WO2013027580A1 - 高周波フロントエンドモジュール - Google Patents

高周波フロントエンドモジュール Download PDF

Info

Publication number
WO2013027580A1
WO2013027580A1 PCT/JP2012/070170 JP2012070170W WO2013027580A1 WO 2013027580 A1 WO2013027580 A1 WO 2013027580A1 JP 2012070170 W JP2012070170 W JP 2012070170W WO 2013027580 A1 WO2013027580 A1 WO 2013027580A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
side port
reception
signal
circulator
Prior art date
Application number
PCT/JP2012/070170
Other languages
English (en)
French (fr)
Inventor
早藤久夫
降谷孝治
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013529958A priority Critical patent/JP5725186B2/ja
Priority to CN201280040867.9A priority patent/CN103748795B/zh
Publication of WO2013027580A1 publication Critical patent/WO2013027580A1/ja
Priority to US14/182,640 priority patent/US8891596B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • H03H7/465Duplexers having variable circuit topology, e.g. including switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter

Definitions

  • the present invention relates to a high-frequency front-end module for transmitting and receiving a plurality of communication signals having different communication frequency bands using a common antenna for the plurality of communication signals.
  • FIG. 1 is a circuit configuration diagram of a transmission / reception module 900P including a conventional high-frequency front-end module 10P.
  • the high-frequency front-end module 10P used in the conventional transmission / reception module 900P includes a switch (SW) 90, SAW duplexers 91 and 92, a diplexer 93, a SAW filter 94, and low-pass filters 95 and 96.
  • the high frequency front end module 10P includes an antenna side external connection terminal Pc0, transmission signal external input terminals Ptx1, Ptx2, Ptx3, Ptx4, and reception signal external output terminals Prx1, Prx2, Prx3A, Prx3B, Prx4.
  • the switch 90 is a SP6T (Single Pole 6 Throw) switch, and includes one common terminal and six individual terminals.
  • the switch 90 connects one common terminal to one of the six individual terminals by switching control input from the SW control unit 903P via the control signal external input terminal Psw.
  • the transmission signal external input terminals Ptx1, Ptx2, Ptx3, and Ptx4 are connected to the transmission control unit 911 of the communication control unit 901 via power amplifiers 971, 972, 973, and 974, respectively.
  • the reception signal external output terminals Prx1, Prx2, Prx3A, Prx3B, and Prx4 are connected to the reception side control unit 912 of the communication control unit 901.
  • the high-frequency front-end module 10P illustrated in FIG. 1 transmits and receives transmission signals and reception signals using different individual frequency bands through a single antenna 902.
  • a switch used in such a high-frequency front-end module is generally a semiconductor switch using an FET or the like. As the number of individual terminals increases, the shape increases and the cost increases significantly.
  • an object of the present invention is to realize a high-frequency front-end module that is smaller and more excellent in transmission / reception characteristics than the conventional one without using a conventional switch having a large number of individual terminals (number of switching connection terminals). It is in.
  • the high-frequency front-end module of the present invention transmits a plurality of types of communication signal transmission signals and receives a plurality of types of communication signal reception signals using a common antenna for a plurality of types of communication signals.
  • the high-frequency front end module includes a circulator, a transmission side filter, and a reception side filter.
  • the circulator includes an antenna side port connected to a common antenna, a reception signal side port for outputting a reception signal, and a transmission side port for inputting a transmission signal.
  • the circulator transmits a transmission signal from the transmission side port to the antenna side port, and transmits a reception signal from the antenna side port to the reception side port.
  • the transmission side filter is connected to the transmission side port of the circulator.
  • the reception side filter is connected to the reception side port of the circulator.
  • the circulator performs transmission characteristics from the transmission side port to the antenna side port, transmission characteristics from the antenna side port to the reception side port, and transmission side port to reception side port according to the communication signal.
  • An adjustment circuit is provided for adjusting the cutoff characteristics.
  • the transmission side filter and the reception side filter include a variable filter that can adjust the pass band and the attenuation band according to the frequency band of the communication signal.
  • the high frequency front end module has a common transmission signal external input terminal for a plurality of transmission signals.
  • a common received signal external output terminal may be provided for a plurality of received signals. Therefore, the overall configuration of the high-frequency front end module is simplified and reduced in size.
  • the adjustment circuit of the high-frequency front-end module of the present invention is realized by the following configuration as an example.
  • the adjustment circuit includes a first variable impedance circuit connected between the transmission side port and the antenna side port, a second variable impedance circuit connected between the antenna side port and the reception side port, and the transmission side port and the reception side. At least one third variable impedance circuit connected to the side port.
  • variable impedance circuit is connected to any of the circulator ports. At this time, it is preferable to connect variable impedance circuits between all the ports.
  • the impedance when looking at the antenna side port from the transmission side port is adjusted. it can.
  • the transmission signal is transmitted from the transmission side port to the antenna side port with low loss, and the transmission signal is blocked from being transmitted from the transmission side port to the reception side port. Can be transmitted with low loss from the receiving port to the receiving port.
  • the first variable impedance circuit, the second variable impedance circuit, and the third variable impedance circuit are variable capacitance circuits.
  • each variable impedance circuit can be simply configured, and impedance adjustment is easy.
  • variable capacitance circuit is preferably composed of a circulator switch element and a plurality of capacitance-fixed capacitors that are selectively connected by the circulator switch element. .
  • variable capacitance circuit can be easily configured with a general-purpose capacitor and a general-purpose switch.
  • variable filter of the high-frequency front-end module of the present invention can be realized by the following configuration as an example.
  • the variable filter includes a plurality of SAW filters each having a pass band set for each frequency band used for a plurality of types of communication signals, and a filter switch element that selectively connects the plurality of SAW filters.
  • variable filter of the high-frequency front-end module of the present invention can be realized by the following configuration as an example.
  • the variable filter is configured so that communication signals are input / output only to a plurality of SAW filters in which pass bands are set for each frequency band used for a plurality of types of communication signals and to a SAW filter corresponding to a communication signal to be transmitted.
  • An impedance adjustment circuit for performing impedance adjustment.
  • variable filter can be realized with a simple structure. Accordingly, the high-frequency front end module can be realized with a simple structure.
  • an impedance adjustment circuit is connected to the port side connected to the circulators of the plurality of SAW filters, and the side opposite to the port side connected to the circulators of the plurality of SAW filters. It is preferable that a filter switch element is connected to.
  • the impedance adjustment circuit performs impedance matching between each SAW filter and the circulator, it is not necessary to provide a separate matching circuit. Thereby, a further compact high-frequency front end module can be realized.
  • the impedance adjustment circuit of the high-frequency front-end module of the present invention comprises a transmission line connected to a plurality of SAW filters and adjusted in electrical length.
  • the impedance adjustment circuit can be simplified. Thereby, the shape of the high frequency front end module can be further simplified.
  • a small high-frequency front end module having excellent transmission / reception characteristics can be realized.
  • 1 is a circuit diagram of a transmission / reception module 900 including a high-frequency front end module 10 according to a first embodiment. This is a frequency characteristic of attenuation for explaining the concept of transmission characteristics and cutoff characteristics of the variable circulator 20.
  • It is a circuit diagram of the transmission / reception module 900A including the high-frequency front end module 10A according to the second embodiment.
  • GSM Global System for Mobile Communications
  • GSM850 transmission signal GSM850 communication signal transmission signal
  • GSM850 reception signal GSM850 reception signal
  • GSM900 communication signal transmission Signals (hereinafter referred to as GSM900 transmission signals) and reception signals of GSM900 communication signals (hereinafter referred to as GSM900 reception signals) are transmitted and received.
  • GSM900 transmission signals GSM900 transmission signals
  • GSM900 reception signals GSM900 communication signals
  • the GSM850 communication signal, GSM900 communication signal, GSM1800 communication signal, GSM1900 communication signal, and WSM can also be applied to a case where a plurality of communication signals are transmitted / received by a common antenna 902 among communication signals of each band of CDMA (Wideband Code Division Multiple Access).
  • CDMA Wideband Code Division Multiple Access
  • this configuration is applied when a plurality of types of communication signals set so that the transmission frequency band and the reception frequency band constituting one type of communication signal do not overlap are transmitted and received by a common antenna. Can do.
  • the high-frequency front-end module 10 includes each circuit component, which will be described later, composed of a laminate formed by laminating dielectric layers on which electrode patterns are formed, and a chip-type circuit element mounted on the laminate. Realized.
  • FIG. 2 is a circuit diagram of the transmission / reception module 900 including the high-frequency front end module 10 according to the present embodiment.
  • the high frequency front end module 10 includes a variable circulator 20, a transmission side filter 30, and a reception side filter 40.
  • the high-frequency front end module 10 includes an antenna-side external connection terminal Pc0, a transmission signal external input terminal Ptx, a reception signal external output terminal Prx, and a control signal external input terminal Psw.
  • the high-frequency front-end module 10 generally has the following configuration as an internal connection configuration.
  • the antenna-side external connection terminal Pc0 is connected to the antenna-side port of the variable circulator 20 (the antenna-side port CPc of the circulator 21 described later).
  • a transmission side filter 30 is connected to a transmission side port of the variable circulator 20 (transmission side port CPt of a circulator 21 described later).
  • a transmission signal external input terminal Ptx is connected to the transmission filter 30.
  • a reception-side filter 40 is connected to the reception-side port of the variable circulator 20 (reception-side port CPr of the circulator 21 described later).
  • a reception signal external output terminal Prx is connected to the reception filter 40.
  • the high frequency front end module 10 has the following configuration as an external connection configuration.
  • the transmission control unit 911 of the communication control unit 901 is connected to the transmission signal external input terminal Ptx.
  • the reception control unit 912 of the communication control unit 901 is connected to the reception signal external output terminal Prx.
  • the antenna-side external connection terminal Pc0 is connected to the antenna 902.
  • a switch control unit 903 is connected to the control signal external output terminal Psw.
  • FIG. 3 is a frequency characteristic of attenuation for explaining the concept of transmission characteristics and cutoff characteristics of the variable circulator 20.
  • 3A shows characteristics for a GSM850 transmission signal
  • FIG. 3B shows characteristics for a GSM900 transmission signal
  • FIG. 3C shows characteristics for a GSM850 reception signal
  • FIG. 3D shows GSM900 reception.
  • the characteristic for the signal is shown.
  • the description of “Cir only” in the drawing shows a case where only the circulator 21 is used without using the configuration of the present application.
  • the variable circulator 20 includes a circulator 21, switches 221, 222, and 223, and capacitors 231, 232, 233, 234, 235, and 236.
  • the circulator 21 includes an antenna side port CPc, a transmission side port CPt, and a reception side port CPr.
  • a common terminal of the switch 221 is connected to the antenna side port CPc.
  • the switch 221 connects the common terminal to one of the two individual terminals according to the switch control signal from the switch control unit 903.
  • One individual terminal of the switch 221 is connected to the transmission side port CPt via the capacitor 231.
  • the other individual terminal of the switch 221 is connected to the transmission side port CPt via the capacitor 232.
  • the capacitance C 231 of the capacitor 231 and the capacitance C 232 of the capacitor 232 are different.
  • Such a circuit including the switch 221 and the capacitors 231 and 232 corresponds to the “regulation circuit” of the present invention. With such a configuration, either of the capacitors 231 and 232 having different capacitances can be selected and connected between the antenna side port CPc and the transmission side port CPt according to the switch control signal. It becomes possible.
  • a common terminal of the switch 222 is connected to the antenna side port CPc.
  • the switch 222 connects the common terminal to one of the two individual terminals according to the switch control signal from the switch control unit 903.
  • One individual terminal of the switch 222 is connected to the reception side port CPr via the capacitor 233.
  • the other individual terminal of the switch 222 is connected to the reception side port CPr via the capacitor 234.
  • the capacitance C 233 of the capacitor 233 and the capacitance C 234 of the capacitor 234 are different.
  • Such a circuit composed of the switch 222 and the capacitors 233 and 234 also corresponds to the “regulation circuit” of the present invention. With such a configuration, it is possible to select and connect any one of the capacitors 233 and 234 having different capacitances between the antenna side port CPc and the reception side port CPr according to the switch control signal. It becomes possible.
  • a common terminal of the switch 223 is connected to the reception side port CPr.
  • the switch 223 connects the common terminal to one of the two individual terminals according to a switch control signal from the switch control unit 903.
  • One individual terminal of the switch 223 is connected to the transmission side port CPt via the capacitor 235.
  • the other individual terminal of the switch 223 is connected to the transmission side port CPt via the capacitor 236.
  • the capacitance C 235 of the capacitor 235 and the capacitance C 236 of the capacitor 236 are different.
  • Such a circuit composed of the switch 223 and the capacitors 235 and 236 also corresponds to the “regulation circuit” of the present invention. With such a configuration, it is possible to select and connect any one of the capacitors 235 and 236 having different capacitances between the transmission side port CPt and the reception side port CPr according to the switch control signal. It becomes possible.
  • the circulator 21 transmits a transmission signal input from the transmission side port CPt to the antenna side port CPc based on a known circulator structure and outputs the transmission signal.
  • the circulator 21 transmits the reception signal input from the antenna side port CPc to the reception side port CPr and outputs it. Furthermore, the circulator 21 blocks the transmission signal input from the transmission side port CPt from being transmitted to the reception side port CPr.
  • the circulator 21 alone can realize only one type of transmission characteristic and cutoff characteristic due to its structure. Therefore, the circulator 21 according to the present embodiment is shown by a one-dot chain line in FIGS. 3A and 3B in order to transmit both the GSM850 transmission signal and the GSM900 transmission signal from the transmission side port CPt to the antenna side port CPc.
  • the transmission band connecting the transmission side port CPt and the antenna side port CPc is configured such that the frequency band of the GSM850 transmission signal and the GSM900 transmission signal becomes a pass band.
  • insertion loss to the GSM850 transmission signal and the GSM900 transmission signal occurs to some extent.
  • the circulator 21 of this embodiment blocks both the GSM850 transmission signal and the GSM900 transmission signal from the transmission side port CPt without transmitting them to the reception side port CPr
  • the circulator 21 in FIGS. 3A and 3B is used.
  • the transmission path connecting the transmission side port CPt and the reception side port CPr is configured to have a structure in which the frequency band of the GSM850 transmission signal and the GSM900 transmission signal is an attenuation band.
  • the alternate long and short dash line in FIGS. 3A and 3B a sufficient attenuation amount for the GSM850 transmission signal and the GSM900 transmission signal cannot be obtained.
  • the circulator 21 of this embodiment transmits both the GSM850 reception signal and the GSM900 reception signal from the antenna side port CPc to the reception side port CPr.
  • the frequency band of the GSM850 reception signal and the GSM900 reception signal is configured to be a pass band for the transmission path connecting the antenna side port CPc and the reception side port CPr.
  • insertion loss with respect to the GSM850 received signal and the GSM900 received signal occurs to some extent.
  • the circulator 21 of this embodiment blocks both the GSM850 received signal and the GSM900 received signal without transmitting them from the antenna side port CPc to the transmitting side port CPt.
  • the transmission path connecting the antenna side port CPc and the transmission side port CPt is configured to have a frequency band of the GSM850 reception signal and the GSM900 reception signal as an attenuation band.
  • a sufficient amount of attenuation cannot be obtained for the GSM850 received signal and the GSM900 received signal.
  • the switches 221, 222, and 223 are controlled, and a capacitor having a predetermined capacitance is provided between the antenna side port CPc, the transmission side port CPt, and the reception side port CPr of the circulator 21. Switch and connect.
  • a capacitor 231 composed of a capacitor C 231 between the antenna-side port CPc and the transmitting port CPt is connected.
  • the capacitor 233 consisting of a capacitance C 233 between the antenna-side port CPc and the receiving port CPr is connected.
  • a capacitor 235 composed of a capacitor C 235 is connected between the transmitting-side port CPt the receiving port CPr.
  • Capacitances C 231 , C 233 , and C 235 of these capacitors 231 , 233 , and 235 are set so as to obtain the following characteristics.
  • the phase of the GSM850 transmission signal is rotated so that the impedance when the antenna port CPc is viewed from the transmission port CPt and the impedance when the reception port CPr is viewed from the antenna port CPc is about 50 ⁇ .
  • the phase is rotated so that the impedance viewed from the transmission side port CPt and the reception side port CPr and the impedance viewed from the antenna side port CPc and the transmission side port CPt are close to infinity.
  • the transmission side port CPt By connecting capacitors 231 , 233 , and 235 composed of such capacitances C 231 , C 233 , and C 235 , as shown by the solid line in FIG. 3A, in the frequency band of the GSM850 transmission signal, the transmission side port CPt Can be improved by reducing the insertion loss of the signal transmitted from the antenna to the antenna side port CPc. At the same time, as indicated by the broken line in FIG. 3A, in the frequency band of the GSM850 transmission signal, the amount of attenuation with respect to the signal transmitted from the transmission side port CPt to the reception side port CPr can be increased.
  • variable circulator 20 can transmit the GSM850 transmission signal from the transmission side port CPt to the antenna side port CPc with low loss at the time of GSM850 transmission. Furthermore, the variable circulator 20 can sufficiently suppress the wraparound of the GSM850 transmission signal from the transmission side port CPt to the reception side port CPr, and can sufficiently secure isolation between transmission and reception.
  • the antenna side port CPc is used in the frequency band of the GSM850 received signal as shown by the solid line in FIG.
  • the insertion loss of the signal transmitted to the receiving port CPr can be reduced and improved.
  • the attenuation amount for the signal transmitted from the antenna side port CPc to the transmission side port CPt can be increased.
  • a capacitor 232 composed of a capacitor C 232 between the antenna-side port CPc and the transmitting port CPt is connected.
  • the capacitor 234 consisting of a capacitance C 234 between the antenna-side port CPc and the receiving port CPr is connected.
  • a capacitor 236 composed of a capacitor C 236 is connected between the transmitting-side port CPt the receiving port CPr.
  • Capacitances C 232 , C 234 , and C 236 of these capacitors 232 , 234 , and 236 are set so as to obtain the following characteristics.
  • the phase of the GSM900 transmission signal is rotated so that the impedance when the antenna side port CPc is seen from the transmission side port CPt and the impedance when the reception side port CPr is seen from the antenna side port CPc are about 50 ⁇ .
  • the phase is rotated so that the impedance viewed from the transmission side port CPt and the reception side port CPr and the impedance viewed from the antenna side port CPc and the transmission side port CPt are close to infinity.
  • the transmission side port CPt can be improved by reducing the insertion loss of the signal transmitted from the antenna to the antenna side port CPc.
  • the transmission side port CPt can be increased by reducing the insertion loss of the signal transmitted from the antenna to the antenna side port CPc.
  • variable circulator 20 can transmit the GSM900 transmission signal from the transmission side port CPt to the antenna side port CPc with low loss when transmitting the GSM900 transmission signal. Furthermore, the variable circulator 20 can sufficiently suppress the wraparound of the GSM900 transmission signal from the transmission side port CPt to the reception side port CPr, and can sufficiently secure isolation between transmission and reception.
  • capacitors 232 , 234 , and 236 composed of capacitances C 232 , C 234 , and C 236 , as shown by the solid line in FIG. 3D, in the frequency band of the GSM900 received signal, the antenna side port CPc
  • the insertion loss of the signal transmitted to the receiving port CPr can be reduced and improved.
  • the attenuation amount for the signal transmitted from the antenna side port CPc to the transmission side port CPt can be increased.
  • variable circulator of the present embodiment a plurality of transmission signals and reception signals having different frequency bands are transmitted and received with low loss, and a transmission circuit and a reception circuit are provided for any communication signal. Isolation between the two can be ensured.
  • the transmission filter 30 includes SAW filters 311 and 312 and switches 321 and 322.
  • SAW filter 311 is a filter in which the frequency band of the GSM850 transmission signal is a pass band and the other frequency band is an attenuation band.
  • the SAW filter 312 is a filter in which the frequency band of the GSM900 transmission signal is a pass band and the other frequency band is an attenuation band.
  • the switch 321 has a common terminal connected to the transmission signal external input terminal Ptx of the high-frequency front end module 10.
  • the switch 321 connects the common terminal to one of the two individual terminals in response to a switch control signal from the switch control unit 903.
  • One individual terminal of the switch 321 is connected to the SAW filter 311, and the other individual terminal of the switch 321 is connected to the SAW filter 312.
  • the switch 322 has a common terminal connected to the transmission side port CPt of the circulator 21.
  • the switch 322 connects the common terminal to one of the two individual terminals according to the switch control signal from the switch control unit 903.
  • One individual terminal of the switch 322 is connected to the SAW filter 311, and the other individual terminal of the switch 322 is connected to the SAW filter 312.
  • the switches 321 and 322 are controlled so that the signal is transmitted to the SAW filter 311.
  • the switches 321 and 322 are controlled so that the signal is transmitted to the SAW filter 312.
  • the transmission-side filter 30 suppresses noise such as a harmonic signal input together with the GSM850 transmission signal and outputs the suppressed signal to the circulator 21 of the variable circulator 20.
  • the transmission-side filter 30 suppresses noise such as a harmonic signal input together with the GSM900 transmission signal, and outputs it to the circulator 21 of the variable circulator 20.
  • the reception-side filter 40 includes SAW filters 411 and 412 and switches 421 and 422.
  • SAW filter 411 is a filter in which the frequency band of the GSM850 received signal is a pass band and the other frequency band is an attenuation band.
  • the SAW filter 412 is a filter whose pass band is the frequency band of the GSM900 received signal and whose attenuation band is the other frequency band.
  • the switch 421 has a common terminal connected to the reception side port Cpr of the circulator 21.
  • the switch 421 connects the common terminal to one of the two individual terminals according to a switch control signal from the switch control unit 903.
  • One individual terminal of the switch 421 is connected to the SAW filter 411, and the other individual terminal of the switch 421 is connected to the SAW filter 412.
  • the switch 422 has a common terminal connected to the reception signal external output terminal Prx of the high-frequency front end module 10.
  • the switch 422 connects the common terminal to one of the two individual terminals according to the switch control signal from the switch control unit 903.
  • One individual terminal of the switch 422 is connected to the SAW filter 411, and the other individual terminal of the switch 422 is connected to the SAW filter 412.
  • the switches 421 and 422 are controlled so that the signal is transmitted to the SAW filter 411 when the GSM850 received signal is received.
  • the switches 421 and 422 are controlled so that the signal is transmitted to the SAW filter 412.
  • the reception-side filter 40 suppresses noise including frequency components other than the GSM850 reception signal and outputs it to the reception signal external output terminal Prx.
  • the reception-side filter 30 suppresses noise composed of frequency components other than the GSM900 reception signal and outputs it to the reception signal external output terminal Prx.
  • reception filter 40 has such a configuration, a plurality of transmission signals are input from a common transmission signal external input terminal Ptx, and a plurality of reception signals are output from a common reception signal external output terminal Prx.
  • the isolation between the transmission signal external input terminal Ptx and the reception signal external output terminal Prx for any transmission signal and reception signal in other words, Isolation between the transmission control unit 911 and the reception control unit 912 of the communication control unit 901 can be ensured in a very high state.
  • the configuration of the present embodiment does not require such a multi-branch switch, so that it is easier to reduce the size. Then, as the number of communication signals to be transmitted / received increases, the SPnT type switch becomes larger, so that the superiority of the configuration of this embodiment appears remarkably. That is, it is possible to realize a high-frequency front end module that can be further reduced in size while having sufficient transmission characteristics.
  • FIG. 4 is a circuit diagram of a transmission / reception module 900A including the high-frequency front-end module 10A according to the present embodiment.
  • the high-frequency front-end module 10A of the present embodiment is the same as the high-frequency front-end module 10 shown in the first embodiment except for the internal configurations of the transmission-side filter 30A and the reception-side filter 40A. Therefore, only different parts will be described.
  • the transmission-side filter 30A includes SAW filters 311 and 312. These SAW filters 311 and 312 are the same as those in the first embodiment.
  • the one end of the SAW filter 311 is connected to the transmission signal external input terminal Ptx via the phase adjustment line 331A.
  • the other end of the SAW filter 311 is connected to the transmission side port CPt of the circulator 21 via the phase adjustment line 331B.
  • Either or both of the phase adjustment lines 331A and 331B has an electrical length that rotates the phase so that the impedance viewed from the transmission signal external input terminal Ptx to the SAW filter 311 side approaches infinity in the frequency band of the GSM900 transmission signal. Is formed.
  • the one end of the SAW filter 312 is connected to the transmission signal external input terminal Ptx via the phase adjustment line 332A.
  • the other end of the SAW filter 312 is connected to the transmission side port CPt of the circulator 21 via the phase adjustment line 332B.
  • Either or both of the phase adjustment lines 332A and 332B are electric lengths that rotate the phase so that the impedance viewed from the transmission signal external input terminal Ptx to the SAW filter 312 side approaches infinity in the frequency band of the GSM850 transmission signal. Is formed.
  • the GSM850 transmission signal is transmitted to the circulator 21 via the SAW filter 311.
  • the phase adjustment line 331A also functions as a matching circuit between the transmission signal external input terminal Ptx and the SAW filter 311 for the GSM850 transmission signal.
  • the phase adjustment line 331B also functions as a matching circuit between the SAW filter 311 and the circulator 21 for the GSM850 transmission signal.
  • the GSM900 transmission signal is transmitted to the circulator 21 via the SAW filter 312.
  • the phase adjustment line 332A also functions as a matching circuit between the transmission signal external input terminal Ptx and the SAW filter 312 for the GSM900 transmission signal.
  • the phase adjustment line 332B also functions as a matching circuit between the SAW filter 312 and the circulator 21 for the GSM900 transmission signal.
  • the reception-side filter 40A includes SAW filters 411 and 412. These SAW filters 411 and 412 are the same as those in the first embodiment.
  • the one end of the SAW filter 411 is connected to the reception side port Cpr of the circulator 21 via the phase adjustment line 431A.
  • the other end of the SAW filter 411 is connected to the reception signal external output terminal Prx via the phase adjustment line 431B.
  • Either or both of the phase adjustment lines 431A and 431B are electric lengths that rotate the phase so that the impedance viewed from the reception side port Cpr of the circulator 21 to the SAW filter 411 side approaches infinity in the frequency band of the GSM900 reception signal. It is formed with.
  • the one end of the SAW filter 412 is connected to the reception side port Cpr of the circulator 21 via the phase adjustment line 432A.
  • the other end of the SAW filter 412 is connected to the reception signal external output terminal Prx via the phase adjustment line 432B.
  • Either or both of the phase adjustment lines 432A and 432B are electric lengths that rotate the phase so that the impedance viewed from the reception side port Cpr of the circulator 21 to the SAW filter 412 side approaches infinity in the frequency band of the GSM850 reception signal. It is formed with.
  • the GSM850 received signal is transmitted to the received signal external output terminal Prx via the SAW filter 411.
  • the phase adjustment line 431A also functions as a matching circuit between the circulator 21 and the SAW filter 411 for the GSM850 received signal.
  • the phase adjustment line 431B also functions as a matching circuit between the SAW filter 411 and the reception signal external output terminal Prx for the GSM850 reception signal.
  • the GSM900 reception signal is transmitted to the reception signal external output terminal Prx via the SAW filter 412.
  • the phase adjustment line 432A also functions as a matching circuit between the circulator 21 and the SAW filter 412 for the GSM900 received signal.
  • the phase adjustment line 432B also functions as a matching circuit between the SAW filter 412 and the reception signal external output terminal Prx for the GSM900 reception signal.
  • the same effects as those of the first embodiment can be obtained. Furthermore, in the configuration of the present embodiment, since no switches are used for the transmission side filter 30A and the reception side filter 40A, the high-frequency front end module 10A can be realized with a simpler configuration. Further, since the phase adjustment line also functions as a matching circuit, a separate circuit element for matching is not required and a simpler configuration can be realized. Furthermore, since the switch control unit 903A executes only the switch control of the variable circulator 20, the control can be simplified.
  • FIG. 5 is a circuit diagram of a transmission / reception module 900B including the high-frequency front-end module 10B according to the present embodiment.
  • the high-frequency front end module 10B of this embodiment is different from the high-frequency front end modules 10 and 10A of the first and second embodiments except for the internal configurations of the transmission filter 30B and the reception filter 40B. It is. Therefore, only different parts will be described.
  • the transmission-side filter 30B includes SAW filters 311 and 312. These SAW filters 311 and 312 are the same as those in the first embodiment.
  • the one end of the SAW filter 311 is connected to the transmission signal external input terminal Ptx via the switch 321 as in the first embodiment.
  • the other end of the SAW filter 311 is connected to the transmission side port CPt of the circulator 21 via the phase adjustment line 331B as in the second embodiment.
  • One end of the SAW filter 312 is connected to the transmission signal external input terminal Ptx via the switch 321 as in the first embodiment.
  • the other end of the SAW filter 312 is connected to the transmission side port CPt of the circulator 21 via the phase adjustment line 332B as in the second embodiment.
  • the switch control unit 903B performs switch control similar to that of the first embodiment, whereby the GSM850 transmission signal is transmitted to the circulator 21 via the SAW filter 311 and the GSM900 transmission signal is It is transmitted to the circulator 21 through the filter 312.
  • the phase adjustment lines 331 B and 332 B function as a matching circuit between the SAW filters 311 and 312 and the circulator 21. Thereby, transmission loss of the GSM850 transmission signal and the GSM900 transmission signal can be reduced.
  • the reception-side filter 40B includes SAW filters 411 and 412. These SAW filters 411 and 412 are the same as those in the first embodiment.
  • the one end of the SAW filter 411 is connected to the transmission side port CPt of the circulator 21 via the phase adjustment line 431A as in the second embodiment.
  • the other end of the SAW filter 411 is connected to the reception signal external output terminal Prx via the switch 422 as in the first embodiment.
  • One end of the SAW filter 412 is connected to the transmission side port CPt of the circulator 21 via the phase adjustment line 432A as in the second embodiment.
  • the other end of the SAW filter 412 is connected to the reception signal external output terminal Prx via the switch 422 as in the first embodiment.
  • the switch control unit 903B performs the same switch control as in the first embodiment, whereby the GSM850 received signal is transmitted from the circulator 21 to the received signal external output terminal Prx via the SAW filter 411.
  • the GSM900 transmission signal is transmitted from the circulator 21 to the reception signal external output terminal Prx via the SAW filter 312.
  • the phase adjustment lines 431A and 432A function as a matching circuit between the circulator 21 and the SAW filters 411 and 412.
  • the same effects as those of the first embodiment can be obtained. Furthermore, in the configuration of the present embodiment, the number of switches used for the transmission-side filter 30B and the reception-side filter 40B is halved, so that the high-frequency front-end module 10B can be realized with a simple configuration. Further, since the phase adjustment line also functions as a matching circuit, a separate circuit element for matching is not required and a simpler configuration can be realized. Furthermore, the control of the switch control unit 903B can be simplified as compared with the switch control unit 903 of the first embodiment.
  • FIG. 6 is a circuit diagram of a transceiver module 900C including the high-frequency front end module 10C according to the present embodiment.
  • the high frequency front end module 10C of the present embodiment is the same as the high frequency front end module 10A of the first embodiment except for the internal configuration of the variable circulator 20C. Therefore, only different parts will be described.
  • the variable circulator 20C includes a circulator 21 and variable capacitance elements 241, 242, and 243.
  • the circulator 21 is the same as that shown in the first embodiment.
  • a variable capacitance element 241 is connected between the antenna side port CPc and the transmission side port CPt of the circulator 21.
  • a variable capacitance element 242 is connected between the antenna side port CPc and the reception side port CPr.
  • a variable capacitance element 243 is connected between the transmission side port CPt and the reception side port CPr.
  • variable capacitance elements 241, 242, and 243 are controlled to have a capacitance according to the signal to be transmitted.
  • the variable capacitance elements 241, 242, and 243 are realized by, for example, MEMS (Micro Electro Mechanical Systems) elements, variable capacitance diodes, or the like that can adjust the electrostatic capacitance by an applied voltage.
  • the capacitance of the capacitor connected between each port of the circulator 21 can be adjusted in detail, so that the GSM850 communication signal (transmission signal and reception signal), the GSM900 communication signal (transmission signal and reception signal)
  • the impedance can be adjusted in more detail for each of the above. Thereby, transmission loss can be further suppressed.
  • FIG. 7 is a circuit diagram of a transmission / reception module 900D including the high-frequency front-end module 10D according to the present embodiment.
  • the high-frequency front end module 10D of the present embodiment is the same as the high-frequency front end module 10C of the fourth embodiment except for the internal configurations of the transmission-side filters 30D and 40D. Therefore, only different parts will be described.
  • the transmission-side filter 30D includes a variable filter 341 that can adjust a pass frequency band and an attenuation band by a control signal.
  • the variable filter 341 has a structure that can be adjusted so that when the GSM850 transmission signal is transmitted, the frequency band of the GSM850 transmission signal is a pass band and the other frequency band is an attenuation band.
  • the variable filter 341 has a structure that can be adjusted so that when the GSM900 transmission signal is transmitted, the frequency band of the GSM900 transmission signal is a pass band and the other frequency band is an attenuation band.
  • the reception-side filter 40D is composed of a variable filter 441 whose pass frequency band and attenuation band can be adjusted by a control signal.
  • the variable filter 441 has a structure that can be adjusted so that when the GSM850 reception signal is received, the frequency band of the GSM850 reception signal is a pass band and the other frequency band is an attenuation band.
  • the variable filter 441 has a structure that can be adjusted so that when the GSM900 reception signal is received, the frequency band of the GSM900 reception signal is a pass band and the other frequency band is an attenuation band.
  • capacitors are all connected between the antenna-side port CPc, the transmission-side port CPt, and the reception-side port CPr.
  • a capacitor may be connected to at least one of them.
  • the configuration in which the phase is rotated by using the capacitor is shown.
  • the desired impedance adjustment can be performed by rotating the phase by using a circuit element capable of realizing other impedance adjustments such as an inductor by a circuit configuration. It may be realized.
  • the SAW filter is used as an example of the transmission side filter or the reception side filter.
  • an elastic wave filter such as a BAW filter may be used instead of the SAW filter.
  • the filter has a narrow pass band and a steep attenuation characteristic at both ends of the pass band.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

高周波フロントエンドモジュール(10)は、可変サーキュレータ(20)、送信側フィルタ(30)、および受信側フィルタ(40)を備える。可変サーキュレータ(20)のサーキュレータ(21)のアンテナ側ポート(CPc)と送信側ポート(CPt)との間には、スイッチ(221)によって選択的に接続されるキャパシタ(231、232)を備える。サーキュレータ(21)のアンテナ側ポート(CPc)と受信側ポート(CPr)との間には、スイッチ(222)によって選択的に接続されるキャパシタ(233、234)を備える。サーキュレータ(21)の送信側ポート(CPt)と受信側ポート(CPr)との間には、スイッチ(223)によって選択的に接続されるキャパシタ(235、236)を備える。キャパシタの選択によって、ポート間の位相特性を、伝送する送信信号および受信信号に応じた特性に調整する。

Description

高周波フロントエンドモジュール
 本発明は、通信周波数帯域が異なる複数の通信信号を、これら複数の通信信号に対する共通のアンテナで送受信するための高周波フロントエンドモジュールに関する。
 従来、通信周波数帯域が異なる複数の通信信号を送受信する高周波フロントエンドモジュールが各種実用化されている。この中で、複数の通信信号に対する共通のアンテナによって、該複数の通信信号を送受信する高周波フロントエンドモジュールがある。
 このような共通アンテナを用いる場合、特許文献1や図1に示すように、一般的には、スイッチ素子により、各通信信号の送受信回路を共通アンテナに切り替えて接続する。図1は、従来の高周波フロントエンドモジュール10Pを含む送受信モジュール900Pの回路構成図である。
 従来の送受信モジュール900Pに用いる高周波フロントエンドモジュール10Pは、スイッチ(SW)90、SAWデュプレクサ91,92、ダイプレクサ93、SAWフィルタ94、ローパスフィルタ95,96を備える。高周波フロントエンドモジュール10Pは、アンテナ側外部接続端子Pc0、送信信号外部入力端子Ptx1,Ptx2,Ptx3,Ptx4、および、受信信号外部出力端子Prx1,Prx2,Prx3A,Prx3B,Prx4を備える。
 スイッチ90は、SP6T(Single Pole 6 Throw)のスイッチであり、1個の共通端子と6個の個別端子とを備える。スイッチ90は、制御信号外部入力端子Pswを介してSW制御部903Pから入力される切り替え制御により、1個の共通端子を6個の個別端子のいずれかに接続する。
 スイッチ90の共通端子は、アンテナ側外部接続端子Pc0へ接続されている。第1個別端子は、SAWデュプレクサ91を介して、送信信号外部入力端子Ptx1と受信信号外部出力端子Prx1へ接続されている。第2個別端子は、SAWデュプレクサ92を介して、送信信号外部入力端子Ptx2と受信信号外部出力端子Prx2へ接続されている。第3個別端子は、ダイプレクサ93を介して、受信信号外部出力端子Prx3A,Prx3Bへ接続されている。第4個別端子は、SAWフィルタ94を介して、受信信号外部出力端子Prx4へ接続されている。第5個別端子は、ローパスフィルタ95を介して送信信号外部入力端子Ptx3へ接続されている。第6個別端子は、ローパスフィルタ96を介して送信信号外部入力端子Ptx4へ接続されている。
 送信信号外部入力端子Ptx1,Ptx2,Ptx3,Ptx4は、それぞれパワーアンプ971,972,973,974を介して通信制御部901の送信制御部911へ接続されている。受信信号外部出力端子Prx1,Prx2,Prx3A,Prx3B,Prx4は、通信制御部901の受信側制御部912へ接続されている。
 この構成より、図1に記載の高周波フロントエンドモジュール10Pでは、異なる個別の周波数帯域を利用した送信信号および受信信号を、単一のアンテナ902で送受信している。
特表2010-52498号公報
 しかしながら、図1に示すような従来の高周波フロントエンドモジュール10Pでは、送信信号および受信信号の数に応じて、スイッチの個別端子数が増加する。このような高周波フロントエンドモジュールで用いるスイッチは、一般にFET等を用いた半導体スイッチであり、個別端子数が増加するほど、形状が大きくなってしまい、コストが大幅に増加する。
 しがって、本発明の目的は、従来のような個別端子数(切り替え接続端子数)が多いスイッチを用いることなく、従来よりも小型で且つ送受信特性に優れる高周波フロントエンドモジュールを実現することにある。
 この発明の高周波フロントエンドモジュールは、複数種類の通信信号に対して共通のアンテナで、複数種類の通信信号の送信信号を送信し、複数種類の通信信号の受信信号を受信する。この高周波フロントエンドモジュールは、サーキュレータ、送信側フィルタ、および受信側フィルタを備える。サーキュレータは、共通のアンテナに接続するアンテナ側ポート、受信信号を出力する受信信号側ポート、送信信号を入力する送信側ポートを備える。サーキュレータは、送信信号を送信側ポートからアンテナ側ポートへ伝送し、受信信号を前記アンテナ側ポートから受信側ポートへ伝送する。送信側フィルタは、サーキュレータの送信側ポートに接続されている。受信側フィルタは、サーキュレータの受信側ポートに接続されている。
 このような構成の上で、サーキュレータは、通信信号に応じて、送信側ポートからアンテナ側ポートへの伝送特性、アンテナ側ポートから受信側ポートへの伝送特性、および送信側ポートから受信側ポートへの遮断特性を調整する調整回路を備える。送信側フィルタおよび受信側フィルタは、通信信号の周波数帯域に応じて通過帯域および減衰帯域を調整可能な可変型フィルタを備える。
 この構成では、サーキュレータにおける送信側および受信側とアンテナ側との間の伝送特性、送受信間の遮断特性を、通信信号毎に調整することが可能になる。これにより、単一のサーキュレータで複数種類の通信信号の送受信が可能になる。さらに、送信側フィルタおよび受信側フィルタも、通信信号に応じた通過特性および減衰特性に調整可能であるので、高周波フロントエンドモジュールとして、複数の送信信号に対して共通の送信信号外部入力端子を備え、複数の受信信号に対して共通の受信信号外部出力端子を備えればよい。したがって、高周波フロントエンドモジュールの全体構成が簡略化かされ、小型化される。この際、サーキュレータ、送信側フィルタおよび受信側フィルタは、通信信号に応じて特性調整されているので、それぞれの通信信号に応じた伝送特性は維持される。
 また、この発明の高周波フロントエンドモジュールの調整回路は、一例として次の構成により実現される。調整回路は、送信側ポートとアンテナ側ポートとの間に接続された第1可変インピーダンス回路、アンテナ側ポートと受信側ポートとの間に接続された第2可変インピーダンス回路、および送信側ポートと受信側ポートとの間に接続された第3可変インピーダンス回路の少なくとも1つを備える。
 この構成では、調整回路の具体的な構成例を示しており、可変インピーダンス回路をサーキュレータの各ポート間のいずれかに接続する。この際、全てのポート間に可変インピーダンス回路を接続することが好ましい。
 このような可変インピーダンス回路を備えることで、送信側ポートからアンテナ側ポートを見たインピーダンス、アンテナ側ポートから受信側ポートを見たインピーダンス、および、送信側ポートから受信側ポートを見たインピーダンスを調整できる。これにより、通信信号毎に、送信信号を送信側ポートからアンテナ側ポートへ低損失で伝送するとともに、送信信号を送信側ポートから受信側ポートへ伝送しないように遮断し、受信信号をアンテナ側ポートから受信側ポートへ低損失で伝送することができる。
 また、この発明の高周波フロントエンドモジュールでは、第1可変インピーダンス回路、第2可変インピーダンス回路、第3可変インピーダンス回路は、可変容量回路であることが好ましい。
 この構成では、各可変インピーダンス回路を簡素に構成でき、インピーダンス調整も容易である。
 また、この発明の高周波フロントエンドモジュールでは、可変容量回路は、サーキュレータ用スイッチ素子と、該サーキュレータ用スイッチ素子によって選択的に接続される複数のキャパシタンス固定型のキャパシタと、で構成されることが好ましい。
 この構成では、汎用のキャパシタと汎用のスイッチとで、可変容量回路を容易に構成することができる。
 また、この発明の高周波フロントエンドモジュールの可変型フィルタは、一例として、次の構成によって実現できる。可変型フィルタは、複数種類の通信信号で利用する周波数帯域毎に通過帯域が設定された複数のSAWフィルタと、該複数のSAWフィルタを選択的に接続するフィルタ用スイッチ素子と、を備える。
 この構成では、通信信号に応じた通過特性および減衰特性を容易に実現でき、さらに、利用しないSAWフィルタを伝送系から分離できる。
 また、この発明の高周波フロントエンドモジュールの可変型フィルタは、一例として、次の構成によって実現できる。可変型フィルタは、複数種類の通信信号で利用する周波数帯域毎に通過帯域が設定された複数のSAWフィルタと、伝送すべき通信信号に対応したSAWフィルタにのみ通信信号が入出力されるようにインピーダンス調整を行うインピーダンス調整回路と、を備える。
 この構成では、スイッチを用いないため、可変型フィルタを簡素な構造で実現できる。これに応じて、高周波フロントエンドモジュールを簡素な構造で実現できる。
 また、この発明の高周波フロントエンドモジュールでは、複数のSAWフィルタのサーキュレータに接続されているポート側にはインピーダンス調整回路が接続され、複数のSAWフィルタのサーキュレータに接続されているポート側とは反対側にはフィルタ用スイッチ素子が接続されていることが好ましい。
 この構成では、インピーダンス調整回路が各SAWフィルタとサーキュレータとの間のインピーダンス整合を行っているので、別途、整合回路を備える必要がない。これにより、さらに小型の高周波フロントエンドモジュールを実現できる。
 また、この発明の高周波フロントエンドモジュールのインピーダンス調整回路は、複数のSAWフィルタに接続され、電気長が調整された伝送線路からなる、ことが好ましい。
 この構成では、インピーダンス調整回路を簡素化することができる。これにより、高周波フロントエンドモジュールの形状を、さらに簡素化することができる。
 この発明によれば、優れた送受信特性を有する小型の高周波フロントエンドモジュールを実現できる。
従来の高周波フロントエンドモジュール10Pを含む送受信モジュール900Pの回路構成図である。 第1の実施形態に係る高周波フロントエンドモジュール10を含む送受信モジュール900の回路図である。 可変サーキュレータ20の伝送特性および遮断特性の概念を説明するための減衰量の周波数特性である。 第2の実施形態に係る高周波フロントエンドモジュール10Aを含む送受信モジュール900Aの回路図である。 第3の実施形態に係る高周波フロントエンドモジュール10Bを含む送受信モジュール900Bの回路図である。 第4の実施形態に係る高周波フロントエンドモジュール10Cを含む送受信モジュール900Cの回路図である。 第5の実施形態に係る高周波フロントエンドモジュール10Dを含む送受信モジュール900Dの回路図である。
 本発明の第1の実施形態に係る高周波フロントエンドモジュール10について、図を参照して説明する。本実施形態では、GSM(Global System for Mobile Communications)850通信信号の送信信号(以下GSM850送信信号と称する。)、GSM850通信信号の受信信号(以下GSM850受信信号と称する。)、GSM900通信信号の送信信号(以下GSM900送信信号と称する。)、GSM900通信信号の受信信号(以下GSM900受信信号と称する。)を送受信する。なお、本実施形態では、GSM850通信信号とGSM900通信信号の二種類を共通のアンテナ900で送受信する場合の構成を示すが、GSM850通信信号、GSM900通信信号、GSM1800通信信号、GSM1900通信信号、およびW-CDMA(Wideband Code Division Multiple Access)の各バンドの通信信号の内、複数の通信信号を共通のアンテナ902で送受信する場合にも、適用することができる。すなわち、1種類の通信信号を構成する送信周波数帯域と受信周波数帯域とが重ならないように設定された複数種類の通信信号を、共通のアンテナで送受信する場合であれば、本構成を適用することができる。
 本実施形態の高周波フロントエンドモジュール10は、後述する各回路構成要素を、電極パターンが形成された誘電体層を積層してなる積層体と、該積層体に実装されたチップ型回路素子とによって実現している。
 図2は、本実施形態に係る高周波フロントエンドモジュール10を含む送受信モジュール900の回路図である。高周波フロントエンドモジュール10は、可変サーキュレータ20、送信側フィルタ30、および受信側フィルタ40を備える。高周波フロントエンドモジュール10は、アンテナ側外部接続端子Pc0、送信信号外部入力端子Ptx、受信信号外部出力端子Prx、および制御信号外部入力端子Pswを備える。
 高周波フロントエンドモジュール10は、内部接続構成として、概略的に次の構成を備える。アンテナ側外部接続端子Pc0には、可変サーキュレータ20のアンテナ側ポート(後述のサーキュレータ21のアンテナ側ポートCPc)が接続されている。可変サーキュレータ20の送信側ポート(後述のサーキュレータ21の送信側ポートCPt)には、送信側フィルタ30が接続されている。送信側フィルタ30には、送信信号外部入力端子Ptxが接続されている。可変サーキュレータ20の受信側ポート(後述のサーキュレータ21の受信側ポートCPr)には、受信側フィルタ40が接続されている。受信側フィルタ40には、受信信号外部出力端子Prxが接続されている。
 高周波フロントエンドモジュール10は、外部接続構成として、次の構成を備える。送信信号外部入力端子Ptxには、通信制御部901の送信制御部911が接続されている。受信信号外部出力端子Prxには、通信制御部901の受信制御部912が接続されている。アンテナ側外部接続端子Pc0には、アンテナ902に接続されている。制御信号外部出力端子Pswには、スイッチ制御部903が接続されている。
 次に、可変サーキュレータ20の具体的な構成について説明する。図3は可変サーキュレータ20の伝送特性および遮断特性の概念を説明するための減衰量の周波数特性である。図3(A)はGSM850送信信号に対する特性を示し、図3(B)はGSM900送信信号に対する特性を示し、図3(C)はGSM850受信信号に対する特性を示し、図3(D)はGSM900受信信号に対する特性を示す。なお、図中の「Cirのみ」の記載は、本願の構成を用いることなく、サーキュレータ21のみを用いた場合を示している。
 可変サーキュレータ20は、サーキュレータ21、スイッチ221,222,223、キャパシタ231,232,233,234,235,236を備える。
 サーキュレータ21は、アンテナ側ポートCPc、送信側ポートCPt、および受信側ポートCPrを備える。
 アンテナ側ポートCPcには、スイッチ221の共通端子が接続されている。スイッチ221は、スイッチ制御部903からのスイッチ制御信号に応じて、共通端子を2個の個別端子のいずれかに接続する。スイッチ221の一方の個別端子は、キャパシタ231を介して送信側ポートCPtへ接続されている。また、スイッチ221の他方の個別端子は、キャパシタ232を介して送信側ポートCPtへ接続されている。キャパシタ231のキャパシタンスC231と、キャパシタ232のキャパシタンスC232は、異なる。このようなスイッチ221、キャパシタ231,232からなる回路が、本発明の「調整回路」に相当する。そして、このような構成とすることで、スイッチ制御信号に応じて、アンテナ側ポートCPcと送信側ポートCPtとの間に異なるキャパシタンスからなるキャパシタ231,232のいずれかを選択して接続することが可能になる。
 アンテナ側ポートCPcには、スイッチ222の共通端子が接続されている。スイッチ222は、スイッチ制御部903からのスイッチ制御信号に応じて、共通端子を2個の個別端子のいずれかに接続する。スイッチ222の一方の個別端子は、キャパシタ233を介して受信側ポートCPrへ接続されている。また、スイッチ222の他方の個別端子は、キャパシタ234を介して受信側ポートCPrへ接続されている。キャパシタ233のキャパシタンスC233と、キャパシタ234のキャパシタンスC234は、異なる。このようなスイッチ222、キャパシタ233,234からなる回路も、本発明の「調整回路」に相当する。そして、このような構成とすることで、スイッチ制御信号に応じて、アンテナ側ポートCPcと受信側ポートCPrとの間に異なるキャパシタンスからなるキャパシタ233,234のいずれかを選択して接続することが可能になる。
 受信側ポートCPrには、スイッチ223の共通端子が接続されている。スイッチ223は、スイッチ制御部903からのスイッチ制御信号に応じて、共通端子を2個の個別端子のいずれかに接続する。スイッチ223の一方の個別端子は、キャパシタ235を介して送信側ポートCPtへ接続されている。また、スイッチ223の他方の個別端子は、キャパシタ236を介して送信側ポートCPtへ接続されている。キャパシタ235のキャパシタンスC235と、キャパシタ236のキャパシタンスC236は、異なる。このようなスイッチ223、キャパシタ235,236からなる回路も、本発明の「調整回路」に相当する。そして、このような構成とすることで、スイッチ制御信号に応じて、送信側ポートCPtと受信側ポートCPrとの間に異なるキャパシタンスからなるキャパシタ235,236のいずれかを選択して接続することが可能になる。
 サーキュレータ21は、既知のサーキュレータの構造を元にして、送信側ポートCPtから入力された送信信号を、アンテナ側ポートCPcへ伝送して出力する。また、サーキュレータ21は、アンテナ側ポートCPcから入力された受信信号を、受信側ポートCPrへ伝送して出力する。さらに、サーキュレータ21は、送信側ポートCPtから入力された送信信号を、受信側ポートCPrへ伝送しないように遮断する。
 しかしながら、サーキュレータ21単体では、構造上、一種類の伝送特性と遮断特性しか実現できない。したがって、本実施形態のサーキュレータ21は、GSM850送信信号およびGSM900送信信号の両方を送信側ポートCPtからアンテナ側ポートCPcへ伝送させるため、図3(A)、図3(B)の一点鎖線に示すように、送信側ポートCPtとアンテナ側ポートCPcとを結ぶ伝送経路に対して、GSM850送信信号およびGSM900送信信号の周波数帯域が通過帯域となるように構成されている。ただし、この構成では、図3(A)、図3(B)の一点鎖線に示すように、GSM850送信信号およびGSM900送信信号に対する挿入損失が、ある程度生じてしまう。
 また、本実施形態のサーキュレータ21は、GSM850送信信号およびGSM900送信信号の両方を送信側ポートCPtから受信側ポートCPrへ伝送させず遮断するため、図3(A)、図3(B)の二点鎖線に示すように、送信側ポートCPtと受信側ポートCPrとを結ぶ伝送経路に対して、GSM850送信信号およびGSM900送信信号の周波数帯域を減衰帯域とする構造で構成されている。ただし、この構成では、図3(A)、図3(B)の一点鎖線に示すように、GSM850送信信号およびGSM900送信信号に対する十分な減衰量を得られない。
 同様に、本実施形態のサーキュレータ21は、GSM850受信信号およびGSM900受信信号の両方をアンテナ側ポートCPcから受信側ポートCPrへ伝送させるため、図3(C)、図3(D)の一点鎖線に示すように、アンテナ側ポートCPcと受信側ポートCPrとを結ぶ伝送経路に対して、GSM850受信信号およびGSM900受信信号の周波数帯域が通過帯域となるように構成されている。ただし、この構成では、図3(C)、図3(D)の一点鎖線に示すように、GSM850受信信号およびGSM900受信信号に対する挿入損失が、ある程度生じてしまう。
 また、本実施形態のサーキュレータ21は、GSM850受信信号およびGSM900受信信号の両方をアンテナ側ポートCPcから送信側ポートCPtへ伝送させず遮断するため、図3(C)、図3(D)の二点鎖線に示すように、アンテナ側ポートCPcと送信側ポートCPtとを結ぶ伝送経路に対して、GSM850受信信号およびGSM900受信信号の周波数帯域を減衰帯域とする構造で構成されている。ただし、この構成では、図3(C)、図3(D)の二点鎖線に示すように、GSM850受信信号およびGSM900受信信号に対する十分な減衰量を得られない。
 このため、本実施形態のように、スイッチ221,222,223を制御し、サーキュレータ21のアンテナ側ポートCPc、送信側ポートCPt、受信側ポートCPrのそれぞれの間に、所定のキャパシタンスからなるキャパシタを切り替えて接続する。
 具体的には、例えば、GSM850送信信号の送信時およびGSM850受信信号の受信時には、アンテナ側ポートCPcと送信側ポートCPtとの間にキャパシタンスC231からなるキャパシタ231が接続される。また、アンテナ側ポートCPcと受信側ポートCPrとの間にキャパシタンスC233からなるキャパシタ233が接続される。さらに、送信側ポートCPtと受信側ポートCPrとの間にキャパシタンスC235からなるキャパシタ235が接続される。
 これら、キャパシタ231,233,235のキャパシタンスC231,C233,C235は、次の特性が得られるように設定されている。
 GSM850送信信号に対して、送信側ポートCPtからアンテナ側ポートCPcを見たインピーダンス、およびアンテナ側ポートCPcから受信側ポートCPrを見たインピーダンスが50Ω程度になるように位相を回転させる。同時に、送信側ポートCPtから受信側ポートCPrを見たインピーダンスと、アンテナ側ポートCPcから送信側ポートCPtを見たインピーダンスが無限大に近接するように位相を回転させる。
 このようなキャパシタンスC231,C233,C235からなるキャパシタ231,233,235を接続することにより、図3(A)の実線に示すように、GSM850送信信号の周波数帯域では、送信側ポートCPtからアンテナ側ポートCPcへ伝送される信号の挿入損失を低下させて改善することができる。同時に、図3(A)の破線に示すように、GSM850送信信号の周波数帯域では、送信側ポートCPtから受信側ポートCPrへ伝送される信号に対する減衰量を増加させることができる。
 これにより、可変サーキュレータ20は、GSM850送信時に、送信側ポートCPtからアンテナ側ポートCPcへGSM850送信信号を低損失で伝送することができる。さらに、可変サーキュレータ20は、送信側ポートCPtから受信側ポートCPrへのGSM850送信信号の回り込みを十分に抑圧し、送受信間のアイソレーションを十分に確保することができる。
 また、キャパシタンスC231,C233,C235からなるキャパシタ231,233,235を接続することにより、図3(C)の実線に示すように、GSM850受信信号の周波数帯域では、アンテナ側ポートCPcから受信側ポートCPrへ伝送される信号の挿入損失を低下させて改善することができる。同時に、図3(C)の破線に示すように、GSM850受信信号の周波数帯域では、アンテナ側ポートCPcから送信側ポートCPtへ伝送される信号に対する減衰量を増加させることができる。
 GSM850の場合とは逆に、例えば、GSM900送信信号の送信時およびGSM900受信信号の受信時には、アンテナ側ポートCPcと送信側ポートCPtとの間にキャパシタンスC232からなるキャパシタ232が接続される。また、アンテナ側ポートCPcと受信側ポートCPrとの間にキャパシタンスC234からなるキャパシタ234が接続される。さらに、送信側ポートCPtと受信側ポートCPrとの間にキャパシタンスC236からなるキャパシタ236が接続される。
 これら、キャパシタ232,234,236のキャパシタンスC232,C234,C236は、次の特性が得られるように設定されている。
 GSM900送信信号に対して、送信側ポートCPtからアンテナ側ポートCPcを見たインピーダンス、およびアンテナ側ポートCPcから受信側ポートCPrを見たインピーダンスが50Ω程度になるように位相を回転させる。同時に、送信側ポートCPtから受信側ポートCPrを見たインピーダンスと、アンテナ側ポートCPcから送信側ポートCPtを見たインピーダンスが無限大に近接するように位相を回転させる。
 このようなキャパシタンスC232,C234,C236からなるキャパシタ232,234,236を接続することにより、図3(B)の実線に示すように、GSM900送信信号の周波数帯域では、送信側ポートCPtからアンテナ側ポートCPcへ伝送される信号の挿入損失を低下させて改善することができる。同時に、図3(B)の破線に示すように、GSM900送信信号の周波数帯域では、送信側ポートCPtから受信側ポートCPrへ伝送される信号に対する減衰量を増加させることができる。
 これにより、可変サーキュレータ20は、GSM900送信信号の送信時に、送信側ポートCPtからアンテナ側ポートCPcへGSM900送信信号を低損失で伝送することができる。さらに、可変サーキュレータ20は、送信側ポートCPtから受信側ポートCPrへのGSM900送信信号の回り込みを十分に抑圧し、送受信間のアイソレーションを十分に確保することができる。
 また、キャパシタンスC232,C234,C236からなるキャパシタ232,234,236を接続することにより、図3(D)の実線に示すように、GSM900受信信号の周波数帯域では、アンテナ側ポートCPcから受信側ポートCPrへ伝送される信号の挿入損失を低下させて改善することができる。同時に、図3(D)の破線に示すように、GSM900受信信号の周波数帯域では、アンテナ側ポートCPcから送信側ポートCPtへ伝送される信号に対する減衰量を増加させることができる。
 以上のように、本実施形態の可変サーキュレータを用いれば、周波数帯域の異なる複数の送信信号および受信信号を、それぞれ低損失で送受信し、且ついずれの通信信号に対しても送信回路と受信回路との間のアイソレーションを確保することができる。
 次に、送信側フィルタ30の具体的構成について説明する。図2に示すように、送信側フィルタ30は、SAWフィルタ311,312、スイッチ321,322を備える。
 SAWフィルタ311は、GSM850送信信号の周波数帯域を通過帯域とし、他の周波数帯域が減衰域となるフィルタである。SAWフィルタ312は、GSM900送信信号の周波数帯域を通過帯域とし、他の周波数帯域が減衰域となるフィルタである。
 スイッチ321は、共通端子が高周波フロントエンドモジュール10の送信信号外部入力端子Ptxへ接続されている。スイッチ321は、スイッチ制御部903からのスイッチ制御信号に応じて、共通端子を2個の個別端子のいずれかに接続する。スイッチ321の一方の個別端子はSAWフィルタ311へ接続され、スイッチ321の他方の個別端子はSAWフィルタ312へ接続されている。
 スイッチ322は、共通端子がサーキュレータ21の送信側ポートCPtへ接続されている。スイッチ322は、スイッチ制御部903からのスイッチ制御信号に応じて、共通端子を2個の個別端子のいずれかに接続する。スイッチ322の一方の個別端子はSAWフィルタ311へ接続され、スイッチ322の他方の個別端子はSAWフィルタ312へ接続されている。
 このような構成において、GSM850送信信号の送信時には、SAWフィルタ311に信号が伝送するように、スイッチ321,322が制御される。一方、GSM900送信信号の送信時には、SAWフィルタ312に信号が伝送されるように、スイッチ321,322が制御される。これにより、送信側フィルタ30は、GSM850送信信号の送信時には、GSM850送信信号とともに入力される高調波信号等のノイズを抑圧して、可変サーキュレータ20のサーキュレータ21へ出力する。また、送信側フィルタ30は、GSM900送信信号の送信時には、GSM900送信信号とともに入力される高調波信号等のノイズを抑圧して、可変サーキュレータ20のサーキュレータ21へ出力する。
 次に、受信側フィルタ40の具体的構成について説明する。図2に示すように、受信側フィルタ40は、SAWフィルタ411,412、スイッチ421,422を備える。
 SAWフィルタ411は、GSM850受信信号の周波数帯域を通過帯域とし、他の周波数帯域が減衰域となるフィルタである。SAWフィルタ412は、GSM900受信信号の周波数帯域を通過帯域とし、他の周波数帯域が減衰域となるフィルタである。
 スイッチ421は、共通端子がサーキュレータ21の受信側ポートCprへ接続されている。スイッチ421は、スイッチ制御部903からのスイッチ制御信号に応じて、共通端子を2個の個別端子のいずれかに接続する。スイッチ421の一方の個別端子はSAWフィルタ411へ接続され、スイッチ421の他方の個別端子はSAWフィルタ412へ接続されている。
 スイッチ422は、共通端子が高周波フロントエンドモジュール10の受信信号外部出力端子Prxへ接続されている。スイッチ422は、スイッチ制御部903からのスイッチ制御信号に応じて、共通端子を2個の個別端子のいずれかに接続する。スイッチ422の一方の個別端子はSAWフィルタ411へ接続され、スイッチ422の他方の個別端子はSAWフィルタ412へ接続されている。
 このような構成において、GSM850受信信号の受信時には、SAWフィルタ411に信号が伝送するように、スイッチ421,422が制御される。一方、GSM900受信信号の受信時には、SAWフィルタ412に信号が伝送されるように、スイッチ421,422が制御される。これにより、受信側フィルタ40は、GSM850受信信号の受信時には、GSM850受信信号以外の周波数成分からなるノイズを抑圧して、受信信号外部出力端子Prxへ出力する。また、受信側フィルタ30は、GSM900受信信号の受信時には、GSM900受信信号以外の周波数成分からなるノイズを抑圧して、受信信号外部出力端子Prxへ出力する。
 そして、受信フィルタ40をこのような構成にすれば、複数の送信信号を共通の送信信号外部入力端子Ptxから入力し、複数の受信信号を共通の受信信号外部出力端子Prxから出力する構成であっても、上述の可変サーキュレータ20の効果との相乗効果により、いずれの送信信号および受信信号に対しても、送信信号外部入力端子Ptxと受信信号外部出力端子Prxとの間のアイソレーション、言い換えれば通信制御部901の送信制御部911と受信制御部912と間のアイソレーションを非常に高い状態で確保することができる。
 そして、従来のSPnTのスイッチを用いて本実施形態のような特性を実現しようとした場合、GSM850送信用、GSM850受信用、GSM900送信用、GSM900受信用の個別端子が必要となり、SP4Tのスイッチとなってしまうが、本実施形態の構成では、このような多分岐型のスイッチを必要としないので、より小型化が容易になる。そして、送受信する通信信号数が増加するほど、SPnT型スイッチが大きくなることから、本実施形態の構成の優位性は顕著に表れる。すなわち、十分な伝送特性を有しながら、より一層小型化が可能な高周波フロントエンドモジュールを実現することができる。
 次に、第2の実施形態に係る高周波フロントエンドモジュールについて、図を参照して説明する。図4は、本実施形態に係る高周波フロントエンドモジュール10Aを含む送受信モジュール900Aの回路図である。本実施形態の高周波フロントエンドモジュール10Aは、送信側フィルタ30A、受信側フィルタ40Aの内部構成が異なるのみで、他の構成は第1の実施形態に示した高周波フロントエンドモジュール10と同じである。したがって、異なる箇所のみを説明する。
 送信側フィルタ30Aは、SAWフィルタ311,312を備える。これらSAWフィルタ311,312は、第1の実施形態と同じである。
 SAWフィルタ311の一方端は、位相調整線路331Aを介して、送信信号外部入力端子Ptxへ接続されている。SAWフィルタ311の他方端は、位相調整線路331Bを介して、サーキュレータ21の送信側ポートCPtへ接続されている。位相調整線路331A,331Bのいずれかあるいは双方は、GSM900送信信号の周波数帯域において、送信信号外部入力端子PtxからSAWフィルタ311側を見たインピーダンスが無限大に近づくように位相を回転させる電気長で形成されている。
 SAWフィルタ312の一方端は、位相調整線路332Aを介して、送信信号外部入力端子Ptxへ接続されている。SAWフィルタ312の他方端は、位相調整線路332Bを介して、サーキュレータ21の送信側ポートCPtへ接続されている。位相調整線路332A,332Bのいずれかあるいは双方は、GSM850送信信号の周波数帯域において、送信信号外部入力端子PtxからSAWフィルタ312側を見たインピーダンスが無限大に近づくように位相を回転させる電気長で形成されている。
 このような構成により、GSM850送信信号は、SAWフィルタ311を介してサーキュレータ21へ伝送される。この際、位相調整線路331Aは、GSM850送信信号に対する、送信信号外部入力端子PtxとSAWフィルタ311との間の整合回路としても機能する。また、位相調整線路331Bは、GSM850送信信号に対する、SAWフィルタ311とサーキュレータ21との間の整合回路としても機能する。これにより、GSM850送信信号の送信時には、送信信号外部入力端子Ptxからサーキュレータ21まで、GSM850送信信号を低損失で伝送できる。
 また、GSM900送信信号は、SAWフィルタ312を介してサーキュレータ21へ伝送される。この際、位相調整線路332Aは、GSM900送信信号に対する、送信信号外部入力端子PtxとSAWフィルタ312との間の整合回路としても機能する。また、位相調整線路332Bは、GSM900送信信号に対する、SAWフィルタ312とサーキュレータ21との間の整合回路としても機能する。これにより、GSM900送信信号の送信時には、送信信号外部入力端子Ptxからサーキュレータ21まで、GSM900送信信号を低損失で伝送できる。
 受信側フィルタ40Aは、SAWフィルタ411,412を備える。これらSAWフィルタ411,412は、第1の実施形態と同じである。
 SAWフィルタ411の一方端は、位相調整線路431Aを介して、サーキュレータ21の受信側ポートCprへ接続されている。SAWフィルタ411の他方端は、位相調整線路431Bを介して、受信信号外部出力端子Prxへ接続されている。位相調整線路431A,431Bのいずれかあるいは双方は、GSM900受信信号の周波数帯域において、サーキュレータ21の受信側ポートCprからSAWフィルタ411側を見たインピーダンスが無限大に近づくように位相を回転させる電気長で形成されている。
 SAWフィルタ412の一方端は、位相調整線路432Aを介して、サーキュレータ21の受信側ポートCprへ接続されている。SAWフィルタ412の他方端は、位相調整線路432Bを介して、受信信号外部出力端子Prxへ接続されている。位相調整線路432A,432Bのいずれかあるいは双方は、GSM850受信信号の周波数帯域において、サーキュレータ21の受信側ポートCprからSAWフィルタ412側を見たインピーダンスが無限大に近づくように位相を回転させる電気長で形成されている。
 このような構成により、GSM850受信信号は、SAWフィルタ411を介して受信信号外部出力端子Prxへ伝送される。この際、位相調整線路431Aは、GSM850受信信号に対する、サーキュレータ21とSAWフィルタ411との間の整合回路としても機能する。また、位相調整線路431Bは、GSM850受信信号に対する、SAWフィルタ411と受信信号外部出力端子Prxとの間の整合回路としても機能する。これにより、GSM850受信信号の受信時には、サーキュレータ21から受信信号外部出力端子Prxまで、GSM850受信信号を低損失で伝送できる。
 また、GSM900受信信号は、SAWフィルタ412を介して受信信号外部出力端子Prxへ伝送される。この際、位相調整線路432Aは、GSM900受信信号に対する、サーキュレータ21とSAWフィルタ412との間の整合回路としても機能する。また、位相調整線路432Bは、GSM900受信信号に対する、SAWフィルタ412と受信信号外部出力端子Prxとの間の整合回路としても機能する。これにより、GSM900受信信号の受信時には、サーキュレータ21から受信信号外部出力端子Prxまで、GSM900受信信号を低損失で伝送できる。
 以上のような構成であっても、第1の実施形態と同様の作用効果を得ることができる。さらに、本実施形態の構成では、送信側フィルタ30A、受信側フィルタ40Aにスイッチを用いていないので、高周波フロントエンドモジュール10Aを、さらに簡素な構成で実現することができる。また、位相調整線路が整合回路としても機能するため、別途整合用の回路素子を必要とせず、さらに簡素な構成を実現できる。さらに、スイッチ制御部903Aは、可変サーキュレータ20のスイッチ制御のみを実行するので、制御も簡素化できる。
 次に、第3の実施形態に係る高周波フロントエンドモジュールについて、図を参照して説明する。図5は、本実施形態に係る高周波フロントエンドモジュール10Bを含む送受信モジュール900Bの回路図である。本実施形態の高周波フロントエンドモジュール10Bは、送信側フィルタ30B、受信側フィルタ40Bの内部構成が異なるのみで、他の構成は第1、第2の実施形態の高周波フロントエンドモジュール10,10Aと同じである。したがって、異なる箇所のみを説明する。
 送信側フィルタ30Bは、SAWフィルタ311,312を備える。これらSAWフィルタ311,312は、第1の実施形態と同じである。
 SAWフィルタ311の一方端は、第1の実施形態と同様にスイッチ321を介して、送信信号外部入力端子Ptxへ接続されている。SAWフィルタ311の他方端は、第2の実施形態と同様に位相調整線路331Bを介して、サーキュレータ21の送信側ポートCPtへ接続されている。SAWフィルタ312の一方端は、第1の実施形態と同様にスイッチ321を介して、送信信号外部入力端子Ptxへ接続されている。SAWフィルタ312の他方端は、第2の実施形態と同様に位相調整線路332Bを介して、サーキュレータ21の送信側ポートCPtへ接続されている。
 このような構成でも、スイッチ制御部903Bにより、第1の実施形態と同様のスイッチ制御を行うことで、GSM850送信信号は、SAWフィルタ311を介してサーキュレータ21へ伝送され、GSM900送信信号は、SAWフィルタ312を介してサーキュレータ21へ伝送される。この際、位相調整線路331B,332Bは、SAWフィルタ311,312と、サーキュレータ21との間の整合回路として機能する。これにより、GSM850送信信号、GSM900送信信号の伝送損失を低減できる。
 受信側フィルタ40Bは、SAWフィルタ411,412を備える。これらSAWフィルタ411,412は、第1の実施形態と同じである。
 SAWフィルタ411の一方端は、第2の実施形態と同様に位相調整線路431Aを介して、サーキュレータ21の送信側ポートCPtへ接続されている。SAWフィルタ411の他方端は、第1の実施形態と同様にスイッチ422を介して、受信信号外部出力端子Prxへ接続されている。SAWフィルタ412の一方端は、第2の実施形態と同様に位相調整線路432Aを介して、サーキュレータ21の送信側ポートCPtへ接続されている。SAWフィルタ412の他方端は、第1の実施形態と同様にスイッチ422を介して、受信信号外部出力端子Prxへ接続されている。
 このような構成でも、スイッチ制御部903Bにより、第1の実施形態と同様のスイッチ制御を行うことで、GSM850受信信号は、サーキュレータ21からSAWフィルタ411を介して受信信号外部出力端子Prxへ伝送され、GSM900送信信号は、サーキュレータ21からSAWフィルタ312を介して受信信号外部出力端子Prxへ伝送される。この際、位相調整線路431A,432Aは、サーキュレータ21とSAWフィルタ411,412との間の整合回路として機能する。これにより、GSM850受信信号、GSM900受信信号の伝送損失を低減できる。
 以上のような構成であっても、第1の実施形態と同様の作用効果を得ることができる。さらに、本実施形態の構成では、送信側フィルタ30B、受信側フィルタ40Bに用いるスイッチ数が半減するので、高周波フロントエンドモジュール10Bを、簡素な構成で実現することができる。また、位相調整線路が整合回路としても機能するため、別途整合用の回路素子を必要とせず、さらに簡素な構成を実現できる。さらに、スイッチ制御部903Bの制御も、第1の実施形態のスイッチ制御部903よりも簡素化できる。
 次に、第4の実施形態に係る高周波フロントエンドモジュールについて、図を参照して説明する。図6は、本実施形態に係る高周波フロントエンドモジュール10Cを含む送受信モジュール900Cの回路図である。本実施形態の高周波フロントエンドモジュール10Cは、可変サーキュレータ20Cの内部構成が異なるのみで、他の構成は第1の実施形態の高周波フロントエンドモジュール10Aと同じである。したがって、異なる箇所のみを説明する。
 可変サーキュレータ20Cは、サーキュレータ21、可変容量素子241,242,243を備える。サーキュレータ21は、第1の実施形態に示したものと同じである。サーキュレータ21のアンテナ側ポートCPcと送信側ポートCPtとの間には、可変容量素子241が接続されている。アンテナ側ポートCPcと受信側ポートCPrとの間には、可変容量素子242が接続されている。送信側ポートCPtと受信側ポートCPrとの間には、可変容量素子243が接続されている。これら可変容量素子241,242,243が「調整回路」に相当する。
 可変容量素子241,242,243は、伝送する信号に応じたキャパシタンスに制御される。可変容量素子241,242,243は、例えば、印加電圧により静電容量を調整可能なMEMS(Micro Electro Mechanical Systems)素子や可変容量ダイオード等によって実現される。
 このような構成であっても、第1の実施形態と同様の作用効果を得ることができる。さらに、本実施形態の構成では、サーキュレータ21の各ポート間に接続されるキャパシタのキャパシタンスを詳細に調整できるので、GSM850通信信号(送信信号および受信信号)、GSM900通信信号(送信信号および受信信号)のそれぞれに対して、より詳細にインピーダンスを調整することができる。これにより、さらに伝送損失を抑制することができる。

 次に、第5の実施形態に係る高周波フロントエンドモジュールについて、図を参照して説明する。図7は、本実施形態に係る高周波フロントエンドモジュール10Dを含む送受信モジュール900Dの回路図である。本実施形態の高周波フロントエンドモジュール10Dは、送信側フィルタ30D,40Dの内部構成が異なるのみで、他の構成は第4の実施形態の高周波フロントエンドモジュール10Cと同じである。したがって、異なる箇所のみを説明する。
 送信側フィルタ30Dは、制御信号により通過周波数帯域および減衰帯域を調整可能な可変フィルタ341からなる。可変フィルタ341は、GSM850送信信号の送信時には、GSM850送信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするように調整可能な構造を有する。可変フィルタ341は、GSM900送信信号の送信時には、GSM900送信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするように調整可能な構造を有する。
 受信側フィルタ40Dは、制御信号により通過周波数帯域および減衰帯域を調整可能な可変フィルタ441からなる。可変フィルタ441は、GSM850受信信号の受信時には、GSM850受信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするように調整可能な構造を有する。可変フィルタ441は、GSM900受信信号の受信時には、GSM900受信信号の周波数帯域を通過帯域とし、他の周波数帯域を減衰域とするように調整可能な構造を有する。
 このような構成により、高周波フロントエンドモジュール10Dの回路構成要素を、さらに少なくすることができる。
 なお、上述の説明では、アンテナ側ポートCPc、送信側ポートCPt、および受信側ポートCPrのそれぞれの間に、全てキャパシタを接続する例を示したが、上述するインピーダンス調整機能を実現可能であれば、これらの間の少なくとも1つにキャパシタを接続すればよい。また、上述の説明では、キャパシタを用いて位相を回転させる構成を示したが、インダクタ等の他のインピーダンス調整を回路構成で実現できる回路素子を用いて位相を回転させて、所望のインピーダンス調整を実現してもよい。
 なお、上述の説明では、送信側フィルタまたは受信側フィルタの例として、SAWフィルタを用いて説明したが、SAWフィルタに代えてBAWフィルタ等の弾性波フィルタを用いてもよい。特に、通過帯域が狭く、通過帯域の両端の減衰特性が急峻なフィルタであると望ましい。
10,10A,10B,10C,10D,10P:高周波フロントエンドモジュール、
20:可変サーキュレータ、21:サーキュレータ、221,222,223:スイッチ、231,232,233,234,235,236:キャパシタ、241,242,243:可変容量素子、
30,30A:送信側フィルタ、311,312:SAWフィルタ、321,322:スイッチ、331A,331B,332A,332B:位相調整線路、341:可変フィルタ、
40,40A:受信側フィルタ、411,412:SAWフィルタ、421,422:スイッチ、431A,431B,432A,432B:位相調整線路、441:可変フィルタ、
90:スイッチ、91,92:SAWデュプレクサ、93:ダイプレクサ、94:SAWフィルタ、95,96:ローパスフィルタ、
900,900A,900B,900C,900D,900P:送受信モジュール、901:通信制御部、911:送信制御部、912:受信制御部、902:アンテナ、903,903A,903B,903C,903D,903P:SW制御部、971,972,973,974:パワーアンプ、

Claims (8)

  1.  複数種類の通信信号に対して共通のアンテナで、前記複数種類の通信信号の送信信号を送信し、前記複数種類の通信信号の受信信号を受信する高周波フロントエンドモジュールであって、
     前記共通のアンテナに接続するアンテナ側ポート、前記受信信号を出力する受信信号側ポート、前記送信信号を入力する送信側ポートを備え、前記送信信号を前記送信側ポートから前記アンテナ側ポートへ伝送し、前記受信信号を前記アンテナ側ポートから前記受信側ポートへ伝送するサーキュレータと、
     前記サーキュレータの前記送信側ポートに接続された送信側フィルタと、
     前記サーキュレータの前記受信側ポートに接続された受信側フィルタと、を備え、
     前記サーキュレータは、前記通信信号に応じて、前記送信側ポートから前記アンテナ側ポートへの伝送特性、前記アンテナ側ポートから前記受信側ポートへの伝送特性、および前記送信側ポートから前記受信側ポートへの遮断特性を調整する調整回路を備え、
     前記送信側フィルタおよび前記受信側フィルタは、前記通信信号の周波数帯域に応じて通過帯域および減衰帯域を調整可能な可変型フィルタを備える、高周波フロントエンドモジュール。
  2.  前記調整回路は、
     前記送信側ポートと前記アンテナ側ポートとの間に接続された第1可変インピーダンス回路、前記アンテナ側ポートと前記受信側ポートとの間に接続された第2可変インピーダンス回路、および前記送信側ポートと前記受信側ポートとの間に接続された第3可変インピーダンス回路の少なくとも1つを備える、請求項1に記載の高周波フロントエンドモジュール。
  3.  前記第1可変インピーダンス回路、前記第2可変インピーダンス回路、前記第3可変インピーダンス回路は、可変容量回路である、請求項2に記載の高周波フロントエンドモジュール。
  4.  前記可変容量回路は、
     サーキュレータ用スイッチ素子と、
     該サーキュレータ用スイッチ素子によって選択的に接続される複数のキャパシタンス固定型のキャパシタと、で構成されている、請求項3に記載の高周波フロントエンドモジュール。
  5.  前記可変型フィルタは、
     前記複数種類の通信信号で利用する周波数帯域毎に通過帯域が設定された複数のSAWフィルタと、
     該複数のSAWフィルタを選択的に接続するフィルタ用スイッチ素子と、を備える請求項1乃至請求項4のいずれかに記載の高周波フロントエンドモジュール。
  6.  前記可変型フィルタは、
     前記複数種類の通信信号で利用する周波数帯域毎に通過帯域が設定された複数のSAWフィルタと、
     伝送すべき通信信号に対応したSAWフィルタにのみ通信信号が入出力されるようにインピーダンス調整を行うインピーダンス調整回路と、を備える請求項1乃至請求項5のいずれかに記載の高周波フロントエンドモジュール。
  7.  前記複数のSAWフィルタの前記サーキュレータに接続されているポート側には、前記インピーダンス調整回路が接続され、
     前記複数のSAWフィルタの前記サーキュレータに接続されているポート側とは反対側には、前記フィルタ用スイッチ素子が接続されている、請求項6に記載の高周波フロントエンドモジュール。
  8.  前記インピーダンス調整回路は、前記複数のSAWフィルタに接続され、電気長が調整された伝送線路からなる、請求項6または請求項7に記載の高周波フロントエンドモジュール。
PCT/JP2012/070170 2011-08-24 2012-08-08 高周波フロントエンドモジュール WO2013027580A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013529958A JP5725186B2 (ja) 2011-08-24 2012-08-08 高周波フロントエンドモジュール
CN201280040867.9A CN103748795B (zh) 2011-08-24 2012-08-08 高频前端模块
US14/182,640 US8891596B2 (en) 2011-08-24 2014-02-18 High frequency front end module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011182188 2011-08-24
JP2011-182188 2011-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/182,640 Continuation US8891596B2 (en) 2011-08-24 2014-02-18 High frequency front end module

Publications (1)

Publication Number Publication Date
WO2013027580A1 true WO2013027580A1 (ja) 2013-02-28

Family

ID=47746329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070170 WO2013027580A1 (ja) 2011-08-24 2012-08-08 高周波フロントエンドモジュール

Country Status (4)

Country Link
US (1) US8891596B2 (ja)
JP (1) JP5725186B2 (ja)
CN (1) CN103748795B (ja)
WO (1) WO2013027580A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080243A1 (ja) * 2013-11-28 2015-06-04 株式会社村田製作所 フロントエンド回路および無線通信装置
WO2015093462A1 (ja) * 2013-12-20 2015-06-25 株式会社村田製作所 高周波回路及び該高周波回路を用いた送受信回路
JP2015146527A (ja) * 2014-02-03 2015-08-13 シャープ株式会社 通信回路、及び、通信装置
WO2015124368A1 (de) * 2014-02-20 2015-08-27 Epcos Ag Abstimmbarer duplexer mit einem zirkulator
JP2015204629A (ja) * 2014-04-11 2015-11-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. キャリアアグリゲーション回路、高周波モジュール、および無線装置
CN105379129A (zh) * 2013-07-16 2016-03-02 株式会社村田制作所 前端电路
CN105850038A (zh) * 2013-12-27 2016-08-10 株式会社村田制作所 分波装置
WO2016208559A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 分波回路
JP2017533625A (ja) * 2014-09-10 2017-11-09 スナップトラック・インコーポレーテッド 拡張性を向上した高周波フィルターモジュール
WO2018016279A1 (ja) * 2016-07-22 2018-01-25 株式会社村田製作所 高周波フィルタ回路、マルチプレクサ、高周波フロントエンド回路及び通信装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125980A1 (ja) * 2013-02-12 2014-08-21 株式会社村田製作所 高周波モジュールおよび通信装置
WO2015053045A1 (ja) * 2013-10-10 2015-04-16 株式会社村田製作所 高周波フロントエンド回路
JP6790447B2 (ja) * 2016-05-12 2020-11-25 株式会社村田製作所 スイッチモジュール
CN109478873B (zh) * 2016-06-30 2022-05-06 株式会社村田制作所 高频模块、多工器及多重滤波器
US20180166763A1 (en) * 2016-11-14 2018-06-14 Skyworks Solutions, Inc. Integrated microstrip and substrate integrated waveguide circulators/isolators formed with co-fired magnetic-dielectric composites
US9929769B1 (en) * 2017-01-20 2018-03-27 Resonant Inc. Communications receiver using multi-band transmit blocking filters
JP7115941B2 (ja) 2017-09-08 2022-08-09 スカイワークス ソリューションズ,インコーポレイテッド 複合材料の形成方法、及び無線周波数アイソレータ又はサーキュレータの形成方法
US11603333B2 (en) 2018-04-23 2023-03-14 Skyworks Solutions, Inc. Modified barium tungstate for co-firing
US11565976B2 (en) 2018-06-18 2023-01-31 Skyworks Solutions, Inc. Modified scheelite material for co-firing
JP2020096313A (ja) * 2018-12-14 2020-06-18 株式会社村田製作所 送受信モジュール

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022132A1 (ja) * 2004-08-23 2006-03-02 Nec Corporation 高周波回路およびこれを用いた通信装置
JP2008271541A (ja) * 2007-04-02 2008-11-06 Honeywell Internatl Inc Memsフィルタを備えるソフトウェアで設定可能な無線送受信機
JP2011521508A (ja) * 2008-04-08 2011-07-21 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 適応的アンテナインピーダンス整合のためのシステムと方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857813A (ja) 1981-10-02 1983-04-06 Hitachi Ltd 振幅周波数特性の可変な弾性表面波装置
JPH0653772A (ja) 1991-07-21 1994-02-25 Kazuhiko Yamanouchi 可変周波数弾性表面波機能素子及び 可変周波数フィルタ
WO2000052841A1 (fr) 1999-03-01 2000-09-08 Fujitsu Limited Circuit radiofrequence pour emission/reception radioelectrique et module de circuit radiofrequence pour emission/reception radioelectrique
JP2000323961A (ja) 1999-03-10 2000-11-24 Matsushita Electric Ind Co Ltd 弾性表面波共振器を用いた帯域切替フィルタとそれを用いたアンテナ共用器
JP2003060409A (ja) 2001-08-13 2003-02-28 Hitachi Metals Ltd ブルートゥース用rfモジュール
JP2004072549A (ja) 2002-08-08 2004-03-04 Hitachi Ltd 弾性波素子とスイッチを用いた周波数可変フィルタ。
JP4267511B2 (ja) 2004-04-28 2009-05-27 三菱電機株式会社 帯域阻止フィルタ
WO2006090742A1 (ja) * 2005-02-22 2006-08-31 Tadashi Asahina 符号型送信装置及び符号型受信装置
DE102007019082B4 (de) 2007-04-23 2018-04-05 Snaptrack Inc. Frontendmodul
JP2009147878A (ja) 2007-12-18 2009-07-02 Nec Tokin Corp 可変フィルタ
JP5089567B2 (ja) 2008-02-20 2012-12-05 株式会社エヌ・ティ・ティ・ドコモ 非可逆回路素子
JP2010028799A (ja) * 2008-06-16 2010-02-04 Fujitsu Ltd 受信システム
JP5378930B2 (ja) * 2009-09-28 2013-12-25 ルネサスエレクトロニクス株式会社 半導体装置及び無線通信装置
US9543661B2 (en) * 2009-11-09 2017-01-10 Tyco Electronics Services Gmbh RF module and antenna systems
US20110117862A1 (en) * 2009-11-16 2011-05-19 Oluf Bagger Multiband RF Device
US8971398B2 (en) * 2011-09-19 2015-03-03 Infineon Technologies Ag System and method for generating a radio frequency pulse-width modulated signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022132A1 (ja) * 2004-08-23 2006-03-02 Nec Corporation 高周波回路およびこれを用いた通信装置
JP2008271541A (ja) * 2007-04-02 2008-11-06 Honeywell Internatl Inc Memsフィルタを備えるソフトウェアで設定可能な無線送受信機
JP2011521508A (ja) * 2008-04-08 2011-07-21 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 適応的アンテナインピーダンス整合のためのシステムと方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105379129A (zh) * 2013-07-16 2016-03-02 株式会社村田制作所 前端电路
US9979419B2 (en) 2013-07-16 2018-05-22 Murata Manufacturing Co., Ltd. Front-end circuit
WO2015080243A1 (ja) * 2013-11-28 2015-06-04 株式会社村田製作所 フロントエンド回路および無線通信装置
WO2015093462A1 (ja) * 2013-12-20 2015-06-25 株式会社村田製作所 高周波回路及び該高周波回路を用いた送受信回路
US10009048B2 (en) 2013-12-20 2018-06-26 Murata Manufacturing Co., Ltd. High-frequency circuit and transmission and reception circuit using high-frequency circuit
CN105850038B (zh) * 2013-12-27 2019-01-08 株式会社村田制作所 分波装置
CN105850038A (zh) * 2013-12-27 2016-08-10 株式会社村田制作所 分波装置
DE112014006059B4 (de) 2013-12-27 2023-05-04 Murata Manufacturing Co., Ltd. Abzweigvorrichtung
US10116284B2 (en) 2013-12-27 2018-10-30 Murata Manufacturing Co., Ltd. Branching device
JP2015146527A (ja) * 2014-02-03 2015-08-13 シャープ株式会社 通信回路、及び、通信装置
WO2015124368A1 (de) * 2014-02-20 2015-08-27 Epcos Ag Abstimmbarer duplexer mit einem zirkulator
US10033350B2 (en) 2014-02-20 2018-07-24 Snaptrack, Inc. Tunable duplexer having a circulator
JP2015204629A (ja) * 2014-04-11 2015-11-16 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. キャリアアグリゲーション回路、高周波モジュール、および無線装置
US10784903B2 (en) 2014-04-11 2020-09-22 Skyworks Solutions, Inc. Phase control for carrier aggregation
JP2017533625A (ja) * 2014-09-10 2017-11-09 スナップトラック・インコーポレーテッド 拡張性を向上した高周波フィルターモジュール
JPWO2016208559A1 (ja) * 2015-06-24 2018-03-01 株式会社村田製作所 分波回路
US10348268B2 (en) 2015-06-24 2019-07-09 Murata Manufacturing Co., Ltd. Demultiplexing circuit
WO2016208559A1 (ja) * 2015-06-24 2016-12-29 株式会社村田製作所 分波回路
WO2018016279A1 (ja) * 2016-07-22 2018-01-25 株式会社村田製作所 高周波フィルタ回路、マルチプレクサ、高周波フロントエンド回路及び通信装置
US10819310B2 (en) 2016-07-22 2020-10-27 Murata Manufacturing Co., Ltd. Radio-frequency filter circuit, multiplexer, radio-frequency front-end circuit, and communication apparatus

Also Published As

Publication number Publication date
JP5725186B2 (ja) 2015-05-27
US20140169422A1 (en) 2014-06-19
JPWO2013027580A1 (ja) 2015-03-19
US8891596B2 (en) 2014-11-18
CN103748795B (zh) 2015-08-05
CN103748795A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5725186B2 (ja) 高周波フロントエンドモジュール
CN110048735B (zh) 用于射频滤波器的系统和方法
KR102016281B1 (ko) 무선 주파수 필터용 시스템 및 방법
TWI695547B (zh) 用於多頻帶射頻信號路由之裝置與方法
KR102137776B1 (ko) 고주파 프론트 엔드 회로 및 그것을 포함하는 통신 장치
CN105684367B (zh) 与载波聚合前端模块应用有关的系统和方法
JP5293762B2 (ja) 高周波スイッチモジュール
US9287918B2 (en) High-frequency front-end circuit
WO2013021626A1 (ja) フィルタモジュール
JP6294273B2 (ja) 無線周波数モジュール、無線デバイス及び受信インタフェイスモジュール
JP2017208656A (ja) スイッチモジュール及び高周波モジュール
KR20100136160A (ko) Rf 프론트 앤드 모듈 및 이를 이용한 멀티밴드 통신 모듈
WO2016104234A1 (ja) 高周波フロントエンド回路および通信装置
WO2020183985A1 (ja) マルチプレクサ、高周波モジュール及び通信装置
CN103404040A (zh) 高频开关模块
EP3902144A1 (en) Multi-channel transmitter radio frequency front-end structure, terminal, and wireless communication device
EP2487802B1 (en) High-frequency module
US20080079648A1 (en) Antenna Multiplexer With a Pi-Network Circuit and Use of a Pi-Network circuit
JP6365795B2 (ja) 高周波モジュール
US11881844B2 (en) Multiplexer
US9768838B2 (en) Reconfigurable RF receive diplexer
KR20240032160A (ko) Hf 회로, 및 hf 회로를 포함하는 프론트-엔드 회로
JP2012222490A (ja) 高周波回路
WO2015081513A1 (en) Partly tunable filter and radio unit using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529958

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825263

Country of ref document: EP

Kind code of ref document: A1