WO2013023432A1 - 一种高强度、高模量、高熔点pva纤维及其制造方法 - Google Patents

一种高强度、高模量、高熔点pva纤维及其制造方法 Download PDF

Info

Publication number
WO2013023432A1
WO2013023432A1 PCT/CN2012/000871 CN2012000871W WO2013023432A1 WO 2013023432 A1 WO2013023432 A1 WO 2013023432A1 CN 2012000871 W CN2012000871 W CN 2012000871W WO 2013023432 A1 WO2013023432 A1 WO 2013023432A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
modulus
strength
spinning
fiber
Prior art date
Application number
PCT/CN2012/000871
Other languages
English (en)
French (fr)
Inventor
吴福胜
高祖安
李康荣
季学勇
崔明发
黄荣海
冯加芳
姜家保
陈思鹏
Original Assignee
安徽皖维高新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽皖维高新材料股份有限公司 filed Critical 安徽皖维高新材料股份有限公司
Priority to EP12824445.6A priority Critical patent/EP2746434A4/en
Priority to BR112013016774A priority patent/BR112013016774A2/pt
Publication of WO2013023432A1 publication Critical patent/WO2013023432A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/14Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals

Definitions

  • the invention relates to a synthetic fiber and a preparation method thereof, in particular to a polyvinyl alcohol (PVA) fiber and a preparation method thereof, and more particularly to a high strength, high modulus, high melting point PVA fiber and a preparation method thereof.
  • PVA polyvinyl alcohol
  • PVA fibers are closely related to their properties such as strength, modulus and melting point. Fibers with a strength of 3 ⁇ 5CN/dtex, a modulus of 60 ⁇ 80CN/dtex, and an initial melting point of 85 ⁇ 90°C are mostly used for civil use; the strength is 10 ⁇ llCN/dtex, the modulus is 220 ⁇ 250CN/dtex, and the initial melting point is 10 (TC fiber). It is reinforced with general cement products; the PVA fiber with better performance is not only used for reinforcement of cement products, but also for reinforcement of high performance concrete, highway asphalt, plastic and rubber.
  • the PVA fiber can be produced by a conventional wet method, a dry-wet method, a gel method, a boron-containing wet method, or the like.
  • Ordinary wet method and dry-wet method have low fiber quality index, the strength is 3 ⁇ 5CN/dtex, the modulus is 60 ⁇ 80CN/dte X , and the initial melting point is 85 ⁇ 90 ⁇ . Because the initial melting point is low, the fiber must be treated by formalization to meet the requirements. Application requirements, this fiber is mainly used to replace cotton as a civilian raw material. With the rise of petrochemical industry, synthetic fibers such as polyester in the 1980s have developed rapidly.
  • PVA fiber Due to the inherent defects of PVA fiber, such as poor dyeability, low elasticity, poor dimensional stability, and poor scratchability, it is automatically withdrawn from the field of application.
  • the fiber is excellent in acid and alkali resistance, light resistance, weather resistance and corrosion resistance, and its application in the industrial field will be more extensive as long as there is a major breakthrough in strength and modulus.
  • PVA As a polymer material, PVA itself is a flexible chain polymer linear macromolecule with a planar sawtooth structure.
  • the theoretical strength and theoretical modulus of PVA are 210 CN/dtex and 1900 CN/dtex.
  • the spinning method is suitable, overcoming the excessive entanglement of the fibers during the initial molding process, the hydrogen bond can be excessively entangled.
  • the gel method and the boron-containing wet method can improve the PVA macromolecular entanglement at the initial stage of fiber formation.
  • the gel method has difficulties such as solvent recovery, and there is currently no large industrial device. In the existing boron-containing wet process, the average degree of polymerization is used? X
  • PVA resin 1700 PVA resin is used as raw material.
  • a certain amount of boron additive is added.
  • the total stretching ratio of fiber post-treatment is 10.0 ⁇ 11.0 times, the fiber strength is about llCN/dtex, and the modulus is 230 ⁇ 280CN/dtex.
  • the initial melting point is 100 ⁇ 103°C, but such products are difficult to meet the needs of special fields.
  • the present invention is directed to the deficiencies of the prior art and the needs of the application field, and aims to provide a bismuth strength, high modulus, high melting point PVA fiber, and the technical problem to be solved is to improve the boron-containing wet spinning manufacturing method, and further improve the nascent life.
  • the molecular structure of the fiber avoids the entanglement of PVA macromolecules at the initial stage of fiber formation to improve the quality of the PVA fiber.
  • the high-strength, high-modulus, high-melting PVA fiber referred to in the present invention refers to the strength ⁇ 13.5 CN / dtex, modulus PVA fiber ⁇ 320CN/dtex, initial melting point ⁇ 108 ⁇ .
  • the high-strength, high-modulus, high-melting PVA fiber is produced by a boron-containing gel wet spinning process, including preparation, filtration, defoaming, spinning and post-treatment of a spinning dope, and existing boron-containing wet
  • the difference between the spinning method is that the spinning dope is different from the spinning coagulation bath.
  • the spinning dope is prepared by using a PVA resin with an average polymerization degree of 1700-2000 and an additive of boric acid and copper sulfate in water at 90-100 ° C.
  • the spinning dope is prepared, and the PVA content in the spinning dope is 15-17 wt% (mass percentage, the same below), the boric acid (3 ⁇ 4B0 3 ) content is 1.2-1.6 wt%, and the copper sulfate (CuS0 4 ) content is 0.05-0.1 wt%;
  • the nascent fiber sprayed from the raw liquid through the spinneret enters a spinning coagulation bath (one bath) containing sodium hydroxide (NaOH) 15-50 g/L and sodium sulfate (Na 2 S0 4 ) 300. -390 g/L, H 3 B0 3 5-15 g/L.
  • the treatment after one bath is followed by the wet treatment with boron.
  • the method selects PVA with polymerization degree ⁇ 1700 as raw material, adjusts the content of H 3 B0 3 to 1.2-1.6wt% when preparing the spinning dope, and adds 0.05-0.1wt% CuSO 4 to make the kinematic viscosity of the spinning dope From the original 4-5Pa's to 6-8Pa s; when the nascent fiber is ejected at the spinneret, it immediately reacts with a specific coagulation bath to produce a gel, which means that the coagulation bath strengthens the gel effect of the nascent fiber.
  • the total draw ratio of fiber post-treatment was increased from the existing 10.0-11.0 times to 13.0-14.5 times.
  • the boron-containing gel wet spinning manufacturing method aims to improve the quality of the PVA fiber by improving the molecular structure of the nascent fiber and avoiding PVA macromolecular entanglement at the initial stage of fiber formation.
  • the invention produces a single boron-containing wet spinning method for PVA fibers, and extends to a boron-containing gel wet spinning method, thereby effectively increasing the total stretching ratio of the nascent fibers, and obtaining the PVA fiber strength and modulus.
  • the amount and melting point are obviously better than those of the PVA fiber obtained by the boron-containing wet spinning method.
  • the high-strength high-modulus PVA fiber produced by the method of the invention has a product with an average strength of ⁇ 13.5CN/dtex and a modulus of >320CN/dtex and an initial melting point of ⁇ 108 ⁇ .
  • Figure 1 is a process flow diagram of a process for producing PVA fibers of the present invention.
  • the process includes preparation, filtration, defoaming, spinning and post-treatment of the spinning dope.
  • the spinning dope is prepared by feeding, washing and dissolving.
  • the post-treatment described is neutralization, wet drawing, water washing, drying, preheating, high elongation, cooling, cutting, packing, and the like.
  • the parameter settings of the respective processes are as follows: Raw material PVA: polymerization degree 1700 ⁇ 2000, residual acetate 0.2 ⁇ 0.5%, sodium acetate 0.2-0.5% after washing; additive preparation: H 3 B0 3 1.2 ⁇ 1.6wt%, CuSO 4 0.05 ⁇ 0.1wt%;
  • Dissolution dissolution temperature 95 ⁇ 100°C, dissolution time 90 ⁇ 120 minutes, stock solution concentration 15 ⁇ 17wt%, kinematic viscosity 6 ⁇ 8Pa.s; defoaming: defoaming temperature 98 ⁇ 100'C, defoaming time 4 ⁇ 6 Hour
  • Neutralization, wet drawing Neutralization, wet drawing coagulation bath Na 2 SO 4 300 ⁇ 390g/l, H 2 SO 4 5 ⁇ 50g/l, wet heat stretching 2.0 ⁇ 2.8 times, wet heat stretching 80 ⁇ 95° C ;
  • Preheating and extension preheating temperature 210 ⁇ 235°C, extension dry stretching 2.0 ⁇ 4.0 times, extension temperature 210 ⁇ 235'C ;
  • Cooling The temperature of the tow after the cooling of the roller is 25 ⁇ 45°C.
  • Raw material PVA polymerization degree 1720, residual acetate 0.21%, sodium acetate 0.23% after washing; additive preparation: H 3 B0 3 1.35%, CuSO 4 0.05% ; dissolution: dissolution temperature 97 ° C, dissolution time 110 minutes, stock concentration 16.8%; defoaming: defoaming temperature 98 ° C, defoaming time 4 hours; spinning: spinning coagulation bath NaOH 18g / l, Na 2 SO 4 310g / l, H 3 BO 3 5.5g / l, negative in the bath Stretching -20.8%, spinning air bath stretching 2.08 times; Neutralization, wet drawing: Neutralization, wet drawing coagulation bath Na 2 SO 4 310g/l, H 2 S0 4 12g/l, wet heat stretching 2.3 Double, wet heat stretching 85 ° C; preheating, extension: preheating temperature 225 ° C, extended dry stretching 2.93 times, extended oven temperature 212 ° C ;
  • Example 1 The main technical quality indicators of PVA fiber are as follows:
  • Raw material PVA degree of polymerization 1820, residual acetate 0.35%, sodium acetate 0.2% after washing; additive preparation: H 3 B0 3 1.52%, CuSO 4 0.05%; Dissolution: dissolution temperature 98 ° C, dissolution time 120 minutes, stock solution concentration 16.0%; defoaming: defoaming temperature 98 ° C, defoaming time 4.5 hours; spinning: spinning coagulation bath NaOH 35g / l, Na 2 SO 4 330g / l, H 3 B0 3 6.5g / l, negative tensile - 30.8% in the bath, 2.08 times stretching in the spinning air bath; neutralization, wet drawing: neutralization, wet drawing coagulation bath Na 2 SO 4 330g / l, 3 ⁇ 4SO 4 40g / l, wet heat stretching 2.0 times, wet heat stretching 88 ° C ; preheating, stretching: preheating temperature 225 ° C, extended dry stretching 3.44 times, extended oven temperature 228 ° C
  • Example 2 The main technical quality indicators of PVA fiber are as follows:
  • Raw material PVA polymerization degree 1950, residual acetate 0.28%, sodium acetate 0.40% after washing; additive configuration: H 3 B0 3 1.25%, CuSO 4 0.08%; Dissolution: dissolution temperature 99 'C, dissolution time 120 minutes, stock concentration 15.8%; defoaming: defoaming temperature 99 ° C, defoaming time 5 hours; spinning: spinning coagulation bath NaOH 45g / L, Na 2 SO 4 330 g / L, H 3 B0 3 6g / L, negative in the bath Stretching -29.9%, spinning air bath stretching 2.06 times; Neutralization, wet drawing: Neutralization, wet drawing coagulation bath Na 2 SO 4 340 g / L, H 2 SO 4 50g / L, wet heat stretching 2.5 times, wet heat drawing 92 °C; preheating, extension: preheating temperature 230 ° C, extended dry stretching 2.8 times, extended oven temperature 220 ° C;
  • Example 3 The main technical quality indicators of PVA fiber are as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)

Abstract

一种高强度、高模量、高熔点PVA纤维是由含硼凝胶湿法纺丝法制造的、强度≥13.5CN/dtex、模量≥320CN/dtex、初熔点≥108°C总拉伸倍数达13.0-14.5倍的PVA纤维。本产品性能优良,用途广泛,适用于高端工业领域的应用。还公开了该纤维的制造方法。

Description

一种高强度、 高模量、 高熔点 PVA纤维及其制造方法 一、技术领域
本发明涉及一种合成纤维及其制备方法, 特别涉及聚乙烯醇(PVA)纤维及其制备方法, 更具体地说是一种高强度、 高模量、 高熔点 PVA纤维及其制造方法。
二、 背景技术
PVA 纤维的用途与其性能如强度、 模量、 熔点密切相关。 强度 3~5CN/dtex、 模量 60~80CN/dtex、初熔点 85~90°C的纤维多用于民用;强度 10~llCN/dtex、模量 220~250CN/dtex、 初熔点 10(TC的纤维多用一般水泥制品增强; 更髙性能的 PVA纤维不仅用于水泥制品增强, 而且可用于高性能混凝土、 高速公路沥青、 塑料、 橡胶的增强。
PVA纤维的制造方法有普通湿法、 干湿法、 凝胶法、 含硼湿法等。 普通湿法及干湿法得 到纤维的质量指标低, 其强度 3~5CN/dtex、 模量 60~80CN/dteX、 初熔点 85~90Ό, 由于初熔 点低, 纤维必须经过缩甲醛处理才能满足应用要求, 此纤维主要用于代替棉花作民用原料。 随着石油化工的崛起, 80年代涤纶等合成纤维得到迅猛的发展, 由于 PVA纤维固有的缺陷, 如染色性差、 弹性低、 尺寸稳定性差、 挺刮性差等, 使其自动退出服用领域。 但该纤维耐酸 碱性、 耐光性、 耐气候性、 耐腐蚀性极佳, 只要强度、 模量上有重大的突破, 其在工业领域 的应用会更加广泛。
作为高分子材料 PVA本身是是柔性链聚合物线性大分子, 有平面锯齿型结构。 PVA的理 论强度和理论模量为 210 CN/dtex和 1900 CN/dtex, 只要纺丝方法适宜, 克服纤维在初期成型 过程中大分子之间氢键作用而发生过度的缠结现象,就可以进行高倍率拉伸, 从而得到强度、 模量更髙的纤维。 采用凝胶法、 含硼湿法可以改善纤维成型初期 PVA大分子缠结现象。 凝胶 法存在溶剂回收等困难,目前无大工业化装置。在已有的含硼湿法工艺中,使用平均聚合度? X
=1700的 PVA树脂为原料, 在配制纺丝原液时添加一定量的硼添加剂, 纤维后处理总拉伸倍 数达 10.0~11.0倍, 纤维强度达 llCN/dtex左右、 模量 230~280CN/dtex、 初熔点 100~103°C, 但这样的产品还难以满足特殊领域的需求。
三、 发明内容
本发明针对现有技术的不足以及应用领域的需求, 旨在提供一种髙强度、 高模量、 高熔 点 PVA纤维, 所要解决的技术问题是改进含硼湿法纺丝制造方法, 进一步改善初生纤维的分 子结构, 避免纤维成型初期 PVA大分子缠结, 以提高 PVA纤维品质。
本发明所称的高强度、 高模量、 高熔点 PVA 纤维是指强度≥13.5CN/dtex、 模量 ≥320CN/dtex、 初熔点≥108Ό的 PVA纤维。
本高强度、 高模量、 高熔点 PVA纤维的制造方法是含硼凝胶湿法纺丝法, 包括纺丝原液 的制备、 过滤、 脱泡、 纺丝和后处理, 与现有含硼湿法纺丝法的区别是纺丝原液和紡丝凝固 浴不同, 所述的纺丝原液的制备是选用平均聚合度 1700-2000的 PVA树脂以及添加剂硼酸和 硫酸铜于 90-100°C的水中配制纺丝原液, 纺丝原液中 PVA含量 15-17wt% (质量百分比, 下 同)、 硼酸(¾B03)含量 1.2-1.6wt%、 硫酸铜 (CuS04)含量 0.05-0.1wt%; 纺丝原液经喷丝 头喷出的初生纤维进入纺丝凝固浴 (一浴), 所述的纺丝凝固浴中含氢氧化钠 (NaOH) 15-50g/L、硫酸钠(Na2S04) 300-390g/L、 H3B035-15g/L。一浴以后的处理同含硼湿法后处理。
本方法选用聚合度≥1700 的 PVA 为原料, 在配制纺丝原液时调整了 H3B03的含量为 1.2-1.6wt%, 同时添加了 0.05-0.1wt%CuSO4, 使纺丝原液运动粘度由原来的 4-5Pa's提高到 6-8Pa s; 当初生纤维在喷丝头喷出瞬间, 立即与特定的凝固浴反应产生凝胶, 也就是说本凝 固浴强化了初生纤维的凝胶效应, 同时弱化了初生纤维的凝固作用, 使纤维成型初期 PVA大 分子缠结现象明显减少, 而耦合几率大大增加。 纤维后处理总拉伸倍数由现有的 10.0-11.0倍 提高到 13.0-14.5倍。
本含硼凝胶湿法纺丝制造方法通过改善初生纤维的分子结构、避免纤维成型初期 PVA大 分子缠结实现提高 PVA纤维品质的发明目的。
与己有含硼湿法纺丝法相比, 本发明有益效果体现在:
1、 本发明将 PVA纤维制造单一的含硼湿法纺丝方法, 延伸到含硼凝胶湿法纺丝方法, 从而有效地提高了初生纤维总拉伸倍数, 制得的 PVA纤维强度、 模量、 熔点明显优于含硼湿 法纺丝方法得到的 PVA纤维质量。
2、 利用本发明方法所生产的高强高模 PVA 纤维,其平均强度≥13.5CN/dtex、 模量 >320CN/dtex 初熔点≥108Ό的产品。
四、 附图说明
图 1是本发明 PVA纤维制造方法的工艺流程图。
五、 具体实施方式
结合附图, 非限定实施例叙述如下:
本工艺流程包括纺丝原液的配制、 过滤、 脱泡、 纺丝和后处理。
所述的纺丝原液的配制即图中投料、 水洗和溶解。
所述的后处理即图中中和、 湿牵伸、 水洗、 干燥、 预热、 高倍延伸、 冷却、 切断、 打包 等。
所述各工序的参数设置分别为: 原料 PVA: 聚合度 1700~2000、 残余醋酸根 0.2~0.5%、 水洗后醋酸钠 0.2-0.5%; 添加剂配制: H3B031.2~1.6wt%、 CuSO40.05~0.1wt%;
溶解:溶解温度 95~100°C、溶解时间 90~120分钟、原液浓度 15~17wt%、运动粘度 6~8Pa.s; 脱泡: 脱泡温度 98~100'C、 脱泡时间 4~6小时;
纺丝: 纺丝凝固浴 NaOH15~50g/l、 Na2SO4300~390g/K H3B035~15 g/K 浴中负拉伸 -15~ -40%、 纺丝空气浴拉伸 2~3倍;
中和、湿牵伸: 中和、湿牵伸凝固浴 Na2SO4300~390g/l、 H2SO45~50g/l、湿热拉伸 2.0~2.8 倍、 湿热拉伸 80~95°C ;
水洗: 软水温度 30~45°C ;
预热、 延伸: 预热温度 210〜235°C、 延伸干拉伸 2.0~4.0倍、 延伸温度 210~235'C ;
冷却: 罗拉冷却后的丝束温度 25~45°C。
实施例 1 :
原料 PVA: 聚合度 1720、 残余醋酸根 0.21%、 水洗后醋酸钠 0.23%; 添加剂配制: H3B031.35%、 CuSO40.05%; 溶解: 溶解温度 97°C、 溶解时间 110分钟、 原液浓度 16.8%;脱 泡:脱泡温度 98°C、脱泡时间 4小时;纺丝:纺丝凝固浴 NaOH18g/l、Na2SO4310g/l、H3BO35.5g/l、 浴中负拉伸 -20.8%、纺丝空气浴拉伸 2.08倍; 中和、湿牵伸: 中和、湿牵伸凝固浴 Na2SO4310g/l、 H2S0412g/l、 湿热拉伸 2.3倍、 湿热拉伸 85°C ; 预热、 延伸: 预热温度 225°C、 延伸干拉伸 2.93倍、 延伸烘箱温度 212°C ;
实施例 1PVA纤维主要技术质量指标如下:
Figure imgf000005_0001
实施例 2:
原料 PVA: 聚合度 1820、 残余醋酸根 0.35%、 水洗后醋酸钠 0.2%; 添加剂配制: H3B031.52%、 CuSO40.05%; 溶解: 溶解温度 98°C、 溶解时间 120分钟、 原液浓度 16.0%; 脱泡: 脱泡温度 98°C、 脱泡时间 4.5小时; 纺丝: 纺丝凝固浴 NaOH35g/l、 Na2SO4330g/l、 H3B036.5g/l、 浴中负拉伸 -30.8%、 纺丝空气浴拉伸 2.08倍; 中和、 湿牵伸: 中和、 湿牵伸凝固 浴 Na2SO4330g/l、 ¾SO440g/l、湿热拉伸 2.0倍、湿热拉伸 88°C ; 预热、延伸:预热温度 225°C、 延伸干拉伸 3.44倍、 延伸烘箱温度 228°C;
实施例 2PVA纤维主要技术质量指标如下:
Figure imgf000006_0001
实施例 3:
原料 PVA: 聚合度 1950、 残余醋酸根 0.28%、 水洗后醋酸钠 0.40%; 添加剂配置: H3B031.25%、 CuSO40.08%; 溶解: 溶解温度 99 'C、 溶解时间 120分钟、 原液浓度 15.8%; 脱泡: 脱泡温度 99°C、 脱泡时间 5小时; 纺丝: 纺丝凝固浴 NaOH45g/L、 Na2SO4330 g/L、 H3B036g/L、 浴中负拉伸 -29.9%、 纺丝空气浴拉伸 2.06倍; 中和、 湿牵伸: 中和、 湿牵伸凝固 浴 Na2SO4340 g/L、H2SO450g/L、湿热拉伸 2.5倍、湿热拉伸 92 °C ;预热、延伸:预热温度 230°C、 延伸干拉伸 2.8倍、 延伸烘箱温度 220 °C ;
实施例 3PVA纤维主要技术质量指标如下:
指标名称 单位 指标
断裂强度 CN/dtex 14.01
難 CN/dtex 348.33
初熔温度 °C 111.23
纤度 dtex 2.01
伸长率 % 6.08

Claims

一种高强度、高模量、高熔点 PVA纤维,其特征在于:本 PVA纤维强 ≥13.5CN/dtex、 模量≥320CN/dtex、 初熔点≥108°C。
2、 一种如权利要求 1所述的高强度、 高模量、 高熔点 PVA纤维的制造方法, 包括 PVA 纺丝原液制备、 过滤、 脱泡、 纺丝和后处理, 其特征在于: 所述的纺丝原液的制备是选用平 均聚合度 1700-2000的 PVA树脂以及添加剂硼酸和硫酸铜于 90-100°C的水中配制纺丝原液, 纺丝原液中 PVA含量 15-17wt%、 硼酸含量 1.2-1.6wt%、 硫酸铜含量 0.05-0.1wt%; 纺丝凝固 浴中含氢氧化钠 15-50g/L、 硫酸钠 300-390g/L、 硼酸 5-15g/L。
PCT/CN2012/000871 2011-08-18 2012-06-25 一种高强度、高模量、高熔点pva纤维及其制造方法 WO2013023432A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12824445.6A EP2746434A4 (en) 2011-08-18 2012-06-25 HIGH MODULUS HIGH-FIXED PVA FIBER AND HIGH MELTING POINT AND METHOD OF MANUFACTURING THEREOF
BR112013016774A BR112013016774A2 (pt) 2011-08-18 2012-06-25 fibra de pva de alta resistência, alto módulo e alto ponto de fusão e métodos para fabricar a mesma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110238175.2 2011-08-18
CN 201110238175 CN102337605B (zh) 2011-08-18 2011-08-18 一种高强度、高模量、高熔点pva纤维及其制造方法

Publications (1)

Publication Number Publication Date
WO2013023432A1 true WO2013023432A1 (zh) 2013-02-21

Family

ID=45513541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000871 WO2013023432A1 (zh) 2011-08-18 2012-06-25 一种高强度、高模量、高熔点pva纤维及其制造方法

Country Status (4)

Country Link
EP (1) EP2746434A4 (zh)
CN (1) CN102337605B (zh)
BR (1) BR112013016774A2 (zh)
WO (1) WO2013023432A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746434A1 (en) 2011-08-18 2014-06-25 Anhui Wanwei Updated High-Tech Material Industry Co., Ltd. High-strength, high-modulus and high-melting point pva fiber and method for manufacturing same
EP2980307B1 (en) * 2013-03-29 2019-05-01 Kuraray Co., Ltd. Poly(vinyl alcohol)-based fibers having excellent thermal aging resistance, and method for producing same
US11560461B2 (en) 2017-04-07 2023-01-24 North Carolina State University Additive for fiber strengthening
US12098481B2 (en) 2018-10-05 2024-09-24 North Carolina State University Cellulosic fiber processing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184582B (zh) * 2013-03-18 2014-12-03 恒天海龙股份有限公司 一种pva复合高强度高模量纤维素纤维的制备方法
CN104963022B (zh) * 2015-07-07 2017-06-27 中国科学院重庆绿色智能技术研究院 一种高强度高模量聚乙烯醇‑石墨烯量子点复合纤维的制备方法及产物
CN106757404A (zh) * 2015-11-19 2017-05-31 张家港市宏盛贸易有限公司 水溶性纤维前纺设备
CN106757403A (zh) * 2015-11-19 2017-05-31 张家港市宏盛贸易有限公司 水溶性纤维前纺设备
CN106637492B (zh) * 2016-09-23 2019-04-16 江西师范大学 电纺尼龙56/pva/硼酸复合纳米纤维及其制备方法
CN108147714A (zh) * 2018-01-09 2018-06-12 安徽皖维高新材料股份有限公司 一种高强度沥青混合料及其制备方法
CN112064127A (zh) * 2020-09-26 2020-12-11 邵阳学院 一种高强高模维纶长丝的热牵伸方法及实现设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103211A (zh) * 1986-03-24 1987-10-28 株式会社生物原料世界 制备高强度和高模量聚乙烯醇纤维的方法
JPH04163310A (ja) * 1990-10-18 1992-06-08 Kuraray Co Ltd ポリビニルアルコール系合成繊維の製造法
CN1584154A (zh) * 2004-06-03 2005-02-23 丰纪述 天然高分子聚合物改性纤维及长丝的生产方法
CN1621584A (zh) * 2003-11-27 2005-06-01 株式会社晓星 聚乙烯醇交联纤维及其制造方法
CN1786302A (zh) * 2005-12-13 2006-06-14 中国石化集团四川维尼纶厂 一种制备高性能聚乙烯醇纤维的方法
CN102337605A (zh) * 2011-08-18 2012-02-01 安徽皖维高新材料股份有限公司 一种高强度、高模量、高熔点pva纤维及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB917355A (en) * 1960-02-23 1963-02-06 Kurashiki Rayon Kk Method of manufacturing synthetic fibres of polyvinyl alcohol
BE759394A (fr) * 1969-11-25 1971-04-30 Kuraray Co Fibre d'alcool de polyvinyle possedant d'excellentes proprietesaux hautes temperatures et pneumatique radial contenant de telles fibres
DE2529863C3 (de) * 1975-07-04 1978-03-30 Hoechst Ag, 6000 Frankfurt Verfahren zum Vermindern der Wasserloslichkeit von Polyvinylalkohol
JPS56125264A (en) 1980-03-06 1981-10-01 Kuraray Co Fiber reinforced cement product
JPH076087B2 (ja) * 1985-10-03 1995-01-25 株式会社クラレ 高強力高モジユラスpva繊維およびその製造法
EP0313068B1 (en) * 1987-10-22 1995-08-02 Kuraray Co., Ltd. Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles
JP2588579B2 (ja) * 1988-04-21 1997-03-05 株式会社クラレ 耐熱水性にすぐれたポリビニルアルコール系繊維およびその製造法
US5110678A (en) * 1989-04-27 1992-05-05 Kuraray Company Limited Synthetic polyvinyl alcohol fiber and process for its production
JP2503092B2 (ja) * 1989-08-04 1996-06-05 株式会社クラレ ポリビニルアルコ―ル系合成繊維の製造方法
JPH1046428A (ja) * 1996-07-30 1998-02-17 Kuraray Co Ltd ポリビニルアルコ−ル系繊維及びその製造方法
JP2009108432A (ja) * 2007-10-29 2009-05-21 Kuraray Co Ltd ポリビニルアルコール系繊維およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103211A (zh) * 1986-03-24 1987-10-28 株式会社生物原料世界 制备高强度和高模量聚乙烯醇纤维的方法
JPH04163310A (ja) * 1990-10-18 1992-06-08 Kuraray Co Ltd ポリビニルアルコール系合成繊維の製造法
CN1621584A (zh) * 2003-11-27 2005-06-01 株式会社晓星 聚乙烯醇交联纤维及其制造方法
CN1584154A (zh) * 2004-06-03 2005-02-23 丰纪述 天然高分子聚合物改性纤维及长丝的生产方法
CN1786302A (zh) * 2005-12-13 2006-06-14 中国石化集团四川维尼纶厂 一种制备高性能聚乙烯醇纤维的方法
CN102337605A (zh) * 2011-08-18 2012-02-01 安徽皖维高新材料股份有限公司 一种高强度、高模量、高熔点pva纤维及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746434A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746434A1 (en) 2011-08-18 2014-06-25 Anhui Wanwei Updated High-Tech Material Industry Co., Ltd. High-strength, high-modulus and high-melting point pva fiber and method for manufacturing same
EP2980307B1 (en) * 2013-03-29 2019-05-01 Kuraray Co., Ltd. Poly(vinyl alcohol)-based fibers having excellent thermal aging resistance, and method for producing same
US11560461B2 (en) 2017-04-07 2023-01-24 North Carolina State University Additive for fiber strengthening
US12098481B2 (en) 2018-10-05 2024-09-24 North Carolina State University Cellulosic fiber processing

Also Published As

Publication number Publication date
EP2746434A1 (en) 2014-06-25
CN102337605A (zh) 2012-02-01
BR112013016774A2 (pt) 2017-09-26
CN102337605B (zh) 2013-03-06
EP2746434A4 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2013023432A1 (zh) 一种高强度、高模量、高熔点pva纤维及其制造方法
CN100339519C (zh) 一种制备高性能聚乙烯醇纤维的方法
CN104963022B (zh) 一种高强度高模量聚乙烯醇‑石墨烯量子点复合纤维的制备方法及产物
CN100549254C (zh) 一种聚丙烯腈基碳纤维原丝的制备方法
CN102634866B (zh) 一种自增强聚乳酸纤维及其制备方法
WO2016074392A1 (zh) 高强高模量聚乙烯醇-石墨烯纳米复合纤维的制备方法
CN103031611B (zh) 一种聚乙烯醇纤维及其制备方法和应用
CN113293517B (zh) 一种聚乳酸弹性超细纤维非织造材料及其制备方法和应用
CN101768791A (zh) 一种聚丙烯腈基中空碳纤维原丝及其制备方法
WO2007121609A1 (fr) Utilisation d'une solution aqueuse d'hydroxyde de sodium et de sulfo-urée dans la production de produits cellulosiques à l'échelle pilote
CN102776597A (zh) 一种高强高模聚乙烯醇纤维及其熔融纺丝方法
CN113321803B (zh) 一种杂环芳纶纺丝原液的改性方法、改性杂环芳纶纺丝原液及应用
CN1900388A (zh) 一种耐磨性聚乙烯醇缩醛纤维及其制备方法和用途
CN103952797A (zh) 一种湿法高强型聚丙烯腈基碳纤维的制备方法
CN103388189A (zh) 一种细旦或超细旦聚乙烯醇纤维及其制备方法
Tan et al. Gel‐spun polyacrylonitrile fiber from pregelled spinning solution
CN1400342A (zh) 高强聚乙烯纤维的制造方法及纤维
CN101736411A (zh) 碳纤维用聚丙烯腈纺丝原液的制备方法
CN107287675A (zh) 一种聚乙烯醇纤维及其制备方法
CN103060940A (zh) 一种中等模量聚乙烯醇纤维的制备方法
CN102797050A (zh) 一种高强高模聚乙烯醇纤维的熔融纺丝方法
CN102926019B (zh) 超支化聚合物/聚烯烃复合粒子可染细旦聚丙烯纤维及其制备方法
JP2010100970A (ja) 炭素繊維の製造方法
CN103820877A (zh) 一种新型改性聚乙烯醇及其纺丝方法
CN104372435A (zh) 含ppta链段的芳香族聚砜酰胺共聚物纤维及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824445

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013016774

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301003756

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013016774

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013016774

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130628