アルコール濃度が大きく、且つ、運転冷却水温が低いとき、メイン噴射後の未燃状態のアルコール混合燃料に含まれるアルコール及びポスト噴射後の未燃状態のアルコール混合燃料に含まれるアルコールの酸化物であるアルデヒド類の発生を促進し、内燃機関の排気行程にて吸気弁を開状態とすることによって発生したアルデヒド類を吸気通路内に捕集する。

Description

内燃機関の制御装置
 本発明は、内燃機関の制御を行う内燃機関の制御装置に関する。なお、以下、内燃機関を単に「機関」とも称呼することがある。
 従来から、内燃機関の排気通路に三元触媒(以下、単に「触媒」とも称呼することもある。)の上流側及び下流側の排気通路にそれぞれ配設された上流側空燃比センサ及び下流側空燃比センサの各出力値に基づいて機関に供給される混合気の空燃比(以下、単に「機関の空燃比」とも称呼する。)をフィードバック制御する内燃機関の制御装置が広く知られている。このような制御装置では、内燃機関の各気筒から排出されて排気通路を通過する排ガス(以下、「混合排ガス」と称呼する。)の空燃比を上流側空燃比センサ及び下流側空燃比センサが検出し、これら角センサが検出したそれぞれの空燃比を用いて空燃比フィードバック量が算出される。そして、この空燃比フィードバック量に基づいて複数の気筒に対してそれぞれ噴射される燃料の量が調整されることにより、機関の空燃比が目標空燃比と一致するようにフィードバック制御される。
 又、近年、燃料として機関に供給されるガソリン中にエタノール等のアルコールが含まれることがある。例えば、所謂FFV(Flexible Fuel Vehicle)に用いられるエタノール含有ガソリン燃料については、主なものとして、エタノール濃度が3%である「E3」、同濃度が85%である「E85」、エタノール100%燃料である「E100」等が知られており、エタノール濃度には大きな幅がある。なお、このようにガソリン中にアルコールが含まれる場合、このようなガソリンとアルコールとの混合燃料を、以下、「アルコール混合燃料」又は単に「燃料」と称呼する。
 このようなアルコール混合燃料が使用可能な内燃機関の制御装置に関し、例えば、下記特許文献1には、アルコール濃度の濃度が高いときほど、可変動弁機構により吸気バルブを通じて燃焼室に流入する燃料の流速が早くなるように同吸気バルブのバルブ特性を変更するフレックス燃料内燃機関の制御装置が開示されている。この従来のフレックス燃料内燃機関の制御装置では、吸気バルブを通じて燃焼室に流入する燃料の流速を早くすることによって燃料が吸気バルブに接触する時間を短くし、燃料が吸気バルブの熱によって蒸発することを抑制するようになっている。これにより、アルコール混合燃料に添加される洗浄剤成分が析出して吸気バルブに堆積することを抑制するようになっている。
 又、このようなアルコール混合燃料が使用可能な内燃機関の制御装置に関し、例えば、下記特許文献2には、低温環境下において微粒化しにくいアルコール混合燃料を使用した場合であっても、早期に機関を始動することができる内燃機関の制御装置が開示されている。この従来の内燃機関の制御装置では、可変バブルタイミング制御装置を備えた内燃機関に適用されるようになっており、燃料に含まれるアルコール濃度に基づいて吸気弁及び/又は排気弁の弁開閉時期を決定し、吸気通路への吹き返されるガスによって燃料を微粒化するようになっている。
 ところで、アルコール混合燃料が使用可能な内燃機関では、燃焼に際してホルムアルデヒド等の中間生成物が有害成分として検出される可能性がある。このため、例えば、下記特許文献3には、アルコール混合燃料の燃焼に伴うホルムアルデヒドの排出抑制をバルブタイミングの変更によって行うエンジンのバルブタイミング制御装置が開示されている。この従来の制御装置では、吸気弁及び排気弁の少なくとも一方の開閉タイミングが変更可能なバルブタイミング可変機構を備えており、検出した燃料中のアルコール濃度の増大に応じてバルブタイミング可変機構に燃焼温度が高くなるようにオーバーラップ期間を長く変更するようになっている。又、例えば、下記特許文献4には、アルコール混合燃料の燃焼に伴うホルムアルデヒド等の排出を抑制するアルコールエンジンの再燃焼制御装置が開示されている。この従来の再燃焼制御装置では、エンジンの作動状態を検出し、エンジンの部分負荷に応じて他の気筒にて燃焼した燃焼ガスを吸入し、この吸入した燃焼ガスを完全燃焼させるようになっている。
特開2010-065568号公報 特開2010-185300号公報 特開平5-001574号公報 特開平3-145557号公報
 ところで、アルコール混合燃料におけるアルコールは気化するための潜熱が高いため、特に、低温始動時では、気化が促進されず酸化に伴って化学構造上不安定な中間生成物であるアルデヒド等を含む未燃ガスが発生しやすい。一方、このように生成される中間生成物は化学構造上不安定であるため、より酸化しやすいすなわち燃焼しやすい特性を有する。このため、内燃機関の良好な始動性、言い換えれば、内燃機関の良好な燃焼性が得られない特に低温時において、積極的に中間生成物を発生させ、この発生した中間生成物を燃焼させることにより、内燃機関の燃焼性を改善すること可能になると考えられる。
 本発明は、上記課題を解決するためになされたものであり、その目的は、アルコール混合燃料が機関に供給された場合、未燃のアルコールから中間生成物を生成させ、この生成させた中間生成物を内燃機関の燃焼性改善に利用することができる内燃機関の制御装置を提供することにある。
 係る目的を達成するための本発明による内燃機関の制御装置(本制御装置)は、内燃機関の燃焼室内にて少なくともガソリンを含む燃料を直接噴射する筒内噴射手段と、前記燃焼室内に吸入される空気が通過する吸気通路に配設された吸気弁の開閉時期及び開弁量を連続的に変更する可変動弁手段と、を備えた内燃機関に適用される。すなわち、本制御装置は、ガソリン及びアルコールの混合されたアルコール混合燃料が供給され得る内燃機関に適用される。
 本発明に係る内燃機関の制御装置の特徴の一つは、前記筒内噴射手段が、前記燃焼室から排出された排ガスの通過する排気通路に配設された触媒を昇温させるために前記燃料を噴射した後、前記可変動弁手段が、所定の期間、前記吸気弁を開弁することにある。
 これによれば、筒内噴射手段が触媒を昇温するために燃料を噴射(所謂、ポスト噴射)することにより、ポスト噴射前の燃料の噴射(所謂、メイン噴射)によって存在している未燃の燃料(アルコール)に加えてポスト噴射による未燃の燃料(アルコール)から多量の中間生成物を発生させることができ、可変動弁手段が、所定の期間、吸気弁を開弁することによってこの発生させた中間生成物を吸気通路内に回収して貯蔵することができる。
 この場合、前記燃焼室内に供給された前記燃料のうちの未燃の燃料から生成される中間生成物の発生量を推定する中間生成物発生量推定手段を備え、前記可変動弁手段は、前記中間生成物発生量推定手段によって推定された前記中間生成物の発生量が多いときには前記吸気弁を大きな開弁量により前記所定の期間開弁させ、前記推定された前記中間生成物の発生量が少ないときには前記吸気弁を小さな開弁量により前記所定の期間開弁させるとよい。そして、この場合、前記未燃の燃料から生成される前記中間生成物は、前記吸気通路内に回収されて貯蔵され、前記内燃機関における次回の吸入行程によって前記燃焼室内に吸入されるとよい。又、前記中間生成物は、例えば、前記未燃の燃料の酸化反応の進行に伴って生成されるものであるとよい。更に、前記所定の期間は、少なくとも、前記内燃機関における排気行程内に設定される期間であるとよい。
 これらによれば、燃焼性に優れる中間生成物(具体的には、アルコールの酸化反応の進行に伴って発生するアルデヒド類等)を発生させて、内燃機関が少なくとも排気行程にあるときに、この中間生成物を吸気通路内に吹き返させることにより、効率よく回収して貯蔵することができる。具体的に、中間生成物の発生量が多いと推定されるときには、吸気弁の開弁量(リフト量)を大きくして内燃機関の燃焼室(気筒)から吸気通路への流通抵抗を低減することにより、発生した中間生成物が容易に吸気通路内に進入できるようにして中間生成物を効率よく回収して貯蔵することができる。一方、中間生成物の発生量が少ないと推定されるときには、吸気弁の開弁量(リフト量)を小さくして内燃機関の燃焼室(気筒)から吸気通路への流速を大きくすることにより、僅かでも発生した中間生成物が確実に吸気通路内に進入できるようにして中間生成物を効率よく回収して貯蔵することができる。
 そして、このように回収して貯蔵した燃焼性に優れる中間生成物を次回の吸入行程によって前記燃焼室内に吸入させることができるため、内燃機関の燃焼性を良好に改善することができる。特に低温始動時においては、中間生成物が燃焼性の改善に寄与することによって、内燃機関の燃焼性を大幅に改善することができる。そして、発生した中間生成物を消費して内燃機関の燃焼性を改善することにより、例えば、HC,CO、NOx等のエミッションが車両外部に放出されることを低減することができるとともに、有害である中間生成物を確実に回収して消費して車外に放出されることを防止することができる。
 又、本発明に係る本制御装置の他の特徴は、前記内燃機関の前記吸気弁よりも上流の吸気通路にて前記燃料を噴射するポート噴射手段と、前記内燃機関の運転状態に基づいて、前記ポート噴射手段から噴射される前記燃料の量であるポート噴射量と前記筒内噴射手段から噴射される前記燃料の量である筒内噴射量の和に対する前記筒内噴射量の割合である筒内噴射割合を決定する筒内噴射割合決定手段と、を備えており、前記内燃機関の燃焼室に対して、前記筒内噴射割合決定手段によって決定された前記筒内噴射割合に基づき、前記筒内噴射手段によって噴射された前記燃料が供給されるとともに前記ポート噴射手段によって噴射された前記燃料が供給されることにもある。
 これによれば、適切に筒内噴射割合を決定することにより、メイン噴射によって未燃の燃料を確実に存在させておき、更にポスト噴射によって未燃の燃料を存在させることができるため、中間生成物をより多量に発生させることが可能となる。従って、このように発生した中間生成物を回収して貯蔵しておき、次回の吸入行程によって前記燃焼室内に吸入させることができるため、特に低温始動時においては、中間生成物が燃焼性の改善に寄与することによって、内燃機関の燃焼性を大幅に改善することができる。
 又、本発明に係る本制御装置の他の特徴は、前記中間生成物発生量推定手段は、前記燃焼室内に供給された前記燃料が未燃状態によって滞留する滞留時間、前記燃焼室内に供給された前記燃料が未燃状態であるときの温度、及び、前記燃焼室内における前記燃料と空気からなる混合気の空燃比のうちの少なくとも一つに基づいて、前記中間生成物の発生量を推定することにもある。
 これによれば、把握可能なパラメータである滞留時間、温度及び空燃比のうちの少なくとも一つに基づいて中間生成物の発生量を推定することができるため、極めて容易にかつ精度よく中間生成物の発生量を推定することができる。そして、精度よく発生量を推定することにより、より効率よく中間生成物を回収して貯蔵することができるため、貯蔵した中間生成物を消費して確実に内燃機関の燃焼性を改善することができる。
 更に、本発明に係る本制御装置の他の特徴は、前記内燃機関の燃焼室に供給される前記燃料に含まれるアルコール成分の濃度であるアルコール濃度を検出するアルコール濃度検出手段と、前記内燃機関の運転状態温度を検出する温度検出手段と、を備えており、前記アルコール濃度検出手段によって検出された前記燃料に含まれるアルコール成分の濃度が予め設定された所定の濃度以上であり、前記温度検出手段によって検出された前記内燃機関の運転状態温度が予め設定された所定の温度未満であるときに、前記可変動弁手段が、所定の期間、前記吸気弁を開弁することにもある。
 これによれば、内燃機関を低温時に運転させる(作動させる)状況において、優先的に中間生成物を発生させて回収し、貯蔵した中間生成物を燃焼時に消費することができる。従って、低温始動時における内燃機関の燃焼性を大幅に改善することができる。
図1は、本発明の実施形態に係る制御装置が適用される多気筒内燃機関の概略構成を示した図である。 図2は、図1に示した触媒、上流側空燃比センサ及び下流側空燃比センサが排気通路に配設された様子を示した図である。 図3は、図1にて示した上流側空燃比センサの出力と空燃比の関係を示したグラフである。 図4は、図1にて示した下流側空燃比センサの出力と空燃比の関係を示したグラフである。 図5は、滞留時間に対するアルコール及びアルデヒド類の濃度変化を示したグラフである。 図6は、ガス温度を変化させたときの滞留時間に対するアセトアルデヒドの濃度変化を示したグラフである。 図7は、空燃比を変化させたときのガス温度に対するアセトアルデヒドの濃度変化を示したグラフである。 図8は、図1に示したCPUが実行するものであって、本発明の第1実施形態に係る処理ルーチンを示したフローチャートである。 図9は、本発明の第1実施形態に係り、中間生成物の発生量に応じて変更される吸気弁のリフト量の大きさを説明するための図である。 図10は、図1に示したCPUが実行するものであって、本発明の第2実施形態に係る処理ルーチンを示したフローチャートである。 図11は、本発明の第2実施形態に係り、中間生成物の発生量に応じて変更される吸気弁のリフト量の大きさを説明するための図である。
a.第1実施形態
 以下、本発明の第1実施形態に係る内燃機関の制御装置(以下、単に「本装置」とも称呼する。)について図面を参照しながら説明する。
 図1は、本装置を、4サイクル・火花点火式・多気筒(直列4気筒)・内燃機関10に適用したシステムの概略構成を示している。なお、図1は、特定気筒の断面のみを示しているが、他の気筒も同様な構成を備えている。
 この内燃機関10は、シリンダブロック、シリンダブロックロワーケース及びオイルパン等を含むシリンダブロック部20と、シリンダブロック部20の上に固定されるシリンダヘッド部30と、シリンダブロック部20にアルコール混合燃料の混合気を供給するための吸気系統40と、シリンダブロック部20からの排ガスを外部に放出するための排気系統50と、吸気系統40に燃料を供給するための燃料系統60と、を備えている。
 シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23及びクランク軸24を含んでいる。ピストン22はシリンダ21内を往復動し、ピストン22の往復動がコンロッド23を介してクランク軸24に伝達され、これにより同クランク軸24が回転するようになっている。シリンダ21の壁面及びピストン22の上面は、シリンダヘッド部30の下面とともに燃焼室25を形成している。
 シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、吸気弁32を駆動するインテークカムシャフトを含むとともに同インテークカムシャフトの位相角及び吸気弁32の最大リフト量を連続的に変更する可変動弁機構33、可変動弁機構33のアクチュエータ33a、燃焼室25に連通した排気ポート34、排気ポート34を開閉する排気弁35、排気弁35を駆動するエキゾーストカムシャフトを含むとともに同エキゾーストカムシャフトの位相角を連続的に変更する可変排気タイミング制御装置36、点火プラグ37、点火プラグ37に与える高電圧を発生するイグニッションコイルを含むイグナイタ38、吸気弁32よりも上流の吸気ポート31内にて燃料を噴射するポート噴射弁39P、燃焼室25内にて燃料を直接噴射する筒内噴射弁39Cを備えている。従って、この第1実施形態における内燃機関10は、ポート噴射弁39Pと筒内噴射弁39Cとを有するデュアルインジェクションシステムを備える。
 ポート噴射弁39P及び筒内噴射弁39Cは、一つの燃焼室25に対してそれぞれ一つずつ配設されている。従って、複数の気筒のそれぞれは、他の気筒とは独立して燃料供給を行うポート噴射弁39P及び筒内噴射弁39Cを備えている。なお、この第1実施形態においては、ポート噴射弁39Pと筒内噴射弁39Cの2つの噴射弁が別個に設けられたデュアルインジェクションシステムを備えた内燃機関10について説明するが、本発明は、このような内燃機関に限定されるものではない。例えば、筒内噴射機能とポート噴射機能とを併せ持つような1つの噴射弁を有する内燃機関であってもよい。
 吸気系統40は、各気筒の吸気ポート31とそれぞれ接続されたインテークマニホールドを含む吸気管41、吸気管41の端部に設けられたエアフィルタ42、及び、吸気管41内にあって吸気開口面積を可変とするスロットルバルブ43、スロットルバルブ43のアクチュエータ43aを備えている。吸気ポート31及び吸気管32は、吸気通路を構成している。
 排気系統50は、各気筒の吸気ポート34とそれぞれ接続されたエキゾーストマニホールド51、エキゾーストマニホールド51の集合部に接続されたエキゾーストパイプ52、エキゾーストパイプ52に配設された触媒53(三元触媒)を備えている。排気ポート34、エキゾーストマニホールド51及びエキゾーストパイプ52は、排気通路を構成している。
 燃料系統60は、燃料タンク61及び燃料供給管62を備えている。燃料タンク61は、例えば、ガソリンとエタノールとを混合した「アルコール混合燃料」を貯蔵するようになっている。なお、燃料タンク61には、エタノールを全く含まないガソリンのみからなる燃料、及び、ガソリンを全く含まないエタノールのみからなる燃料が充填されてもよい。燃料供給管62は、燃料タンク61とポート噴射弁39P及び筒内噴射弁39Cとを接続するパイプである。燃料タンク61内の燃料は、燃料タンク61内に配設された図示しない燃料ポンプにより燃料供給管62を介してポート噴射弁39P及び筒内噴射弁39Cに圧送される。
 一方、このシステムは、熱線式エアフローメータ71、吸気温度センサ72、スロットルポジションセンサ73、インテークカムポジションセンサ74、エキゾーストカムポジションセンサ75、クランクポジションセンサ76、水温センサ77、上流側空燃比センサ78、下流側空燃比センサ79、アクセル開度センサ81、及び、アルコール濃度センサ82を備えている。
 エアフローメータ71は、吸気管41内を流れる吸入空気の質量流量(機関10に単位時間あたりに吸入される空気の質量(本発明においては、「吸入空気質量」とも称呼する。))Gaに応じた信号を出力するようになっている。吸気温度センサ72は、吸気管41内を流れる吸入空気の吸気温度THAに応じた信号を出力するようになっている。スロットルポジションセンサ73は、スロットルバルブ43の開度を検出し、スロットルバルブ開度TAを表す信号を出力するようになっている。
 インテークカムポジションセンサ74は、インテークカムシャフトの近傍に配設されている。インテークカムポジションセンサ74は、インテークカムシャフトが90°回転するごとに(すなわち、クランク軸24が180°回転するごとに)一つのパルスを有する信号を発生するようになっている。エキゾーストカムポジションセンサ75は、エキゾーストカムシャフトの近傍に配設されている。エキゾーストカムポジションセンサ75は、エキゾーストカムシャフトが90°回転するごとに(すなわち、クランク軸24が180°回転するごとに)一つのパルスを有する信号を発生するようになっている。
 クランクポジションセンサ76は、クランク軸24が360°回転するごとに幅広のパルスを有する信号を出力するようになっている。この信号は、エンジン回転速度NEを表す。又、インテークカムポジションセンサ74及びクランクポジションセンサ76からの信号に基づいて、基準気筒(例えば、第1気筒)の圧縮上死点(TDC)を基準とした絶対クランク角CAが取得される。この絶対クランク角CAは、基準気筒の圧縮上死点において「0°クランク角」に設定され、クランク角の回転角度に応じて「720°クランク角」まで増大し、その時点にて再び0°クランク角に設定される。水温センサ77は、機関10の運転状態温度に対応する冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。
 上流側空燃比センサ78は、図2に示すように、各気筒から延びるそれぞれの排気通路が集合してなる集合排気通路(具体的には、エキゾーストパイプ52)において触媒53よりも上流に配設されている。上流側空燃比センサ78は、例えば、特開平11-72472号公報、特開2000-65782号公報、及び、特開2004-69547号公報等に開示された、「拡散抵抗層を備える限界電流式広域空燃比センサ」である。
 そして、上流側空燃比センサ78は、エキゾーストパイプ52内を通過して触媒53に流入する混合排ガスの空燃比(従って、機関10に供給される混合気の空燃比、より具体的には、各気筒の燃焼室25内における混合気の空燃比)に応じた出力値Vabyfs(V)を発生する。この出力値Vabyfsは、図3に示した空燃比変換テーブル(マップ)Mapabyfsを利用して、出力値Vabyfsにより表される上流側空燃比(以下、「検出空燃比」とも称呼する。)abyfsに変換される。
 又、図2に示すように、下流側空燃比センサ79は、集合排気通路(具体的には、エキゾーストパイプ52)において触媒53よりも下流側に配設されている。下流側空燃比センサ79は、周知の起電力の酸素濃度センサ(安定化ジルコニアを用いた周知の濃淡電池型の酸素濃度センサ)である。下流側空燃比センサ79は、触媒53から流出する混合排ガスの空燃比(従って、機関10に供給される混合気の空燃比(より具体的には、各気筒の燃焼室25内における混合気の空燃比)の時間的平均値)に応じた出力値Voxs(V)を発生する。
 この出力値Voxsは、図4に示すように、下流側空燃比afdownが理論空燃比よりもリッチのとき最大出力値max(例えば、約0.9V)となり、下流側空燃比afdownが理論空燃比よりもリーンのとき最小出力値min(例えば、約0.1V)となり、下流側空燃比afdownが理論空燃比であるとき最大出力値maxと最小出力値minの略中間の電圧Vst(例えば、0.5V)となる。更に、この出力値Voxsは、下流側空燃比afdown(混合排ガスの空燃比)が理論空燃比よりもリッチな空燃比からリーンな空燃比へと変化する際に最大出力値maxから最小出力値minへとい急変し、下流側空燃比afdown(混合排ガスの空燃比)が理論空燃比よりもリーンな空燃比からリッチな空燃比へと変化する際に最小出力値minから最大出力値maxへと急変する。
 アクセル開度センサ81は、運転者によって操作されるアクセルペダルAPの操作量Accpを表す信号を出力するようになっている。
 アルコール濃度センサ82は、例えば、特開平6-27073号公報等に開示されているような周知の静電容量型のセンサ(一対の電極を用いて測定対象の比誘電率を測定可能なセンサ)である。アルコール濃度センサ82は、アルコール混合燃料の比誘電率がそのアルコール濃度に応じて変化することを利用し、アルコール濃度センサ82が配設された燃料供給管62内の部位を流れる燃料のアルコール濃度(この第1実施形態の機関10においては、エタノール濃度Cetha)に応じた出力値を出力するようになっている。
 電気制動装置90は、互いにバスで接続されたCPU91、CPU91が実行するルーチン(プログラム)、テーブル(マップ、関数)及び定数等を予め記憶したROM92、CPU91が必要に応じてデータを一時的に格納するRAM93、電源が投入された状態でデータを格納するとともに同格納したデータを電源が遮断されている間も保持するバックアップRAM94、並びに、ADコンバータを含むインターフェース95からなるマイクロコンピュータである。
 インターフェース95は、前記センサ71~79,81,82と接続され、CPU91にセンサ71~79,81,82からの信号を供給するとともに、CPU91の指示に応じて可変動弁機構33のアクチュエータ33a、各気筒のイグナイタ38、各気筒に対応して設けられたポート噴射弁39P及び筒内噴射弁39C、並びに、スロットルバルブ43のアクチュエータ43aに駆動信号を創出するようになっている。
(空燃比フィードバック制御の概要)
 次に、本装置による空燃比フィードバック制御の概要について説明する。本装置は、上流側空燃比センサ78の出力値Vabyfs及び下流側空燃比センサ79の出力値Voxsに基づいて、混合排ガスの空燃比を、所定の空燃比(例えば、理論空燃比や理論空燃比を中心としてリーンな空燃比やリッチな空燃比等)と一致するようにフィードバック制御する。
 このフィードバック制御の一例としては、以下のものが挙げられる。すなわち、下流側空燃比センサ79の出力値Voxsと所定の空燃比(例えば、理論空燃比)Vstとの偏差についてPID処理して後述するサブフィードバック補正量が求められる。このサブフィードバック補正量により上流側空燃比センサ78の出力値Vabyfsを補正して得られる値を図3に示した空燃比変換テーブルMapabyfsに適用して、見かけ上の空燃比が求められる。この見掛け上の空燃比と理論空燃比との偏差についてPID処理して空燃比フィードバック量(メインフィードバック補正量)が求められる。
 この空燃比フィードバック量により、「機関回転速度NEと吸入空気量Gaと理論空燃比とに基づいて得られる基本燃料噴射量」を補正して得られる量の燃料が、各気筒のポート噴射弁39P及び筒内噴射弁39Cからそれぞれ噴射される。このように、全気筒に共通する空燃比フィードバック量に基づいて各ポート噴射弁39P及び筒内噴射弁39Cから噴射される燃料の量をそれぞれ調整することにより、混合排ガスの空燃比がフィードバック制御される。
<基本空燃比制御>
 次に、本装置による基本空燃比制御の概要について説明する。本装置においては、機関10が定常運転状態にあるときに(所謂、ピストン22や吸気弁32が高温ととなる暖機後の運転状態にあるときに)、下流側空燃比センサ79の出力値Voxsが急変することに応じて、すなわち、触媒53内部が酸化雰囲気であるか還元雰囲気であるかに応じて、上流側空燃比(機関10の空燃比)を理論空燃比よりも強制的ににリーンな空燃比又は強制的にリッチな空燃比となるように制御する。具体的に、図4に示すように、下流側空燃比センサ79の出力値Voxsに基づいて下流側空燃比がリッチな空燃比であるときには上流側空燃比がリーンな空燃比となるように制御し、下流側空燃比センサ79の出力値Voxsに基づいて下流側空燃比がリーンな空燃比であるときには上流側空燃比がリッチな空燃比となるように制御する。又、下流側空燃比センサ79の出力値Voxsが最大出力値maxから最小出力値minに急変したときには上流側空燃比をリーンな空燃比からリッチな空燃比に変更して制御し、下流側空燃比センサ79の出力値Voxsが最小出力値minから最大出力値maxに急変したときには上流側空燃比をリッチな空燃比からリーンな空燃比に変更して制御する。
 そこで、本装置は、上流側空燃比センサ78及び下流側空燃比センサ79の出力値が対応するセンサ目標値(具体的に下流側空燃比センサ79の出力値Voxsに応じて理論空燃比よりもリッチな空燃比又は理論空燃比よりもリーンな空燃比に対応する値)にそれぞれ一致するように、ポート噴射弁39P及び筒内噴射弁39Cによる燃料噴射量を制御して、機関10の空燃比をフィードバック制御する。
<基本燃料噴射量の決定>
 まず、基本燃料噴射量Fbaseの決定について、一例を説明する。基本燃料噴射量Fbaseを決定するにあたっては、上述したように、内燃機関10の運転状態であるエンジン回転速度NE及びスロットルバルブ開度TA等に基づいて上流側空燃比センサ出力の目標値(上流側目標値)に対応する上流側目標空燃比abyfr(すなわち、機関10の目標空燃比)を決定する。この上流側目標空燃比abyfrは、上述したように下流側空燃比センサ79の出力値Voxsに応じて理論空燃比よりもリッチな空燃比又は理論空燃比よりもリーンな空燃比に対応する値に変更可能に予め設定されている。なお、上流側目標空燃比abyfrは、各気筒の吸気行程に対応されながらRAM93に記憶されていく。
 このように上流側目標空燃比abyfrを決定すると、エアフローメータ71が計測している吸入空気流量Gaと、クランクポジションセンサ76の出力に基づいて得られるエンジン回転速度NEとを引数とする所定のテーブルに基づいて求められる今回の吸気行程を迎える気筒(すなわち、次燃焼気筒)の吸入空気量である筒内吸入空気量Mcを上記決定された上流側目標空燃比abyfrで除することにより、基本燃料噴射量Fbaseを求める。すなわち、基本燃料噴射量Fbaseは、上流側目標空燃比abyfrを実現するために必要な次燃焼気筒に対応するポート噴射弁39P及び筒内噴射弁39Cからの燃料噴射量の合計量である。
<筒内噴射量及びポート噴射量の算出>
 次に、筒内噴射量Fid及びポート噴射量Fipの算出について説明する。筒内噴射量Fid及びポート噴射量Fipを算出するにあたっては、内燃機関10の運転状態であるエンジン回転速度NEと、上記筒内吸入空気量Mcと、冷却水温度THWとを引数とする所定のテーブルに基づいて、筒内噴射量Fidとポート噴射量Fipの和に対する筒内噴射量Fidの比(より正確には、後述する基本筒内噴射量Fbasedと後述する基本ポート噴射量Fbasepの和に対する基本筒内噴射量Fbasedの比率)である筒内噴射割合R(以下、分担率Rとも称呼する。)を決定する。これにより、機関10の運転状態に応じて筒内噴射割合Rを適宜変更することができる。
 このように筒内噴射割合R(すなわち、分担率R)を機関10の運転状態に応じて決定すると、上記求められた基本燃料噴射量Fbaseに分担率Rを乗算することにより、基本筒内噴射量Fbased(=Fbase×R)を決定する。同様に、上記求められた基本燃料噴射量Fbaseに値(1-R)を乗算することにより、基本ポート噴射量Fbasep(=Fbase×(1-R))を決定する。そして、基本筒内噴射量Fbasedに上述したサブフィードバック補正量を乗算して最終的な筒内噴射量Fidを決定し、基本ポート噴射量Fbasepにサブフィードバック補正量及びメインフィードバック補正量を乗算して最終的なポート噴射量Fipを決定する。
 なお、サブフィードバック補正量については、具体的には、下流側空燃比センサ79の出力値Voxsと、内燃機関10の運転状態であるエンジン回転速度NE及びスロットルバルブ開度TA等に基づいて下流側空燃比センサ出力の目標値である下流側目標値Voxsrefとの偏差についてPID処理することによって求められる。ここで、下流側目標値Voxsrefは、同下流側目標値Voxsrefに対応する下流側目標空燃比が上述した上流側目標空燃比abyfrと常時一致するように設定される。又、メインフィードバック補正量については、具体的に、上流側空燃比センサ78の出力値Vabyfsと図3に示した空燃比変換テーブルMapabyfsとに基づいて上流側空燃比センサ78による現時点における検出空燃比abyfsを求めるとともに、この検出空燃比abyfsとの偏差についてPID処理することによって求められる。
 本装置は、このようにして、基本筒内噴射量Fbasedをサブフィードバック補正量により補正することによって得られる筒内噴射量Fidの燃料を今回の燃焼サイクルにおける次燃料気筒に対して筒内噴射弁39Cにより筒内噴射する。又、基本ポート噴射量Fbasepをサブフィードバック補正量とメインフィードバック補正量とにより補正することによって得られるポート噴射量Fipの燃料を今回の燃焼サイクルにおける次燃焼気筒に対してポート噴射弁39Pにより噴射する。これらにより、本装置は、理論空燃比よりもリッチな空燃比又は理論空燃比よりもリーンな空燃比になるように、機関10の空燃比をフィードバック制御することができる。
(アルコール混合燃料使用時における中間生成物の排出特性)
 エタノールが混合された燃料を機関10に供給されると、供給された燃料のうちの未燃エタノールが酸化し、中間生成物としてアルデヒド類(より具体的には、ホルムアルデヒド(HCHO)やアセトアルデヒド(CHCHO))が発生すると言われている。そして、従来から、上述したように、有害物質であるアルデヒド類の発生そのものを抑制するために、発生したアルデヒド類を更に酸化させて消費させたりすることが提案されている。ところで、アルデヒド類は、アルコールの中間酸化物であってその化学構造が不安定であるため、容易に酸化(すなわち燃焼)し易い特性を有している。従って、アルコール混合燃料を供給したときに発生する中間生成物であるアルデヒド類を効率よく回収し、次燃焼気筒にて消費するようにすれば、有害物質であるアルデヒド類の車両外部への放出を効果的に抑制できるとともに内燃機関10の始動性(より好ましくは、低温始動性)を改善することもできる。ここで、アルコール混合燃料を機関10に供給したとき、アルデヒド類の発生に影響を及ぼす要件として、滞留時間、ガス温度及び空燃比が要件となり得ると言われている。以下、アルデヒド類の発生に関するこれらの各要素の影響を説明する。なお、以下の説明にて示す図5~図7のグラフは、日本機械学会論文集(B編)52巻473号(昭61-1),P238~P247に記載されている実験結果のグラフに基づくものである。
<滞留時間の影響>
 一般に、エタノール(COH)が混合されたアルコール混合燃料を機関10に供給する場合、噴射された燃料が未燃状態で気筒内に留まる時間すなわち滞留時間が長くなるほど、一旦生成されたアルデヒド類が減少する傾向にあると言われている。具体的には、例えば、図5にて滞留時間に対するアルコール及びアルデヒド類の濃度変化を示すように、気筒内に存在するアルコール混合燃料に含まれるアルコール(エタノール(COH))の濃度は滞留時間が長くなるにつれて一様に減少する傾向を有する一方で、アルデヒド類であるホルムアルデヒド(HCHO)及びアセトアルデヒド(CHCHO)の濃度は滞留時間の経過に伴って一旦上昇するもののその後滞留時間が長くなるほど減少する傾向を有する。なお、図5は、空燃比及びガス温度を一定に維持した場合における、滞留時間に対するアルコールびアルデヒド類の濃度変化を示すものである。
 このことに関し、アルコール(エタノール(COH))濃度の減少に伴って、ピークとなる時期の違いはあるもののホルムアルデヒド(HCHO)濃度及びアセトアルデヒド(CHCHO)濃度が増加することから、未燃状態にあるアルコールの酸化反応が進行することによって中間生成物(或いは、中間酸化物)であるアルデヒド類が生じることが理解できる。そして、このように生じたアルデヒド類が更に気筒内に滞留すると、アルデヒド類の酸化反応が進行することによってアルデヒド類が消滅することが理解できる。従って、機関10にアルコール混合燃料を供給してアルデヒド類を効率よく発生させるためには、燃焼後に未燃状態のアルコール(エタノール(COH))が気筒内に滞留する滞留時間が長くならないようにすることが肝要であると言える。
<ガス温度の影響>
 一般に、エタノール(COH)が混合されたアルコール混合燃料を機関10に供給する場合、噴射された燃料が燃焼した後の未燃燃料の温度(燃焼室25内等の雰囲気温度も含む)すなわちガス温度が高くなるにつれてアルデヒド類が発生する傾向にあると言われている。具体的には、例えば、図6にてガス温度を変化させたときの滞留時間に対するアルデヒド類(アセトアルデヒド(CHCHO))の濃度変化を示すように、燃焼後のガス温度が上昇するに伴って、そのピークが発生する滞留時間は異なるものの濃度が大きくなる傾向を有する。なお、図6は、空燃比を一定に維持した場合における、ガス温度を変化させたときの滞留時間に対するアルデヒド類(アセトアルデヒド(CHCHO))の濃度変化を示すものである。
 このことに関し、アルデヒド類はアルコールの酸化反応が進行することによって中間生成物(中間酸化物)として生じるものであるから、ガス温度(雰囲気温度も含む)が上昇することによって未燃状態にあるアルコールの酸化反応が進行し、中間酸化物としてアルデヒド類が生じ易くなると理解できる。そして、このように生じたアルデヒド類が高温の気筒内に滞留すると、アルデヒド類の酸化反応が進行することよってアルデヒド類が消滅するため、アルデヒド類の濃度がピークとなる滞留時間が異なることが理解できる。従って、機関10にアルコール混合燃料を供給してアルデヒド類を効率よく発生させるためには、上述したように滞留時間が長くならないようにすることに加えて、適切な温度範囲内でガス温度を適切に維持することが肝要であると言える。
<空燃比の影響>
 一般に、エタノール(COH)が混合されたアルコール混合燃料を機関10に供給する場合、気筒内における空燃比がリーンな空燃比になるほど、アルデヒド類が発生し易い傾向にあると言われている。具体的には、例えば、図7にて空燃比を変化させたときのガス温度に対するアルデヒド類(アセトアルデヒド(CHCHO))の濃度変化を示すように、燃焼後のガス温度が上昇するに伴って、そのピークとなるガス温度は異なるものの濃度が大きくなる傾向を有し、特に、空燃比がリーンになると、ピークとなるガス温度が低温側になる傾向を有する。なお、図7は、滞留時間を一定に維持した場合における、空燃比を変化させたときのガス温度に対するアルデヒド類(アセトアルデヒド(CHCHO))の濃度変化を示すものである。
 このことに関し、アルデヒド類はアルコールの酸化反応が進行することによって中間生成物(中間酸化物)として生じるものであるから、酸素が過剰となるリーンな空燃比になれば、酸化反応が進行し易くなり、ガス温度が低くても中間酸化物としてアルデヒド類が生じ易くなると理解できる。従って、機関10にアルコール混合燃料を供給してアルデヒド類を効率よく発生させるためには、上述したように滞留時間が長くならないようにすること及び適切な温度範囲内でガス温度を適切に維持することに加えて、空燃比をリーンな空燃比に維持することが肝要であると言える。
 ところで、一般に、上流側目標空燃比abyfr(機関10の空燃比)がリーンな空燃比のときには、燃焼後の気筒から排気される混合排ガス中には窒素酸化物(NOx)が含まれる。すなわち、リーンな空燃比によって燃焼が生じると、この燃焼後の気筒内にはNOxが存在することになる。又、アルコール(例えば、エタノール(COH))の酸化反応においては、NOxの挙動(より具体的には、NO/NOの変換挙動)によって生じたOHラジカルが深く関与する場合があり、OHラジカルの影響によってアルデヒド類(具体的にはアルデヒド(HCHO)及びアセトアルデヒド(CHCHO))が生成され易いと言われている。このことからも、機関10にアルコール混合燃料を供給してアルデヒド類を効率よく発生させるためには、上述したように滞留時間が長くならないようにすること及び適切な温度範囲内でガス温度を適切に維持することに加えて、空燃比をリーンな空燃比に維持することが肝要であると言える。
(アルコール混合燃料が供給される内燃機関における中間生成物の発生量の推定)
 上述したように、エタノール(COH)の混合されたアルコール混合燃料を機関10に供給し、効率よくアルデヒド類(具体的にはアルデヒド(HCHO)及びアセトアルデヒド(CHCHO))を発生させるためには、まず、図5に示したグラフに基づき滞留時間は長すぎることなく(例えば、機関10の回転速度NEを勘案して80ms以下となる50ms前後)、図6に示したグラフに基づきガス温度は高すぎることなく(例えば、機関10からの排ガスの温度を勘案して750K~850K程度)、図7に示したグラフに基づき上流側目標空燃比abyfr(機関10の空燃比)は理論空燃比よりもリーン側の空燃比に維持するとよい。そして、これらの滞留時間、ガス温度及び空燃比を中間生成物の発生条件とし、この発生条件となるように内燃機関10を作動させると、燃焼後の気筒内に効率よく中間生成物であるアルデヒド類を発生させることができる。
 又、中間生成物の発生条件を構成する滞留時間、ガス温度及び空燃比と発生する中間生成物(具体的には、アルデヒド類)の濃度とは、図5~図7に示したグラフからも明らかなように、互いに関連した関係にある。従って、滞留時間、ガス温度及び空燃比のいずれかの要素を固定(或いは、確定)することにより、他の要素の変化を考慮して中間生成物の発生量を精度よく推定することができる。
 このため、例えば、内燃機関10を低温時に始動させる状況(具体的には、内燃機関10の冷却水温THWが低い状況)では、上記した中間生成物の発生条件として設定された滞留時間、ガス温度及び空燃比となるように内燃機関10を作動させることにより、燃焼後の気筒内に効率よく中間生成物であるアルデヒド類を発生させることができるとともに、発生する中間生成物であるアルデヒド類の発生量を精度よく推定することができる。
<ポスト噴射>
 上述したように、アルデヒド類(具体的にはアルデヒド(HCHO)及びアセトアルデヒド(CHCHO))はアルコール混合燃料に含まれるアルコール(例えば、エタノール(COH))が未燃状態で存在しある程度酸化されることにより生じるものである。この場合、上述した中間生成物(具体的には、アルデヒド類)の発生条件に従って、例えば、上流側目標空燃比abyfrを大きな値に設定すると(すなわち、リーン側の空燃比に設定すると)、アルコール混合燃料に含まれるアルコール(例えば、エタノール(COH))が未燃状態で存在する量が少なく、生成されるアルデヒド類(具体的にはアルデヒド(HCHO)及びアセトアルデヒド(CHCHO))が少なくなる場合がある。
 ところで、従来から、例えば、低温始動時におけるエミッションの低減を目的として、触媒53の内部温度(雰囲気温度)を早期に上昇させて早期に活性化させるために、上述した筒内噴射量及びポート噴射量の噴射(所謂、メイン噴射)とは別に、排気行程にて燃料を少量だけ噴射するポスト噴射が行われる場合がある。具体的に、このポスト噴射においては、広く知られているように、筒内噴射弁39Cが、低温始動時に排気行程にある気筒内の圧力に抗して予め設定されたポスト噴射量Fid_pを強制的に噴射する。
 従って、筒内噴射弁39Cによって噴射されるポスト噴射量Fid_pを適切に確保する(増量する)ことによって、排気行程における或いは排気行程に移行する気筒内に未燃状態のアルコール(例えば、エタノール(COH))を確実に存在させることができる。このように、燃焼後の高温雰囲気となっている気筒内にアルコール混合燃料をポスト噴射することにより、上述したガス温度が速やかに上昇するため、噴射されたアルコール混合燃料中のアルコール(エタノール(COH))の酸化反応が生じて中間生成物であるより多くのアルデヒド類(具体的にはアルデヒド(HCHO)及びアセトアルデヒド(CHCHO))を発生させることができる。なお、ポスト噴射量Fid_pだけポスト噴射されたアルコール混合燃料のうちのガソリン成分については、排気ポート34、エキゾーストマニホールド51及びエキゾーストパイプ52からなる排気通路介して触媒53に供給される。これにより、供給された燃料(ガソリン成分)は、触媒53内部にて酸化(燃焼)されることにより、触媒53の内部温度(雰囲気温度)を早期に上昇させることができる。
(発生した中間生成物の回収)
 上述したように、エタノール(COH)が混合されたアルコール混合燃料を機関10に供給することによって発生した中間生成物であるアルデヒド類(具体的にはアルデヒド(HCHO)及びアセトアルデヒド(CHCHO))は、吸気ポート31及び吸気管32からなる吸気通路内に回収される。より詳しくは、本発明においては、排気行程にてポスト噴射された後、高圧の気筒に対して吸気弁32を強制的に開き、気筒内に存在する多量のアルデヒド類(具体的にはアルデヒド(HCHO)及びアセトアルデヒド(CHCHO))を含んで吹き返される既燃ガスを回収して貯蔵する。なお、この吸気通路内への既燃ガスの吹き返しについては、如何なる制御を採用してもよいが、一例として、冷間VVT制御を利用することができる。
 本発明おける冷間VVT制御は、機関10の排気行程にて、吸気弁32の開閉タイミング、および/または、排気弁35の開閉タイミング及びリフト量を(通常の非冷間VVT制御時と比較して)調整して燃焼室25内の既燃ガスが吸気弁32の周囲を介して吸気通路に吹き返す量(既燃ガス吹き返し量)を(通常の非冷間VVT制御時と比較して)増大するものである。なお、このような既燃ガスの吹き返し量を増大する動作は、内部EGRとも呼ばれる。ここで、このような既燃ガスの吹き返しを行った場合、吸気通路内には、燃焼性に優れたアルデヒド類(具体的にはアルデヒド(HCHO)及びアセトアルデヒド(CHCHO))を含む既燃ガスを貯蔵(収容)しているため、例えば、上述したように決定されて各筒内噴射弁39C及びポート噴射弁39Pから噴射される筒内噴射量Fid及びポート噴射量Fipを(上述したサブフィードバック補正量及びメインフィードバック補正量により調整された量から)減少するとよい。
(実際の動作)
 次に、第1実施形態に係る制御装置の実際の動作について説明する。図8は、本装置のCPU91により実行される、「アルコール混合燃料から生成された中間生成物を回収して貯蔵」する処理ルーチンの流れの一例を示すフローチャートである。この例では、まず、ステップ1005にて、アルコール濃度センサ82の出力値Cethaに基づいて、機関10に供給されるアルコール混合燃料に含まれているエタノールの濃度が予め設定された所定値Cetha0以上であるか否かを判定する。
 具体的には、所定の短いサンプリング時間ts(例えば、4ms(4m秒))が経過するごとにアルコール濃度センサ82の出力値Cethaが取得される。そして、サンプリング時間tsごとに取得されたアルコール濃度センサ82の出力値Cethaが予め設定された所定値Cetha0以上であれば、機関10に供給されるアルコール混合燃料に含まれるエタノールの濃度が中間生成物であるアルデヒド類を生成するために十分な濃度であると判定し(ステップ1005にて「Yes」)、ステップ1010にて中間生成物の生成を促進して捕集(回収して貯蔵)するための制御を開始する。一方、サンプリング時間tsごとに取得されたアルコール濃度センサ82の出力値Cethaが予め設定された所定値Cetha0未満であれば、機関10に供給されるアルコール混合燃料に含まれるエタノールの濃度が中間生成物であるアルデヒド類を生成するには十分な濃度ではないと判定し(ステップ1005にて「No」)、ステップ1030にて処理ルーチンの実行を終了する。
 本発明では、上述したように、低温始動時において、機関10にアルコール混合燃料が噴射され圧縮行程を経て燃焼されることによって発生するとともにポスト噴射によって発生した中間生成物であるアルデヒド類(具体的にはアルデヒド(HCHO)及びアセトアルデヒド(CHCHO))を排気行程にて吸気通路内に回収して貯蔵し、次回の吸気行程にて貯蔵した中間生成物を吸入させる。このため、ステップ1010では、アルコール混合燃料に含まれるアルコール濃度Cethaが高いことに基づき、中間生成物の生成を促進して捕集(回収して貯蔵)するための制御を開始して、ステップ1015にて冷却水温THWが予め設定された所定値THW0以上であるか否かを判定する。
 すなわち、ステップ1015では、水温センサ77からの出力値THWが取得される。そして、取得された水温センサ77の出力値THWが予め設定された所定値THW0以上であれば、機関10が既に定常運転状態にあると判定し(ステップ1015にて「Yes」)、ステップ1020にて既に定常運転状態にある機関10を通常の態様により作動させる。一方、取得された水温センサ77の出力値THWが予め設定された所定値THW0未満であれば、機関10を低温時に始動させる状態にあると判定し(ステップ1015にて「No」)、ステップ1025にて中間生成物の生成を促進して捕集(回収して貯蔵)するように機関10を作動させる。
 ステップ1020では、機関10が既に定常運転状態にあるため、通常の態様により、筒内噴射弁39C及びポート噴射弁39Pが気筒内に噴射する燃料噴射量及び分担率、燃料噴射時期、吸気弁32及び排気弁35の弁開閉時期、及び、筒内噴射弁39Cによるポスト噴射の噴射量及び時期をそれぞれ算出して決定し、機関10を作動させる。
 具体的に、機関10が定常運転状態にあるときにおける筒内噴射弁39C及びポート噴射弁39Pが気筒内に噴射する燃料噴射量及び燃料噴射時期については、上述した空燃比フィードバック制御に従い、基本燃料噴射量Fbaseに分担率Rを乗算することによって基本筒内噴射量Fbasedを決定するとともに基本燃料噴射量Fbaseに値(1-R)を乗算することによって基本ポート噴射量Fbasepを決定する。この場合、分担率Rは、機関10の運転状態に応じて決定されるものである。そして、基本筒内噴射量Fbasedに上述したサブフィードバック補正量を乗算して最終的な筒内噴射量Fidを決定し、基本ポート噴射量Fbasepにサブフィードバック補正量及びメインフィードバック補正量を乗算して最終的なポート噴射量Fipを決定する。
 又、機関10が定常運転状態にあるときにおける筒内噴射弁39C及びポート噴射弁39Pが筒内噴射量Fid及びポート噴射量Fipを噴射する時期については、エンジン回転速度NEや負荷状態(具体的には、吸入空気流量Ga等)に基づいて、原則、吸入行程中となるように決定される。なお、特に、筒内噴射弁39Cの燃料噴射時期については、例えば、圧縮行程中に筒内噴射量Fidを噴射するように決定することができる。これにより、噴射された燃料が燃焼室25内に広く行き渡る前の状態、すなわち、比較的濃い燃料混合気が点火プラグ37の近傍に集まった状態で点火を行って燃焼させる、所謂、成層燃焼も可能となる。
 又、機関10が定常運転状態にあるときにおける吸気弁32及び排気弁35の弁開閉時期についても、エンジン回転速度NEや負荷状態(具体的には、吸入空気流量Ga等)に基づいて決定される。すなわち、吸気弁32については、原則、吸入行程中のみ開弁状態とされ、圧縮行程、膨張行程及び排気行程では閉弁状態とされる。なお、機関10が定常運転状態にあるときには、吸気弁32のリフト量については、エンジン回転速度NEや負荷状態(具体的には、吸入空気流量Ga等)に基づいて、適宜変更される。一方、排気弁35については、原則、排気行程中のみ開弁状態とされ、吸入行程、圧縮行程及び膨張行程では閉弁状態とされる。なお、機関10が定常運転状態にあるときには、排気弁35のリフト量についても、エンジン回転速度NEや負荷状態(具体的には、吸入空気流量Ga等)に基づいて、適宜変更される。
 機関10が定常運転状態にあるときにおける筒内噴射弁39Cによるポスト噴射の噴射量及び時期については、上述したように、原則、排気行程にてメイン噴射とは別に燃料を少量だけ噴射する。しかし、機関10が定常運転状態にあるときには、混合排気ガスによって触媒53の内部温度(雰囲気温度)が既に上昇している場合が想定される。従って、機関10が定常運転状態にあるときにおける筒内噴射弁39Cによるポスト噴射は、例えば、触媒53の内部温度(雰囲気温度)の温度上昇を抑制することを目的として噴射される場合がある。
 このように、ステップ1020にて通常の態様により、筒内噴射弁39C及びポート噴射弁39Pが気筒内に噴射する燃料噴射量及び分担率、燃料噴射時期、吸気弁32及び排気弁35の弁開閉時期、及び、筒内噴射弁39Cによるポスト噴射の噴射量及び時期をそれぞれ算出して決定し、機関10を作動させると、ステップ1030にて処理ルーチンの実行を終了する。
 ステップ1025では、機関10を低温下で適切に始動させて作動させるために、中間生成物の生成を促進して捕集(回収して貯蔵)するように筒内噴射弁39C及びポート噴射弁39Pが気筒内に噴射する燃料噴射量及び分担率、燃料噴射時期、吸気弁32及び排気弁35の弁開閉時期、及び、筒内噴射弁39Cによるポスト噴射の噴射量及び時期をそれぞれ算出して決定し、機関10を作動させる。
 具体的に、まず、中間生成物の生成を促進するために、筒内噴射弁39C及びポート噴射弁39Pが気筒内に噴射する燃料噴射量及び分担率、燃料噴射時期、及び、吸気弁32及び排気弁35の弁開閉時期については、上述した「アルコール混合燃料が供給される内燃機関における中間生成物の発生条件」に基づいて推定される中間生成物(具体的に、アルデヒド類)の発生量に基づいて決定される。すなわち、例えば、水温センサ77からの出力値THWに基づき推定されるガス温度が低い状況では、中間生成物であるアルデヒド類は、前記中間生成物の発生条件に基づいて推定される発生量が未だ少ない状況である。このため、図9に概略的に示すように、例えば、気筒内に噴射する燃料噴射量を決定するにあたっては筒内噴射割合Rを大きな値に設定して筒内噴射量Fidを多くするとともに、気筒内に噴射する時期を圧縮行程の前期として早期にリーンな空燃比による成層燃焼とする。
 又、燃焼後の燃料が気筒内に滞留する滞留時間が前記中間生成物の発生条件に合うように排気弁35の弁開閉時期を決定する。更に、筒内噴射弁39Cは、ポスト噴射の噴射量及び時期として、上述したように、排気行程においてポスト噴射量Fid_pだけポスト噴射する。なお、このポスト噴射の時期については、具体的には、生成された中間生成物であるアルデヒド類が吸気弁32の近傍に存在している排気行程の後期に噴射することが好ましい。これにより、中間生成物であるアルデヒド類が効率よく生成することができる。
 次に、生成された中間生成物であるアルデヒド類を吸気通路内に回収して貯蔵するために、吸気弁32の弁開閉時期及びリフト量が決定される。まず、吸気弁32を開弁状態とする時期については、前記中間生成物の発生条件の一つである滞留時間が経過し(すなわち中間生成物であるアルデヒド類が生成しており)、且つ、気筒内の既燃ガスを吹き返すために十分な圧力となる(すなわち、吸気通路内の圧力よりも高い圧力が得られる状態となる)、例えば、膨張行程の後期から排気行程とすることが好ましい。これにより、吸気弁32を開弁状態とすることによって、気筒内に存在する中間生成物(アルデヒド類)を含む既燃ガスを吸気通路内に吹き返すことができる。そして、吸気弁32を閉弁状態とする時期については、排気行程から吸入行程に移行する直前とすることが好ましいが、例えば、圧縮行程が開始されるときに閉弁状態とするようにしてもよい。
 次に、吸気弁32のリフト量について、具体的に図9を参照して説明する。吸気弁32のリフト量については、気筒内に存在する中間生成物(アルデヒド類)の推定される発生量に基づいて決定される。例えば、前記中間生成物の発生条件が満たされて、中間生成物であるアルデヒド類の発生量が多いと推定される場合、生成されたアルデヒド類を効率よく吸気管内に回収するためにリフト量を大きくする。これにより、発生した中間生成物は小さな流通抵抗によって気筒内から吸気通路内に回収することができる。一方、例えば、前記中間生成物の発生条件が十分に満たされておらず、中間生成物であるアルデヒド類の発生量が少ないと推定される場合、気筒内から吸気通路に向けたガスの流速を高めて僅かでも生成されたアルデヒド類を吸気通路内に回収するためにリフト量を小さくする。これにより、気筒内から吸気通路に向けた良好なガスの流れを発生させることができ、このガスの流れに乗せて気筒内に発生した中間生成物を吸気通路内に回収することができる。
 そして、このように吸気通路内に中間生成物であるアルデヒド類を含む既燃ガスを回収して貯蔵することにより、次回の吸入行程では、外気及びポート噴射弁39Pからポート噴射量Fipだけ噴射された燃料とともに中間生成物であるアルデヒド類を含む既燃ガスが気筒内に吸入される。そして、圧縮行程にて燃焼室25内に良好な酸化(燃焼)特性を有する中間生成物(アルデヒド類)が存在することにより、有害物質である中間生成物(アルデヒド類)が消費されて低温時における始動性(燃焼性)を良好に改善することができる。
 このように、ステップ1025にて、中間生成物の生成を促進して捕集するように、筒内噴射弁39C及びポート噴射弁39Pが気筒内に噴射する燃料噴射量及び噴射時期、吸気弁32及び排気弁35の弁開閉時期、及び、筒内噴射弁39Cによるポスト噴射の噴射量及び時期をそれぞれ算出して決定し、機関10を作動させると、ステップ1030にて処理ルーチンの実行を終了する。
 以上のように、本発明に係る第1実施形態(具体的には、図8に示した処理)によれば、機関10に供給されるアルコール混合燃料のアルコール濃度Cethaが大きく、且つ、冷却水温THWが低いと判定される場合(ステップ1005にて「Yes」及びステップ1015にて「No」)、ポスト噴射による中間生成物の生成を促進して排気行程にて捕集(回収して貯蔵)するように機関10の作動制御が実行される(ステップ1025)。従って、アルコール混合燃料に含まれているアルコールの中間酸化物であり良好な酸化(燃焼)特性を有する中間生成物(具体的にはアルデヒド類)を消費して、特に、機関10の低温始動性を大幅に改善することができる。又、中間生成物(具体的にはアルデヒド類)を消費することによって機関10の低温始動性を改善するため、有害物質である中間生成物(具体的にはアルデヒド類)が車両外に放出されることを効果的に防止することができる。
b.第2実施形態
 上記第1実施形態においては、ポート噴射弁39P及び筒内噴射弁39Cを有するデュアルインジェクションシステムを備えた内燃機関10に本装置を適用して実施した。この場合、改めての図示を省略するが、図1に示したポート噴射弁39Pを省略し、少なくとも筒内噴射弁39Cのみを備える内燃機関10に本装置を適用して実施することも可能である。以下、この第2実施形態を説明するが、上記第1実施形態の構成に比してポート噴射弁39Pが省略される点でのみ異なるため、上記第1実施形態と同一部分に同一の符号を付し、構成及び同一の作動の説明を省略する。
 この第2実施形態においては、内燃機関10がポート噴射弁39Pを備えておらず筒内噴射弁39Cのみを備えている。このため、上述した筒内噴射量Fidは、筒内噴射割合R(分担率R)を「1」に設定する、すなわち、基本燃料噴射量Fbaseにサブフィードバック補正量を乗算して決定されるように変更される。
 次に、この第2実施形態における実際の動作について説明する。図10は、第2実施形態に係る本装置のCPU91により実行される、「アルコール混合燃料から生成された中間生成物を回収して貯蔵」する処理ルーチンの流れの一例を示すフローチャートである。なお、この第2実施形態に係る処理ルーチンにおいては、上述した第1実施形態に係る処理ルーチンのステップ1020及びステップ1025が、ステップ1050及びステップ1055に変更される点でのみ異なる。従って、以下の説明においては、変更されたステップ1050及びステップ1055を詳細に説明する。
 この第2実施形態における処理ルーチンにおいては、ステップ1015にて取得された水温センサ77の出力値THWが予め設定された所定値THW0以上であれば、機関10が既に定常運転状態にあると判定し(ステップ1015にて「Yes」)、ステップ1050にて既に定常運転状態にある機関10を通常の態様により作動させる。一方、取得された水温センサ77の出力値THWが予め設定された所定値THW0未満であれば、機関10を低温時に始動させる状態にあると判定し(ステップ1015にて「No」)、ステップ1055にて中間生成物の生成を促進して捕集(回収して貯蔵)するように機関10を作動させる。
 ステップ1050では、機関10が既に定常運転状態にあるため、通常の態様により、筒内噴射弁39Cが気筒内に噴射する燃料噴射量及び燃料噴射時期、吸気弁32及び排気弁35の弁開閉時期、及び、筒内噴射弁39Cによるポスト噴射の噴射量及び時期をそれぞれ算出して決定し、機関10を作動させる。
 具体的に、機関10が定常運転状態にあるときにおける筒内噴射弁39Cが気筒内に噴射する燃料噴射量については、空燃比フィードバック制御に従い、基本燃料噴射量Fbaseに上述したサブフィードバック補正量を乗算して筒内噴射量Fidを決定する。又、機関10が定常運転状態にあるときにおける筒内噴射弁39Cが筒内噴射量Fidを噴射する時期については、エンジン回転速度NEや負荷状態(具体的には、吸入空気流量Ga等)に基づいて、原則、吸入行程中となるように決定され、具体的には、圧縮行程中に筒内噴射量Fidを噴射するように決定される。これにより、この第2実施形態においては、噴射された燃料が燃焼室25内に広く行き渡る前の状態、すなわち、比較的濃い燃料混合気が点火プラグ37の近傍に集まった状態で点火を行って成層燃焼させる。
 なお、機関10が定常運転状態にあるときにおける吸気弁32及び排気弁35の弁開閉時期や吸気弁32のリフト量、筒内噴射弁39Cによるポスト噴射の噴射量及び時期については、上述した第1実施形態に係る処理ルーチンのステップ1020における決定と全く同一である。従って、その説明を省略する。そして、ステップ1050にて通常の態様により、筒内噴射弁39Cが気筒内に噴射する燃料噴射量及び燃料噴射時期、吸気弁32及び排気弁35の弁開閉時期、及び、筒内噴射弁39Cによるポスト噴射の噴射量及び時期をそれぞれ算出して決定し、機関10を作動させると、ステップ1030にて処理ルーチンの実行を終了する。
 ステップ1055では、機関10を低温下で適切に始動させて作動させるために、中間生成物の生成を促進して捕集(回収して貯蔵)するように筒内噴射弁39Cが気筒内に噴射する燃料噴射量及び燃料噴射時期、吸気弁32及び排気弁35の弁開閉時期、及び、筒内噴射弁39Cによるポスト噴射の噴射量及び時期をそれぞれ算出して決定し、機関10を作動させる。
 具体的に、まず、中間生成物の生成を促進するために、筒内噴射弁39Cが気筒内に噴射する燃料噴射量及び燃料噴射時期、及び、吸気弁32及び排気弁35の弁開閉時期については、上述した「アルコール混合燃料が供給される内燃機関における中間生成物の発生条件」に基づいて推定される中間生成物(具体的に、アルデヒド類)の発生量に基づいて決定される。すなわち、例えば、水温センサ77からの出力値THWに基づき推定されるガス温度が低い状況では、中間生成物であるアルデヒド類は、前記中間生成物の発生条件に基づいて推定される発生量が未だ少ない状況である。このため、図11に概略的に示すように、成層燃焼により、筒内噴射量Fidがリーンな空燃比となるように決定する。
 又、燃焼後の燃料が気筒内に滞留する滞留時間が前記中間生成物の発生条件に合うように排気弁35の弁開閉時期を決定する。更に、筒内噴射弁39Cによるポスト噴射の噴射量及び時期として、上述したように、排気行程においてポスト噴射量Fid_pだけポスト噴射する。なお、このポスト噴射の時期については、具体的には、生成された中間生成物であるアルデヒド類が吸気弁32の近傍に存在している排気行程の後期に噴射することが好ましい。これにより、中間生成物であるアルデヒド類が効率よく生成することができる。
 次に、生成された中間生成物であるアルデヒド類を吸気通路内に回収して貯蔵するために、吸気弁32の弁開閉時期及びリフト量が決定される。なお、吸気弁32の弁開閉時期及びリフト量の決定については、図11に示すように、上記第1実施形態に係る処理ルーチンのステップ1025における決定と全く同一である。従って、その説明を省略する。そして、ステップ1055にて、中間生成物の生成を促進して捕集するように、筒内噴射弁39Cが気筒内に噴射する燃料噴射量及び燃料噴射時期、吸気弁32及び排気弁35の弁開閉時期、及び、筒内噴射弁39Cによるポスト噴射の噴射量及び時期をそれぞれ算出して決定し、機関10を作動させると、ステップ1030にて処理ルーチンの実行を終了する。
 以上のように、本発明に係る第2実施形態(具体的には、図10に示した処理)によっても、上記第1実施形態と同様に、機関10に供給されるアルコール混合燃料のアルコール濃度Cethaが大きく、且つ、冷却水温THWが低いと判定される場合(ステップ1005にて「Yes」及びステップ1015にて「No」)、ポスト噴射による中間生成物の生成を促進して排気行程にて捕集(回収して貯蔵)するように機関10の作動制御が実行される(ステップ1055)。従って、アルコール混合燃料に含まれているアルコールの中間酸化物であり良好な酸化(燃焼)特性を有する中間生成物(具体的にはアルデヒド類)を消費して、特に、機関10の低温始動性を大幅に改善することができる。又、中間生成物(具体的にはアルデヒド類)を消費することによって機関10の低温始動性を改善するため、有害物質である中間生成物(具体的にはアルデヒド類)が車両外に放出されることを効果的に防止することができる。
 なお、本発明は上記第1実施形態及び第2実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記第1実施形態及び第2実施形態においては、排気行程において吸気弁32を開弁し、推定される中間生成物の発生量に応じてリフト量を変更することによって生成された中間生成物(具体的には、アルデヒド類)を吸気通路内に捕集して(回収して)貯蔵するように実施した(図9、図11)。
 この場合、気筒内に発生した中間生成物を含む既燃ガスがより容易に、且つ、確実に吸気通路内に進入するように実施することも可能である。具体的には、アクチュエータ43aを介してスロットルバルブ43を閉じて吸気通路内を負圧にすることにより、常に気筒内の圧力が吸気通路内の圧力よりも大きくなるようにしておくことができる。これにより、例えば、排気行程外であっても気筒内に発生した中間生成物を含む既燃ガスを吸気通路内に捕集して(回収して)貯蔵することが可能となる。又、気筒内における燃焼室25近傍にてタンデム流やスワール流が発生するように、所謂、タンデムコントロール弁(TCV)やスワールコントロール弁(SCV)を設けたり、吸排気弁片弁閉制御等を実施することも可能である。これにより、気筒内に発生した中間生成物を含む既燃ガスが確実に吸気通路内に進入するようになり、吸気通路内に貯蔵することが可能となる。

Claims (8)

  1.  内燃機関の燃焼室内にて少なくともガソリンを含む燃料を直接噴射する筒内噴射手段と、前記燃焼室内に吸入される空気が通過する吸気通路に配設された吸気弁の開閉時期及び開弁量を連続的に変更する可変動弁手段と、を備えた内燃機関に適用される内燃機関の制御装置であって、
     前記筒内噴射手段が、前記燃焼室から排出された排ガスの通過する排気通路に配設された触媒を昇温させるために前記燃料を噴射した後、
     前記可変動弁手段が、所定の期間、前記吸気弁を開弁することを特徴とする内燃機関の制御装置。
  2.  請求項1に記載した内燃機関の制御装置において、
     前記燃焼室内に供給された前記燃料のうちの未燃の燃料から生成される中間生成物の発生量を推定する中間生成物発生量推定手段を備え、
     前記可変動弁手段は、
     前記中間生成物発生量推定手段によって推定された前記中間生成物の発生量が多いときには前記吸気弁を大きな開弁量により前記所定の期間開弁させ、前記推定された前記中間生成物の発生量が少ないときには前記吸気弁を小さな開弁量により前記所定の期間開弁させることを特徴とする内燃機関の制御装置。
  3.  請求項2に記載した内燃機関の制御装置において、
     前記未燃の燃料から生成される前記中間生成物は、前記吸気通路内に回収されて貯蔵され、前記内燃機関における次回の吸入行程によって前記燃焼室内に吸入されることを特徴とする内燃機関の制御装置。
  4.  請求項2又は請求項3に記載した内燃機関の制御装置において、
     前記中間生成物は、前記未燃の燃料の酸化反応の進行に伴って生成されるものであることを特徴とする内燃機関の制御装置。
  5.  請求項1ないし請求項4のうちのいずれか一つに記載した内燃機関の制御装置において、
     前記所定の期間は、少なくとも、前記内燃機関における排気行程内に設定される期間であることを特徴とする内燃機関の制御装置。
  6.  請求項1ないし請求項5のうちのいずれか一つに記載した内燃機関の制御装置において、
     前記内燃機関の前記吸気弁よりも上流の吸気通路にて前記燃料を噴射するポート噴射手段と、
     前記内燃機関の運転状態に基づいて、前記ポート噴射手段から噴射される前記燃料の量であるポート噴射量と前記筒内噴射手段から噴射される前記燃料の量である筒内噴射量の和に対する前記筒内噴射量の割合である筒内噴射割合を決定する筒内噴射割合決定手段と、を備えており、
     前記内燃機関の燃焼室に対して、前記筒内噴射割合決定手段によって決定された前記筒内噴射割合に基づき、前記筒内噴射手段によって噴射された前記燃料が供給されるとともに前記ポート噴射手段によって噴射された前記燃料が供給されることを特徴とする内燃機関の制御装置。
  7.  請求項2ないし請求項6のうちのいずれか一つに記載した内燃機関の制御装置において、
     前記中間生成物発生量推定手段は、前記燃焼室内に供給された前記燃料が未燃状態によって滞留する滞留時間、前記燃焼室内に供給された前記燃料が未燃状態であるときの温度、及び、前記燃焼室内における前記燃料と空気からなる混合気の空燃比のうちの少なくとも一つに基づいて、前記中間生成物の発生量を推定することを特徴とする内燃機関の制御装置。
  8.  請求項1ないし請求項7のうちのいずれか一つに記載した内燃機関の制御装置において、
     前記内燃機関の燃焼室に供給される前記燃料に含まれるアルコール成分の濃度であるアルコール濃度を検出するアルコール濃度検出手段と、
     前記内燃機関の運転状態温度を検出する温度検出手段と、を備えており、
     前記アルコール濃度検出手段によって検出された前記燃料に含まれるアルコール成分の濃度が予め設定された所定の濃度以上であり、前記温度検出手段によって検出された前記内燃機関の運転状態温度が予め設定された所定の温度未満であるときに、
     前記可変動弁手段が、所定の期間、前記吸気弁を開弁することを特徴とする内燃機関の制御装置。
PCT/JP2011/069452 2011-08-29 2011-08-29 内燃機関の制御装置 WO2013030924A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/001,610 US9399945B2 (en) 2011-08-29 2011-08-29 Control device of internal-combustion engine
PCT/JP2011/069452 WO2013030924A1 (ja) 2011-08-29 2011-08-29 内燃機関の制御装置
JP2013530907A JP5549784B2 (ja) 2011-08-29 2011-08-29 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069452 WO2013030924A1 (ja) 2011-08-29 2011-08-29 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013030924A1 true WO2013030924A1 (ja) 2013-03-07

Family

ID=47755478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069452 WO2013030924A1 (ja) 2011-08-29 2011-08-29 内燃機関の制御装置

Country Status (3)

Country Link
US (1) US9399945B2 (ja)
JP (1) JP5549784B2 (ja)
WO (1) WO2013030924A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231799A (ja) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP2016023570A (ja) * 2014-07-17 2016-02-08 三菱自動車工業株式会社 内燃機関の燃料噴射制御装置
US9291110B2 (en) 2011-08-29 2016-03-22 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003209A1 (de) * 2010-03-24 2011-09-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Anpassung von Adaptionswerten für die Ansteuerung von Einspritzventilen in einem Motorsystem mit mehreren Einspritzungsarten
BR112015000256B1 (pt) * 2012-07-06 2021-04-06 Toyota Jidosha Kabushiki Kaisha Motor de combustão interna e dispositivo de controle para um motor de combustão interna
JP5867443B2 (ja) * 2013-04-12 2016-02-24 トヨタ自動車株式会社 内燃機関
US9518529B2 (en) * 2013-10-11 2016-12-13 Ford Global Technologies, Llc Methods and systems for an intake oxygen sensor
US10105650B2 (en) * 2015-10-29 2018-10-23 Cummins Inc. Multi-pulse injection events for a dual-fuel engine
JP6992703B2 (ja) * 2018-08-07 2022-01-13 トヨタ自動車株式会社 内燃機関の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062940A (ja) * 2007-09-07 2009-03-26 Toyota Motor Corp 内燃機関の燃料噴射制御装置及び内燃機関
JP2009264223A (ja) * 2008-04-24 2009-11-12 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010222978A (ja) * 2009-03-19 2010-10-07 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658094B2 (ja) 1989-10-31 1994-08-03 いすゞ自動車株式会社 アルコールエンジンの再燃焼制御装置
JPH051574A (ja) 1991-06-25 1993-01-08 Mazda Motor Corp エンジンのバルブタイミング制御装置
JP2002242716A (ja) * 2001-02-21 2002-08-28 Hitachi Ltd 筒内噴射エンジンの制御装置
JP4863980B2 (ja) * 2007-12-07 2012-01-25 日立オートモティブシステムズ株式会社 火花点火式内燃機関の制御装置
JP2010065568A (ja) 2008-09-09 2010-03-25 Toyota Motor Corp フレックス燃料内燃機関の制御装置
JP5056770B2 (ja) 2009-02-10 2012-10-24 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062940A (ja) * 2007-09-07 2009-03-26 Toyota Motor Corp 内燃機関の燃料噴射制御装置及び内燃機関
JP2009264223A (ja) * 2008-04-24 2009-11-12 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010222978A (ja) * 2009-03-19 2010-10-07 Toyota Motor Corp 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291110B2 (en) 2011-08-29 2016-03-22 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2014231799A (ja) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP2016023570A (ja) * 2014-07-17 2016-02-08 三菱自動車工業株式会社 内燃機関の燃料噴射制御装置

Also Published As

Publication number Publication date
JPWO2013030924A1 (ja) 2015-03-23
US9399945B2 (en) 2016-07-26
US20140158086A1 (en) 2014-06-12
JP5549784B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5686195B2 (ja) 内燃機関の制御装置
JP5549784B2 (ja) 内燃機関の制御装置
JP4394318B2 (ja) 内燃機関のバルブタイミング制御装置
JP5392418B2 (ja) 内燃機関の着火遅れ期間推定装置及び着火時期制御装置
JP5110205B2 (ja) 内燃機関の制御装置
JP4997177B2 (ja) 内燃機関の排ガス浄化装置
JP2018091267A (ja) 内燃機関の制御装置
JP2008075641A (ja) 内燃機関の制御装置
JP5115664B2 (ja) 内燃機関の排気浄化装置
JP2009062862A (ja) 内燃機関の燃料噴射制御装置
JP2008208784A (ja) 内燃機関の制御システム
US20150159580A1 (en) Control device of internal combustion engine
JP2011012555A (ja) 内燃機関の制御装置
JP4524966B2 (ja) ディーゼル機関の制御システム
JP2004028031A (ja) 直噴火花点火式エンジンの制御装置及び制御方法
JP4893634B2 (ja) 内燃機関の空燃比制御装置
JP2010209859A (ja) 内燃機関の制御装置
JP4792453B2 (ja) 吸入空気量検出装置
JP2012225266A (ja) 内燃機関の制御装置
JP5896292B2 (ja) 内燃機関の運転制御装置
JP2004044527A (ja) 内燃機関の制御装置
JP4068047B2 (ja) 内燃機関の制御装置
JP4895951B2 (ja) ディーゼルエンジンの制御装置
JP6599301B2 (ja) 内燃機関の制御装置
JP2013142305A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530907

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14001610

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871625

Country of ref document: EP

Kind code of ref document: A1