WO2013027398A1 - 水中溶接装置及び方法 - Google Patents

水中溶接装置及び方法 Download PDF

Info

Publication number
WO2013027398A1
WO2013027398A1 PCT/JP2012/005261 JP2012005261W WO2013027398A1 WO 2013027398 A1 WO2013027398 A1 WO 2013027398A1 JP 2012005261 W JP2012005261 W JP 2012005261W WO 2013027398 A1 WO2013027398 A1 WO 2013027398A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
underwater welding
expansion
shield cover
underwater
Prior art date
Application number
PCT/JP2012/005261
Other languages
English (en)
French (fr)
Inventor
達也 石崖
拓也 上原
良男 濱本
山口 修
剛 前原
裕美 加藤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP12826236.7A priority Critical patent/EP2752269B1/en
Priority to US14/131,119 priority patent/US10052717B2/en
Publication of WO2013027398A1 publication Critical patent/WO2013027398A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum

Definitions

  • Embodiments of the present invention relate to an underwater welding apparatus and method for welding, for example, an in-reactor structure in a reactor water of a nuclear reactor in water.
  • an underwater welding apparatus for performing welding in water for example, an underwater welding apparatus for repairing a reactor internal structure in reactor water of a nuclear reactor is known.
  • Such an underwater welding apparatus needs to form a space in which water is excluded by gas around at least a molten pool during welding in water. For this reason, various methods have been proposed in order to secure a partial shield that forms a space in which water is excluded around the molten pool.
  • the TIG welding power source 2 when welding the workpiece 1 which is a workpiece to be welded under an underwater environment as shown in FIG. 7, the TIG welding power source 2 is installed in the atmosphere, Only the portion of the welding torch 4 that is the welding head in which the arc 3 is generated is installed in water.
  • the welding torch 4 and the welded portion 5 are locally excluded of water by the shielding gas 6 (the welded portion is shielded) so as not to come into contact with water.
  • the underwater processing apparatus described in Patent Document 1 is a highly elastic shield cover (solid wall) made of a felt-like cloth woven with carbon fibers having a thickness of about 5 mm as a shielding means for removing water. 7 is used in combination with Ar gas.
  • the shield cover 7 when performing groove build-up welding continuously on a cylinder such as a nozzle part in water, the shield cover 7 is turned inside by turning over the shield cover 7 ( Hereinafter, water may enter the chamber).
  • fume metal dust having a size of several ⁇ m to several tens of ⁇ m is generated during welding.
  • fume generation is remarkable, and when mixed with water, it becomes a clay-like substance having high adhesiveness, which adheres to the valve seat of the check valve or the inside of the flow path, and has a problem of hindering its function.
  • the problem to be solved by the embodiments of the present invention is to prevent the water outside the shield cover from being mixed and to reliably and easily discharge the water containing the metal dust and the shield gas mixed in the shield cover.
  • An object is to provide an underwater welding apparatus and method.
  • an underwater welding apparatus includes an underwater welding head that is disposed in water and has a nozzle portion that emits laser light at a tip thereof, and is provided around the nozzle portion.
  • a shield cover made of an elastic member for forming a space in which water is excluded by shield gas at the tip side of the underwater welding head, and discharge containing water containing metal dust and shield gas from within the shield cover
  • An expansion / contraction member having a hole formed therein, the size of the discharge hole being increased by an increase in pressure in the shield cover, and the size of the discharge hole being reduced by a decrease in pressure in the shield cover.
  • An underwater welding method is an underwater welding method in which an underwater welding head is disposed in water and a welded portion of a structure is welded in water.
  • a discharge hole for discharging the contained water and the shield gas is formed, and the size of the discharge hole is enlarged by the pressure increase in the shield cover, and the size of the discharge hole is reduced by the pressure drop in the shield cover.
  • a step of discharging the water containing the metal dust and the shielding gas from the discharge hole of the expansion / contraction member is an underwater welding method in which an underwater welding head is disposed in water and a welded portion of a structure is welded in water.
  • mixing of water outside the shield cover can be prevented in advance, and water and shield gas containing metal dust mixed in the shield cover can be surely and easily discharged.
  • FIG. 1 is an elevational sectional view showing a first embodiment of an underwater welding apparatus according to the present invention.
  • FIG. 2 is an enlarged vertical sectional view showing the expansion / contraction valve of FIG. 1. It is an expansion perspective view which shows the expansion / contraction valve
  • FIG. 5 is an enlarged vertical sectional view showing the expansion / contraction valve and the protective tube of FIG. 4. It is an elevation sectional view showing a 3rd embodiment of an underwater welding device concerning the present invention. It is a whole block diagram which shows the conventional underwater welding apparatus.
  • FIG. 1 is an elevational sectional view showing a first embodiment of an underwater welding apparatus according to the present invention.
  • FIG. 2 is an enlarged sectional view showing the expansion / contraction valve of FIG.
  • FIG. 3 is an enlarged perspective view showing the expansion / contraction valve of FIG.
  • a laser oscillator (not shown) is installed in the atmosphere, and only the portion of the underwater welding head 11 is installed in the water.
  • the laser light emitted from the laser oscillator installed in the atmosphere is transmitted to the underwater welding head 11 through the optical fiber 12.
  • an inert gas as a shield gas is also supplied to the underwater welding head 11 through an inert gas inlet 13 from a shield gas supply source (not shown) provided in the atmosphere.
  • the underwater welding head 11 is formed in a substantially cylindrical shape.
  • An optical system 15 for condensing the laser beam 14 is provided inside the underwater welding head 11.
  • a large-diameter portion 11a that protrudes in a flange shape toward the outer peripheral direction is provided on the distal end side (the left side in FIG. 1) of the underwater welding head 11, and is collected by an optical system 15 at a substantially central portion of the large-diameter portion 11a.
  • a nozzle unit 16 is provided for emitting the emitted laser beam 14 and discharging an inert gas.
  • a reflection light absorber 17 for absorbing the reflected light of the laser light 14 is provided on the surface on the tip side of the large diameter portion 11 a so as to surround the periphery of the nozzle portion 16.
  • the reflected light absorber 17 is formed of a plate-like member formed in an annular shape, and is fixed to the large diameter portion 11a.
  • a plate-like member constituting the reflected light absorber 17 for example, a carbon plate can be suitably used.
  • a shield cover 18 is formed around the reflected light absorber 17 and on the outer peripheral surface of the distal end of the large-diameter portion 11a to form a space from which water is excluded by the shield gas around the welded portion. .
  • a chamber 19 for filling the inert gas is formed in the shield cover 18.
  • this shield cover 18 it is preferable to use silicone rubber or the like which is an elastic member having a relatively small thickness. Thereby, water resistance and the function to deform
  • discharge paths 20a and 20b are formed vertically. These discharge paths 20 a and 20 b discharge water mixed in the chamber 19.
  • An expansion / contraction valve 21 as an expansion / contraction member is connected to the discharge path 20b formed in the lower portion of the large diameter portion 11a.
  • the expansion / contraction valve 21 is formed in a spindle-shaped bag shape with one side of the rubber tube closed as shown in FIGS.
  • the expansion / contraction valve 21 can be expanded and contracted (expanded / contracted) as a whole in accordance with the pressure in the chamber 19. Specifically, the expansion / contraction valve 21 expands due to a pressure increase in the chamber 19, and contracts due to a pressure decrease in the chamber 19. Further, the expansion / contraction valve 21 has valve discharge holes 22 and 22 formed on the side surfaces thereof, and water 24 and gas including the fume 23 are discharged from the valve discharge holes 22 and 22.
  • the diameter of the valve discharge holes 22 and 22 increases or decreases according to the pressure in the chamber 19. Specifically, the diameters of the valve discharge holes 22 and 22 are increased by the pressure increase in the chamber 19, while the diameters are reduced by the pressure decrease in the chamber 19.
  • the laser beam 14 transmitted to the underwater welding head 11 by the optical fiber 12 is collected by the optical system 15 provided inside the underwater welding head 11 and is welded from the nozzle portion 16 to the workpiece 10. Irradiated towards.
  • a welding wire (not shown) is supplied, and a weld pool 25 is formed in the material to be welded 10 to perform a welding operation.
  • the reflected light absorber 17 for absorbing the reflected light is provided in the portion irradiated with the reflected light on the tip side (left side in FIG. 1) of the underwater welding head 11. Therefore, most of the reflected light is absorbed by the reflected light absorber 17, and the possibility of the reflected light reaching the shield cover 18 by repeating reflection can be greatly reduced.
  • the expansion / contraction valve 21 expands / contracts in accordance with the internal pressure of the chamber 19, thereby preventing the fume 23 from being deposited in the valve discharge hole 22 and water from the outside. Can be prevented from flowing backward.
  • FIG. 4 is an elevational sectional view showing a second embodiment of the underwater welding apparatus according to the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing the expansion / contraction valve and the protective tube of FIG.
  • symbol is attached
  • a protective tube 26 is disposed around the expansion / contraction valve 21.
  • the protective tube 26 is formed of metal so as to surround the expansion / contraction valve 21 formed in a spindle shape.
  • the lower end of the protective tube 26 extends to the vicinity of the valve discharge hole 22 of the expansion / contraction valve 21. Therefore, when the expansion / contraction valve 21 is expanded by the internal pressure of the chamber 19, the valve discharge hole 22 is exposed to the protective tube 26. As a result, the diameter of the valve discharge hole 22 can be increased in accordance with the internal pressure of the chamber 19.
  • the protective tube 26 is arranged around the expansion / contraction valve 21, so that the valve discharge hole 22 is clogged due to accumulation of the fumes 23, and the expansion / contraction valve 21 is expanded due to excessive internal pressure increase.
  • the expansion / contraction valve 21 it is possible to prevent the expansion / contraction valve 21 from being ruptured.
  • FIG. 6 is an elevational sectional view showing a third embodiment of the underwater welding apparatus according to the present invention.
  • an expansion / contraction valve 21 is provided directly on the shield cover 18.
  • a plurality of the expansion / contraction valves 21 are provided by bonding at regular intervals along the circumferential direction of the shield cover 18.
  • the expansion / contraction valve 21 of the present embodiment is formed of an elastic member thinner than the shield cover 18, and expands faster than the shield cover 18 when an excessive increase in internal pressure occurs.
  • the expansion / contraction valve 21 is directly provided on the shield cover 18, it is not necessary to provide the discharge paths 20 a and 20 b in the large diameter portion 11 a, so that the structure of the underwater welding head 11 is simplified. Can be achieved.
  • rubber is used as the material of the expansion / contraction valve 21, but not limited to this, the diameter of the valve discharge hole 22 is expanded and contracted in accordance with the internal pressure of the chamber 19 and the expansion and contraction.
  • Other materials may be used as long as can be enlarged and reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)

Abstract

水中に配置されてレーザ光を射出するノズル部(16)を先端に備えた水中溶接ヘッド(11)と、ノズル部(16)の周辺に設けられ、弾性部材からなり、水中溶接ヘッド(11)の先端側にシールドガスにより水が排除された空間を形成するためのシールドカバー(18)と、シールドカバー(18)内から金属粉塵を含んだ水とシールドガスを排出する排出孔が形成され、シールドカバー(18)内の圧力上昇により排出孔の大きさが拡大し、その圧力下降により排出孔の大きさが縮小する膨縮バルブ(21)とを備え、シールドカバーの外からの水の混入を未然に防止するとともに、シールドカバー内に混入した金属粉塵を含んだ水及びシールドガスを確実かつ容易に排出可能にする。

Description

水中溶接装置及び方法
 本発明の実施形態は、例えば原子炉の炉水中における炉内構造物などを、水中で溶接を行うための水中溶接装置及び方法に関する。
 従来から水中で溶接を行う水中溶接装置として、例えば原子炉の炉水中で炉内構造物の補修などを行う水中溶接装置が知られている。このような水中溶接装置は、水中において溶接中に少なくとも溶融池の周りにガスにより水が排除された空間を形成することが必要である。このため、溶融池の回りに水が排除された空間を形成する部分的なシールドを確保するために種々の方式が提案されている。
 例えば、特許文献1に記載された水中加工装置では、図7に示すように水中環境下にある被溶接材である被加工材1を溶接する場合、TIG溶接電源2は大気中に設置され、アーク3の発生する溶接ヘッドである溶接トーチ4の部分だけが水中に設置される。ここで、溶接トーチ4及び溶接部5は水と接触しないように、シールドガス6で局部的に水が排除(溶接部はシールド)されている。
 また、特許文献1に記載された水中加工装置は、水を排除するシールド手段として、約5mmの厚さのカーボン繊維で織られたフェルト状の布からなる弾力性の高いシールドカバー(固体壁)7とArガスとの併用による手段を用いている。
特許第3006370号公報
 ところで、上述した特許文献1に記載されたシールド手段では、水中で管台部などの円筒上で連続した開先肉盛溶接を行う場合、シールドカバー7のめくれなどにより、シールドカバー7の内部(以下、チャンバーという)に水が混入する場合がある。
 また、装置設置時には、シールドカバー7内に水が溜まった状態となる。このシールドカバー7のチャンバー内に水が混入した場合、その水は、チャンバー内に充満した不活性ガスの内圧により、シールドカバー7の押し付け面から主に排出される。
 しかしながら、溶接ヘッドである溶接トーチ4の姿勢によっては、例えば上向きあるいは横向き姿勢では、完全に水を排出することができず、一部の水がチャンバー内に残留することがある。このような場合には、逆止弁などを設けて残留した水を排出する必要があった。
 ところで、溶接時には数μm~数十μmの大きさの金属粉塵(以下、ヒュームともいう)が発生する。特にレーザ溶接では、ヒュームの発生は著しく、水と混ざると粘着性の高い粘土状の物質となり、上記逆止弁の弁座あるいは流路内部に付着し、その機能を阻害する問題があった。
 本発明の実施形態が解決しようとする課題は、シールドカバー外の水の混入を未然に防止するとともに、シールドカバー内に混入した金属粉塵を含んだ水及びシールドガスを確実かつ容易に排出可能な水中溶接装置及び方法を提供することを目的とする。
 上記目的を達成するために、本発明の実施形態に係る水中溶接装置は、水中に配置されてレーザ光を射出するノズル部を先端に備えた水中溶接ヘッドと、前記ノズル部の周辺に設けられ、弾性部材からなり、前記水中溶接ヘッドの先端側にシールドガスにより水が排除された空間を形成するためのシールドカバーと、前記シールドカバー内から金属粉塵を含んだ水とシールドガスを排出する排出孔が形成され、前記シールドカバー内の圧力上昇により前記排出孔の大きさが拡大し、前記シールドカバー内の圧力下降により前記排出孔の大きさが縮小する膨縮部材と、を備えることを特徴とする。
 本発明の実施形態に係る水中溶接方法は、水中溶接ヘッドを水中に配置して水中で構造物の被溶接部を溶接する水中溶接方法において、前記水中溶接ヘッド先端側のレーザ光を射出するノズル部の周辺に設けられた弾性部材からなるシールドカバーを用いて、前記水中溶接ヘッドの先端側にシールドガスにより水が排除された空間を形成するためのステップと、前記シールドカバー内の金属粉塵を含んだ水とシールドガスを排出する排出孔が形成され、前記シールドカバー内の圧力上昇により前記排出孔の大きさが拡大し、前記シールドカバー内の圧力下降により前記排出孔の大きさが縮小する膨縮部材の前記排出孔から前記金属粉塵を含んだ水と前記シールドガスを排出するステップと、を有することを特徴とする。
 本発明の実施形態によれば、シールドカバー外の水の混入を未然に防止するとともに、シールドカバー内に混入した金属粉塵を含んだ水及びシールドガスを確実かつ容易に排出することができる。
本発明に係る水中溶接装置の第1実施形態を示す立断面図である。 図1の膨縮バルブを示す拡大立断面図である。 図1の膨縮バルブを示す拡大斜視図である。 本発明に係る水中溶接装置の第2実施形態を示す立断面図である。 図4の膨縮バルブ及び保護管を示す拡大立断面図である。 本発明に係る水中溶接装置の第3実施形態を示す立断面図である。 従来の水中溶接装置を示す全体構成図である。
 以下に、本発明に係る水中溶接装置の各実施形態について、図面を参照して説明する。
 (第1実施形態)
 図1は本発明に係る水中溶接装置の第1実施形態を示す立断面図である。図2は図1の膨縮バルブを示す拡大断面図である。図3は図1の膨縮バルブを示す拡大斜視図である。
 本実施形態は、図1に示すように水中環境下にある被溶接材10を溶接する場合、図示しないレーザ発振器は大気中に設置され、水中溶接ヘッド11の部分のみが水中に設置される。そして、大気中に設置された上記レーザ発振器から照射されたレーザ光は光ファイバー12を通して水中溶接ヘッド11に伝送される。また、シールドガスとしての不活性ガスも、大気中に設けられた図示しないシールドガス供給源から不活性ガス注入口13を通して水中溶接ヘッド11に供給される。
 水中溶接ヘッド11は、略円筒状に形成されている。そして、水中溶接ヘッド11の内部には、レーザ光14を集光するための光学系15が設けられている。水中溶接ヘッド11の先端側(図1の左側)には、外周方向に向けてフランジ状に突出する大径部11aが設けられ、この大径部11aの略中央部に、光学系15によって集光されたレーザ光14を射出するとともに、不活性ガスを吐出するためのノズル部16が設けられている。
 上記大径部11aの先端側の面には、ノズル部16の周囲を囲むように、レーザ光14の反射光を吸収するための反射光吸収体17が設けられている。本実施形態では、反射光吸収体17は、環状に形成された板状部材から形成されており、大径部11aに固着されている。反射光吸収体17を構成する板状部材としては、例えばカーボン板を好適に使用することができる。
 上記反射光吸収体17の周囲であって、大径部11aの先端外周面には、溶接部の周囲にシールドガスにより水が排除された空間を形成するためのシールドカバー18が設けられている。このシールドカバー18内は、不活性ガスを充満させるチャンバー19が形成される。このシールドカバー18としては、厚さが比較的薄い弾性部材であるシリコーンゴムなどを用いることが好ましい。これによって、耐水性と変形する機能を確保することができる。
 また、大径部11a内は、上下に排出経路20a,20bが形成されている。これらの排出経路20a,20bは、チャンバー19内に混入した水を排出する。大径部11aの下部に形成された排出経路20bには、膨縮部材としての膨縮バルブ21が接続されている。
 膨縮バルブ21は、図2及び図3に示すようにゴムチューブの片側を閉じた紡錘形の袋状に形成されている。膨縮バルブ21は、チャンバー19内の圧力に合わせて全体が膨張及び収縮(膨縮)が可能である。具体的には、膨縮バルブ21は、チャンバー19内の圧力上昇により膨張する一方、チャンバー19内の圧力下降により収縮する。また、膨縮バルブ21は、その側面にバルブ排出孔22,22が形成され、これらのバルブ排出孔22,22からヒューム23を含む水24及びガスが排出されるようになっている。
 したがって、バルブ排出孔22,22は、膨縮バルブ21の全体が膨張及び収縮が可能であることから、チャンバー19内の圧力に合わせて口径が広がったり、あるいは狭くなったりする。具体的には、バルブ排出孔22,22は、チャンバー19内の圧力上昇により口径が拡大する一方、チャンバー19内の圧力下降により口径が縮小する。
 次に、本実施形態の作用を説明する。
 上記構成の水中溶接装置では、光ファイバー12によって水中溶接ヘッド11に伝送されたレーザ光14は、水中溶接ヘッド11の内部に設けられた光学系15により集光され、ノズル部16から被溶接材10に向けて照射される。これとともに、図示しない溶接ワイヤが供給され、被溶接材10に溶接池25が形成され、溶接作業が実行される。
 上記の溶接作業の際、ノズル部16から被溶接材10に向けて照射されたレーザ光14の一部は、被溶接材10及びその近傍で反射して反射光となる。ここで、本実施形態の水中溶接装置では、水中溶接ヘッド11の先端側(図1の左側)の反射光が照射される部分に反射光を吸収するための反射光吸収体17が設けられているので、その反射光は反射光吸収体17によってその大部分が吸収され、さらに反射を繰り返してシールドカバー18に反射光が到達する可能性を大幅に低減することができる。
 ところで、本実施形態では、チャンバー19内に水24が浸入した場合、その水24はチャンバー19内に発生したヒューム23と混ざり、シールドカバー18内に水24が溜まる。
 このとき、チャンバー19内に不活性ガスが充満することにより、チャンバー19内に溜まった水24は、大径部11aに設けた排出経路20bから、膨縮バルブ21に設けられたバルブ排出孔22から排出される。
 ここで、バルブ排出孔22からヒューム23を含んだ水24が排出される場合、バルブ排出孔22にヒューム23が堆積しバルブ排出孔22が詰まる。そして、バルブ排出孔22が詰まると、膨縮バルブ21は、チャンバー19の内圧により、膨張してバルブ排出孔22が広がり、水24が排出される。このとき、バルブ排出孔22は、チャンバー19の内圧に合わせて口径が広がるため、外部から水が混入しないことになる。
 このように本実施形態によれば、膨縮バルブ21がチャンバー19の内圧に合わせて伸び縮みすることで、ヒューム23がバルブ排出孔22に堆積されるのを未然に防止するとともに、外部から水が逆流するのを防ぐことができる。
 (第2実施形態)
 図4は本発明に係る水中溶接装置の第2実施形態を示す立断面図である。図5は図4の膨縮バルブ及び保護管を示す拡大断面図である。なお、前記第1実施形態と同一又は対応する部分には、同一の符号を付して重複する説明は省略する。その他の実施形態も同様である。
 図4及び図5に示すように、本実施形態では、膨縮バルブ21の周囲に保護管26が配置されている。この保護管26は、紡錘形に形成された膨縮バルブ21を囲むように金属から成形されている。保護管26の下端は、膨縮バルブ21のバルブ排出孔22の近傍まで延びている。したがって、膨縮バルブ21は、チャンバー19の内圧により膨張した際、保護管26に対してバルブ排出孔22が露出する。その結果、バルブ排出孔22は、チャンバー19の内圧に合わせて口径が広がることが可能となる。
 このように本実施形態によれば、膨縮バルブ21の周囲に保護管26を配置したことにより、バルブ排出孔22がヒューム23の堆積により詰まり、過度の内圧上昇により膨縮バルブ21が膨張したとしても、膨縮バルブ21の破裂を未然に防止することができる。
 (第3実施形態)
 図6は本発明に係る水中溶接装置の第3実施形態を示す立断面図である。
 図6に示すように、本実施形態では、シールドカバー18に膨縮バルブ21が直接設けられている。この膨縮バルブ21は、シールドカバー18の周方向に沿って一定の間隔をおいて接着により複数設けられている。本実施形態の膨縮バルブ21は、シールドカバー18より薄い弾性部材で形成され、過度の内圧上昇が生ずると、シールドカバー18より早く膨張するようになっている。
 このように本実施形態によれば、シールドカバー18に膨縮バルブ21を直接設けたことにより、大径部11aに排出経路20a,20bに設ける必要がなくなるため、水中溶接ヘッド11の構造の簡素化を図ることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、上記各実施形態では、膨縮バルブ21の材質としてゴムを用いたが、こりに限らず、チャンバー19の内圧に合わせて膨張及び収縮し、かつその膨張及び収縮によりバルブ排出孔22の径が拡大及び縮小可能なものであれば、他の材質のものでもよい。
10…被溶接材、11…水中溶接ヘッド、11a…大径部、12…光ファイバー、13…不活性ガス注入口、14…レーザ光、15…光学系、16…ノズル部、17…反射光吸収体、18…シールドカバー、19…チャンバー、20a,20b…排出経路、21…膨縮バルブ(膨縮部材)、22…バルブ排出孔、23…ヒューム、24…水、25…溶接池、26…保護管

Claims (4)

  1.  水中に配置されてレーザ光を射出するノズル部を先端に備えた水中溶接ヘッドと、
     前記ノズル部の周辺に設けられ、弾性部材からなり、前記水中溶接ヘッドの先端側にシールドガスにより水が排除された空間を形成するためのシールドカバーと、
     前記シールドカバー内から金属粉塵を含んだ水とシールドガスを排出する排出孔が形成され、前記シールドカバー内の圧力上昇により前記排出孔の大きさが拡大し、前記シールドカバー内の圧力下降により前記排出孔の大きさが縮小する膨縮部材と、
     を備えることを特徴とする水中溶接装置。
  2.  前記膨縮部材は、伸縮性のゴムチューブから形成され、周囲に保護管が配置されていることを特徴とする請求項1に記載の水中溶接装置。
  3.  前記膨縮部材は、前記シールドカバーに設けられていることを特徴とする請求項1又は2に記載の水中溶接装置。
  4.  水中溶接ヘッドを水中に配置して水中で構造物の被溶接部を溶接する水中溶接方法において、
     前記水中溶接ヘッド先端側のレーザ光を射出するノズル部の周辺に設けられた弾性部材からなるシールドカバーを用いて、前記水中溶接ヘッドの先端側にシールドガスにより水が排除された空間を形成するためのステップと、
     前記シールドカバー内の金属粉塵を含んだ水とシールドガスを排出する排出孔が形成され、前記シールドカバー内の圧力上昇により前記排出孔の大きさが拡大し、前記シールドカバー内の圧力下降により前記排出孔の大きさが縮小する膨縮部材の前記排出孔から前記金属粉塵を含んだ水と前記シールドガスを排出するステップと、
     を有することを特徴とする水中溶接方法。
PCT/JP2012/005261 2011-08-24 2012-08-22 水中溶接装置及び方法 WO2013027398A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12826236.7A EP2752269B1 (en) 2011-08-24 2012-08-22 Device and method for underwater welding
US14/131,119 US10052717B2 (en) 2011-08-24 2012-08-22 Underwater welding apparatus and underwater welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011182238A JP5767900B2 (ja) 2011-08-24 2011-08-24 水中溶接装置及び方法
JP2011-182238 2011-08-24

Publications (1)

Publication Number Publication Date
WO2013027398A1 true WO2013027398A1 (ja) 2013-02-28

Family

ID=47746158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005261 WO2013027398A1 (ja) 2011-08-24 2012-08-22 水中溶接装置及び方法

Country Status (4)

Country Link
US (1) US10052717B2 (ja)
EP (1) EP2752269B1 (ja)
JP (1) JP5767900B2 (ja)
WO (1) WO2013027398A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464901A (zh) * 2013-06-09 2013-12-25 湖南大学 一种激光焊接保护拖罩装置
CN103551733A (zh) * 2013-10-25 2014-02-05 天津大学 一种减少高强钢激光焊焊接烟尘的方法
CN105643097A (zh) * 2016-03-28 2016-06-08 东南大学 一种水下激光切割用排水装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109638B2 (ja) * 2013-05-14 2017-04-05 株式会社東芝 肉盛溶接装置及び肉盛溶接システム
CN103586565A (zh) * 2013-11-04 2014-02-19 哈尔滨工业大学(威海) 基于主动视觉的水下湿法焊接跟踪系统
US20160303688A1 (en) * 2015-04-20 2016-10-20 Ford Motor Company Gas Enclosure and Particle Shield for Laser Welding System
CN104923883B (zh) * 2015-07-02 2017-01-11 哈尔滨工业大学(威海) 一种水下复合湿法焊接装置及方法
CN104923882B (zh) * 2015-07-02 2017-01-11 哈尔滨工业大学(威海) 一种水下湿法焊接装置及方法
CN110280908A (zh) * 2019-07-24 2019-09-27 广州贤智科技有限公司 一种具有防护功能的环保型激光打标系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2031728A5 (en) * 1969-02-05 1970-11-20 Sogetram Travaux Maritim Underwater gas-screened fusible electrode - arc welding head
JPS52108352A (en) * 1976-03-05 1977-09-10 Battelle Memorial Institute Method and apparatus for replacing liquid of certain volume in enclosure submerged under liquid* with gas of corresponding volume
JPS56141965A (en) * 1980-04-07 1981-11-05 Natl Res Inst For Metals Wet type underwater welding device
US5938954A (en) * 1995-11-24 1999-08-17 Hitachi, Ltd. Submerged laser beam irradiation equipment
JP3006370B2 (ja) 1993-11-10 2000-02-07 株式会社日立製作所 水中加工装置
JP2000056070A (ja) * 1998-08-05 2000-02-25 Toshiba Corp レーザ照射装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3118468A (en) * 1961-04-20 1964-01-21 Gen Electric Resilient material check valve
US3632950A (en) * 1969-11-13 1972-01-04 Anna Welding Corp Method and apparatus for underwater arc welding
US3648015A (en) * 1970-07-20 1972-03-07 Thomas E Fairbairn Radio frequency generated electron beam torch
FR2229241A5 (ja) * 1973-05-07 1974-12-06 Oreal
US3851864A (en) * 1973-06-26 1974-12-03 Lukens Steel Co Apparatus and process for suppression of noise and fumes generated by plasma-arc cutting operation
ES208987Y (es) * 1975-01-10 1976-08-16 Baya Pena Dispositivo para la limpieza y desinfeccion de las fosas nasales.
US4114659A (en) * 1975-06-18 1978-09-19 Eitan Goldberg Pipette filling and liquid dispensing device
US4102342A (en) * 1975-12-29 1978-07-25 Taichiro Akiyama Valved device
GB1539917A (en) 1976-03-08 1979-02-07 Boc Ltd Methods of arc welding in a super-atmospheric environment
US4151393A (en) * 1978-02-13 1979-04-24 The United States Of America As Represented By The Secretary Of The Navy Laser pile cutter
US4475026A (en) * 1982-07-26 1984-10-02 Massachusetts Institute Of Technology Underwater arc stud welding system
US4482246A (en) * 1982-09-20 1984-11-13 Meyer Gerhard A Inductively coupled plasma discharge in flowing non-argon gas at atmospheric pressure for spectrochemical analysis
DK148075C (da) * 1982-12-07 1985-07-29 Gw Sprinkler As Sprinklerenhed
JPS5996313U (ja) * 1982-12-21 1984-06-29 株式会社小松製作所 オイル噴射管装置
GB8615437D0 (en) * 1986-06-24 1986-07-30 Bard Ltd Pump
JPH01151862U (ja) * 1988-03-28 1989-10-19
JP3119090B2 (ja) * 1994-10-05 2000-12-18 株式会社日立製作所 水中レーザ加工装置及びその装置を用いた水中施工方法
US5811055A (en) * 1996-02-06 1998-09-22 Geiger; Michael B. Torch mounted gas scavaging system for manual and robotic welding and cutting torches
US5717092A (en) 1996-03-29 1998-02-10 Vertex Pharmaceuticals Inc. Compounds with improved multi-drug resistance activity
US5852271A (en) * 1996-04-12 1998-12-22 General Electric Company Water exclusion device for underwater thermal processing
KR100255790B1 (ko) * 1998-04-09 2000-05-01 양원동 치과용 유니트체어의 압력수 공급시스템 및 공급장치
US6167925B1 (en) * 1998-06-11 2001-01-02 D'andrade Bruce M. Bladder water gun with pump and quick charge system
US5961856A (en) 1998-07-10 1999-10-05 General Electric Company Deep water powder feed hopper
JP3806859B2 (ja) * 1999-09-24 2006-08-09 応研精工株式会社 ダイヤフラムポンプ
JP2001219269A (ja) * 2000-02-07 2001-08-14 Hitachi Ltd 水中加工装置及びその加工方法
JP4155489B2 (ja) * 2000-09-28 2008-09-24 株式会社東芝 水中レーザ補修溶接装置
GB0100877D0 (en) * 2001-01-12 2001-02-21 Mos Speciality Welds Welding electrode holder
US6506995B1 (en) * 2001-06-21 2003-01-14 General Electric Company Conforming welding torch shroud
US7164094B2 (en) * 2004-01-12 2007-01-16 General Electric Company Apparatus and method for electrofriction welding
FR2908061B1 (fr) * 2006-11-07 2009-02-13 Areva Np Sas Dispositif et procede de soudage automatique sous eau pour la realisation sur une surface d'un joint a souder.
WO2009058080A1 (en) * 2007-10-29 2009-05-07 Poseidon Diving Systems Mouth piece for a breathing apparatus
US9050543B2 (en) * 2007-11-14 2015-06-09 Dan Barish Bubble-producing devices and toy marksman kit including same
EP2323798A4 (en) * 2008-08-07 2013-03-27 Nelson Stud Welding Inc WATERPROOF AND PRESSURIZED GUN FOR WELDING UNDER WATER
US9080425B2 (en) * 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
JP2011016153A (ja) * 2009-07-09 2011-01-27 Toshiba Corp 水中溶接装置
US8841127B2 (en) * 2010-02-12 2014-09-23 Northwestern University Methods and devices for sample collection, treatment and dispensing
JP2012110945A (ja) * 2010-11-26 2012-06-14 Toshiba Corp レーザ加工装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2031728A5 (en) * 1969-02-05 1970-11-20 Sogetram Travaux Maritim Underwater gas-screened fusible electrode - arc welding head
JPS52108352A (en) * 1976-03-05 1977-09-10 Battelle Memorial Institute Method and apparatus for replacing liquid of certain volume in enclosure submerged under liquid* with gas of corresponding volume
JPS56141965A (en) * 1980-04-07 1981-11-05 Natl Res Inst For Metals Wet type underwater welding device
JP3006370B2 (ja) 1993-11-10 2000-02-07 株式会社日立製作所 水中加工装置
US5938954A (en) * 1995-11-24 1999-08-17 Hitachi, Ltd. Submerged laser beam irradiation equipment
JP2000056070A (ja) * 1998-08-05 2000-02-25 Toshiba Corp レーザ照射装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464901A (zh) * 2013-06-09 2013-12-25 湖南大学 一种激光焊接保护拖罩装置
CN103551733A (zh) * 2013-10-25 2014-02-05 天津大学 一种减少高强钢激光焊焊接烟尘的方法
CN105643097A (zh) * 2016-03-28 2016-06-08 东南大学 一种水下激光切割用排水装置

Also Published As

Publication number Publication date
US10052717B2 (en) 2018-08-21
EP2752269B1 (en) 2018-08-01
EP2752269A4 (en) 2016-01-06
JP2013043197A (ja) 2013-03-04
EP2752269A1 (en) 2014-07-09
US20140231394A1 (en) 2014-08-21
JP5767900B2 (ja) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5767900B2 (ja) 水中溶接装置及び方法
JP4490608B2 (ja) 構造物の補修方法
KR100445836B1 (ko) 레이저 용접 방법 및 레이저 용접 장치
KR101256430B1 (ko) 레이저 용접 장치
WO2011145514A1 (ja) レーザ溶接装置およびレーザ溶接方法
JP2008068316A (ja) レーザ加工装置およびレーザ加工方法
CN103547860B (zh) 流化喷嘴焊接套环
JP2016120506A (ja) レーザ溶接方法
JP2011075453A (ja) 管台溶接方法、管台部補修方法および管台溶接構造
JP2015037800A5 (ja)
JP2007232457A (ja) 貫通管台補修方法及び管台孔栓
KR101841793B1 (ko) 레이저 용접기
JP4846392B2 (ja) 水中補修溶接方法
US11103954B2 (en) Laser processing device with tubular filter
JP7239307B2 (ja) レーザ溶接装置
EP2527076A1 (en) Double-walled pipe, method for manufacturing double-walled pipe, and vapor generator
EP2910329B1 (en) Laser processing apparatus and laser processing method
JP6109638B2 (ja) 肉盛溶接装置及び肉盛溶接システム
JP2009143149A (ja) 樹脂部材のレーザ溶着方法
JP4363933B2 (ja) 水中レーザ補修溶接装置及び水中レーザ補修溶接方法
JP2015231629A (ja) レーザ溶接装置及びレーザ溶接方法
JP2005098998A (ja) シールプレートを用いて原子炉容器クラッディングを補修するための装置及び方法
JP2004037465A (ja) 沸騰水型原子炉における漏洩している細長い中空部材を補修する方法
JP2008207234A (ja) 水中補修溶接方法
JPWO2017187630A1 (ja) タンク、ターゲット生成装置、及び、極端紫外光生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012826236

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14131119

Country of ref document: US