WO2015093462A1 - 高周波回路及び該高周波回路を用いた送受信回路 - Google Patents

高周波回路及び該高周波回路を用いた送受信回路 Download PDF

Info

Publication number
WO2015093462A1
WO2015093462A1 PCT/JP2014/083223 JP2014083223W WO2015093462A1 WO 2015093462 A1 WO2015093462 A1 WO 2015093462A1 JP 2014083223 W JP2014083223 W JP 2014083223W WO 2015093462 A1 WO2015093462 A1 WO 2015093462A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
circuit
frequency device
variable
matching
Prior art date
Application number
PCT/JP2014/083223
Other languages
English (en)
French (fr)
Inventor
和田 貴也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015093462A1 publication Critical patent/WO2015093462A1/ja
Priority to US15/179,351 priority Critical patent/US10009048B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/12Bandpass or bandstop filters with adjustable bandwidth and fixed centre frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line

Definitions

  • the present invention relates to a high-frequency circuit including a matching circuit that can adjust the input / output impedance of a high-frequency device to an optimum value even when the operating frequency fluctuates, and a transmission / reception circuit using the high-frequency circuit.
  • the power obtained in the receiving circuit is maximized by making the output impedance of the sending circuit equal to the input impedance of the receiving circuit. Become. Therefore, in order to perform transmission efficiently, it is necessary to make their impedances equal (hereinafter referred to as “impedance matching”).
  • the receiving circuit cannot obtain the desired maximum output.
  • the reflected wave generated in the transmission path is superimposed on the traveling wave, increasing transmission loss and noise. There is a risk that inconveniences such as the occurrence of
  • Patent Document 1 discloses a full-duplex wireless device including a variable BPF (bandpass filter) on the transmitter side and the receiver side.
  • BPF bandpass filter
  • An object of the present invention is to provide a high-frequency circuit including a matching circuit that can be used, and a transmission / reception circuit using the high-frequency circuit.
  • a high-frequency circuit includes a first high-frequency device, a second high-frequency device electrically connected to the first high-frequency device, the first high-frequency device, and the A matching circuit connected to the second high-frequency device, wherein at least one of the first high-frequency device and the second high-frequency device includes a variable device, and the operating frequency can be changed.
  • the matching circuit includes at least one variable device capable of impedance matching corresponding to operating frequencies of the first high-frequency device and the second high-frequency device.
  • the first high-frequency device, the second high-frequency device electrically connected to the first high-frequency device, and the matching circuit connected between the first high-frequency device and the second high-frequency device have.
  • At least one of the first high-frequency device and the second high-frequency device is configured to include a variable device, the operating frequency can be changed, and the matching circuit is set to the operating frequency of the first high-frequency device and the second high-frequency device.
  • it has at least one variable device capable of impedance matching.
  • At least one of the first high-frequency device and the second high-frequency device is a variable filter.
  • the operating frequency can be varied by the first high-frequency device and / or the second high-frequency device. Even when the operating frequency fluctuates, impedance matching can be reliably performed by the variable device of the matching circuit. In addition, transmission loss between the first high-frequency device and the second high-frequency device can be minimized.
  • the first high-frequency device is a variable filter and the second high-frequency device is a power amplifier.
  • the variable device of the matching circuit can be used even when the operating frequency varies in the power amplifier and the variable filter.
  • impedance matching can be performed reliably, and fluctuations in the signal output from the power amplifier can be suppressed.
  • the first high-frequency device is a broadband circulator; Connecting an antenna to the first high-frequency device; One high-frequency circuit functions as a transmission circuit, and the other high-frequency circuit functions as a reception circuit.
  • the first high-frequency device is a broadband circulator
  • an antenna is connected to the first high-frequency device
  • one high-frequency circuit is connected.
  • a transmitting circuit and the other high-frequency circuit as a receiving circuit.
  • the first high-frequency device, the second high-frequency device electrically connected to the first high-frequency device, and the first high-frequency device and the second high-frequency device are connected.
  • a matching circuit At least one of the first high-frequency device and the second high-frequency device is configured to include a variable device, the operating frequency can be changed, and the matching circuit is set to the operating frequency of the first high-frequency device and the second high-frequency device.
  • it has at least one variable device capable of impedance matching.
  • FIG. 1 is a schematic diagram showing a configuration of a high-frequency circuit according to Embodiment 1 of the present invention.
  • the high-frequency circuit according to the first embodiment has inputs and outputs of a first high-frequency device 1 and a second high-frequency device 3 that can set operating frequencies over a wide frequency band.
  • a matching circuit 2 capable of adjusting impedance is connected.
  • the first high-frequency device 1 and the second high-frequency device 3 operate over a plurality of frequency bands defined in the 3GPP standard, that is, over a wide frequency band. Yes.
  • variable device As a high-frequency device that can set the operating frequency over a wide frequency band, for example, it is configured to include a variable device, and by setting the element value of the variable device to a predetermined value, the operating frequency is set to a predetermined frequency.
  • a variable element represented by a variable filter that can be set as follows.
  • the variable device means a device whose capacitance value is variable, such as a variable capacitance diode, and is a variable inductor whose inductance is switched by a switch IC, for example.
  • variable element When such a variable element is used in a high-frequency circuit, it is not necessary to change the operating frequencies of both the first high-frequency device 1 and the second high-frequency device 3, and it is possible to change one of the operating frequencies. If there is enough. In any case, it is the matching circuit 2 that performs impedance matching.
  • the first high-frequency device 1 may be a variable filter
  • only the second high-frequency device 3 may be a variable filter, or both may be variable filters.
  • the operating frequency varies in the first high frequency device 1 and / or the second high frequency device 3, and the input / output impedance of the first high frequency device 1 and the input / output impedance of the second high frequency device 3 vary.
  • the matching circuit 2 is adjusted so that the input / output impedances of the first high-frequency device 1 and the second high-frequency device 3 are always matched. That is, even when the input / output impedance of the first high-frequency device 1 and / or the second high-frequency device 3 varies, the matching circuit 2 causes the first high-frequency device 1 and the second high-frequency device 3 to be connected. The transmission loss due to the mismatch can be reduced as much as possible.
  • the variable device included in the matching circuit 2 sets the impedance matching frequency (the operating frequency of the matching circuit) in accordance with the operating frequency of the first high-frequency device 1 and / or the second high-frequency device 3.
  • the matching circuit 2 shown in FIG. 1 is an LC ⁇ -type circuit composed of three variable devices of variable capacitors C1 and C2 and a variable coil L1, and a frequency for impedance matching is set by these three variable devices.
  • the first high-frequency device 1 and / or the second high-frequency device 3 capable of changing the operating frequency can operate in a wide band as a single unit. However, even if the first high-frequency device 1 and the second high-frequency device 3 are connected without using the matching circuit 2, and even if the first high-frequency device 3 is connected through the matching circuit 2, the operating frequency of the matching circuit 2 When the matching circuit 2 is used in which the absolute values of the input / output impedances of the first high-frequency device 1 and the second high-frequency device 3 cannot be made substantially equal depending on the operating frequency, the first high-frequency device 1 is not used. And transmission loss due to mismatch between the second high-frequency device 3 and the circuit as a whole cannot operate in a wide band.
  • the matching circuit 2 itself has a variable device and can change the impedance characteristic at the corresponding frequency, the operating frequency in the first high-frequency device 1 and / or the second high-frequency device 3 is high. Even if it fluctuates, it is possible to perform impedance matching by adjusting the impedance value so that the input / output impedances of the first high-frequency device 1 and the second high-frequency device 3 always match. Therefore, transmission loss between the first high-frequency device 1 and the second high-frequency device 3 can be minimized.
  • the frequency band in which the high-frequency device operates is not particularly limited, but a relatively low frequency band is around 600-900 MHz, and a relatively high frequency band is around 1500-2200 MHz, or around 2300-3500 MHz. Are often used.
  • FIG. 2 is an exemplary diagram of a combination of the first high-frequency device 1 and the second high-frequency device 3 in the high-frequency circuit according to Embodiment 1 of the present invention.
  • an antenna 1A is employed as the first high-frequency device 1.
  • the quality of the signal received by the antenna 1A can be maintained high.
  • a broadband circulator 1 ⁇ / b> B is employed as the first high frequency device 1.
  • the transmission circuit and the reception circuit can share the external antenna via the broadband circulator 1B, so that the transmission signal and the reception signal can be separated.
  • the broadband circulator 1B has a broadband pass characteristic. That is, it has a pass characteristic that allows a plurality of frequency bands to pass through among the frequency bands defined in the 3GPP standard.
  • a power amplifier 3A is employed as the second high-frequency device 3.
  • the efficiency of the power amplifier 3A is improved, and the power signal output from the power amplifier 3A is stabilized.
  • the switch 3 ⁇ / b> B is employed as the second high frequency device 3.
  • the impedance matching between the plurality of second high frequency devices 3 connected to the switch 3B and the first high frequency device 1 can be performed by switching the connection with the switch 3B.
  • the matching circuit 2 is not limited to the LC ⁇ -type circuit configured as shown in FIG.
  • FIG. 3 is an exemplary diagram showing a configuration of the matching circuit 2 according to the first embodiment of the present invention.
  • FIGS. 3 (a) to (i) various combinations of configurations can be conceived using only an LC ⁇ -type circuit.
  • the matching circuit 2 is not limited to an LC ⁇ -type circuit.
  • FIG. 4 is an exemplary diagram showing another configuration of the matching circuit 2 according to the first embodiment of the present invention.
  • the matching circuit 2 may be a circuit composed of only the capacitor C, or as shown in FIGS. 4C to 4F, A circuit composed of the coil L may be used. Further, as shown in FIGS. 4G and 4H, a circuit constituted only by the coil L may be used.
  • the matching circuit 2 is not limited to a configuration in which the operating frequency is continuously changed as shown in FIGS. 3 and 4, and is a configuration in which the operating frequency is changed in stages using a switch or the like. Also good.
  • FIG. 5 is an exemplary diagram showing a configuration when the switch of the matching circuit 2 according to the first embodiment of the present invention is used.
  • FIG. 5A shows a configuration in which a plurality of coils L having different inductances (three in FIG. 5A) are prepared and the connection is switched by a switch.
  • FIG. 5B shows a configuration in which a plurality (three in FIG. 5B) of capacitors C having different capacities are prepared and the connection is switched by a switch.
  • the operation frequency can be changed stepwise by switching the connection with the switch, and the matching circuit 2 can be made to function.
  • At least the operating frequency can be varied between the first high-frequency device 1 and the second high-frequency device 3 that operate in the same or different frequency bands.
  • the variable device of the matching circuit 2 can reliably Impedance matching can be performed.
  • transmission loss between the first high-frequency device 1 and the second high-frequency device 3 can be minimized.
  • FIG. 6 is a schematic diagram showing the configuration of the high-frequency circuit according to Embodiment 2 of the present invention.
  • the high-frequency circuit according to the second embodiment employs a broadband circulator (or isolator) 1B as the first high-frequency device 1 and a variable filter 3C as the second high-frequency device 3. Yes.
  • the matching circuit 2 is connected between the broadband circulator 1B and the variable filter 3C.
  • the broadband circulator 1B is connected to an antenna 1A
  • the variable filter 3C is connected to a low-noise amplifier 3D to form a receiving circuit that receives signals from the antenna 1A.
  • the capacitance of the capacitor C of the matching circuit 2 composed of the LC ⁇ -type circuit or the inductance of the coil L is varied.
  • the input / output impedances of the broadband circulator 1B and the variable filter 3C can be adjusted so that the absolute values of the impedance values are always substantially equal. That is, impedance matching is performed by a variable device included in the matching circuit 2.
  • the matching circuit 2 shown in FIG. 6 is an LC ⁇ -type circuit including three variable devices, variable capacitors C1 and C2, and a variable coil L1, and impedance matching is performed by these three variable devices.
  • the broadband circulator 1B is connected to the output side of the variable filter 3C, and the input impedance of the broadband circulator 1B is easily concentrated on a predetermined impedance value.
  • FIG. 7 is a Smith chart showing the input impedance of the broadband circulator 1B of the high-frequency circuit according to Embodiment 2 of the present invention.
  • the Smith chart shows the relationship between impedance and reflection coefficient on a complex plane.
  • a circle 72 having a constant reactance of 0.45 is drawn. The intersection of these two circles 71 and 72 is the point A indicating the impedance Z.
  • FIG. 7B is a plot of the impedance Z calculated by the same method when the operating frequency is changed by the variable filter 3C.
  • the impedance Z is concentrated and plotted in the vicinity of the constant region 73 regardless of the load fluctuation of the antenna 1A. Therefore, even when the output impedance largely fluctuates, impedance matching can be easily performed by the matching circuit 2, and the entire high-frequency circuit can be widened.
  • the matching circuit 2 causes the first high-frequency device 1 and / or the second high-frequency device 3 to change.
  • Impedance matching can be performed by adjusting the impedance value so that the input / output impedances of the device 1 and the second high-frequency device 3 always match. Accordingly, it is possible to increase the bandwidth of the entire high-frequency circuit.
  • FIG. 8 is a schematic diagram showing a configuration of a transmission / reception circuit according to Embodiment 3 of the present invention. As shown in FIG. 8, the transmission / reception circuit according to the third embodiment is connected to two high-frequency circuits described in the first and second embodiments via a broadband circulator 1B that is the first high-frequency device 1. Has been.
  • one high-frequency circuit functions as a transmission circuit and the other high-frequency circuit functions as a reception circuit.
  • the transmission circuit and the reception circuit share the antenna 1A via the broadband circulator 1B and can transmit and receive signals. It is like that.
  • the two matching circuits 2 are respectively connected between the broadband circulator 1B and the variable filter 3C. Therefore, even when the operating frequency fluctuates due to a load variation of the antenna 1A, the capacitance of the capacitor C or the inductance of the coil L of the matching circuit 2 composed of the ⁇ -type circuit of LC is varied, thereby changing the broadband circulator 1B and variable.
  • the input / output impedance of the filter 3C can be adjusted so as to always have an optimum impedance value. Impedance matching is performed by a variable device included in the matching circuit 2.
  • the broadband circulator 1B is connected to the output side of the variable filter 3C, and the input impedance of the broadband circulator 1B is likely to be concentrated by a predetermined impedance value.
  • FIG. 9 is a schematic diagram showing isolation of the transmission / reception circuit according to the third embodiment of the present invention.
  • isolation of reflected waves 9A from the antenna 1A to the transmission port 92, isolation of reflected waves 9B from the transmission port 92 to the reception port 91, and reception Isolation 9C of the reflected wave from the port 91 to the antenna 1A is effectively performed by the broadband circulator 1B. Therefore, it is possible to suppress a decrease in the S / N ratio at the transmission port 92 and the reception port 91, and to maintain high transmission / reception sensitivity.
  • FIG. 10 is a schematic diagram showing another configuration of the transmission / reception circuit according to the third embodiment of the present invention.
  • the variable device of the matching circuit 2 As shown in FIG. 10, by connecting the matching circuit 2 between the antenna 1A and the broadband circulator 1B, even if the antenna 1A is shared by the transmitting circuit and the receiving circuit, the variable device of the matching circuit 2 Thus, impedance matching can be reliably performed, and deterioration of reception characteristics (reception sensitivity) can be suppressed.
  • the antenna 1A is shared by the transmission circuit and the reception circuit, impedance matching can be reliably performed in response to fluctuations in the operating frequency in the variable filter 3C. Therefore, it is possible to suppress deterioration of reception characteristics.
  • the matching circuit 2 is not limited to being connected to the position shown in the above-described embodiment.
  • the variable filter 3C and the low noise amplifier 3D are provided between the variable filter 3C and the power amplifier 3A (see FIG. 2). And the like (see FIG. 10), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

 動作周波数の変動に従って入出力インピーダンスが変動する回路素子を有する高周波デバイスであっても、当該高周波デバイスの入出力インピーダンスを最適な値に調整することができるマッチング回路を備える高周波回路及び該高周波回路を用いた送受信回路を提供する。 本発明に係る高周波回路は、第1の高周波デバイス1と、第1の高周波デバイス1と電気的に接続された第2の高周波デバイス3と、第1の高周波デバイス1と第2の高周波デバイス3との間に接続されたマッチング回路2とを有し、第1の高周波デバイス1及び第2の高周波デバイス3の少なくとも一方が可変デバイスを含んで構成され、動作周波数が変更可能であり、マッチング回路2は、第1の高周波デバイス1及び第2の高周波デバイス3の動作周波数に対応して、インピーダンス整合が可能な少なくとも一の可変デバイスを有する。

Description

高周波回路及び該高周波回路を用いた送受信回路
 本発明は、動作周波数が変動した場合であっても、高周波デバイスの入出力インピーダンスを最適な値に調整することができるマッチング回路を備える高周波回路及び該高周波回路を用いた送受信回路に関する。
 電子部品において、電気信号の伝送路の送り出し側の電力が一定の場合、送り出し側回路の出力インピーダンスと、受け側回路の入力インピーダンスとを等しくすることにより、受け側回路において得られる電力が最大になる。したがって、効率的に伝送を行うためには、それらのインピーダンスを等しくする(以下、「インピーダンス整合を行う」という)必要がある。
 インピーダンス整合が十分に行われていない場合、受け側回路が所望の最大出力を得ることができず、特に高周波回路では、伝送路に生じる反射波が進行波と重畳し、伝送損失の増加やノイズを発生させるなどの不都合が生ずるおそれがある。
 微小信号を扱う受信機、測定器等では、フロントエンド回路にマッチング回路を構成することにより、機器全体のノイズ指数を低減し、受信感度あるいは測定感度を向上させている。例えば特許文献1では、可変BPF(バンドパスフィルタ)を送信機側及び受信機側に備えた全二重無線機が開示されている。特許文献1に開示されている全二重無線機では、アンテナのインピーダンス不整合による送信信号の反射が生じても、その反射信号と同レベルで逆位相である補正信号を生成し、受信信号に加算することにより、受信機が受信した受信信号から反射信号をほとんど除去することができ、受信感度の劣化を防止している。
特開2004-194097号公報
 しかし、特許文献1に開示されている全二重無線機の回路構成では、可変BPFの動作周波数が変動した場合、可変BPFの出力インピーダンスも変動するので、サーキュレータとの間で十分にインピーダンス整合を行うことができないという問題点があった。実際には、可変BPFを除く他の回路素子では、入出力インピーダンス値を50Ωに固定すること等によりインピーダンス整合を行っているが、動作周波数が変動することにより可変BPFにおける最適な入出力インピーダンスの値も変動するので、十分にインピーダンス整合を行うことができず、全体として各種の特性(例えば伝送損失の増加や受信感度の劣化)が生じるおそれがあった。つまり、たとえ多様な動作周波数に適応できる一つの高周波デバイスを実現しても、そのデバイスと他のデバイスとを接続する整合回路が多様な動作周波数に適応していなければ、多様な動作周波数に適応した高周波回路として具現化することができないという問題があった。
 本発明は斯かる事情に鑑みてなされたものであり、動作周波数の変動に従って入出力インピーダンスが変動する回路素子を有する高周波デバイスであっても、当該高周波デバイスの入出力インピーダンスを最適な値に調整することができるマッチング回路を備える高周波回路及び該高周波回路を用いた送受信回路を提供することを目的とする。
 上記目的を達成するために本発明に係る高周波回路は、第1の高周波デバイスと、該第1の高周波デバイスと電気的に接続された第2の高周波デバイスと、前記第1の高周波デバイスと前記第2の高周波デバイスとの間に接続されたマッチング回路とを有し、前記第1の高周波デバイス及び前記第2の高周波デバイスの少なくとも一方が可変デバイスを含んで構成され、動作周波数が変更可能であり、前記マッチング回路は、前記第1の高周波デバイス及び前記第2の高周波デバイスの動作周波数に対応して、インピーダンス整合が可能な少なくとも一の可変デバイスを有することを特徴とする。
 上記構成では、第1の高周波デバイスと、第1の高周波デバイスと電気的に接続された第2の高周波デバイスと、第1の高周波デバイスと第2の高周波デバイスとの間に接続されたマッチング回路とを有する。第1の高周波デバイス及び第2の高周波デバイスの少なくとも一方が可変デバイスを含んで構成され、動作周波数が変更可能であり、マッチング回路は、第1の高周波デバイス及び第2の高周波デバイスの動作周波数に対応して、インピーダンス整合が可能な少なくとも一の可変デバイスを有する。これにより、第1の高周波デバイス及び/又は第2の高周波デバイスにおいて動作周波数が変動した場合であっても、マッチング回路の可変デバイスにより確実にインピーダンス整合を行うことができる。また、第1の高周波デバイスと第2の高周波デバイスとの間の伝送損失を最小限に抑制することが可能となる。
 また、本発明に係る高周波回路は、前記第1の高周波デバイス及び前記第2の高周波デバイスの少なくとも一方が可変フィルタであることが好ましい。
 上記構成では、第1の高周波デバイス及び第2の高周波デバイスの少なくとも一方が可変フィルタであるので、第1の高周波デバイス及び/又は第2の高周波デバイスにより動作周波数を変動させることができる。動作周波数が変動した場合であっても、マッチング回路の可変デバイスにより確実にインピーダンス整合を行うことができる。また、第1の高周波デバイスと第2の高周波デバイスとの間の伝送損失を最小限に抑制することが可能となる。
 また、本発明に係る高周波回路は、前記第1の高周波デバイスは可変フィルタであり、前記第2の高周波デバイスはパワーアンプであることが好ましい。
 上記構成では、第1の高周波デバイスが可変フィルタであり、第2の高周波デバイスがパワーアンプであることにより、パワーアンプ及び可変フィルタにおいて動作周波数が変動した場合であっても、マッチング回路の可変デバイスにより確実にインピーダンス整合を行うことができ、パワーアンプから出力される信号の変動を抑制することが可能となる。
 次に、上記目的を達成するために本発明に係る送受信回路は、一の前記第1の高周波デバイスに上述の高周波回路が2つ接続されており、
 前記第1の高周波デバイスは広帯域サーキュレータであり、
 前記第1の高周波デバイスにアンテナを接続し、
 一方の高周波回路を送信回路として、他方の高周波回路を受信回路として、それぞれ機能させることを特徴とする。
 上記構成では、一の第1の高周波デバイスに上述の高周波回路が2つ接続されており、第1の高周波デバイスは広帯域サーキュレータであり、第1の高周波デバイスにアンテナを接続し、一方の高周波回路を送信回路として、他方の高周波回路を受信回路として、それぞれ機能させる。これにより、送信回路と受信回路とでアンテナを共用する場合であっても、可変フィルタにおける動作周波数の変動に対応して確実にインピーダンス整合を行うことができ、受信特性の劣化を抑制することが可能となる。
 上記構成によれば、第1の高周波デバイスと、第1の高周波デバイスと電気的に接続された第2の高周波デバイスと、第1の高周波デバイスと第2の高周波デバイスとの間に接続されたマッチング回路とを有する。第1の高周波デバイス及び第2の高周波デバイスの少なくとも一方が可変デバイスを含んで構成され、動作周波数が変更可能であり、マッチング回路は、第1の高周波デバイス及び第2の高周波デバイスの動作周波数に対応して、インピーダンス整合が可能な少なくとも一の可変デバイスを有する。これにより、第1の高周波デバイス及び/又は第2の高周波デバイスにおいて動作周波数が変動した場合であっても、マッチング回路の可変デバイスにより確実にインピーダンス整合を行うことができる。また、第1の高周波デバイスと第2の高周波デバイスとの間の伝送損失を最小限に抑制することが可能となる。
本発明の実施の形態1に係る高周波回路の構成を示す模式図である。 本発明の実施の形態1に係る高周波回路の、第1の高周波デバイスと第2の高周波デバイスとの組み合わせの例示図である。 本発明の実施の形態1に係るマッチング回路の構成を示す例示図である。 本発明の実施の形態1に係るマッチング回路の他の構成を示す例示図である。 本発明の実施の形態1に係るマッチング回路のスイッチを用いた場合の構成を示す例示図である。 本発明の実施の形態2に係る高周波回路の構成を示す模式図である。 本発明の実施の形態2に係る高周波回路のサーキュレータの入力インピーダンスを示すスミスチャートである。 本発明の実施の形態3に係る送受信回路の構成を示す模式図である。 本発明の実施の形態3に係る送受信回路のアイソレーションを示す模式図である。 本発明の実施の形態3に係る送受信回路の他の構成を示す模式図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
 (実施の形態1)
 図1は、本発明の実施の形態1に係る高周波回路の構成を示す模式図である。図1に示すように、本実施の形態1に係る高周波回路は、広範な周波数帯域に亘って、動作周波数を設定することができる第1の高周波デバイス1及び第2の高周波デバイス3の入出力インピーダンスを調整することが可能なマッチング回路2が接続されている。
 本実施の形態1では、第1の高周波デバイス1と第2の高周波デバイス3とは、3GPPの規格で定義されている複数の周波数バンド、すなわち広範な周波数帯域に亘って動作することを前提としている。
 広範な周波数帯域に亘って、動作周波数を設定することができる高周波デバイスとして、例えば可変デバイスを含んで構成され、当該可変デバイスの素子値を所定値に設定することで、動作周波数を所定の周波数に設定することができる可変フィルタに代表される可変素子がある。ここで、可変デバイスとは、可変容量ダイオード等の容量値が可変可能であるデバイスを意味しており、例えばスイッチICによりインダクタンスが切り替えられる可変インダクタである。
 このような可変素子を高周波回路に用いる場合、第1の高周波デバイス1及び第2の高周波デバイス3の両方の動作周波数を変動する必要はなく、いずれか一方の動作周波数を変動することが可能であれば足りる。いずれの場合であっても、インピーダンス整合を行うのはマッチング回路2だからである。例えば第1の高周波デバイス1だけが可変フィルタであっても、第2の高周波デバイス3だけが可変フィルタであっても、両方が可変フィルタであっても良い。
 第1の高周波デバイス1及び/又は第2の高周波デバイス3において動作周波数が変動し、第1の高周波デバイス1の入出力インピーダンス及び第2の高周波デバイス3の入出力インピーダンスが変動した場合であっても、マッチング回路2により、第1の高周波デバイス1及び第2の高周波デバイス3の入出力インピーダンスが常に整合するように調整している。すなわち、第1の高周波デバイス1及び/又は第2の高周波デバイス3の入出力インピーダンスが変動した場合であっても、マッチング回路2により第1の高周波デバイス1と第2の高周波デバイス3との間の不整合に起因する伝送損失を可能な限り少なくすることができる。マッチング回路2が有する可変デバイスにより、第1の高周波デバイス1及び/又は第2の高周波デバイス3の動作周波数に合わせて、インピーダンス整合する周波数(マッチング回路の動作周波数)の設定が行われる。例えば図1に示すマッチング回路2は、可変コンデンサC1、C2、可変コイルL1の3つの可変デバイスからなるLCのπ型回路であり、これら3つの可変デバイスによりインピーダンス整合する周波数の設定が行われる。
 動作周波数を変動することが可能な第1の高周波デバイス1及び/又は第2の高周波デバイス3は、単体では広帯域に作動することができる。しかし、マッチング回路2を介さずに第1の高周波デバイス1と第2の高周波デバイス3とを接続した場合、また、マッチング回路2を介して接続していたとしても、当該マッチング回路2の動作周波数帯域が広帯域ではなく、動作周波数によっては、第1の高周波デバイス1及び第2の高周波デバイス3の入出力インピーダンスの絶対値をほぼ等しくできないマッチング回路2を用いる場合には、第1の高周波デバイス1と第2の高周波デバイス3との間の不整合による伝送損失が増大し、回路全体として広帯域に作動することができなくなる。
 本実施の形態1では、マッチング回路2自体が可変デバイスを有し、対応周波数におけるインピーダンス特性を変動させることができるので、第1の高周波デバイス1及び/又は第2の高周波デバイス3において動作周波数が変動した場合であっても、第1の高周波デバイス1及び第2の高周波デバイス3の入出力インピーダンスが常に整合するようにインピーダンス値を調整して、インピーダンス整合を行うことができる。したがって、第1の高周波デバイス1と第2の高周波デバイス3との間の伝送損失を最小限に抑制することが可能となる。
 なお、高周波デバイスが作動する周波数バンドとしては、特に限定されるものではないが、比較的低い周波数バンドとして600-900MHz前後が、比較的高い周波数バンドとして1500-2200MHz前後、あるいは2300-3500MHz前後が、それぞれよく用いられる。
 また、第1の高周波デバイス1と第2の高周波デバイス3との組み合わせとしては、両方が動作周波数を変えることが可能なデバイス(例えば可変BPF)である場合に限定されるものではない。図2は、本発明の実施の形態1に係る高周波回路の、第1の高周波デバイス1と第2の高周波デバイス3との組み合わせの例示図である。
 図2(a)の例では、第1の高周波デバイス1としてアンテナ1Aを採用している。この場合、アンテナ1Aで受信した信号の品質を高く維持することができる。図2(b)の例では、第1の高周波デバイス1として広帯域サーキュレータ1Bを採用している。この場合、送信回路及び受信回路が広帯域サーキュレータ1Bを介して外部のアンテナを共用することにより、送信信号と受信信号とを分離することができる。なお、広帯域サーキュレータ1Bは、広帯域な通過特性を有している。すなわち、3GPPの規格で定義されている周波数バンドのうち、複数の周波数バンドを通過させることが可能な通過特性を有している。
 図2(c)の例では、第2の高周波デバイス3としてパワーアンプ3Aを採用している。この場合、パワーアンプ3Aの効率が向上し、パワーアンプ3Aから出力される電力信号が安定する。図2(d)の例では、第2の高周波デバイス3としてスイッチ3Bを採用している。この場合、スイッチ3Bにより接続を切り替えることで、スイッチ3Bに接続された複数の第2の高周波デバイス3と第1の高周波デバイス1との間のインピーダンス整合を行うことができる。
 さらに、マッチング回路2についても、図1に示すような構成のLCのπ型回路に限定されるものではない。図3は、本発明の実施の形態1に係るマッチング回路2の構成を示す例示図である。
 図3(a)~(i)に示すように、LCのπ型回路だけでも、様々な組み合わせの構成を考えることができる。また、マッチング回路2は、LCのπ型回路に限定されるものでもない。図4は、本発明の実施の形態1に係るマッチング回路2の他の構成を示す例示図である。
 マッチング回路2は、例えば図4(a)、(b)に示すように、コンデンサCだけで構成した回路であっても良いし、図4(c)~(f)に示すようにコンデンサCとコイルLとで構成した回路であっても良い。また、図4(g)、(h)に示すように、コイルLだけで構成した回路であっても良い。
 もちろん、マッチング回路2は、図3及び図4に示すように動作周波数を連続的に変動する構成に限定されるものではなく、スイッチ等を用いて動作周波数を段階的に変動する構成であっても良い。図5は、本発明の実施の形態1に係るマッチング回路2のスイッチを用いる場合の構成を示す例示図である。
 図5(a)は、インダクタンスの相違するコイルLを複数(図5(a)では3個)準備し、スイッチにより接続を切り替える構成となっている。また、図5(b)は、容量の相違するコンデンサCを複数(図5(b)では3個)準備し、スイッチにより接続を切り替える構成となっている。このように、スイッチにより接続を切り替えることでも動作周波数を段階的に変動することができ、マッチング回路2として機能させることが可能となる。
 以上のように本実施の形態1によれば、作動する周波数バンドが同一又は異なる第1の高周波デバイス1と第2の高周波デバイス3との間に、動作周波数を変動することが可能な、少なくとも一の可変デバイスを有するマッチング回路2を備えることにより、第1の高周波デバイス1及び/又は第2の高周波デバイス3において動作周波数が変動した場合であっても、マッチング回路2の可変デバイスにより確実にインピーダンス整合を行うことができる。また、第1の高周波デバイス1と第2の高周波デバイス3との間の伝送損失を最小限に抑制することが可能となる。
 (実施の形態2)
 図6は、本発明の実施の形態2に係る高周波回路の構成を示す模式図である。図6に示すように、本実施の形態2に係る高周波回路は、第1の高周波デバイス1として広帯域サーキュレータ(あるいはアイソレータ)1Bを、第2の高周波デバイス3として可変フィルタ3Cを、それぞれ採用している。実施の形態1と同じく、広帯域サーキュレータ1Bと可変フィルタ3Cとの間にマッチング回路2が接続されている。広帯域サーキュレータ1Bにはアンテナ1Aが、可変フィルタ3Cにはローノイズアンプ3Dが、それぞれ接続されており、アンテナ1Aから信号を受信する受信回路を形成している。
 受信信号の周波数の変更に対応する可変フィルタ3Cを作動させることにより動作周波数が変動した場合、LCのπ型回路からなるマッチング回路2のコンデンサCの容量あるいはコイルLのインダクタンスを変動させることより、広帯域サーキュレータ1B及び可変フィルタ3Cの入出力インピーダンスを、常にインピーダンス値の絶対値がほぼ等しくなるよう調整することができる。すなわち、インピーダンスの整合がマッチング回路2が有する可変デバイスにより行われる。例えば図6に示すマッチング回路2は、可変コンデンサC1、C2、可変コイルL1の3つの可変デバイスからなるLCのπ型回路であり、これら3つの可変デバイスによりインピーダンス整合を行う。
 また、実施の形態2では、可変フィルタ3Cの出力側に広帯域サーキュレータ1Bが接続されており、広帯域サーキュレータ1Bの入力インピーダンスが所定のインピーダンス値に集中しやすくなる。図7は、本発明の実施の形態2に係る高周波回路の広帯域サーキュレータ1Bの入力インピーダンスを示すスミスチャートである。
 図7(a)において、スミスチャートは、インピーダンスと反射係数との関係を複素平面上に示したものである。例えばインピーダンスZ=25Ω+j22.5Ωをスミスチャートにプロットする場合、まず特性インピーダンス50Ωで正規化して(正規化インピーダンスは1Ω)、Z=0.5+j0.45を求め、実数部0.5の定抵抗の円71を描く。次に定リアクタンスが0.45の円72を描く。これら2つの円71、72の交点こそが、インピーダンスZを示す点Aとなる。
 可変フィルタ3Cにより動作周波数が変動した場合に、同様の手法で算出したインピーダンスZをプロットしたものが図7(b)である。図7(b)からも明らかなように、アンテナ1Aの負荷変動に左右されることなく、インピーダンスZは一定の領域73の近傍に集中してプロットされている。したがって、出力インピーダンスが大きく変動した場合であっても、マッチング回路2によりインピーダンス整合を容易に行うことができ、高周波回路全体として広帯域化を図ることが可能となる。
 以上のように本実施の形態2によれば、第1の高周波デバイス1及び/又は第2の高周波デバイス3において動作周波数が大きく変動した場合であっても、マッチング回路2により、第1の高周波デバイス1及び第2の高周波デバイス3の入出力インピーダンスが常に整合するようにインピーダンス値を調整して、インピーダンス整合を行うことができる。したがって、高周波回路全体として広帯域化を図ることができる。
 (実施の形態3)
 図8は、本発明の実施の形態3に係る送受信回路の構成を示す模式図である。図8に示すように、本実施の形態3に係る送受信回路は、実施の形態1及び2に記載されている高周波回路が2つ、第1の高周波デバイス1である広帯域サーキュレータ1Bを介して接続されている。
 すなわち、一方の高周波回路を送信回路として、他方の高周波回路を受信回路として、それぞれ機能させ、送信回路と受信回路とは、広帯域サーキュレータ1Bを介してアンテナ1Aを共用しており、信号を送受信できるようになっている。
 2つのマッチング回路2は、広帯域サーキュレータ1Bと可変フィルタ3Cとの間にそれぞれ接続されている。したがって、アンテナ1Aの負荷変動により動作周波数が変動した場合であっても、LCのπ型回路からなるマッチング回路2のコンデンサCの容量あるいはコイルLのインダクタンスを変動させることより、広帯域サーキュレータ1B及び可変フィルタ3Cの入出力インピーダンスを、常に最適なインピーダンス値になるよう調整することができる。インピーダンス整合は、マッチング回路2が有する可変デバイスにより行われる。
 また、実施の形態3では、可変フィルタ3Cの出力側に広帯域サーキュレータ1Bが接続されており、広帯域サーキュレータ1Bの入力インピーダンスが所定のインピーダンス値により集中しやすくなる。図9は、本発明の実施の形態3に係る送受信回路のアイソレーションを示す模式図である。
 図9に示すように、本実施の形態3に係る送受信回路では、アンテナ1Aから送信ポート92への反射波のアイソレーション9A、送信ポート92から受信ポート91への反射波のアイソレーション9B、受信ポート91からアンテナ1Aへの反射波のアイソレーション9Cが広帯域サーキュレータ1Bにより効果的に行われる。したがって、送信ポート92、受信ポート91におけるS/N比の低下を抑制することができ、送受信感度を高く維持することが可能となる。
 なお、特に影響を受けやすい受信感度を高めるべく、アンテナ1Aと広帯域サーキュレータ1Bとの間にマッチング回路2を接続しても良い。図10は、本発明の実施の形態3に係る送受信回路の他の構成を示す模式図である。
 図10に示すように、アンテナ1Aと広帯域サーキュレータ1Bとの間にマッチング回路2を接続することにより、送信回路と受信回路とでアンテナ1Aを共用する場合であっても、マッチング回路2の可変デバイスにより確実にインピーダンス整合を行うことができ、受信特性(受信感度)の劣化を抑制することが可能となる。
 以上のように本実施の形態3によれば、送信回路と受信回路とでアンテナ1Aを共用する場合であっても、可変フィルタ3Cにおける動作周波数の変動に対応して確実にインピーダンス整合を行うことができ、受信特性の劣化を抑制することが可能となる。
 その他、上述した実施の形態は、本発明の趣旨を逸脱しない範囲で変更することができることは言うまでもない。例えばマッチング回路2は、上述した実施例で示した位置に接続することに限定されるものではなく、例えば可変フィルタ3Cとパワーアンプ3A(図2参照)との間、可変フィルタ3Cとローノイズアンプ3Dとの間(図10参照)等、インピーダンス整合を行いたい位置に接続すれば良い。
 1 第1の高周波デバイス
 2 マッチング回路
 3 第2の高周波デバイス
 1A アンテナ
 1B 広帯域サーキュレータ
 3A パワーアンプ
 3B スイッチ
 3C 可変フィルタ
 3D ローノイズアンプ

Claims (4)

  1.  第1の高周波デバイスと、
     該第1の高周波デバイスと電気的に接続された第2の高周波デバイスと、
     前記第1の高周波デバイスと前記第2の高周波デバイスとの間に接続されたマッチング回路とを有し、
     前記第1の高周波デバイス及び前記第2の高周波デバイスの少なくとも一方が可変デバイスを含んで構成され、動作周波数が変更可能であり、
     前記マッチング回路は、前記第1の高周波デバイス及び前記第2の高周波デバイスの動作周波数に対応して、インピーダンス整合が可能な少なくとも一の可変デバイスを有することを特徴とする高周波回路。
  2.  前記第1の高周波デバイス及び前記第2の高周波デバイスの少なくとも一方が可変フィルタであることを特徴とする請求項1に記載の高周波回路。
  3.  前記第1の高周波デバイスは可変フィルタであり、前記第2の高周波デバイスはパワーアンプであることを特徴とする請求項1又は2に記載の高周波回路。
  4.  一の前記第1の高周波デバイスに請求項2に記載の高周波回路が2つ接続されており、
     前記第1の高周波デバイスは広帯域サーキュレータであり、
     前記第1の高周波デバイスにアンテナを接続し、
     一方の高周波回路を送信回路として、他方の高周波回路を受信回路として、それぞれ機能させることを特徴とする送受信回路。
PCT/JP2014/083223 2013-12-20 2014-12-16 高周波回路及び該高周波回路を用いた送受信回路 WO2015093462A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/179,351 US10009048B2 (en) 2013-12-20 2016-06-10 High-frequency circuit and transmission and reception circuit using high-frequency circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-263630 2013-12-20
JP2013263630 2013-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/179,351 Continuation US10009048B2 (en) 2013-12-20 2016-06-10 High-frequency circuit and transmission and reception circuit using high-frequency circuit

Publications (1)

Publication Number Publication Date
WO2015093462A1 true WO2015093462A1 (ja) 2015-06-25

Family

ID=53402808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083223 WO2015093462A1 (ja) 2013-12-20 2014-12-16 高周波回路及び該高周波回路を用いた送受信回路

Country Status (2)

Country Link
US (1) US10009048B2 (ja)
WO (1) WO2015093462A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204347A1 (ja) * 2016-05-27 2017-11-30 株式会社村田製作所 高周波フィルタ装置、及び、通信装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201595B2 (en) * 2015-11-24 2021-12-14 Skyworks Solutions, Inc. Cascode power amplifier with switchable output matching network
KR102323572B1 (ko) * 2017-05-16 2021-11-05 삼성전기주식회사 수신밴드 가변 필터링 기능을 갖는 다중밴드 고주파 송신 장치
US10554246B2 (en) * 2018-03-30 2020-02-04 Intel Corporation Method and apparatus for broadband high-isolation circulator for simultaneous transmit and receive systems
US10715089B1 (en) * 2018-12-28 2020-07-14 Rafael Microelectronics, Inc. Circuit with co-matching topology for transmitting and receiving RF signals
US11309860B1 (en) * 2020-10-09 2022-04-19 Apple Inc. Single ladder duplexer with impedance gradient
CN113014222B (zh) * 2021-04-26 2023-08-08 哈尔滨海能达科技有限公司 一种带通滤波器电路和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512642A (ja) * 1997-02-25 2001-08-21 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 通信のためのデバイスおよび方法
JP2009545240A (ja) * 2006-07-28 2009-12-17 フリースケール セミコンダクター インコーポレイテッド 再構成可能なインピーダンス整合および高調波フィルタ・システム
JP2011521508A (ja) * 2008-04-08 2011-07-21 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 適応的アンテナインピーダンス整合のためのシステムと方法
WO2013027580A1 (ja) * 2011-08-24 2013-02-28 株式会社村田製作所 高周波フロントエンドモジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194097A (ja) 2002-12-12 2004-07-08 Hitachi Kokusai Electric Inc 全二重無線機
US7460001B2 (en) * 2003-09-25 2008-12-02 Qualcomm Incorporated Variable inductor for integrated circuit and printed circuit board
DE102004026133A1 (de) * 2004-05-28 2005-12-29 Infineon Technologies Ag Sendeanordnung, Empfangsanordnung, Transceiver sowie Verfahren zum Betreiben einer Sendeanordnung
US8571511B2 (en) * 2011-06-10 2013-10-29 Analog Devices, Inc. Apparatus and method for a wideband RF mixer
US8781415B1 (en) * 2013-02-07 2014-07-15 Mks Instruments, Inc. Distortion correction based feedforward control systems and methods for radio frequency power sources
US9647631B2 (en) * 2013-08-15 2017-05-09 Peregrine Semiconductor Corporation Tunable impedance matching network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512642A (ja) * 1997-02-25 2001-08-21 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 通信のためのデバイスおよび方法
JP2009545240A (ja) * 2006-07-28 2009-12-17 フリースケール セミコンダクター インコーポレイテッド 再構成可能なインピーダンス整合および高調波フィルタ・システム
JP2011521508A (ja) * 2008-04-08 2011-07-21 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 適応的アンテナインピーダンス整合のためのシステムと方法
WO2013027580A1 (ja) * 2011-08-24 2013-02-28 株式会社村田製作所 高周波フロントエンドモジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204347A1 (ja) * 2016-05-27 2017-11-30 株式会社村田製作所 高周波フィルタ装置、及び、通信装置
US10567031B2 (en) 2016-05-27 2020-02-18 Murata Manufacturing Co., Ltd. Radio-frequency filter device and communication apparatus

Also Published As

Publication number Publication date
US10009048B2 (en) 2018-06-26
US20160285482A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
WO2015093462A1 (ja) 高周波回路及び該高周波回路を用いた送受信回路
US10348356B2 (en) Transmitter receiver leakage reduction in a full duplex system without the use of a duplexer
US10128815B2 (en) Branching device
TWI511379B (zh) 電子電路、無線通訊裝置、調校共振頻率以及判斷阻抗變化的方法
US10340874B2 (en) Filter circuit, RF front end circuit, and communication apparatus
US20200321942A1 (en) Tunable Filter for RF Circuits
US20140376419A1 (en) Passive leakage cancellation networks for duplexers and coexisting wireless communication systems
US10476531B2 (en) High-frequency front-end circuit
US10230418B2 (en) Multiplexer, high-frequency front end circuit, and communication device
JPWO2017022370A1 (ja) アンテナ整合回路、アンテナ回路、フロントエンド回路および通信装置
WO2015002127A1 (ja) 電力増幅モジュールおよびフロントエンド回路
KR102041721B1 (ko) 복합형 필터 장치, 고주파 프론트 엔드 회로 및 통신 장치
US9851384B2 (en) Multi-band impedance detector
US20170288632A1 (en) Variable filter circuit, rf front end circuit and communication device
WO2018012275A1 (ja) マルチプレクサ、高周波フロントエンド回路、および、通信端末
US9705170B2 (en) Switchable band-pass filter
US20170040966A1 (en) Combined impedance matching and rf filter circuit
US20170126197A1 (en) Broadband matching circuit for capacitive device
US9419582B2 (en) Filter device and duplexer
US11146305B2 (en) Radio frequency module and communication device
KR102323572B1 (ko) 수신밴드 가변 필터링 기능을 갖는 다중밴드 고주파 송신 장치
JP6409255B2 (ja) デュプレクサ
Gu et al. RF MEMS tunable capacitor applications in mobile phones
US10103706B2 (en) Transmission and reception device
US10027353B2 (en) High-frequency front end circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP