WO2015080243A1 - フロントエンド回路および無線通信装置 - Google Patents
フロントエンド回路および無線通信装置 Download PDFInfo
- Publication number
- WO2015080243A1 WO2015080243A1 PCT/JP2014/081519 JP2014081519W WO2015080243A1 WO 2015080243 A1 WO2015080243 A1 WO 2015080243A1 JP 2014081519 W JP2014081519 W JP 2014081519W WO 2015080243 A1 WO2015080243 A1 WO 2015080243A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- frequency band
- antenna
- filter
- band
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/335—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/50—Circuits using different frequencies for the two directions of communication
- H04B1/52—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
- H04B1/525—Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
Definitions
- the present invention relates to a front-end circuit that demultiplexes a signal in a communication band included in a predetermined frequency band, and a wireless communication apparatus including the same.
- a front-end circuit is used in a wireless communication apparatus.
- the front-end circuit for example, an antenna matching circuit for ensuring matching with the antenna, a demultiplexing circuit for demultiplexing a signal in the communication band on the high frequency band side and a signal in the communication band on the low frequency band side, Is provided.
- the antenna matching circuit was set so that the normalized impedance on the antenna side viewed from the branch circuit side in the predetermined communication band was close to 1.
- the normalized impedance is, for example, the impedance of each circuit divided by 50 ⁇ when matching between the circuits is 50 ⁇ .
- the antenna of the wireless communication apparatus may have a normalized impedance in a predetermined communication band deviated from around 1 due to the approach of a human body or the like, and may not be matched with the front end circuit. Further, since there are a variety of communication bands corresponding to the wireless communication device, it is difficult to set the antenna near the normalized impedance 1 in all necessary communication bands. In addition, with the development of carrier aggregation technology that simultaneously uses a plurality of communication bands having different frequencies, the antenna is required to be in the vicinity of normalized impedance 1 for each of the plurality of communication bands having different frequencies. It has become.
- the transmission signal may be distorted by the power amplifier, the transmission signal may deteriorate, the power amplifier may oscillate abnormally, or the power amplifier may be destroyed.
- the reflected signal may leak to the receiving circuit side and deteriorate the reception sensitivity.
- an antenna tuner may be configured by providing a control element such as a variable capacitor in the antenna matching circuit, and the antenna side (antenna tuner side) normalized impedance may be controlled to be close to 1 (for example, patents). See literature 1 or 2.)
- a control element such as a variable capacitor in an antenna tuner is generally configured as an active element including a semiconductor circuit or the like.
- the active element has a problem of distorting the signal due to its nonlinearity, and the antenna tuner having the active element sometimes becomes a harmonic generation source of the transmission signal.
- the harmonics of the transmission signal in the low frequency band may overlap the communication band in the high frequency band.
- the frequency band of the Band 17 transmission signal which is a relatively low frequency band in LTE, is 704 MHz to 716 MHz, and its third harmonic corresponds to 2112 MHz to 2148 MHz.
- the frequency band of the third harmonic overlaps the frequency band 2110 MHz to 2155 MHz of the received signal of Band 4 in the relatively high frequency band.
- harmonics generated by the antenna tuner may leak to the receiving circuit on the high frequency band side and deteriorate high frequency characteristics such as reception sensitivity.
- an object of the present invention is to provide a front-end circuit and a wireless communication apparatus that can achieve matching with an antenna in a wide frequency band and can suppress deterioration of high-frequency characteristics due to the influence of harmonics of a transmission signal. There is.
- the front end circuit includes a first frequency band side input / output port for inputting / outputting a communication band signal included in the first frequency band, and a communication band signal included in the first frequency band. And an antenna port to be output.
- the front end circuit includes a first frequency band side filter circuit connected to the antenna port and having a pass band overlapping a communication band included in the first frequency band, and a first frequency band side filter circuit.
- a variable matching circuit having an active element connected to the frequency band side input / output port side.
- the stop band of the first frequency band side filter circuit overlaps the harmonic frequency of the communication band included in the first frequency band. Therefore, even if a signal is distorted by the active element of the variable matching circuit and a harmonic is generated, the harmonic is blocked by the first frequency band side filter circuit and transmission from the antenna is blocked.
- the front end circuit of the present invention preferably further includes an antenna matching circuit made of a passive element connected between the first frequency band side filter circuit and the antenna port.
- the active element is preferably composed of a variable inductance element.
- the front-end circuit according to the present invention includes a plurality of matching circuits having different impedances and including a first matching circuit and a second matching circuit, and a matching circuit selected from the plurality of matching circuits. It is preferable to include an active switch element connected between the frequency band side filter circuit and the first frequency band side input / output port. In this case, either the case where the active switch element selects the first matching circuit or the case where the active switch element selects the second matching circuit is more in either case than in the other case.
- the impedance of the front end circuit viewed from the antenna port in the predetermined communication band is close to the complex conjugate relationship with the impedance of the antenna connected to the antenna port, the front end circuit in the predetermined communication band And the antenna are easy to perform conjugation matching.
- the front end circuit includes a second input / output port for inputting / outputting a signal of a communication band included in a second frequency band higher than the first frequency band, and an antenna port connected to the antenna port.
- a second frequency band side filter circuit having a pass band that overlaps the communication band included in the second frequency band and a stop band that overlaps the communication band included in the first frequency band, the first frequency band side
- the filter circuit preferably has a stop band that overlaps a communication band included in the second frequency band.
- the first frequency band-side filter circuit has a pass band that overlaps the communication band included in the first frequency band and a stop band that overlaps the communication band included in the second frequency band.
- 1 filter a pass band that is connected between the first filter and the variable matching circuit and overlaps with a communication band included in the first frequency band, and a harmonic frequency of the communication band included in the first frequency band
- the front end circuit of the present invention includes a second frequency band side input / output port through which a signal in a communication band included in a second frequency band higher than the first frequency band is input / output, and a plurality of input / output ports.
- the first frequency band side input / output port is connected to an antenna port for a low frequency side circuit among the plurality of antenna ports, and the second frequency band side input / output port is
- the plurality of antenna ports may be configured to be connected to an antenna port for a circuit on a high frequency side.
- the front-end circuit of the present invention further includes a transmission filter and a reception filter connected to the first frequency band side port, and a transmission filter and a reception filter connected to the second frequency band side port. Further, it is preferable to further include a transmission / reception demultiplexing circuit connected between the transmission filter and the reception filter. Thereby, the isolation between the transmission filter and the reception filter can be increased with a small number of elements.
- a part of the variable matching circuit may be formed integrally with the transmission / reception branching circuit. Further, at least a part of the first frequency band side filter circuit may be composed of active elements, and may also function as a variable matching circuit.
- the transmission filter and the reception filter are constituted by a tunable filter including an active element with variable reactance or a selectable filter including a switch and a plurality of filters.
- the wireless communication device of the present invention includes the above-described front-end circuit, a proximity sensor that detects a situation where an object is close to the antenna, and a control unit that controls the variable matching circuit based on the detection result of the proximity sensor. It is preferable to provide. If it does in this way, the change of the impedance which arises by the change of the situation in an antenna can be detected, and the impedance of a front end circuit can be changed into an appropriate thing.
- a wireless communication apparatus including the above-described front-end circuit, an impedance matching detection circuit provided in the front-end circuit, and a control unit that controls the variable matching circuit based on a detection result of the impedance matching detection circuit. It is preferable. Even in this case, it is possible to detect a change in impedance caused by a change in the situation of the antenna and change the impedance of the front end circuit to an appropriate one.
- matching with the antenna can be achieved in a wide frequency band, and deterioration of the high frequency characteristics due to the influence of the harmonics of the transmission signal can be suppressed.
- FIG. 1 is a circuit block diagram of a wireless communication device including a front end circuit according to a first embodiment. It is a circuit block diagram of a radio
- FIG. 1 is a diagram exemplifying a locus of normalized impedance on the antenna side and a locus of normalized impedance on the front end circuit side on the Smith chart.
- the normalized impedance on the antenna side and the normalized impedance on the front end circuit side shift clockwise around the point of normalized impedance 1 (the center of the Smith chart) on the Smith chart as the frequency increases.
- the normalized impedance on the antenna side and the normalized impedance on the front-end circuit side are positions where the sign of the imaginary part is opposite in each of the predetermined communication band on the low frequency band side and the predetermined communication band on the high frequency band side. It is close to the complex conjugate relationship.
- conjugation matching Such matching between impedances having a real part and an imaginary part is called conjugation matching.
- conjugation matching even if the impedance of the antenna has an imaginary part, reflection of the transmission signal at the antenna can be suppressed to prevent deterioration of the characteristics of the transmission signal and deterioration of the reception sensitivity. Even if the normalized impedance of the antenna deviates from near 1 due to the proximity of the antenna, the antenna and the front end circuit can be matched in a wide frequency range.
- FIG. 2 is a circuit block diagram of the front-end circuit and the wireless communication device according to the first embodiment.
- the wireless communication device 10 according to the present embodiment uses a plurality of communication bands included in the first frequency band (low frequency band) and a plurality of communication bands included in the second frequency band (high frequency band). Send and receive.
- the communication band on the low frequency band side is a communication band of about 1 GHz or less in LTE, for example.
- the communication band on the high frequency band side is a communication band of about 1.4 GHz or more in the case of LTE, for example.
- the wireless communication device 10 includes a front end circuit 1, an antenna 2, a control unit 3, a proximity sensor 4, transmission circuits 51 and 52, and reception circuits 61 and 62.
- the front end circuit 1 performs transmission / reception of each communication band via the antenna 2. Therefore, the front-end circuit 1 includes a transmission port Tx1 and a reception port Rx1 as a first frequency band side input / output port (low frequency band side input / output port), and a second frequency band side input / output port (high frequency port). As a frequency band side input / output port), a transmission port Tx2 and a reception port Rx2 are provided, and an antenna port Ant is provided.
- the transmission port Tx1 is connected to the transmission circuit 51.
- the reception port Rx1 is connected to the reception circuit 61.
- the transmission port Tx2 is connected to the transmission circuit 52.
- the reception port Rx2 is connected to the reception circuit 62.
- the antenna port Ant is connected to the antenna 2.
- the transmission circuit 51 corresponds to transmission signals in a plurality of communication bands in the low frequency band, and outputs transmission signals to the front end circuit 1 via the transmission port Tx1.
- the reception circuit 61 corresponds to reception signals in a plurality of communication bands in the low frequency band, and receives reception signals output from the front end circuit 1 via the reception port Rx1.
- the transmission circuit 52 corresponds to transmission signals in a plurality of communication bands in the high frequency band, and outputs transmission signals to the front end circuit 1 via the transmission port Tx2.
- the reception circuit 62 corresponds to reception signals in a plurality of communication bands in a high frequency band, and receives reception signals output from the front end circuit 1 via the reception port Rx2.
- the antenna 2 transmits the transmission signal output from the front end circuit 1 via the antenna port Ant and outputs the received reception signal to the front end circuit 1 via the antenna port Ant.
- the front end circuit 1 includes a diplexer 11, a variable matching circuit 121, circulators 122 and 132, transmission filters 123 and 133, reception filters 124 and 134, a harmonic filter 14, and an antenna matching circuit 19 as internal configurations.
- an antenna matching circuit 19 is provided in connection with the antenna port Ant.
- the antenna matching circuit 19 includes only one or a plurality of passive reactance elements.
- the diplexer 11 is connected to the antenna port Ant via the antenna matching circuit 19 inside the front end circuit 1.
- the diplexer 11 includes a low pass filter 15 and a high pass filter 16.
- the harmonic filter 14, the variable matching circuit 121, the circulator 122, the transmission filter 123, and the reception filter 124 are connected to the low pass filter 15 side of the diplexer 11.
- the low pass filter 15 and the harmonic filter 14 constitute a first frequency band (low frequency band) side filter circuit.
- the low pass filter 15 is connected to the harmonic filter 14.
- the low-pass filter 15 passes transmission signals and reception signals of a plurality of communication bands in a low frequency band between the harmonic filter 14 and the antenna port Ant, and transmits and receives signals of a plurality of communication bands in a high frequency band. It has a frequency characteristic that blocks the passage of.
- the harmonic filter 14 has one end connected to the low pass filter 15 of the diplexer 11 and the other end connected to the variable matching circuit 121.
- the harmonic filter 14 is, for example, a ⁇ type (CLC type) low-pass filter having a predetermined number of stages, and between the variable matching circuit 121 and the diplexer 11, transmission signals of a plurality of communication bands in a low frequency band and It has a frequency characteristic that allows a received signal to pass and blocks the passage of harmonics in a plurality of communication bands in the low frequency band.
- CLC type ⁇ type
- the variable matching circuit 121 has one end connected to the harmonic filter 14 and the other end connected to the circulator 122.
- the impedance of the variable matching circuit 121 is variable and is controlled by the control unit 3.
- the variable matching circuit 121 includes an active switch element 125 and matching circuits 126 and 127.
- the active switch element 125 selects one of the matching circuits 126 and 127 and connects it to the signal path, and is controlled by the control unit 3.
- Matching circuits 126 and 127 are each composed of passive reactance elements and have different impedances.
- the circulator 122 has three connection ends, and is connected to any one of the transmission filter 123, the reception filter 124, and the variable matching circuit 121, respectively. Between the three connection ends of the circulator 122, there is irreversibility in the signal propagation direction. Therefore, the circulator 122 is variable between the transmission filter 123 and the reception filter 124 at three connection ends so that the signal passes from the transmission filter 123 to the variable matching circuit 121 and the signal passes from the variable matching circuit 121 to the reception filter 124.
- the matching circuit 121 is connected. That is, the circulator 122 has a function of a transmission / reception demultiplexing circuit that demultiplexes the transmission signal and the reception signal.
- the transmission filter 123 has one end connected to the circulator 122 and the other end connected to the transmission port Tx1 inside the front end circuit 1.
- the reception filter 124 has one end connected to the circulator 122 and the other end connected to the reception port Rx1 inside the front end circuit 1.
- the transmission filter 123 and the reception filter 124 are active elements having variable reactance such as a digital tuning capacitor (DTC), for example, and are band-pass filters each having a variable pass band and stop band.
- DTC digital tuning capacitor
- a circulator 132, a transmission filter 133, and a reception filter 134 are connected to the high pass filter 16 side of the diplexer 11.
- the high pass filter 16 constitutes a second frequency band (high frequency band) side filter circuit. Specifically, the high pass filter 16 is connected to the circulator 132.
- the high-pass filter 16 allows transmission signals and reception signals of a plurality of communication bands in a high frequency band to pass between the circulator 132 and the antenna port Ant, and passes transmission signals and reception signals of a plurality of communication bands in a low frequency band. It has a frequency characteristic that prevents
- the circulator 132 has three connection ends, and is connected to one of the transmission filter 133, the reception filter 134, and the diplexer 11, respectively. Between the three connection ends of the circulator 132, there is irreversibility in the signal propagation direction. Therefore, the circulator 132 connects the transmission filter 133, the reception filter 134, and the diplexer 11 to the three connection ends so that the signal passes from the transmission filter 133 to the diplexer 11 and the signal passes from the diplexer 11 to the reception filter 134. is doing.
- the transmission filter 133 has one end connected to the circulator 132 and the other end connected to the transmission port Tx2 inside the front end circuit 1.
- the reception filter 134 has one end connected to the circulator 132 and the other end connected to the reception port Rx2 inside the front end circuit 1.
- the transmission filter 133 and the reception filter 134 are active elements with variable reactance such as a digital tuning capacitor (DTC), for example, and are bandpass filters with variable passband and stopband, respectively.
- DTC digital tuning capacitor
- the transmission filter 133 and the reception filter 134 are controlled by the control unit 3 in pass band and stop band.
- the proximity sensor 4 detects the amount of light and the capacitance value of the infrared reflected light that changes depending on the proximity of the hand or head of a person holding the casing (not shown) of the wireless communication device 10.
- control unit 3 determines whether it is an antenna proximity state or an antenna non-proximity state from a change in the detection value detected by the proximity sensor 4.
- the antenna proximity state is a state in which the hand or head of a person holding the housing is close to the antenna 2.
- the antenna non-proximity situation is a situation where the hand or head of a person holding the housing is not in proximity to the antenna 2.
- control unit 3 controls the variable matching circuit 121 of the front end circuit 1 based on whether the current state is the antenna proximity state or the antenna non-proximity state. Thereby, the control unit 3 changes the impedance of the front end circuit 1 to an appropriate one.
- the active switch element 125 of the variable matching circuit 121 and the active element having a variable reactance of the transmission filter 123 serve as a harmonic generation source of the transmission signal on the low frequency band side. Therefore, the harmonics of the transmission signal on the low frequency band side are output from the active switch element 125 to the antenna port Ant side. For example, if the transmission signal on the low frequency band side is Band 17 (Tx 704-716 MHz), the second harmonic (1408-1432 MHz) and the third harmonic (2112-12148 MHz) are output.
- the harmonic filter 14 having the characteristic of blocking the harmonics of the transmission signal on the low frequency band side is provided on the antenna port Ant side of the active switch element 125, the harmonics of the transmission signal on the low frequency band side are provided. Is blocked by the harmonic filter 14.
- the harmonic filter 14 for the transmission signal on the low frequency band side that is, on the diplexer 11, antenna matching circuit 19, and antenna 2 side
- the harmonic generation source of the transmission signal on the low frequency band side No active element is provided, and harmonics of the transmission signal on the low frequency band side downstream from the harmonic filter 14 are not generated. Therefore, harmonics of the transmission signal on the low frequency band side can be prevented from being transmitted from the antenna 2 or leaking from the high pass filter 16 of the diplexer 11 to the transmission port Tx2 or the reception port Rx2 side. It is possible to prevent the deterioration of the high frequency characteristics such as a decrease in the reception sensitivity on the band side.
- the harmonic filter 14 constitutes a low frequency band side filter circuit together with the low pass filter 15 of the diplexer 11.
- the low pass filter 15 corresponds to the first filter of the frequency band side filter circuit.
- the harmonic filter 14 corresponds to a second filter of the frequency band side filter circuit.
- the high-pass filter 16 of the diplexer 11 constitutes a high frequency band side filter circuit.
- control unit 3 controls the variable matching circuit 121 depending on whether the antenna proximity state or the antenna non-proximity state is determined based on the output of the proximity sensor 4.
- the matching circuit 126 and the matching circuit 127 switch the connection.
- the variable matching circuit 121 is controlled to connect the matching circuit 126.
- the variable matching circuit 121 is connected to the matching circuit 127. Control.
- the impedance viewed from the antenna 2 side of the front end circuit 1 when the matching circuit 126 is connected to the antenna side impedance in the antenna non-proximity state (hereinafter referred to as front end circuit side impedance).
- front end circuit side impedance the impedance viewed from the antenna 2 side of the front end circuit 1 when the matching circuit 126 is connected to the antenna side impedance in the antenna non-proximity state
- the front end circuit side impedance is matched with the antenna side impedance in the antenna proximity state in a predetermined frequency band.
- either the front end circuit side impedance when the matching circuit 126 is connected or the front end circuit side impedance when the matching circuit 127 is connected is a real part that deviates from the vicinity of 50 ⁇ in a predetermined frequency band, and It is determined so that the antenna side impedance having an imaginary part is closer to the complex conjugate relationship.
- the antenna-side impedance and the front-end circuit-side impedance can be subjected to conjugation matching in a predetermined communication band, and reflection of the transmission signal at the antenna 2 can be suppressed.
- the connection between the matching circuit 126 and the matching circuit 127 is switched, so that the front end circuit 1 and the antenna 2 are switched. Even if the variable matching circuit 121 having active elements is provided in this manner, the harmonic filter 14 is provided between the variable matching circuit 121 and the diplexer 11, so that the transmission signal can be matched. It is possible to prevent harmonics from leaking to the circuit on the antenna 2 side or the high frequency band side.
- the circulators 122 and 132 are provided between the transmission filters 123 and 133 and the reception filters 124 and 134, the isolator between the transmission filters 123 and 133 and the reception filters 124 and 134 is provided. Can be improved. However, when the transmission filters 123 and 133 and the reception filters 124 and 134 have frequency characteristics such that almost no signal leakage occurs between them, or communication with a large frequency difference between the transmission signal and the reception signal. In the case where only a band is used, the circulators 122 and 132 can be omitted.
- variable matching circuit instead of providing a variable matching circuit only in the signal path on the low frequency band side, a variable matching circuit may be provided in the signal path on the high frequency band side, and the signal path on the low frequency band side and the high frequency band may be provided. A variable matching circuit may be provided in both the signal path on the side.
- FIG. 3 is a circuit block diagram of the wireless communication device 10D and the front end circuit 1D according to the present embodiment.
- the radio communication device 10D and the front-end circuit 1D omit the diplexer 11 in the first embodiment, and are provided with an antenna port Ant1 for a circuit on the low frequency band side and an antenna port Ant2 for a circuit on the high frequency band side. Is. Inside the front end circuit 1D, the harmonic filter 14 is directly connected to the antenna port Ant1, and the circulator 132 is directly connected to the antenna port Ant2. An antenna matching circuit 19 is provided only for the antenna port Ant1.
- the antenna 2 is provided with two feeding points for low frequency and high frequency.
- the antenna 2 may be composed of one element, and may have a shape composed of two elements separated for low frequency and high frequency.
- the wireless communication device and front end circuit of the present invention may be configured as in the present embodiment.
- the high frequency band side filter circuit in this embodiment does not correspond to a diplexer as in the previous embodiment, but corresponds to a circulator 132, a transmission filter 133, and a reception filter 134.
- the low frequency band side filter circuit does not correspond to the diplexer as in the previous embodiment, but corresponds to the harmonic filter 14.
- FIG. 4A is a diagram showing the reflection characteristics (S11) of the antenna 2 alone.
- This antenna 2 has a feeding point to which a circuit on the high frequency band side is connected and a feeding point to which a circuit on the low frequency band side is connected.
- the antenna 2 is a single element, and has a good reflection characteristic with a very low reflection of about -20 dB at a peak (about 2000 MHz) at about 1710-2690 MHz at a feeding point on the high frequency band side.
- the peak at about 700 to 960 MHz (about 570 MHz) is about -6 dB, which is a reflection characteristic with more reflection than the high frequency band.
- FIG. 4B shows the reflection characteristic (S11) on the antenna 2 side viewed from the point A (see FIG. 3) in the low frequency band (about 700 to 960 MHz) and the locus of the antenna side impedance ImA on the Smith chart.
- S11 reflection characteristic
- the antenna-side impedance ImA changes clockwise around a point of 50 ⁇ impedance (the center of the Smith chart) on the Smith chart.
- the antenna-side impedance ImA deviates greatly from the point of impedance 50 ⁇ on the Smith chart, and has a real part and an imaginary part. If the impedance of the power supply circuit connected to the point A is 50 ⁇ , the antenna side impedance ImA and the impedance of the power supply circuit connected to the point A are far away from each other, so that the reflection characteristic on the antenna side is as high as about ⁇ 7 dB. It is not as good as the frequency band characteristics.
- FIG. 4 (C) shows the reflection characteristic (S11) on the antenna 2 side viewed from the point B (see FIG. 3) in the low frequency band (about 700 to 960 MHz) and the locus of the antenna side impedance ImB on the Smith chart.
- the antenna matching circuit 19 and the transmission line (15 mm) are connected between the points A and B. Note that the influence of the diplexer 11 shown in the first embodiment on the antenna-side reflection characteristics and the antenna-side impedance is the same as that of the transmission line.
- the antenna-side impedance ImB changes in the clockwise direction around a point of 50 ⁇ impedance (the center of the Smith chart) on the Smith chart.
- the locus of the antenna-side impedance ImB changes so as to rotate counterclockwise around the center of the Smith chart by the transmission line as compared to the locus of the antenna-side impedance ImA shown in FIG.
- the antenna matching circuit makes a transition so as to approach the center side of the Smith chart. Therefore, although the antenna-side impedance ImB also has a real part and an imaginary part, the reflection characteristic of the antenna-side impedance ImB is higher on the Smith chart than the reflection characteristic of the antenna-side impedance ImA shown in FIG. Thus, the impedance is close to the point of 50 ⁇ , and the reflection is reduced in a relatively wide frequency band.
- FIG. 4D shows the reflection characteristic (S11) on the antenna 2 side viewed from the point C (see FIG. 3) in the low frequency band (about 700 to 960 MHz) and the locus of the impedance ImC on the Smith chart.
- the harmonic filter 14 is connected between the point B and the point C.
- variable matching circuit 121 is connected to the circuit on the circulator 122 side to achieve conjugation matching between the circuit on the circulator 122 side and the circuit on the antenna side.
- FIG. 7 is a circuit block diagram of the wireless communication device 10B and the front end circuit 1B according to the present embodiment.
- the wireless communication device 10B and the front-end circuit 1B are switched from the circulators 122 and 132 and the transmission filters 123 and 133 and the reception filters 124 and 134 in the first embodiment to the switchplexers 122B and 132B and the plurality of duplexers 123B and 133B. It has.
- the plurality of duplexers 123B correspond to each communication band in the low frequency band, and each include a transmission filter and a reception filter each having a corresponding communication band as a pass band.
- the plurality of duplexers 133B correspond to each communication band in the high frequency band, and each include a transmission filter and a reception filter each having a corresponding communication band as a pass band.
- the switchplexer 122B corresponds to the low frequency band, is provided between the variable matching circuit 121 and the plurality of duplexers 123B, and selects one of the duplexers 123B to connect to the variable matching circuit 121.
- the switchplexer 132B corresponds to the high frequency band, and is provided between the highpass filter 16 of the diplexer 11 and the plurality of duplexers 133B, and selects one of the duplexers 133B and connects to the highpass filter 16.
- the wireless communication device and front end circuit of the present invention may be configured as in the present embodiment.
- the pass bands of the transmission filter and the reception filter may be changed using the switchplexer and the duplexer as in the present embodiment. Good.
- FIG. 8 is a circuit block diagram of the wireless communication device 10C and the front end circuit 1C according to the present embodiment.
- the wireless communication device 10C and the front-end circuit 1C include a control unit 3C and a coupler 4C instead of the control unit 3 and the proximity sensor 4 in the first embodiment.
- the coupler 4C includes a main line (not shown) connected between the front-end circuit 1C and the antenna matching circuit 19, and a sub-line (not shown) coupled to the main line, and power flowing through the main line. It is the impedance matching detection circuit which takes out a part of.
- the control unit 3C determines whether or not the antenna 2 is mismatched from a part of the electric power extracted from the sub-line of the coupler 4C. For example, it is determined whether or not a mismatch is made based on whether or not the voltage standing wave ratio (VSWR) is equal to or greater than a threshold value. Then, the control unit 3C controls the variable matching circuit 121 so as to connect the matching circuit 127 to the signal path in the mismatched state.
- VSWR voltage standing wave ratio
- FIG. 9 is a circuit block diagram of the radio communication device 10D and the front end circuit 1D according to the present embodiment.
- the radio communication device 10D and the front end circuit 1D omit the circuit elements corresponding to the signals in the communication band on the high frequency side in the first embodiment, that is, the diplexer 11, the circulator 132, the transmission filter 133, and the reception filter 134. It is a configuration.
- radio communication device 10D and the front end circuit 1D are replaced with circuit elements corresponding to signals in the communication band on the low frequency side in the first embodiment, that is, with the harmonic filter 14 and the variable matching circuit 121.
- a filter 14D and a variable matching circuit 121D are provided.
- the harmonic filter 14D here is configured as a one-stage ⁇ -type circuit, and includes a series arm reactance element (inductor) and first and second parallel arm reactance elements (capacitors). Yes.
- the harmonic filter 14D has a circuit configuration having a characteristic (for example, a low-pass filter characteristic) in which at least a communication band on the low frequency side is a pass band and a harmonic of the communication band is a stop band (for example, a low-pass filter characteristic)
- the number and connection configuration can be set appropriately.
- the harmonic filter 14D may have a circuit configuration in which the above-described ⁇ -type circuit is connected in a plurality of stages.
- the variable matching circuit 121D here is configured as a one-stage ladder circuit, and includes a series arm reactance element (capacitor), a parallel arm variable reactance element (variable capacitance), and a reactance element (inductor). ,have.
- the variable matching circuit 121D has at least a variable reactance element capable of controlling the reactance, and has a circuit configuration capable of achieving matching between the harmonic filter 14D and the circulator 122.
- the connection configuration can be set appropriately.
- the variable matching circuit 121D may have a circuit configuration in which the ladder type circuit is connected in a plurality of stages.
- the front end circuit and the wireless communication circuit of the present invention pass through a communication band included in at least one predetermined frequency band as shown in the present embodiment, and the function of a filter circuit that blocks harmonics of the communication band; It is only necessary to have a function of a variable matching circuit that is provided on the transmission / reception circuit side of the filter circuit and obtains matching.
- a circuit configuration that leaves the circuit configuration corresponding to one frequency band and omits the circuit configuration corresponding to the other frequency band may be employed.
- FIG. 10 is a circuit block diagram of the wireless communication device 10E and the front end circuit 1E according to the present embodiment.
- the radio communication device 10E and the front-end circuit 1E are circuit elements of a filter circuit (harmonic filter 14E), except for reactance elements other than the variable reactance elements among the reactance elements constituting the variable matching circuit in the sixth embodiment. Is a substitute.
- the front end circuit 1E has a harmonic filter 14E.
- the harmonic filter 14E is obtained by replacing the parallel arm capacitor with a variable reactance element that functions as the variable matching circuit 121E.
- the front end circuit and the wireless communication circuit of the present invention may be configured such that a part of the filter circuit functions as a variable matching circuit as shown in the present embodiment.
- a circuit configuration in which a part of the filter circuit functions as a variable matching circuit may be employed.
- FIG. 11 is a circuit block diagram of the wireless communication device 10F and the front end circuit 1F according to the present embodiment.
- the wireless communication device 10F and the front-end circuit 1F substitute the reactance of the circulator 122 for some of the reactance elements other than the variable reactance elements among the reactance elements constituting the variable matching circuit in the sixth embodiment.
- the front end circuit 1F includes a variable matching circuit 121F.
- the variable matching circuit 121F is obtained by omitting the series arm capacitor from the configuration of the sixth embodiment, and uses a capacitor built in the circulator 122 instead of the capacitor.
- a part of reactance constituting the variable matching circuit may be configured by other circuit elements, and the first to sixth embodiments described above are used. Also in the embodiment, a circuit configuration in which a part of reactance configuring the variable matching circuit is configured by other circuit elements may be adopted.
- variable matching circuit may be provided in each of the low frequency band side circuit and the high frequency band side circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
Abstract
広い周波数帯域でアンテナとの整合を取ることができ、また、送信信号の高調波による影響で高周波特性が劣化することを抑制できるフロントエンド回路および無線通信装置を提供する。フロントエンド回路(1)は、ダイプレクサ(11)の低周波数帯の送信ポート(Tx1)側に接続した可変整合回路(121)と、ダイプレクサ(11)と可変整合回路(121)の間に接続した高調波フィルタ(14)を備える。高調波フィルタ(14)は、低周波数帯側の通信バンドに重なる通過帯域と、低周波数帯側の通信バンドの高調波周波数に重なる阻止帯域を有する。
Description
本発明は、所定の周波数帯域に含まれる通信バンドの信号を分波するフロントエンド回路およびそれを備える無線通信装置に関する。
現在、携帯電話端末のような無線通信装置は、複数種類の通信バンドを利用するように構成されている。このような様々な通信バンドに対して単数または少数のアンテナで対応するために、無線通信装置ではフロントエンド回路が利用されている。フロントエンド回路は、例えば、アンテナとの整合を確保するためのアンテナ整合回路と、高周波数帯側の通信バンドの信号と低周波数帯側の通信バンドの信号とを分波する分波回路と、が設けられる。
アンテナ整合回路は、所定の通信バンドにおいて分波回路側から視たアンテナ側の正規化インピーダンスを1付近とするように設定されていた。正規化インピーダンスとは、例えば回路間を50Ωで整合を取る場合には、各回路のインピーダンスを50Ωで除したものである。
しかしながら、無線通信装置のアンテナは、人体等が接近することなどによって、所定の通信バンドにおける正規化インピーダンスが1付近からずれ、フロントエンド回路との整合が取れなくなる場合がある。また、無線通信装置の対応する通信バンドが多種にわたるようになったために、アンテナを、必要な全ての通信バンドにおいて正規化インピーダンス1付近とすることが難しくなっている。また、周波数の異なる複数の通信バンドを同時に利用するキャリアアグリゲーション技術の開発により、アンテナは、周波数の離れた複数の通信バンドのそれぞれに対して、正規化インピーダンス1付近となることが求められるようになっている。
アンテナ側の正規化インピーダンスが1付近から外れると、アンテナやアンテナ整合回路での送信信号の反射量が大きくなり、この反射信号がパワーアンプに戻ることになる。すると、パワーアンプで送信信号に歪みが発生して、送信信号が劣化したり、パワーアンプが異常発振したり、パワーアンプが破壊されたりすることがある。また、反射信号が受信回路側に漏洩して、受信感度を劣化させることもある。
そこで、アンテナ整合回路に可変容量などの制御素子を設けてアンテナチューナを構成し、アンテナ側(アンテナチューナ側)の正規化インピーダンスが1付近となるように制御されることがあった(例えば、特許文献1または2参照。)。アンテナチューナにおける可変容量等の制御素子は、半導体回路等を含む能動素子として構成されることが一般的である。
しかしながら、能動素子はその非線形性により信号を歪ませる問題があり、能動素子を有するアンテナチューナは送信信号の高調波発生源となることがあった。そして、低周波数帯域の信号と高周波数帯域の信号とを分波するフロントエンド回路においては、低周波数帯域の送信信号の高調波が、高周波数帯域の通信バンドに重なることがあった。例えば、LTEにおいて比較的低周波数帯域のBand17の送信信号の周波数帯域は、704MHzから716MHzであり、その3次高調波は、2112MHzから2148MHzにあたる。一方、その3次高調波の周波数帯域は、比較的高周波数帯域のBand4の受信信号の周波数帯域2110MHzから2155MHzに重なる。このような場合には、アンテナチューナで発生した高調波が高周波数帯域側の受信回路に漏洩し、受信感度などの高周波特性を劣化させることがあった。
そこで本発明の目的は、広い周波数帯域でアンテナとの整合を取ることができ、また、送信信号の高調波による影響で高周波特性が劣化することを抑制できるフロントエンド回路および無線通信装置を提供することにある。
この発明のフロントエンド回路は、第1の周波数帯に含まれる通信バンドの信号が入出力される第1の周波数帯側入出力ポートと、第1の周波数帯に含まれる通信バンドの信号が入出力されるアンテナポートと、を備えている。そして、フロントエンド回路は、アンテナポートに接続した、第1の周波数帯に含まれる通信バンドに重なる通過帯域を有する第1の周波数帯側フィルタ回路と、第1の周波数帯側フィルタ回路の第1の周波数帯側入出力ポート側に接続した、能動素子を有する可変整合回路と、を備えている。この可変整合回路のインピーダンスを制御することにより、アンテナに人体等が接近するなどしてアンテナ側の正規化インピーダンスが1付近から外れても、フロントエンド回路側の正規化インピーダンスを適切なものに定め、広い周波数帯域でアンテナとフロントエンド回路との整合を取ることができる。
その上、この発明のフロントエンド回路では、第1の周波数帯側フィルタ回路の阻止帯域は、第1の周波数帯に含まれる通信バンドの高調波周波数に重なる。したがって、可変整合回路の能動素子で信号に歪みが生じて高調波が発生しても、その高調波は、第1の周波数帯側フィルタ回路で遮断されアンテナからの送信が阻止される。 この発明のフロントエンド回路は、第1の周波数帯側フィルタ回路とアンテナポートとの間に接続した、受動素子からなるアンテナ整合回路を更に備えることが好ましい。このように第1の周波数帯側入出力ポート付近に設けた可変整合回路とともに、アンテナポート付近に設けたアンテナ整合回路を利用することにより、アンテナとフロントエンド回路とを広帯域にわたって整合させられる。そして、第1の周波数帯側フィルタ回路よりもアンテナポート側にアンテナ整合回路を設けても、このアンテナ整合回路が受動素子からなる場合には、高調波発生源とならない。したがって、やはり、その高調波のアンテナからの送信が阻止される。
この発明のフロントエンド回路は、能動素子が可変インダクタンス素子で構成されることが好ましい。または、この発明のフロントエンド回路は、各々のインピーダンスが異なり第1の整合回路と第2の整合回路とを含む複数の整合回路と、複数の整合回路のうちから選択した整合回路を第1の周波数帯側フィルタ回路と第1の周波数帯側入出力ポートとの間に接続する能動スイッチ素子と、を備えることが好ましい。この場合、第1の整合回路を能動スイッチ素子が選択している場合と、第2の整合回路を能動スイッチ素子が選択している場合とのうち、いずれか一方の場合に他方の場合よりも、所定の通信バンドにおけるアンテナポートから視た当該フロントエンド回路のインピーダンスが、アンテナポートに接続されるアンテナのインピーダンスに対して複素共役の関係に近いものになるので、所定の通信バンドにおいてフロントエンド回路とアンテナとがコンジュゲーションマッチングしやすくなる。
この発明のフロントエンド回路は、第1の周波数帯域よりも高周波数側の第2の周波数帯域に含まれる通信バンドの信号を入出力する第2の入出力ポートと、アンテナポートに接続した、第2の周波数帯に含まれる通信バンドに重なる通過帯域と、第1の周波数帯に含まれる通信バンドに重なる阻止帯域を有する第2の周波数帯側フィルタ回路と、を備え、第1の周波数帯側フィルタ回路は、第2の周波数帯に含まれる通信バンドに重なる阻止帯域を有することが好ましい。これにより、第1の周波数帯(以下、低周波数帯とも称する。)側の信号の高調波が第2の周波数帯(以下、高周波数帯とも称する。)側の受信回路に漏洩することがなく、受信感度などの高周波特性が劣化することもない。また、この場合、第1の周波数帯側フィルタ回路は、第1の周波数帯に含まれる通信バンドに重なる通過帯域と、第2の周波数帯に含まれる通信バンドに重なる阻止帯域と、を有する第1のフィルタと、第1のフィルタと可変整合回路との間に接続した、第1の周波数帯に含まれる通信バンドに重なる通過帯域と、第1の周波数帯に含まれる通信バンドの高調波周波数に重なる阻止帯域と、を有する第2のフィルタと、を備えることが好ましい。これにより、低周波数帯側の通信バンドの高調波周波数と、高周波数帯側の通信バンドとが重なっていなくても、低周波数帯側信号の高調波が高周波数帯側回路へ漏洩することを抑制できる。
または、この発明のフロントエンド回路は、第1の周波数帯域よりも高周波数側の第2の周波数帯域に含まれる通信バンドの信号が入出力される第2の周波数帯側入出力ポートと、複数の前記アンテナポートを備え、前記第1の周波数帯側入出力ポートは、複数の前記アンテナポートのうち低周波数側の回路用のアンテナポートに接続され、前記第2の周波数帯側入出力ポートは、複数の前記アンテナポートのうち高周波数側の回路用のアンテナポートに接続されるように構成されてもよい。
この発明のフロントエンド回路は、第1の周波数帯側ポートに接続した送信フィルタおよび受信フィルタと、第2の周波数帯側ポートに接続した送信フィルタおよび受信フィルタと、を更に備えることが好ましい。また、送信フィルタと受信フィルタの間に接続した送受分波回路を更に備えることが好ましい。これにより、少ない素子数で送信フィルタと受信フィルタとの間でのアイソレーションを高められる。また、可変整合回路の一部が送受分波回路と一体に形成されていてもよい。また、第1の周波数帯側フィルタ回路のすくなくとも一部が能動素子で構成され、可変整合回路の機能を兼ねていてもよい。
この発明のフロントエンド回路は、送信フィルタおよび受信フィルタを、リアクタンス可変な能動素子を備えるチューナブルフィルタまたはスイッチと複数のフィルタとによるセレクタブルフィルタで構成することが好ましい。これにより、少ない素子数であっても、多数の通信バンドに適用可能となる。
この発明の無線通信装置は、上述のフロントエンド回路と、アンテナに物体が近接する状況を検出する近接センサと、この近接センサの検出結果に基づいて、可変整合回路を制御する制御部と、を備えることが好ましい。このようにすると、アンテナに状況の変化によって生じるインピーダンスの変化を検出して、フロントエンド回路のインピーダンスを適切なものに変更することができる。
この発明の無線通信装置は、上述のフロントエンド回路と、フロントエンド回路に設けたインピーダンス整合検出回路と、インピーダンス整合検出回路の検出結果に基づいて、可変整合回路を制御する制御部と、を備えることが好ましい。このようにしても、アンテナに状況の変化によって生じるインピーダンスの変化を検出して、フロントエンド回路のインピーダンスを適切なものに変更することができる。
この発明のフロントエンド回路によれば、広い周波数帯域でアンテナとの整合を取ることができ、また、送信信号の高調波による影響で高周波特性が劣化することを抑制できる。
まず、コンジュゲーションマッチングについて説明する。図1は、スミスチャート上でのアンテナ側の正規化インピーダンスの軌跡と、フロントエンド回路側の正規化インピーダンスの軌跡とを例示する図である。アンテナ側の正規化インピーダンスやフロントエンド回路側の正規化インピーダンスは、周波数が高くなるにつれて、スミスチャート上で正規化インピーダンス1の点(スミスチャートの中心)の回りを時計回り方向に遷移する。アンテナ側の正規化インピーダンスとフロントエンド回路側の正規化インピーダンスは、低周波数帯側の所定の通信バンドと高周波数帯側の所定の通信バンドとのそれぞれで、虚数部の符号が逆となる位置にあり、複素共役の関係に近いものになっている。このような実数部および虚数部を有するインピーダンス同士の整合をコンジュゲーションマッチングと言う。コンジュゲーションマッチングする状態では、アンテナのインピーダンスが虚数部を有するものであっても、アンテナでの送信信号の反射を抑えて、送信信号の特性劣化や受信感度の劣化を防ぐことができ、人体等の接近によってアンテナの正規化インピーダンスが1付近から外れても、アンテナとフロントエンド回路とを広い周波数範囲で整合させることができる。
以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
《第1の実施形態》
図2は、第1の実施形態に係るフロントエンド回路および無線通信装置の回路ブロック図である。本実施形態に係る無線通信装置10は、第1の周波数帯(低周波数帯)に含まれる複数の通信バンドと第2の周波数帯(高周波数帯)に含まれる複数の通信バンドを利用して送信と受信を行う。低周波数帯側の通信バンドは、例えばLTEであれば約1GHz以下の通信バンドである。また、高周波数帯側の通信バンドは、例えばLTEであれば約1.4GHz以上の通信バンドである。
図2は、第1の実施形態に係るフロントエンド回路および無線通信装置の回路ブロック図である。本実施形態に係る無線通信装置10は、第1の周波数帯(低周波数帯)に含まれる複数の通信バンドと第2の周波数帯(高周波数帯)に含まれる複数の通信バンドを利用して送信と受信を行う。低周波数帯側の通信バンドは、例えばLTEであれば約1GHz以下の通信バンドである。また、高周波数帯側の通信バンドは、例えばLTEであれば約1.4GHz以上の通信バンドである。
無線通信装置10は、フロントエンド回路1、アンテナ2、制御部3、近接センサ4、送信回路51,52、および、受信回路61,62、を備える。
フロントエンド回路1は、アンテナ2を介して各通信バンドの送受信を行うものである。そのため、フロントエンド回路1は、第1の周波数帯側入出力ポート(低周波数帯側入出力ポート)として送信ポートTx1と受信ポートRx1とを備え、また第2の周波数帯側入出力ポート(高周波数帯側入出力ポート)として送信ポートTx2と受信ポートRx2とを備え、またアンテナポートAntを備えている。送信ポートTx1は送信回路51に接続している。受信ポートRx1は受信回路61に接続している。送信ポートTx2は送信回路52に接続している。受信ポートRx2は受信回路62に接続している。アンテナポートAntはアンテナ2に接続している。
送信回路51は、低周波数帯の複数の通信バンドでの送信信号に対応するものであり、送信ポートTx1を介してフロントエンド回路1に送信信号を出力する。受信回路61は、低周波数帯の複数の通信バンドでの受信信号に対応するものであり、受信ポートRx1を介してフロントエンド回路1が出力する受信信号を受け取る。送信回路52は、高周波数帯の複数の通信バンドでの送信信号に対応するものであり、送信ポートTx2を介してフロントエンド回路1に送信信号を出力する。受信回路62は、高周波数帯の複数の通信バンドでの受信信号に対応するものであり、受信ポートRx2を介してフロントエンド回路1が出力する受信信号を受け取る。アンテナ2は、アンテナポートAntを介してフロントエンド回路1が出力する送信信号を送波するとともに、受波した受信信号を、アンテナポートAntを介してフロントエンド回路1に出力する。
フロントエンド回路1は、内部構成として、ダイプレクサ11、可変整合回路121、サーキュレータ122,132、送信フィルタ123,133、受信フィルタ124,134、高調波フィルタ14、およびアンテナ整合回路19を備えている。
フロントエンド回路1の内部ではアンテナポートAntに接続して、アンテナ整合回路19を設けている。アンテナ整合回路19は、単一または複数の受動リアクタンス素子のみからなる。
ダイプレクサ11は、フロントエンド回路1の内部でアンテナ整合回路19を介してアンテナポートAntに接続している。ダイプレクサ11は、ローパスフィルタ15とハイパスフィルタ16とを備える。
ダイプレクサ11のローパスフィルタ15側には、高調波フィルタ14、可変整合回路121、サーキュレータ122、送信フィルタ123、および受信フィルタ124を接続している。ローパスフィルタ15と高調波フィルタ14とは、第1の周波数帯(低周波数帯)側フィルタ回路を構成している。具体的には、ローパスフィルタ15は高調波フィルタ14に接続している。ローパスフィルタ15は、高調波フィルタ14とアンテナポートAntとの間で、低周波数帯の複数の通信バンドの送信信号および受信信号を通過させ、高周波数帯の複数の通信バンドの送信信号および受信信号の通過を阻止する周波数特性を有している。
高調波フィルタ14は、ダイプレクサ11のローパスフィルタ15に一端を接続し、他端を可変整合回路121に接続している。高調波フィルタ14は、例えば所定段数のπ型(C-L-C型)のローパスフィルタであり、可変整合回路121とダイプレクサ11との間で、低周波数帯の複数の通信バンドの送信信号および受信信号を通過させ、低周波数帯の複数の通信バンドの高調波の通過を阻止する周波数特性を有している。
可変整合回路121は、高調波フィルタ14に一端を接続し、他端をサーキュレータ122に接続している。可変整合回路121のインピーダンスは可変であり、制御部3により制御される。
可変整合回路121は、能動スイッチ素子125と整合回路126,127とを備える。能動スイッチ素子125は、整合回路126,127のいずれかを選択して信号経路に接続するものであり、制御部3により制御される。整合回路126,127は、それぞれ受動リアクタンス素子からなり、互いに異なるインピーダンスを有している。
サーキュレータ122は、3つの接続端を有しており、それぞれ送信フィルタ123と受信フィルタ124と可変整合回路121とのいずれかに接続している。サーキュレータ122の3つの接続端の間は、信号伝搬方向に非可逆性を有している。そこで、サーキュレータ122は、送信フィルタ123から可変整合回路121に信号が通過し、可変整合回路121から受信フィルタ124に信号が通過するように、3つの接続端に送信フィルタ123と受信フィルタ124と可変整合回路121とを接続している。すなわち、サーキュレータ122は送信信号と受信信号を分波する送受分波回路の機能を有している。
送信フィルタ123は、サーキュレータ122に一端を接続し、フロントエンド回路1の内部で送信ポートTx1に他端を接続している。受信フィルタ124は、サーキュレータ122に一端を接続し、フロントエンド回路1の内部で受信ポートRx1に他端を接続している。送信フィルタ123および受信フィルタ124は、例えばディジタルチューニングキャパシタ(DTC)等のリアクタンス可変な能動素子を備え、それぞれ通過帯域および阻止帯域が可変な帯域通過フィルタである。送信フィルタ123および受信フィルタ124は、通過帯域および阻止帯域が制御部3により制御される。
ダイプレクサ11のハイパスフィルタ16側には、サーキュレータ132、送信フィルタ133、および受信フィルタ134を接続している。ハイパスフィルタ16は、第2の周波数帯(高周波数帯)側フィルタ回路を構成している。具体的には、ハイパスフィルタ16は、サーキュレータ132に接続している。ハイパスフィルタ16は、サーキュレータ132とアンテナポートAntとの間で、高周波数帯の複数の通信バンドの送信信号および受信信号を通過させ、低周波数帯の複数の通信バンドの送信信号および受信信号の通過を阻止する周波数特性を有している。
サーキュレータ132は、3つの接続端を有しており、それぞれ送信フィルタ133と受信フィルタ134とダイプレクサ11とのいずれかに接続している。サーキュレータ132の3つの接続端の間は、信号伝搬方向に非可逆性を有している。そこで、サーキュレータ132は、送信フィルタ133からダイプレクサ11に信号が通過し、ダイプレクサ11から受信フィルタ134に信号が通過するように、3つの接続端に送信フィルタ133と受信フィルタ134とダイプレクサ11とを接続している。
送信フィルタ133は、サーキュレータ132に一端を接続し、フロントエンド回路1の内部で送信ポートTx2に他端を接続している。受信フィルタ134は、サーキュレータ132に一端を接続し、フロントエンド回路1の内部で受信ポートRx2に他端を接続している。送信フィルタ133および受信フィルタ134は、例えばディジタルチューニングキャパシタ(DTC)等のリアクタンス可変な能動素子を備え、それぞれ通過帯域および阻止帯域が可変な帯域通過フィルタである。送信フィルタ133および受信フィルタ134は、通過帯域および阻止帯域が制御部3により制御される。
近接センサ4は、ここでは、無線通信装置10の図示していない筐体を把持する人の手や頭部の近接により変化する赤外線反射光の光量や容量値を検出する。
また、制御部3は、近接センサ4が検出する検出値の変化からアンテナ近接状況であるのか、アンテナ非近接状況であるのかを判定する。アンテナ近接状況とは、筐体を把持する人の手や頭部がアンテナ2に近接する状況である。アンテナ非近接状況とは、筐体を把持する人の手や頭部がアンテナ2に近接していない状況である。
そして、制御部3は、現状がアンテナ近接状況またはアンテナ非近接状況のいずれにあるかに基づいて、フロントエンド回路1の可変整合回路121を制御する。これにより、制御部3は、フロントエンド回路1のインピーダンスを適切なものに変化させる。
このような構成のフロントエンド回路1において、可変整合回路121の能動スイッチ素子125および送信フィルタ123のリアクタンス可変な能動素子は、低周波数帯側の送信信号の高調波発生源となる。そのため、能動スイッチ素子125からアンテナポートAnt側には低周波数帯側の送信信号の高調波が出力されることになる。例えば、低周波数帯側の送信信号がBand17(Tx 704-716MHz)であれば、その2次高調波(1408-1432MHz)や3次高調波(2112-2148MHz)が出力される。
しかしながら、能動スイッチ素子125のアンテナポートAnt側には、低周波数帯側の送信信号の高調波を阻止する特性を有する高調波フィルタ14を設けているため、低周波数帯側の送信信号の高調波は、高調波フィルタ14で通過を阻止されることになる。
一方、低周波数帯側の送信信号に対しての高調波フィルタ14よりも下流側、すなわち、ダイプレクサ11やアンテナ整合回路19、アンテナ2側には、低周波数帯側の送信信号の高調波発生源となるような能動素子は設けておらず、高調波フィルタ14よりも下流側で低周波数帯側の送信信号の高調波は発生することは無い。したがって、低周波数帯側の送信信号の高調波が、アンテナ2から送信されることや、ダイプレクサ11のハイパスフィルタ16から送信ポートTx2や受信ポートRx2側に漏洩することを防ぐことができ、高周波数帯側の受信感度が低下する等の高周波特性の劣化を防ぐことができる。
なお、高調波フィルタ14はダイプレクサ11のローパスフィルタ15とともに、低周波数帯側フィルタ回路を構成するものである。そして、ローパスフィルタ15は、周波数帯側フィルタ回路の第1のフィルタに相当するものである。また、高調波フィルタ14は、周波数帯側フィルタ回路の第2のフィルタに相当するものである。また、ダイプレクサ11のハイパスフィルタ16は、高周波数帯側フィルタ回路を構成するものである。
また、この無線通信装置10では、制御部3が、近接センサ4の出力に基づいて、アンテナ近接状況と判定する場合と、アンテナ非近接状況と判定する場合とで、可変整合回路121を制御して整合回路126と整合回路127とで接続を切り替える。
例えば、アンテナ非近接状況と判定する場合は、可変整合回路121で整合回路126を接続するように制御し、アンテナ近接状況と判定する場合は、可変整合回路121で整合回路127を接続するように制御する。これにより、アンテナ非近接状況でのアンテナ側インピーダンスに対して、整合回路126が接続された場合のフロントエンド回路1のアンテナ2側から視たインピーダンス(以下、フロントエンド回路側インピーダンスと言う。)を、所定の周波数バンドで整合させる。また、アンテナ近接状況でのアンテナ側インピーダンスに対して、整合回路127が接続された場合のフロントエンド回路側インピーダンスを、所定の周波数バンドで整合させる。
そして、整合回路126が接続された場合のフロントエンド回路側インピーダンスと、整合回路127が接続された場合のフロントエンド回路側インピーダンスとのいずれかを、所定の周波数バンドで50Ω付近から外れる実数部および虚数部を有するアンテナ側インピーダンスに対して複素共役の関係により近いものになるように定めておく。これにより、アンテナ側インピーダンスとフロントエンド回路側インピーダンスとを所定の通信バンドでコンジュゲーションマッチングさせて、アンテナ2での送信信号の反射を抑えることができる。
以上に示したように、本実施形態に係る無線通信装置10およびフロントエンド回路1においては、整合回路126と整合回路127との接続を切り替えるようにすることで、フロントエンド回路1とアンテナ2とを広い周波数範囲において整合させることができ、このように能動素子を有する可変整合回路121を設けても、可変整合回路121とダイプレクサ11との間に高調波フィルタ14を設けることにより、送信信号の高調波がアンテナ2側や高周波数帯側の回路に漏洩することを防ぐことができる。
また、本実施形態においてはサーキュレータ122,132を送信フィルタ123,133と受信フィルタ124,134との間に設けるようにしたので、送信フィルタ123,133と受信フィルタ124,134との間でのアイソレーションを向上させることができる。ただし、送信フィルタ123,133と受信フィルタ124,134とが、両者の間での信号の漏れがほとんど生じないような周波数特性を持つ場合や、送信信号と受信信号との周波数の差が大きい通信バンドのみを利用するような場合には、サーキュレータ122,132は省くこともできる。また、低周波数帯側の信号経路にのみ可変整合回路を設けるのではなく、高周波数帯側の信号経路に可変整合回路を設けるようにしてもよく、低周波数帯側の信号経路と高周波数帯側の信号経路との両方に可変整合回路を設けるようにしてもよい。
≪第2の実施形態≫
次に、本発明の第2の実施形態に係る無線通信装置10Dおよびフロントエンド回路1Dについて説明する。図3は、本実施形態に係る無線通信装置10Dおよびフロントエンド回路1Dの回路ブロック図である。無線通信装置10Dおよびフロントエンド回路1Dは、第1の実施形態におけるダイプレクサ11を省くとともに、低周波数帯側の回路用のアンテナポートAnt1と高周波数帯側の回路用のアンテナポートAnt2とを設けたものである。フロントエンド回路1Dの内部で、アンテナポートAnt1には高調波フィルタ14を直接接続し、アンテナポートAnt2にはサーキュレータ132を直接接続している。そして、アンテナポートAnt1に対してのみアンテナ整合回路19を設けている。また、アンテナ2に対して低周波用と高周波用の2つの給電点を設けている。なお、アンテナ2は1素子で構成してもよく、低周波用、高周波用に分かれた2素子からなる形状でもどちらでもよい。
次に、本発明の第2の実施形態に係る無線通信装置10Dおよびフロントエンド回路1Dについて説明する。図3は、本実施形態に係る無線通信装置10Dおよびフロントエンド回路1Dの回路ブロック図である。無線通信装置10Dおよびフロントエンド回路1Dは、第1の実施形態におけるダイプレクサ11を省くとともに、低周波数帯側の回路用のアンテナポートAnt1と高周波数帯側の回路用のアンテナポートAnt2とを設けたものである。フロントエンド回路1Dの内部で、アンテナポートAnt1には高調波フィルタ14を直接接続し、アンテナポートAnt2にはサーキュレータ132を直接接続している。そして、アンテナポートAnt1に対してのみアンテナ整合回路19を設けている。また、アンテナ2に対して低周波用と高周波用の2つの給電点を設けている。なお、アンテナ2は1素子で構成してもよく、低周波用、高周波用に分かれた2素子からなる形状でもどちらでもよい。
本発明の無線通信装置およびフロントエンド回路は、本実施形態のように構成されていてもよい。なお、本実施形態における高周波帯側フィルタ回路は、先の実施形態のようにダイプレクサが相当するのではなく、サーキュレータ132および送信フィルタ133ならびに受信フィルタ134が相当することになる。また、低周波帯側フィルタ回路は、先の実施形態のようにダイプレクサが相当するのではなく、高調波フィルタ14が相当することになる。
≪コンジュゲーションマッチング設計例≫
ここで本実施形態の構成を利用してコンジュゲーションマッチングの設計例について説明する。
ここで本実施形態の構成を利用してコンジュゲーションマッチングの設計例について説明する。
図4(A)は、アンテナ2単体での反射特性(S11)を示す図である。このアンテナ2は、高周波数帯側の回路が接続される給電点と低周波数帯側の回路が接続される給電点とを有するものである。当該アンテナ2は単一の素子であり、高周波数帯側の給電点では、約1710-2690MHzにおいてのピーク(約2000MHz)で約-20dBと反射の極めて少ない良好な反射特性を有しているが、低周波数帯側の給電点では、約700-960MHzにおいてのピーク(約570MHz)で約-6dBと、高周波数帯に比べて反射が多い反射特性を有している。
図4(B)は、低周波数帯(約700-960MHz)における点A(図3参照。)から視たアンテナ2側の反射特性(S11)とスミスチャート上でのアンテナ側インピーダンスImAの軌跡とを示す図である。
周波数が高くなるにつれて、アンテナ側インピーダンスImAは、スミスチャート上でインピーダンス50Ωの点(スミスチャートの中心)の回りを時計回り方向に遷移する。アンテナ側インピーダンスImAは、スミスチャート上でインピーダンス50Ωの点から大きく外れており、実数部と虚数部とを有している。点Aに接続する給電回路のインピーダンスを50Ωとすると、アンテナ側インピーダンスImAと点Aに接続する給電回路のインピーダンスとは大きく離れているため、アンテナ側の反射特性は、ピークで約-7dBと高周波数帯側の特性ほど良好にはならない。
図4(C)は、低周波数帯(約700-960MHz)における点B(図3参照。)から視たアンテナ2側の反射特性(S11)とスミスチャート上でのアンテナ側インピーダンスImBの軌跡とを示す図である。ここでは、点Aと点Bとの間にアンテナ整合回路19と伝送線路(15mm)とが接続されるものとしている。なお、第1の実施形態で示したダイプレクサ11がアンテナ側の反射特性やアンテナ側インピーダンスに与える影響は、伝送線路と同様である。
周波数が高くなるにつれて、アンテナ側インピーダンスImBは、スミスチャート上でインピーダンス50Ωの点(スミスチャートの中心)の回りを時計回り方向に遷移する。アンテナ側インピーダンスImBの軌跡は、図4(B)に示したアンテナ側インピーダンスImAの軌跡と比較すると、伝送線路によってスミスチャートの中心の回りを反時計回りに回転するように遷移している。また、アンテナ整合回路によってスミスチャートの中心側に近づくように遷移している。したがって、アンテナ側インピーダンスImBも実数部と虚数部とを有しているが、アンテナ側インピーダンスImBの反射特性は、図4(B)に示したアンテナ側インピーダンスImAの反射特性よりも、スミスチャート上でインピーダンス50Ωの点に近く、比較的広い周波数帯域で反射が低下したものになる。
図4(D)は、低周波数帯(約700-960MHz)における点C(図3参照。)から視たアンテナ2側の反射特性(S11)とスミスチャート上でのインピーダンスImCの軌跡とを示す図である。ここでは、点Bと点Cとの間に高調波フィルタ14が接続されるものとしている。
高調波フィルタ14を設けることで、前述したように送信信号の高調波がアンテナ側や高周波数帯側の回路に漏洩することを阻止できるが、アンテナ側インピーダンスImCは、周波数が高くなるにつれて、スミスチャートにおけるオープンの近傍から、インピーダンス50Ωの点(スミスチャートの中心)の回りを時計回り方向に約二周りするようになる。したがって、アンテナ側インピーダンスImCも実数部と虚数部とを有しているが、アンテナ側インピーダンスImCの反射特性は、図4(C)に示したアンテナ側インピーダンスImBの反射特性よりも、スミスチャート上でインピーダンス50Ωの点から離れ、反射が増えて劣化したものになる。
そこで、本発明は、サーキュレータ122側の回路に可変整合回路121を接続し、サーキュレータ122側の回路とアンテナ側の回路とのコンジュゲーションマッチングを図る。
図5(A)は、低周波数帯(約700-960MHz)における点E(図3参照。)から視たサーキュレータ122側の反射特性(S11)と、点D,E(図3参照。)から視たスミスチャート上でのインピーダンスImD,ImEの軌跡と、を示す図である。ここでは、サーキュレータ122に送信フィルタ123および受信フィルタ124を接続するのではなく、50Ω終端する場合を示している。また、点Dと点Eとの間に可変整合回路121の整合回路127が接続されるものとしている。
周波数が高くなるにつれて、サーキュレータ122のインピーダンスImDは、スミスチャート上のほとんど50Ω付近で微小に遷移する。一方、図3において点Eから視たインピーダンスImEは、ピーク(周波数約780MHz)ではスミスチャート上の50Ω付近に位置するが、ピークよりも低周波数側と高周波数側との両側で、スミスチャート上の50Ω付近から外れ、実数部と虚数部とを有するものになる。
図5(B)は、点Cから視たアンテナ側インピーダンスImCと、点Eから視たインピーダンスImEとを比較して示す図である。
インピーダンスImEがスミスチャート上で50Ωの点の付近を通過するのに対して、アンテナ側インピーダンスImCは、スミスチャート上で50Ωの点から大きく外れている。しかしながら、750MHz前後の周波数帯では、インピーダンスImEと、アンテナ側インピーダンスImCとは、ともに実数部は50Ω付近となっており、また、虚数部の符号が正負で逆となっている。即ち、インピーダンスImEと、アンテナ側インピーダンスImCとは、750MHz前後の周波数帯では複素共役の関係に近いものになっている。
したがって、ここで説明した設計例の場合には、フロントエンド回路が利用する低周波数帯(約700-960MHz)のうちの750MHz前後の周波数帯で、可変整合回路121(整合回路127)によってアンテナ2とフロントエンド回路1とのコンジュゲーションマッチングを取ることができ、750MHz前後の周波数帯を利用する通信バンドの送信信号を少ない反射でアンテナ2から送信することができる。
≪第3の実施形態≫
次に、本発明の第3の実施形態に係る無線通信装置10Aおよびフロントエンド回路1Aについて説明する。図6は、本実施形態に係る無線通信装置10Aおよびフロントエンド回路1Aの回路ブロック図である。無線通信装置10Aおよびフロントエンド回路1Aは、第1の実施形態における整合回路126,127に替えて、整合回路126A,127Aを備えている。整合回路126A,127Aは、ディジタルチューニングキャパシタ(DTC)等のリアクタンス可変な能動素子を備える可変インピーダンス回路である。
次に、本発明の第3の実施形態に係る無線通信装置10Aおよびフロントエンド回路1Aについて説明する。図6は、本実施形態に係る無線通信装置10Aおよびフロントエンド回路1Aの回路ブロック図である。無線通信装置10Aおよびフロントエンド回路1Aは、第1の実施形態における整合回路126,127に替えて、整合回路126A,127Aを備えている。整合回路126A,127Aは、ディジタルチューニングキャパシタ(DTC)等のリアクタンス可変な能動素子を備える可変インピーダンス回路である。
制御部3は、現状がアンテナ非近接状況にあると判定しているときには、可変整合回路121を制御し、能動スイッチ素子125に、信号経路に対して整合回路126Aを接続させる。また、制御部3は、現状がアンテナ近接状況であると判定しているときには、可変整合回路121を制御し、能動スイッチ素子125に、信号経路に対して整合回路127Aを接続させる。
整合回路126Aは、信号経路に接続されているときに、低周波数帯の所定の周波数バンドおよび高周波数帯の所定の周波数バンドに対するフロントエンド回路側インピーダンスを、アンテナ非近接状況にあるアンテナ側インピーダンスに対して整合コンジュゲーションマッチングさせる整合回路である。そして、整合回路126Aは、使用する通信バンドに応じて制御部3からリアクタンス可変な能動素子が制御され、これにより、対応する通信バンドを変更できるようになっている。
整合回路127Aは、信号経路に接続されているときに、低周波数帯の所定の周波数バンドおよび高周波数帯の所定の周波数バンドに対するフロントエンド回路側インピーダンスを、アンテナ近接状況にあるアンテナ側インピーダンスに対してコンジュゲーションマッチングさせる整合回路である。そして、整合回路127Aは、使用する通信バンドに応じて制御部3からリアクタンス可変な能動素子が制御され、これにより、対応する通信バンドを変更できるようになっている。
本発明の無線通信装置およびフロントエンド回路は、本実施形態のように構成されていてもよい。なお、整合回路126A,127Aの全てがインピーダンス可変であってもよく、それらの一部のみがインピーダンス可変であってもよい。また、ここでは、アンテナ近接状況の変化に応じて可変整合回路121で整合回路126Aと整合回路127Aとの接続を切り替え、通信バンドの変化に応じてリアクタンス可変な能動素子を制御するようにしたが、逆に、アンテナ近接状況の変化に応じてリアクタンス可変な能動素子を制御し、通信バンドの変化に応じて可変整合回路121で整合回路126Aと整合回路127Aとの接続を切り替えるようにしてもよい。また、前述した第2の実施形態の構成においても、本実施形態のようにリアクタンス可変な能動素子を用いて整合回路を構成するようにしてもよい。
≪第4の実施形態≫
次に、本発明の第4の実施形態に係る無線通信装置10Bおよびフロントエンド回路1Bについて説明する。図7は、本実施形態に係る無線通信装置10Bおよびフロントエンド回路1Bの回路ブロック図である。無線通信装置10Bおよびフロントエンド回路1Bは、第1の実施形態におけるサーキュレータ122,132および送信フィルタ123,133ならびに受信フィルタ124,134に替えて、スイッチプレクサ122B、132Bおよび複数のデュプレクサ123B,133Bを備えている。複数のデュプレクサ123Bは、低周波数帯の各通信バンドに対応するものであり、各々が該当する通信バンドを通過帯域とする送信フィルタおよび受信フィルタからなる。複数のデュプレクサ133Bは、高周波数帯の各通信バンドに対応するものであり、各々が該当する通信バンドを通過帯域とする送信フィルタおよび受信フィルタからなる。スイッチプレクサ122Bは低周波数帯に対応するものであり、可変整合回路121と複数のデュプレクサ123Bとの間に設けられ、いずれかのデュプレクサ123Bを選択して可変整合回路121に接続する。スイッチプレクサ132Bは高周波数帯に対応するものであり、ダイプレクサ11のハイパスフィルタ16と複数のデュプレクサ133Bとの間に設けられ、いずれかのデュプレクサ133Bを選択してハイパスフィルタ16に接続する。
次に、本発明の第4の実施形態に係る無線通信装置10Bおよびフロントエンド回路1Bについて説明する。図7は、本実施形態に係る無線通信装置10Bおよびフロントエンド回路1Bの回路ブロック図である。無線通信装置10Bおよびフロントエンド回路1Bは、第1の実施形態におけるサーキュレータ122,132および送信フィルタ123,133ならびに受信フィルタ124,134に替えて、スイッチプレクサ122B、132Bおよび複数のデュプレクサ123B,133Bを備えている。複数のデュプレクサ123Bは、低周波数帯の各通信バンドに対応するものであり、各々が該当する通信バンドを通過帯域とする送信フィルタおよび受信フィルタからなる。複数のデュプレクサ133Bは、高周波数帯の各通信バンドに対応するものであり、各々が該当する通信バンドを通過帯域とする送信フィルタおよび受信フィルタからなる。スイッチプレクサ122Bは低周波数帯に対応するものであり、可変整合回路121と複数のデュプレクサ123Bとの間に設けられ、いずれかのデュプレクサ123Bを選択して可変整合回路121に接続する。スイッチプレクサ132Bは高周波数帯に対応するものであり、ダイプレクサ11のハイパスフィルタ16と複数のデュプレクサ133Bとの間に設けられ、いずれかのデュプレクサ133Bを選択してハイパスフィルタ16に接続する。
本発明の無線通信装置およびフロントエンド回路は、本実施形態のように構成されていてもよい。なお、前述した第2の実施形態や第3の実施形態の構成においても、本実施形態のようにスイッチプレクサとデュプレクサとを用いて送信フィルタおよび受信フィルタの通過帯域を変更するようにしてもよい。
≪第5の実施形態≫
次に、本発明の第5の実施形態に係る無線通信装置10Cおよびフロントエンド回路1Cについて説明する。図8は、本実施形態に係る無線通信装置10Cおよびフロントエンド回路1Cの回路ブロック図である。無線通信装置10Cおよびフロントエンド回路1Cは、第1の実施形態における制御部3および近接センサ4に替えて、制御部3Cおよびカプラ4Cを備えている。カプラ4Cは、フロントエンド回路1Cとアンテナ整合回路19との間に接続される主線路(不図示)と、主線路に結合する副線路(不図示)とを備えており、主線路に流れる電力の一部を取り出すインピーダンス整合検出回路である。制御部3Cはカプラ4Cの副線路から取り出された電力の一部から、アンテナ2の不整合状態が生じているか否かを判定する。例えば、電圧定在波比(VSWR)が閾値以上であるか否かで、不整合状態であるか否かを判定する。そして、制御部3Cは、不整合状態であれば、可変整合回路121が、整合回路127を信号経路に接続するように制御する。
次に、本発明の第5の実施形態に係る無線通信装置10Cおよびフロントエンド回路1Cについて説明する。図8は、本実施形態に係る無線通信装置10Cおよびフロントエンド回路1Cの回路ブロック図である。無線通信装置10Cおよびフロントエンド回路1Cは、第1の実施形態における制御部3および近接センサ4に替えて、制御部3Cおよびカプラ4Cを備えている。カプラ4Cは、フロントエンド回路1Cとアンテナ整合回路19との間に接続される主線路(不図示)と、主線路に結合する副線路(不図示)とを備えており、主線路に流れる電力の一部を取り出すインピーダンス整合検出回路である。制御部3Cはカプラ4Cの副線路から取り出された電力の一部から、アンテナ2の不整合状態が生じているか否かを判定する。例えば、電圧定在波比(VSWR)が閾値以上であるか否かで、不整合状態であるか否かを判定する。そして、制御部3Cは、不整合状態であれば、可変整合回路121が、整合回路127を信号経路に接続するように制御する。
本発明の無線通信装置およびフロントエンド回路は、本実施形態のように構成されていてもよい。なお、カプラ4Cを設ける位置は、アンテナ2側であってもよく、フロントエンド回路1C側であってもよい。また、フロントエンド回路1Cに設ける場合にも、ダイプレクサ11よりもアンテナ側であってもよく、ダイプレクサ11よりもサーキュレータ122,132側であってもよい。また、前述した第2乃至第4の実施形態の構成においても、本実施形態のようにカプラで検出する信号を用いて、整合制御を行うようにしてもよい。
≪第6の実施形態≫
次に、本発明の第6の実施形態に係る無線通信装置10Dおよびフロントエンド回路1Dについて説明する。図9は、本実施形態に係る無線通信装置10Dおよびフロントエンド回路1Dの回路ブロック図である。無線通信装置10Dおよびフロントエンド回路1Dは、第1の実施形態における高周波数側の通信バンドの信号に対応する回路素子、すなわち、ダイプレクサ11、サーキュレータ132、送信フィルタ133、および受信フィルタ134を省いた構成である。また、無線通信装置10Dおよびフロントエンド回路1Dは、第1の実施形態における低周波数側の通信バンドの信号に対応する回路素子、すなわち、高調波フィルタ14および可変整合回路121に替えて、高調波フィルタ14Dおよび可変整合回路121Dを備えている。
次に、本発明の第6の実施形態に係る無線通信装置10Dおよびフロントエンド回路1Dについて説明する。図9は、本実施形態に係る無線通信装置10Dおよびフロントエンド回路1Dの回路ブロック図である。無線通信装置10Dおよびフロントエンド回路1Dは、第1の実施形態における高周波数側の通信バンドの信号に対応する回路素子、すなわち、ダイプレクサ11、サーキュレータ132、送信フィルタ133、および受信フィルタ134を省いた構成である。また、無線通信装置10Dおよびフロントエンド回路1Dは、第1の実施形態における低周波数側の通信バンドの信号に対応する回路素子、すなわち、高調波フィルタ14および可変整合回路121に替えて、高調波フィルタ14Dおよび可変整合回路121Dを備えている。
ここでの高調波フィルタ14Dは、1段のπ型回路として構成しており、直列腕のリアクタンス素子(インダクタ)と、第1および第2の並列腕のリアクタンス素子(キャパシタ)とを有している。高調波フィルタ14Dは、少なくとも低周波数側の通信バンドを通過帯域とし、該通信バンドの高調波を阻止帯域とする特性(例えばローパスフィルタ特性)を有する回路構成であれば、各リアクタンス素子の特性や個数、接続構成は、適宜のものとすることができる。また、高調波フィルタ14Dは、上記のπ型回路を複数段に接続するような回路構成とすることもできる。
また、ここでの可変整合回路121Dは、1段のラダー型回路として構成しており、直列腕のリアクタンス素子(キャパシタ)と、並列腕の可変リアクタンス素子(可変容量)およびリアクタンス素子(インダクタ)と、を有している。可変整合回路121Dにおいては、少なくともリアクタンスを制御可能な可変リアクタンス素子を有し、高調波フィルタ14Dとサーキュレータ122との間の整合を取ることができる回路構成であれば、各リアクタンス素子の特性や個数、接続構成は、適宜のものとすることができる。また、可変整合回路121Dは、上記のラダー型回路を複数段に接続したような回路構成とすることもできる。
本発明のフロントエンド回路および無線通信回路は、本実施形態に示すように少なくとも1つの所定の周波数帯域に含まれる通信バンドを通過し、その通信バンドの高調波を阻止するフィルタ回路の機能と、そのフィルタ回路の送受信回路側に設けられて整合を得る可変整合回路の機能とを有していればよく、前述した第1乃至第5の実施形態においても、高周波数帯域または低周波数帯域のどちらか一方の周波数帯域に対応する回路構成を残し、他方の周波数帯域に対応する回路構成を省くような回路構成を採用してもよい。
≪第7の実施形態≫
次に、本発明の第7の実施形態に係る無線通信装置10Eおよびフロントエンド回路1Eについて説明する。図10は、本実施形態に係る無線通信装置10Eおよびフロントエンド回路1Eの回路ブロック図である。無線通信装置10Eおよびフロントエンド回路1Eは、第6の実施形態における可変整合回路を構成する各リアクタンス素子のうち、可変リアクタンス素子を除く他のリアクタンス素子をフィルタ回路(高調波フィルタ14E)の回路要素で代用するものである。具体的には、フロントエンド回路1Eは、高調波フィルタ14Eを有している。高調波フィルタ14Eは、並列腕のキャパシタを可変整合回路121Eとして機能する可変リアクタンス素子に替えたものである。
次に、本発明の第7の実施形態に係る無線通信装置10Eおよびフロントエンド回路1Eについて説明する。図10は、本実施形態に係る無線通信装置10Eおよびフロントエンド回路1Eの回路ブロック図である。無線通信装置10Eおよびフロントエンド回路1Eは、第6の実施形態における可変整合回路を構成する各リアクタンス素子のうち、可変リアクタンス素子を除く他のリアクタンス素子をフィルタ回路(高調波フィルタ14E)の回路要素で代用するものである。具体的には、フロントエンド回路1Eは、高調波フィルタ14Eを有している。高調波フィルタ14Eは、並列腕のキャパシタを可変整合回路121Eとして機能する可変リアクタンス素子に替えたものである。
本発明のフロントエンド回路および無線通信回路は、本実施形態に示すようにフィルタ回路の一部を可変整合回路として機能するように構成してもよく、前述した第1乃至第6の実施形態においても、フィルタ回路の一部を可変整合回路として機能させる回路構成を採用してもよい。
≪第8の実施形態≫
次に、本発明の第8の実施形態に係る無線通信装置10Fおよびフロントエンド回路1Fについて説明する。図11は、本実施形態に係る無線通信装置10Fおよびフロントエンド回路1Fの回路ブロック図である。無線通信装置10Fおよびフロントエンド回路1Fは、第6の実施形態における可変整合回路を構成する各リアクタンス素子のうち、可変リアクタンス素子を除く他のリアクタンス素子の一部をサーキュレータ122が有するリアクタンスで代用するものである。具体的には、フロントエンド回路1Fは、可変整合回路121Fを有している。可変整合回路121Fは、第6の実施形態での構成から直列腕のキャパシタを省いたものであり、そのキャパシタに替えてサーキュレータ122が内蔵するキャパシタを利用するものである。
次に、本発明の第8の実施形態に係る無線通信装置10Fおよびフロントエンド回路1Fについて説明する。図11は、本実施形態に係る無線通信装置10Fおよびフロントエンド回路1Fの回路ブロック図である。無線通信装置10Fおよびフロントエンド回路1Fは、第6の実施形態における可変整合回路を構成する各リアクタンス素子のうち、可変リアクタンス素子を除く他のリアクタンス素子の一部をサーキュレータ122が有するリアクタンスで代用するものである。具体的には、フロントエンド回路1Fは、可変整合回路121Fを有している。可変整合回路121Fは、第6の実施形態での構成から直列腕のキャパシタを省いたものであり、そのキャパシタに替えてサーキュレータ122が内蔵するキャパシタを利用するものである。
本発明のフロントエンド回路および無線通信回路は、本実施形態に示すように可変整合回路を構成するリアクタンスの一部を他の回路要素で構成してもよく、前述した第1乃至第6の実施形態においても、可変整合回路を構成するリアクタンスの一部を他の回路要素で構成する回路構成を採用してもよい。
以上の各実施形態に示したように本発明は実施できるが、本発明は特許請求の範囲に該当するものであれば、どのような実施形態でも実現することができる。例えば、低周波数帯側の回路と高周波数帯側の回路とのそれぞれに可変整合回路を設けるようにしてもよい。
10…無線通信装置
1…フロントエンド回路
11…ダイプレクサ
121…可変整合回路
122,132…サーキュレータ
123,133…送信フィルタ
124,134…受信フィルタ
125…高周波スイッチ
126,127…整合回路
14…高調波フィルタ
15…ローパスフィルタ
16…ハイパスフィルタ
19…アンテナチューナ
2…アンテナ
3…制御部
4…近接センサ
51,52…送信回路
61,62…受信回路
1…フロントエンド回路
11…ダイプレクサ
121…可変整合回路
122,132…サーキュレータ
123,133…送信フィルタ
124,134…受信フィルタ
125…高周波スイッチ
126,127…整合回路
14…高調波フィルタ
15…ローパスフィルタ
16…ハイパスフィルタ
19…アンテナチューナ
2…アンテナ
3…制御部
4…近接センサ
51,52…送信回路
61,62…受信回路
Claims (15)
- 第1の周波数帯に含まれる通信バンドの信号が入出力される第1の周波数帯側入出力ポートと、
前記第1の周波数帯に含まれる通信バンドの信号が入出力されるアンテナポートと、
を備えるフロントエンド回路において、
前記アンテナポートに接続した、前記第1の周波数帯に含まれる通信バンドに重なる通過帯域を有する第1の周波数帯側フィルタ回路と、
前記第1の周波数帯側フィルタ回路の前記第1の周波数帯側入出力ポート側に接続した、能動素子を有する可変整合回路と、
を備え、
前記第1の周波数帯側フィルタ回路の阻止帯域は、前記第1の周波数帯に含まれる通信バンドの高調波周波数に重なる、
フロントエンド回路。 - 前記第1の周波数帯側フィルタ回路と前記アンテナポートとの間に接続した、受動素子からなるアンテナ整合回路を更に備える、請求項1に記載のフロントエンド回路。
- 前記能動素子は可変リアクタンス素子で構成される、
請求項1または請求項2に記載のフロントエンド回路。 - 前記可変整合回路は、
各々のインピーダンスが異なり、第1の整合回路と第2の整合回路とを含む複数の整合回路と、
前記複数の整合回路のうちから選択した整合回路を前記第1の周波数帯側フィルタ回路と前記第1の周波数帯側入出力ポートとの間に接続する能動スイッチ素子と、を備える、請求項1または請求項2に記載のフロントエンド回路。 - 前記第1の整合回路を前記能動スイッチ素子が選択している場合と、前記第2の整合回路を前記能動スイッチ素子が選択している場合とのうち、いずれか一方の場合に他方の場合よりも、所定の通信バンドにおける前記アンテナポートから視た当該フロントエンド回路のインピーダンスが、前記アンテナポートに接続されるアンテナのインピーダンスに対して複素共役の関係に近いものになる、請求項4に記載のフロントエンド回路。
- 前記第1の周波数帯域よりも高周波数側の第2の周波数帯域に含まれる通信バンドの信号を入出力する第2の入出力ポートと、
前記アンテナポートに接続した、前記第2の周波数帯に含まれる通信バンドに重なる通過帯域と、前記第1の周波数帯に含まれる通信バンドに重なる阻止帯域を有する第2の周波数帯側フィルタ回路と、
を備え、
前記第1の周波数帯側フィルタ回路は、前記第2の周波数帯に含まれる通信バンドに重なる阻止帯域を有する請求項1乃至請求項5のいずれかに記載のフロントエンド回路。 - 前記第1の周波数帯側フィルタ回路は、
前記アンテナポートに接続した、前記第1の周波数帯に含まれる通信バンドに重なる通過帯域と、前記第2の周波数帯に含まれる通信バンドに重なる阻止帯域と、を有する第1のフィルタと、
前記第1のフィルタと前記可変整合回路との間に接続した、前記第1の周波数帯に含まれる通信バンドに重なる通過帯域と、前記第1の周波数帯に含まれる通信バンドの高調波周波数に重なる阻止帯域と、を有する第2のフィルタと、
を備える、請求項6に記載のフロントエンド回路。 - 前記第1の周波数帯域よりも高周波数側の第2の周波数帯域に含まれる通信バンドの信号を入出力する第2の入出力ポートと、
複数の前記アンテナポートと、を備え、
前記第1の入出力ポートは、複数の前記アンテナポートのうち低周波数側の回路用のアンテナポートに接続され、
前記第2の入出力ポートは、複数の前記アンテナポートのうち高周波数側の回路用のアンテナポートに接続される、
請求項1乃至請求項6いずれかに記載のフロントエンド回路。 - 前記アンテナポートに接続したアンテナと、前記第1の周波数帯側入出力ポートに接続した送信フィルタおよび受信フィルタと、前記第2の周波数帯側入出力ポートに接続した送信フィルタおよび受信フィルタと、を更に備える、請求項1乃至請求項8のいずれかに記載のフロントエンド回路。
- 前記送信フィルタと前記受信フィルタとの間に接続した送受分波回路を更に備える、請求項9に記載のフロントエンド回路。
- 前記可変整合回路の一部が前記送受分波回路と一体に形成されている、
請求項10に記載のフロントエンド回路。 - 前記送信フィルタおよび前記受信フィルタを、リアクタンス可変な能動素子を備えるチューナブルフィルタまたはスイッチと複数のフィルタとによるセレクタブルフィルタで構成した、請求項9乃至請求項11のいずれかに記載のフロントエンド回路。
- 前記第1の周波数帯側フィルタ回路は、少なくとも一部が前記能動素子で構成され、前記可変整合回路の機能を兼ねる、
請求項1乃至請求項12のいずれかに記載のフロントエンド回路。 - 請求項1乃至請求項13のいずれかに記載のフロントエンド回路と、
アンテナに物体が近接する状況を検出する近接センサと、
前記近接センサの検出結果に基づいて、前記可変整合回路を制御する制御部と、を備える無線通信装置。 - 請求項1乃至請求項13のいずれかに記載のフロントエンド回路と、
前記フロントエンド回路に設けたインピーダンス整合検出回路と、
前記インピーダンス整合検出回路の検出結果に基づいて、前記可変整合回路を制御する制御部と、を備える無線通信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/160,294 US20160344100A1 (en) | 2013-11-28 | 2016-05-20 | Front end circuit and wireless communication device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-246196 | 2013-11-28 | ||
JP2013246196 | 2013-11-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/160,294 Continuation US20160344100A1 (en) | 2013-11-28 | 2016-05-20 | Front end circuit and wireless communication device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015080243A1 true WO2015080243A1 (ja) | 2015-06-04 |
Family
ID=53199178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/081519 WO2015080243A1 (ja) | 2013-11-28 | 2014-11-28 | フロントエンド回路および無線通信装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20160344100A1 (ja) |
WO (1) | WO2015080243A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160269052A1 (en) * | 2015-03-10 | 2016-09-15 | Blackberry Limited | Supporting multiple frequency bands |
CN111668588A (zh) * | 2019-03-08 | 2020-09-15 | 青岛海信移动通信技术股份有限公司 | 一种应用于手持移动终端的天线装置及切换方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016061138A1 (en) * | 2014-10-14 | 2016-04-21 | Huawei Technologies Co., Ltd. | Systems and methods for leak suppression in a full duplex system |
WO2018061974A1 (ja) * | 2016-09-29 | 2018-04-05 | 株式会社村田製作所 | 高周波フロントエンド回路 |
US10256792B2 (en) * | 2017-02-03 | 2019-04-09 | Samsung Electro-Mechanics Co., Ltd. | Filter module and front-end module including the same |
US10511286B2 (en) | 2017-02-03 | 2019-12-17 | Samsung Electro-Mechanics Co., Ltd. | Variable frequency filter |
US10547286B2 (en) | 2017-02-03 | 2020-01-28 | Samsung Electro-Mechanics Co., Ltd. | Filter and front end module including the same |
US10547287B2 (en) | 2017-02-03 | 2020-01-28 | Samsung Electro-Mechanics Co., Ltd. | Filter and front end module including the same |
KR102414844B1 (ko) * | 2017-02-03 | 2022-07-01 | 삼성전기주식회사 | 필터 및 이를 포함하는 프론트 엔드 모듈 |
US10361736B2 (en) * | 2017-03-24 | 2019-07-23 | Lg Electronics Inc. | Method for transmitting and receiving signal by aggregating two uplink carriers |
CN111864411B (zh) * | 2019-04-30 | 2022-08-05 | 北京小米移动软件有限公司 | 天线模组、终端、控制方法、装置及存储介质 |
US20220029646A1 (en) * | 2020-07-27 | 2022-01-27 | Corning Research & Development Corporation | Radio frequency transceiver filter circuit having inter-stage impedance matching |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11136157A (ja) * | 1997-10-28 | 1999-05-21 | Nec Corp | 移動無線端末装置 |
JP2009253945A (ja) * | 2008-04-11 | 2009-10-29 | Panasonic Corp | アンテナ整合部とこれを用いた高周波受信部 |
JP2011040811A (ja) * | 2009-08-06 | 2011-02-24 | Hitachi Metals Ltd | アンテナ回路 |
WO2013027580A1 (ja) * | 2011-08-24 | 2013-02-28 | 株式会社村田製作所 | 高周波フロントエンドモジュール |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816788A (en) * | 1986-07-01 | 1989-03-28 | Murata Manufacturing Co., Ltd. | High frequency band-pass filter |
MY142026A (en) * | 2004-12-17 | 2010-08-16 | Mitsubishi Rayon Co | Method for producing tert-butyl alcohol |
US7964835B2 (en) * | 2005-08-25 | 2011-06-21 | Protarius Filo Ag, L.L.C. | Digital cameras with direct luminance and chrominance detection |
US8868601B2 (en) * | 2009-08-17 | 2014-10-21 | International Business Machines Corporation | Distributed file system logging |
-
2014
- 2014-11-28 WO PCT/JP2014/081519 patent/WO2015080243A1/ja active Application Filing
-
2016
- 2016-05-20 US US15/160,294 patent/US20160344100A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11136157A (ja) * | 1997-10-28 | 1999-05-21 | Nec Corp | 移動無線端末装置 |
JP2009253945A (ja) * | 2008-04-11 | 2009-10-29 | Panasonic Corp | アンテナ整合部とこれを用いた高周波受信部 |
JP2011040811A (ja) * | 2009-08-06 | 2011-02-24 | Hitachi Metals Ltd | アンテナ回路 |
WO2013027580A1 (ja) * | 2011-08-24 | 2013-02-28 | 株式会社村田製作所 | 高周波フロントエンドモジュール |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160269052A1 (en) * | 2015-03-10 | 2016-09-15 | Blackberry Limited | Supporting multiple frequency bands |
CN111668588A (zh) * | 2019-03-08 | 2020-09-15 | 青岛海信移动通信技术股份有限公司 | 一种应用于手持移动终端的天线装置及切换方法 |
CN111668588B (zh) * | 2019-03-08 | 2022-01-28 | 青岛海信移动通信技术股份有限公司 | 一种应用于手持移动终端的天线装置及切换方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160344100A1 (en) | 2016-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015080243A1 (ja) | フロントエンド回路および無線通信装置 | |
US6847829B2 (en) | Multiband high-frequency switch | |
US10181839B2 (en) | Switch module | |
US7075386B2 (en) | Antenna switching circuit | |
US10686421B2 (en) | Radio frequency front end circuit and communication apparatus | |
KR101572534B1 (ko) | Rf 프론트 앤드 모듈 및 이를 이용한 멀티밴드 통신 모듈 | |
US8412121B2 (en) | Circuit integrating a tunable antenna with a standing wave rate correction | |
WO2017204347A1 (ja) | 高周波フィルタ装置、及び、通信装置 | |
JP6365776B2 (ja) | 高周波フロントエンド回路 | |
KR102041721B1 (ko) | 복합형 필터 장치, 고주파 프론트 엔드 회로 및 통신 장치 | |
US10110194B2 (en) | Variable filter circuit, RF front end circuit and communication device | |
JP2008522533A (ja) | 分散型ダイプレクサ | |
KR20200007953A (ko) | 스위치 모듈 | |
US9899734B2 (en) | Front end circuit and wireless communication device | |
US10056662B2 (en) | Switched bandstop filter with low-loss linear-phase bypass state | |
JP5949753B2 (ja) | フロントエンド回路 | |
US11362644B2 (en) | Switch module | |
JP6822444B2 (ja) | 複合型フィルタ装置、高周波フロントエンド回路および通信装置 | |
JP6213574B2 (ja) | 高周波フロントエンド回路 | |
US11329630B2 (en) | Switch module | |
JP2013106128A (ja) | フロントエンドモジュール | |
KR200460243Y1 (ko) | 알에프 스위치 | |
JP4587963B2 (ja) | 高耐電力スイッチ | |
JP2000286609A (ja) | アンテナ回路 | |
KR20030070198A (ko) | 다중 대역 정합 회로 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14865350 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14865350 Country of ref document: EP Kind code of ref document: A1 |