WO2013023432A1 - 一种高强度、高模量、高熔点pva纤维及其制造方法 - Google Patents
一种高强度、高模量、高熔点pva纤维及其制造方法 Download PDFInfo
- Publication number
- WO2013023432A1 WO2013023432A1 PCT/CN2012/000871 CN2012000871W WO2013023432A1 WO 2013023432 A1 WO2013023432 A1 WO 2013023432A1 CN 2012000871 W CN2012000871 W CN 2012000871W WO 2013023432 A1 WO2013023432 A1 WO 2013023432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pva
- modulus
- strength
- spinning
- fiber
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D1/00—Treatment of filament-forming or like material
- D01D1/02—Preparation of spinning solutions
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/06—Wet spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/14—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
Definitions
- the invention relates to a synthetic fiber and a preparation method thereof, in particular to a polyvinyl alcohol (PVA) fiber and a preparation method thereof, and more particularly to a high strength, high modulus, high melting point PVA fiber and a preparation method thereof.
- PVA polyvinyl alcohol
- PVA fibers are closely related to their properties such as strength, modulus and melting point. Fibers with a strength of 3 ⁇ 5CN/dtex, a modulus of 60 ⁇ 80CN/dtex, and an initial melting point of 85 ⁇ 90°C are mostly used for civil use; the strength is 10 ⁇ llCN/dtex, the modulus is 220 ⁇ 250CN/dtex, and the initial melting point is 10 (TC fiber). It is reinforced with general cement products; the PVA fiber with better performance is not only used for reinforcement of cement products, but also for reinforcement of high performance concrete, highway asphalt, plastic and rubber.
- the PVA fiber can be produced by a conventional wet method, a dry-wet method, a gel method, a boron-containing wet method, or the like.
- Ordinary wet method and dry-wet method have low fiber quality index, the strength is 3 ⁇ 5CN/dtex, the modulus is 60 ⁇ 80CN/dte X , and the initial melting point is 85 ⁇ 90 ⁇ . Because the initial melting point is low, the fiber must be treated by formalization to meet the requirements. Application requirements, this fiber is mainly used to replace cotton as a civilian raw material. With the rise of petrochemical industry, synthetic fibers such as polyester in the 1980s have developed rapidly.
- PVA fiber Due to the inherent defects of PVA fiber, such as poor dyeability, low elasticity, poor dimensional stability, and poor scratchability, it is automatically withdrawn from the field of application.
- the fiber is excellent in acid and alkali resistance, light resistance, weather resistance and corrosion resistance, and its application in the industrial field will be more extensive as long as there is a major breakthrough in strength and modulus.
- PVA As a polymer material, PVA itself is a flexible chain polymer linear macromolecule with a planar sawtooth structure.
- the theoretical strength and theoretical modulus of PVA are 210 CN/dtex and 1900 CN/dtex.
- the spinning method is suitable, overcoming the excessive entanglement of the fibers during the initial molding process, the hydrogen bond can be excessively entangled.
- the gel method and the boron-containing wet method can improve the PVA macromolecular entanglement at the initial stage of fiber formation.
- the gel method has difficulties such as solvent recovery, and there is currently no large industrial device. In the existing boron-containing wet process, the average degree of polymerization is used? X
- PVA resin 1700 PVA resin is used as raw material.
- a certain amount of boron additive is added.
- the total stretching ratio of fiber post-treatment is 10.0 ⁇ 11.0 times, the fiber strength is about llCN/dtex, and the modulus is 230 ⁇ 280CN/dtex.
- the initial melting point is 100 ⁇ 103°C, but such products are difficult to meet the needs of special fields.
- the present invention is directed to the deficiencies of the prior art and the needs of the application field, and aims to provide a bismuth strength, high modulus, high melting point PVA fiber, and the technical problem to be solved is to improve the boron-containing wet spinning manufacturing method, and further improve the nascent life.
- the molecular structure of the fiber avoids the entanglement of PVA macromolecules at the initial stage of fiber formation to improve the quality of the PVA fiber.
- the high-strength, high-modulus, high-melting PVA fiber referred to in the present invention refers to the strength ⁇ 13.5 CN / dtex, modulus PVA fiber ⁇ 320CN/dtex, initial melting point ⁇ 108 ⁇ .
- the high-strength, high-modulus, high-melting PVA fiber is produced by a boron-containing gel wet spinning process, including preparation, filtration, defoaming, spinning and post-treatment of a spinning dope, and existing boron-containing wet
- the difference between the spinning method is that the spinning dope is different from the spinning coagulation bath.
- the spinning dope is prepared by using a PVA resin with an average polymerization degree of 1700-2000 and an additive of boric acid and copper sulfate in water at 90-100 ° C.
- the spinning dope is prepared, and the PVA content in the spinning dope is 15-17 wt% (mass percentage, the same below), the boric acid (3 ⁇ 4B0 3 ) content is 1.2-1.6 wt%, and the copper sulfate (CuS0 4 ) content is 0.05-0.1 wt%;
- the nascent fiber sprayed from the raw liquid through the spinneret enters a spinning coagulation bath (one bath) containing sodium hydroxide (NaOH) 15-50 g/L and sodium sulfate (Na 2 S0 4 ) 300. -390 g/L, H 3 B0 3 5-15 g/L.
- the treatment after one bath is followed by the wet treatment with boron.
- the method selects PVA with polymerization degree ⁇ 1700 as raw material, adjusts the content of H 3 B0 3 to 1.2-1.6wt% when preparing the spinning dope, and adds 0.05-0.1wt% CuSO 4 to make the kinematic viscosity of the spinning dope From the original 4-5Pa's to 6-8Pa s; when the nascent fiber is ejected at the spinneret, it immediately reacts with a specific coagulation bath to produce a gel, which means that the coagulation bath strengthens the gel effect of the nascent fiber.
- the total draw ratio of fiber post-treatment was increased from the existing 10.0-11.0 times to 13.0-14.5 times.
- the boron-containing gel wet spinning manufacturing method aims to improve the quality of the PVA fiber by improving the molecular structure of the nascent fiber and avoiding PVA macromolecular entanglement at the initial stage of fiber formation.
- the invention produces a single boron-containing wet spinning method for PVA fibers, and extends to a boron-containing gel wet spinning method, thereby effectively increasing the total stretching ratio of the nascent fibers, and obtaining the PVA fiber strength and modulus.
- the amount and melting point are obviously better than those of the PVA fiber obtained by the boron-containing wet spinning method.
- the high-strength high-modulus PVA fiber produced by the method of the invention has a product with an average strength of ⁇ 13.5CN/dtex and a modulus of >320CN/dtex and an initial melting point of ⁇ 108 ⁇ .
- Figure 1 is a process flow diagram of a process for producing PVA fibers of the present invention.
- the process includes preparation, filtration, defoaming, spinning and post-treatment of the spinning dope.
- the spinning dope is prepared by feeding, washing and dissolving.
- the post-treatment described is neutralization, wet drawing, water washing, drying, preheating, high elongation, cooling, cutting, packing, and the like.
- the parameter settings of the respective processes are as follows: Raw material PVA: polymerization degree 1700 ⁇ 2000, residual acetate 0.2 ⁇ 0.5%, sodium acetate 0.2-0.5% after washing; additive preparation: H 3 B0 3 1.2 ⁇ 1.6wt%, CuSO 4 0.05 ⁇ 0.1wt%;
- Dissolution dissolution temperature 95 ⁇ 100°C, dissolution time 90 ⁇ 120 minutes, stock solution concentration 15 ⁇ 17wt%, kinematic viscosity 6 ⁇ 8Pa.s; defoaming: defoaming temperature 98 ⁇ 100'C, defoaming time 4 ⁇ 6 Hour
- Neutralization, wet drawing Neutralization, wet drawing coagulation bath Na 2 SO 4 300 ⁇ 390g/l, H 2 SO 4 5 ⁇ 50g/l, wet heat stretching 2.0 ⁇ 2.8 times, wet heat stretching 80 ⁇ 95° C ;
- Preheating and extension preheating temperature 210 ⁇ 235°C, extension dry stretching 2.0 ⁇ 4.0 times, extension temperature 210 ⁇ 235'C ;
- Cooling The temperature of the tow after the cooling of the roller is 25 ⁇ 45°C.
- Raw material PVA polymerization degree 1720, residual acetate 0.21%, sodium acetate 0.23% after washing; additive preparation: H 3 B0 3 1.35%, CuSO 4 0.05% ; dissolution: dissolution temperature 97 ° C, dissolution time 110 minutes, stock concentration 16.8%; defoaming: defoaming temperature 98 ° C, defoaming time 4 hours; spinning: spinning coagulation bath NaOH 18g / l, Na 2 SO 4 310g / l, H 3 BO 3 5.5g / l, negative in the bath Stretching -20.8%, spinning air bath stretching 2.08 times; Neutralization, wet drawing: Neutralization, wet drawing coagulation bath Na 2 SO 4 310g/l, H 2 S0 4 12g/l, wet heat stretching 2.3 Double, wet heat stretching 85 ° C; preheating, extension: preheating temperature 225 ° C, extended dry stretching 2.93 times, extended oven temperature 212 ° C ;
- Example 1 The main technical quality indicators of PVA fiber are as follows:
- Raw material PVA degree of polymerization 1820, residual acetate 0.35%, sodium acetate 0.2% after washing; additive preparation: H 3 B0 3 1.52%, CuSO 4 0.05%; Dissolution: dissolution temperature 98 ° C, dissolution time 120 minutes, stock solution concentration 16.0%; defoaming: defoaming temperature 98 ° C, defoaming time 4.5 hours; spinning: spinning coagulation bath NaOH 35g / l, Na 2 SO 4 330g / l, H 3 B0 3 6.5g / l, negative tensile - 30.8% in the bath, 2.08 times stretching in the spinning air bath; neutralization, wet drawing: neutralization, wet drawing coagulation bath Na 2 SO 4 330g / l, 3 ⁇ 4SO 4 40g / l, wet heat stretching 2.0 times, wet heat stretching 88 ° C ; preheating, stretching: preheating temperature 225 ° C, extended dry stretching 3.44 times, extended oven temperature 228 ° C
- Example 2 The main technical quality indicators of PVA fiber are as follows:
- Raw material PVA polymerization degree 1950, residual acetate 0.28%, sodium acetate 0.40% after washing; additive configuration: H 3 B0 3 1.25%, CuSO 4 0.08%; Dissolution: dissolution temperature 99 'C, dissolution time 120 minutes, stock concentration 15.8%; defoaming: defoaming temperature 99 ° C, defoaming time 5 hours; spinning: spinning coagulation bath NaOH 45g / L, Na 2 SO 4 330 g / L, H 3 B0 3 6g / L, negative in the bath Stretching -29.9%, spinning air bath stretching 2.06 times; Neutralization, wet drawing: Neutralization, wet drawing coagulation bath Na 2 SO 4 340 g / L, H 2 SO 4 50g / L, wet heat stretching 2.5 times, wet heat drawing 92 °C; preheating, extension: preheating temperature 230 ° C, extended dry stretching 2.8 times, extended oven temperature 220 ° C;
- Example 3 The main technical quality indicators of PVA fiber are as follows:
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Artificial Filaments (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12824445.6A EP2746434A4 (en) | 2011-08-18 | 2012-06-25 | HIGH MODULUS HIGH-FIXED PVA FIBER AND HIGH MELTING POINT AND METHOD OF MANUFACTURING THEREOF |
BR112013016774A BR112013016774A2 (pt) | 2011-08-18 | 2012-06-25 | fibra de pva de alta resistência, alto módulo e alto ponto de fusão e métodos para fabricar a mesma |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110238175.2 | 2011-08-18 | ||
CN 201110238175 CN102337605B (zh) | 2011-08-18 | 2011-08-18 | 一种高强度、高模量、高熔点pva纤维及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013023432A1 true WO2013023432A1 (zh) | 2013-02-21 |
Family
ID=45513541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/000871 WO2013023432A1 (zh) | 2011-08-18 | 2012-06-25 | 一种高强度、高模量、高熔点pva纤维及其制造方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2746434A4 (zh) |
CN (1) | CN102337605B (zh) |
BR (1) | BR112013016774A2 (zh) |
WO (1) | WO2013023432A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2746434A1 (en) | 2011-08-18 | 2014-06-25 | Anhui Wanwei Updated High-Tech Material Industry Co., Ltd. | High-strength, high-modulus and high-melting point pva fiber and method for manufacturing same |
EP2980307B1 (en) * | 2013-03-29 | 2019-05-01 | Kuraray Co., Ltd. | Poly(vinyl alcohol)-based fibers having excellent thermal aging resistance, and method for producing same |
US11560461B2 (en) | 2017-04-07 | 2023-01-24 | North Carolina State University | Additive for fiber strengthening |
US12098481B2 (en) | 2018-10-05 | 2024-09-24 | North Carolina State University | Cellulosic fiber processing |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103184582B (zh) * | 2013-03-18 | 2014-12-03 | 恒天海龙股份有限公司 | 一种pva复合高强度高模量纤维素纤维的制备方法 |
CN104963022B (zh) * | 2015-07-07 | 2017-06-27 | 中国科学院重庆绿色智能技术研究院 | 一种高强度高模量聚乙烯醇‑石墨烯量子点复合纤维的制备方法及产物 |
CN106757404A (zh) * | 2015-11-19 | 2017-05-31 | 张家港市宏盛贸易有限公司 | 水溶性纤维前纺设备 |
CN106757403A (zh) * | 2015-11-19 | 2017-05-31 | 张家港市宏盛贸易有限公司 | 水溶性纤维前纺设备 |
CN106637492B (zh) * | 2016-09-23 | 2019-04-16 | 江西师范大学 | 电纺尼龙56/pva/硼酸复合纳米纤维及其制备方法 |
CN108147714A (zh) * | 2018-01-09 | 2018-06-12 | 安徽皖维高新材料股份有限公司 | 一种高强度沥青混合料及其制备方法 |
CN112064127A (zh) * | 2020-09-26 | 2020-12-11 | 邵阳学院 | 一种高强高模维纶长丝的热牵伸方法及实现设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87103211A (zh) * | 1986-03-24 | 1987-10-28 | 株式会社生物原料世界 | 制备高强度和高模量聚乙烯醇纤维的方法 |
JPH04163310A (ja) * | 1990-10-18 | 1992-06-08 | Kuraray Co Ltd | ポリビニルアルコール系合成繊維の製造法 |
CN1584154A (zh) * | 2004-06-03 | 2005-02-23 | 丰纪述 | 天然高分子聚合物改性纤维及长丝的生产方法 |
CN1621584A (zh) * | 2003-11-27 | 2005-06-01 | 株式会社晓星 | 聚乙烯醇交联纤维及其制造方法 |
CN1786302A (zh) * | 2005-12-13 | 2006-06-14 | 中国石化集团四川维尼纶厂 | 一种制备高性能聚乙烯醇纤维的方法 |
CN102337605A (zh) * | 2011-08-18 | 2012-02-01 | 安徽皖维高新材料股份有限公司 | 一种高强度、高模量、高熔点pva纤维及其制造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB917355A (en) * | 1960-02-23 | 1963-02-06 | Kurashiki Rayon Kk | Method of manufacturing synthetic fibres of polyvinyl alcohol |
BE759394A (fr) * | 1969-11-25 | 1971-04-30 | Kuraray Co | Fibre d'alcool de polyvinyle possedant d'excellentes proprietesaux hautes temperatures et pneumatique radial contenant de telles fibres |
DE2529863C3 (de) * | 1975-07-04 | 1978-03-30 | Hoechst Ag, 6000 Frankfurt | Verfahren zum Vermindern der Wasserloslichkeit von Polyvinylalkohol |
JPS56125264A (en) | 1980-03-06 | 1981-10-01 | Kuraray Co | Fiber reinforced cement product |
JPH076087B2 (ja) * | 1985-10-03 | 1995-01-25 | 株式会社クラレ | 高強力高モジユラスpva繊維およびその製造法 |
EP0313068B1 (en) * | 1987-10-22 | 1995-08-02 | Kuraray Co., Ltd. | Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles |
JP2588579B2 (ja) * | 1988-04-21 | 1997-03-05 | 株式会社クラレ | 耐熱水性にすぐれたポリビニルアルコール系繊維およびその製造法 |
US5110678A (en) * | 1989-04-27 | 1992-05-05 | Kuraray Company Limited | Synthetic polyvinyl alcohol fiber and process for its production |
JP2503092B2 (ja) * | 1989-08-04 | 1996-06-05 | 株式会社クラレ | ポリビニルアルコ―ル系合成繊維の製造方法 |
JPH1046428A (ja) * | 1996-07-30 | 1998-02-17 | Kuraray Co Ltd | ポリビニルアルコ−ル系繊維及びその製造方法 |
JP2009108432A (ja) * | 2007-10-29 | 2009-05-21 | Kuraray Co Ltd | ポリビニルアルコール系繊維およびその製造方法 |
-
2011
- 2011-08-18 CN CN 201110238175 patent/CN102337605B/zh active Active
-
2012
- 2012-06-25 BR BR112013016774A patent/BR112013016774A2/pt not_active Application Discontinuation
- 2012-06-25 EP EP12824445.6A patent/EP2746434A4/en not_active Ceased
- 2012-06-25 WO PCT/CN2012/000871 patent/WO2013023432A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87103211A (zh) * | 1986-03-24 | 1987-10-28 | 株式会社生物原料世界 | 制备高强度和高模量聚乙烯醇纤维的方法 |
JPH04163310A (ja) * | 1990-10-18 | 1992-06-08 | Kuraray Co Ltd | ポリビニルアルコール系合成繊維の製造法 |
CN1621584A (zh) * | 2003-11-27 | 2005-06-01 | 株式会社晓星 | 聚乙烯醇交联纤维及其制造方法 |
CN1584154A (zh) * | 2004-06-03 | 2005-02-23 | 丰纪述 | 天然高分子聚合物改性纤维及长丝的生产方法 |
CN1786302A (zh) * | 2005-12-13 | 2006-06-14 | 中国石化集团四川维尼纶厂 | 一种制备高性能聚乙烯醇纤维的方法 |
CN102337605A (zh) * | 2011-08-18 | 2012-02-01 | 安徽皖维高新材料股份有限公司 | 一种高强度、高模量、高熔点pva纤维及其制造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2746434A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2746434A1 (en) | 2011-08-18 | 2014-06-25 | Anhui Wanwei Updated High-Tech Material Industry Co., Ltd. | High-strength, high-modulus and high-melting point pva fiber and method for manufacturing same |
EP2980307B1 (en) * | 2013-03-29 | 2019-05-01 | Kuraray Co., Ltd. | Poly(vinyl alcohol)-based fibers having excellent thermal aging resistance, and method for producing same |
US11560461B2 (en) | 2017-04-07 | 2023-01-24 | North Carolina State University | Additive for fiber strengthening |
US12098481B2 (en) | 2018-10-05 | 2024-09-24 | North Carolina State University | Cellulosic fiber processing |
Also Published As
Publication number | Publication date |
---|---|
EP2746434A1 (en) | 2014-06-25 |
CN102337605A (zh) | 2012-02-01 |
BR112013016774A2 (pt) | 2017-09-26 |
CN102337605B (zh) | 2013-03-06 |
EP2746434A4 (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013023432A1 (zh) | 一种高强度、高模量、高熔点pva纤维及其制造方法 | |
CN100339519C (zh) | 一种制备高性能聚乙烯醇纤维的方法 | |
CN104963022B (zh) | 一种高强度高模量聚乙烯醇‑石墨烯量子点复合纤维的制备方法及产物 | |
CN100549254C (zh) | 一种聚丙烯腈基碳纤维原丝的制备方法 | |
CN102634866B (zh) | 一种自增强聚乳酸纤维及其制备方法 | |
WO2016074392A1 (zh) | 高强高模量聚乙烯醇-石墨烯纳米复合纤维的制备方法 | |
CN103031611B (zh) | 一种聚乙烯醇纤维及其制备方法和应用 | |
CN113293517B (zh) | 一种聚乳酸弹性超细纤维非织造材料及其制备方法和应用 | |
CN101768791A (zh) | 一种聚丙烯腈基中空碳纤维原丝及其制备方法 | |
WO2007121609A1 (fr) | Utilisation d'une solution aqueuse d'hydroxyde de sodium et de sulfo-urée dans la production de produits cellulosiques à l'échelle pilote | |
CN102776597A (zh) | 一种高强高模聚乙烯醇纤维及其熔融纺丝方法 | |
CN113321803B (zh) | 一种杂环芳纶纺丝原液的改性方法、改性杂环芳纶纺丝原液及应用 | |
CN1900388A (zh) | 一种耐磨性聚乙烯醇缩醛纤维及其制备方法和用途 | |
CN103952797A (zh) | 一种湿法高强型聚丙烯腈基碳纤维的制备方法 | |
CN103388189A (zh) | 一种细旦或超细旦聚乙烯醇纤维及其制备方法 | |
Tan et al. | Gel‐spun polyacrylonitrile fiber from pregelled spinning solution | |
CN1400342A (zh) | 高强聚乙烯纤维的制造方法及纤维 | |
CN101736411A (zh) | 碳纤维用聚丙烯腈纺丝原液的制备方法 | |
CN107287675A (zh) | 一种聚乙烯醇纤维及其制备方法 | |
CN103060940A (zh) | 一种中等模量聚乙烯醇纤维的制备方法 | |
CN102797050A (zh) | 一种高强高模聚乙烯醇纤维的熔融纺丝方法 | |
CN102926019B (zh) | 超支化聚合物/聚烯烃复合粒子可染细旦聚丙烯纤维及其制备方法 | |
JP2010100970A (ja) | 炭素繊維の製造方法 | |
CN103820877A (zh) | 一种新型改性聚乙烯醇及其纺丝方法 | |
CN104372435A (zh) | 含ppta链段的芳香族聚砜酰胺共聚物纤维及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12824445 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013016774 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1301003756 Country of ref document: TH |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112013016774 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013016774 Country of ref document: BR Kind code of ref document: A2 Effective date: 20130628 |