WO2013021996A1 - 衝撃吸収部材 - Google Patents

衝撃吸収部材 Download PDF

Info

Publication number
WO2013021996A1
WO2013021996A1 PCT/JP2012/070092 JP2012070092W WO2013021996A1 WO 2013021996 A1 WO2013021996 A1 WO 2013021996A1 JP 2012070092 W JP2012070092 W JP 2012070092W WO 2013021996 A1 WO2013021996 A1 WO 2013021996A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbing member
impact
corner
buckling
shock absorbing
Prior art date
Application number
PCT/JP2012/070092
Other languages
English (en)
French (fr)
Inventor
智史 広瀬
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020137035037A priority Critical patent/KR101779568B1/ko
Priority to CN201280038484.8A priority patent/CN103717938B/zh
Priority to KR1020167008726A priority patent/KR20160043127A/ko
Priority to JP2013528035A priority patent/JP5549783B2/ja
Priority to US14/237,743 priority patent/US9228629B2/en
Publication of WO2013021996A1 publication Critical patent/WO2013021996A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/123Deformation involving a bending action, e.g. strap moving through multiple rollers, folding of members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • B62D21/152Front or rear frames

Definitions

  • the present invention relates to an impact absorbing member that absorbs external impact energy while buckling and deforming.
  • the impact absorbing member a thin-walled structure (hollow columnar member) obtained by joining a press-formed steel plate by welding or the like and molding it into a hollow columnar shape is used as the impact absorbing member.
  • the shock absorbing member is formed of a hollow member having a polygonal cross section such as a quadrangle or a hexagon in order to achieve both the above-described weight reduction and high rigidity.
  • Such an impact absorbing member is used for, for example, a front side member of a vehicle body, and when receiving an impact load from one end thereof at the time of collision, the impact energy is generated by buckling (axial crushing) in the axial direction. To absorb. Therefore, in order to improve the impact absorbing performance, it is important to efficiently generate such buckling deformation and to increase the buckling load.
  • a relatively thick steel plate or a high strength steel plate having a relatively high strength is used to increase a buckling load.
  • a depression called a bead (bead portion) that gives an indication of buckling deformation is provided to efficiently generate buckling deformation.
  • raising the buckling load is performed by making the cross section of a hollow impact-absorbing member into a polygonal shape.
  • the impact load applied to the impact absorbing member is not absorbed by the deformation of the impact absorbing member, but is directly transmitted to other structural parts such as the cabin.
  • buckling deformation may occur in areas that should not be deformed, or it may be difficult to secure a living space for the driver and passengers due to deformation of the cabin, and a large change in acceleration may be applied to the driver and passengers. Doing so increases the risk of injury to the driver and passengers.
  • the shock absorbing member is designed to linearize the shock absorbing member, for example, in order to ensure the amount of deformation due to buckling while keeping the cross-sectional shape as constant as possible from the buckling start end. Further, in order to reduce the initial impact load applied to the impact absorbing member, bellows-like buckling deformation is stably generated at the time of collision by the arrangement of the beads described above.
  • the buckling mode for buckling and deforming the above-described shock absorbing member in a bellows shape
  • a so-called “uneven mixed mode” and a “uneven independent mode” there are a so-called “uneven mixed mode” and a “uneven independent mode”.
  • the bellows valley portion (concave portion) and peak portion (convex portion) are mixed in any cross section of the hollow columnar shock absorbing member that is buckled and deformed in a bellows shape by applying an impact load.
  • This is a deformation mode.
  • the concavo-convex independent mode is a deformation mode in which only a concave portion or a convex portion exists in an arbitrary cross section.
  • the concave / convex independent mode has a larger proportion of the deformed portion with respect to the entire member than the concave / convex mixed mode, and therefore the impact energy absorption amount relative to the deformation amount (crushed amount) is high, and exhibits excellent shock absorbing performance. Is possible.
  • the conventional shock absorbing member various measures have been made to increase the amount of absorption of the shock energy while buckling and deforming in a bellows shape in the axial direction. It was not considered at all.
  • the buckling mode by the conventional shock absorbing member is mainly the concavo-convex mixed mode, and the mechanism for generating the concavo-convex independent mode has not been elucidated.
  • the present invention has been proposed in view of such a conventional situation, and an impact absorbing member having excellent impact absorbing characteristics, in particular, an impact absorbing capable of intentionally inducing an uneven surface independent mode.
  • An object is to provide a member.
  • an axis, a plurality of rectangular walls extending in parallel to the axis, and a polygonal cross section perpendicular to the axis are provided from the outside.
  • the hollow columnar shock absorbing member that absorbs applied impact energy while buckling and deforming in the axial direction, at least two of the plurality of wall portions formed by at least two adjacent wall portions.
  • an impact absorbing member having at least two flange portions projecting from one corner portion, wherein the at least two flange portions are arranged so that directions projecting from the corner portions are oriented in the same direction in the circumferential direction Is done.
  • the shock absorbing member may be provided with a bead portion on at least one wall portion.
  • the bead portion may be a dimple that is recessed from the outer surface of the shock absorbing member or a bulge that protrudes from the outer surface.
  • the dimples are arranged so as to be biased toward the corner portion located in the direction opposite to the direction in which the flange portion projects in the circumferential direction, and the bulge is biased toward the corner portion located in the direction in which the flange portion projects in the circumferential direction.
  • the buckling for determining the direction of the wall and / or the corner so that the ridgeline of each corner starts to buckle while falling in the same direction in the circumferential direction when buckling and deforming in the axial direction.
  • the present invention it is possible to provide an impact-absorbing member having excellent impact-absorbing characteristics.
  • the seat is efficiently seated in the axial direction. It is possible to cause bending deformation, and as a result, it is possible to increase the absorption amount of impact energy applied from the outside and to exhibit excellent shock absorption performance.
  • FIG. 1A by FEM numerical analysis is a figure which shows an uneven
  • FIG. 1A by FEM numerical analysis is the perspective view which calculated
  • corrugated mixed mode It is a schematic diagram which shows the arbitrary cross sections perpendicular
  • FIG. 1 It is a cross-sectional schematic diagram for demonstrating the buckling deformation in another embodiment of the impact-absorbing member by this invention. It is a perspective view which shows another embodiment of the impact-absorbing member by this invention. It is a perspective view which shows another embodiment of the impact-absorbing member by this invention. It is a perspective view which shows another embodiment of the impact-absorbing member by this invention. It is a perspective view which shows another embodiment of the impact-absorbing member by this invention. It is a perspective view which shows another embodiment of the impact-absorbing member by this invention. It is a perspective view which shows another embodiment of the impact-absorbing member by this invention. It is a perspective view which shows the state before applying an impact load about each impact-absorbing member of the comparative example 1. It is a perspective view which shows the state before applying an impact load about each impact-absorbing member of Example 1. FIG.
  • FIG. 2 It is a perspective view which shows the state before applying an impact load about each impact-absorbing member of Example 2.
  • FIG. It is a perspective view which shows the state before applying an impact load about each impact-absorbing member of Example 3.
  • FIG. It is a perspective view which shows the state before applying an impact load about each impact-absorbing member of Example 4.
  • FIG. It is the perspective view which calculated
  • An impact absorbing member according to the present invention has an axis, a plurality of rectangular wall portions extending in parallel to the axis, and a polygonal cross section perpendicular to the axis, and the impact energy applied from the outside is applied to the axis. It is a hollow columnar shock absorbing member extending in the axial direction that absorbs while buckling and deforming in the direction. At least two flange portions protrude from at least two corner portions formed by at least two sets of adjacent wall portions of the plurality of wall portions, and the at least two flange portions protrude from the corner portions. It arrange
  • the impact absorbing member can be provided with a bead portion on at least one wall portion.
  • the bead portion may be a dimple that is recessed from the outer surface of the shock absorbing member or a bulge that protrudes from the outer surface.
  • the dimples are arranged so as to be biased toward the corner portion located in the direction opposite to the direction in which the flange portion projects in the circumferential direction, and the bulge is biased toward the corner portion located in the direction in which the flange portion projects in the circumferential direction.
  • FIGS. 1A to 1D when a linear hollow columnar member having a square cross section is subjected to an impact load in the axial direction from one end thereof, various deformation modes generated in the hollow columnar member are illustrated. It is shown.
  • FEM Finite Element Method
  • FIGS. 1A to 1D the deformation state when an impact load is applied to these hollow columnar members is obtained by FEM (Finite Element Method) numerical analysis (computer simulation).
  • FIG. 1A shows a bent state due to local buckling.
  • FIG. 1B shows a non-compact mode in which buckling deformation is irregularly performed in the axial direction.
  • 1C and 1D show a mode that buckles and deforms in an accordion shape in the axial direction, that is, a compact mode that collapses while alternately repeating a peak and a valley in the axial direction.
  • FIG. 1C represents the uneven mixing mode in the compact mode.
  • corrugated mixed mode is a mode in which the valley part (concave part) and peak part (convex part) of a bellows appear in mixture in the arbitrary cross sections of the hollow columnar member schematically illustrated in FIGS. 2A and 2B.
  • FIG. 1D represents the concave-convex independent mode in the compact mode.
  • This concave / convex independent mode is a mode in which only the valley portion (concave portion) or peak portion (convex portion) of the bellows appears in an arbitrary cross section of the hollow columnar member schematically shown in FIGS. 3A and 3B.
  • the terms “uneven surface independent mode” and “uneven surface mixed mode” may also be referred to as “extension mode” and “inextension mode”.
  • flange portions are provided at at least two corner portions, and the flange portions are oriented so that the directions protruding from the corner portions are the same in the circumferential direction. Has been placed. Thereby, it is possible to induce the said uneven
  • the direction in which the flange portion protrudes is, for example, an angle ⁇ formed by one wall portion 101 constituting the flange portion 100A and the flange portion 100A, such as the flange portion 100A schematically shown in FIG. 4A.
  • the direction in which the wall portion having the smaller opening angle in this figure, the other wall portion 102 due to ⁇ ⁇
  • this direction is the direction in which the flange portion 100A protrudes in the circumferential direction of the shock absorbing member.
  • an impact absorbing member 1A made of a hollow member having a square cross section shown in FIG. 5A has a central axis O and four wall portions 1a, 1b, 1c, 1d arranged around the central axis O.
  • the flange portions 2a, 2b, 2c, and 2d are formed from the four corner portions 1e, 1f, 1g, and 1h by joining the four wall portions 1a, 1b, 1c, and 1d. .
  • the flange portions 2a, 2b, 2c, and 2d are arranged such that the direction X projecting from the corner portions 1e, 1f, 1g, and 1h faces the same direction Y in the circumferential direction centered on the axis O.
  • the ridgelines of the corners 1e, 1f, 1g, 1h are the same in the circumferential direction around the axis O, that is, each flange. Buckling starts while falling in the direction X in which the wall portions 1a, 1b, 1c, and 1d on the side where the opening angle with respect to the portions 2a, 2b, 2c, and 2d becomes smaller. Thereby, the said uneven
  • the panel made of the wall portions 1a and 1d and the panel made of the wall portions 1b and 1c are connected between the wall portions 1a and 1b and the wall portion.
  • the flange portion 2 is provided so as to protrude from the two corner portions 1e and 1g by joining between 1c and 1d
  • the direction X protruding from the corner portions 1e and 1g is the axis O.
  • each dimple 3 recessed from the outer surface are formed on one of the wall portions 1a and 1c adjacent to each other with corner portions 1f and 1h different from the corner portions 1e and 1g provided with the flange portion 2.
  • each dimple 3 has a corner portion 1f positioned in a direction opposite to the direction X in which the flange portion 2 protrudes in the circumferential direction around the axis O with respect to the central portion of the walls 1a and 1c. 1h to be biased to the side.
  • the ridgelines of the corner portions 1e and 1g are the same in the circumferential direction around the axis O, that is, the opening angle with respect to each flange portion 2 Begins to buckle while falling in the direction X in which the wall portions 1b, 1d on the side where becomes smaller. Further, the ridge lines of the corner portions 1f and 1h start to buckle while falling in the same direction Y in the circumferential direction around the axis O, that is, the side where the dimple 3 is provided (X direction). Thereby, the said uneven
  • each flange portion 2 ′ 1e 'and 1g' are arranged so that the direction X 'protruding from the axis line O faces the same direction Y' in the circumferential direction around the axis O.
  • the bulges 3 ′ protruding from the outer surface are provided, the bulges 3 ′ protrude from the central portions of the wall portions 1 a ′ and 1 c ′ in the circumferential direction around the axis O. It is deviated toward the corners 1f 'and 1h' located in the direction X '.
  • the ridgelines of the corner portions 1e ′ and 1g ′ are in the same direction Y ′ in the circumferential direction around the axis O, that is, each flange portion 2. Begins to buckle while falling in the direction X ′ in which the wall portions 1 a ′ and 1 c ′ on the side where the opening angle with respect to ′ becomes smaller. Further, the ridgelines of the corner portions 1f ′ and 1h ′ begin to buckle while falling in the same direction Y in the circumferential direction around the axis O, that is, the side opposite to the side where the bulge 3 ′ is provided (X ′ direction). Thereby, the said uneven
  • a flange is provided at one corner, and at least one wall is a dimple recessed from the outer surface of the shock absorbing member or a bulge protruding from the outer surface.
  • the dimples are arranged so as to be biased toward the corners located in the direction opposite to the direction in which the flange protrudes in the circumferential direction around the axis O.
  • the bulge is arranged so as to be biased toward the corner portion located in the direction in which the flange portion protrudes in the circumferential direction around the axis O.
  • a single corner 1e is formed by joining a panel made of walls 1a, 1d, 1c, and 1b between the walls 1a and 1b. If the flange portion 2 is provided so as to protrude from the corner portion 1e, 1g, 1h, which is different from the corner portion 1e provided with the flange portion 2, an impact is applied to one of the adjacent wall portions 1a, 1c, 1d.
  • the dimples 3 that are recessed from the outer surface of the absorbing member 1D are provided, and the flange portions 2 protrude from the center portions of the wall portions 1a, 1c, and 1d in the circumferential direction around the axis O. It is biased toward the corners 1f, 1h, 1g located in the direction opposite to the direction X.
  • the ridgeline of the corner portion 1e has the same direction Y in the circumferential direction around the axis O, that is, the opening angle with respect to each flange portion 2 is small. It begins to buckle while falling down in the direction X in which the wall portion 1b on the side becomes. Further, the other ridgelines of the corners 1f, 1g, and 1h begin to buckle while falling in the same direction Y in the circumferential direction around the axis O, that is, the side on which the dimple 3 is provided (X direction). Thereby, the said uneven
  • a panel composed of the wall portions 1a ′, 1d ′, 1c ′, and 1b ′ is joined between the wall portions 1a ′ and 1b ′.
  • One wall portion 1a ', 1c', 1d ' is provided with a bulge 3' protruding from the outer surface of the shock absorbing member 1E, and each bulge portion 3 'is connected to the wall portion 1a', 1c ', 1d'.
  • the center portion of the flange portion 2 is deviated toward the corner portions 1 f ′, 1 h ′, and 1 g ′ located in the direction X ′ in which the flange portion 2 projects in the circumferential direction around the axis O.
  • the ridgeline of the corner portion 1e ' opens in the same direction Y' in the circumferential direction around the axis O, that is, with respect to each flange portion 2 '. It begins to buckle while falling down in the direction X in which the wall portion 1a 'on the side where the corner becomes smaller is located.
  • the other corners 1f ', 1g', and 1h ' have ridgelines in the same direction Y' in the circumferential direction around the axis O, that is, on the side opposite to the side on which the bulge 3 'is provided (X' direction). Start buckling while falling down. Thereby, the said uneven
  • the flange portion and the bead portion of the present invention serve as a buckling induction portion that intentionally induces the concave and convex independent mode, and when the shock absorbing member is buckled and deformed in the axial direction, the ridge line of each corner portion Has a function of determining its direction so that it begins to buckle while falling in the same direction in the circumferential direction around the axis O.
  • the bead portion of the present invention does not directly start the buckling deformation, but rather the ridgeline of the corner portion collapses. After (buckling), it has a function to quickly shift to the concavo-convex independent mode.
  • buckling deformation can be efficiently generated in the axial direction by intentionally inducing the concave / convex independent mode, and as a result, shock energy applied from the outside can be absorbed. It is possible to increase the amount and exert excellent shock absorption performance.
  • the vehicle When such an impact absorbing member is used in a vehicle body such as an automobile, the vehicle is excellent in collision safety while improving fuel efficiency and motion performance while achieving both weight reduction and high rigidity of the vehicle body. It can be a vehicle body structure.
  • the shock absorbing members 1A to 1E shown in FIGS. 5A to 5C and FIGS. 6A and 6B are exemplified.
  • the shock absorbing member to which the present invention is applied is not limited to such a form, but various forms. It is possible to take That is, the present invention can be widely applied to a hollow columnar shock absorbing member having a polygonal cross section and absorbing impact energy applied from outside while buckling deformation (axial crushing) in the axial direction. It is.
  • shock absorbing member examples include a member made of a hollow columnar thin structure (hollow columnar member) in which a flange portion is formed by joining a press-formed steel plate by welding or the like. it can.
  • the bead portion can be provided by pressing or the like before and after joining the hollow columnar members.
  • the material of the impact absorbing member is not limited to the above-described steel plate, but, for example, impact energy applied from the outside, such as a metal material such as iron, aluminum, copper, or an alloy thereof, or a resin material such as FRP. Can be absorbed while buckling deformation (axial crushing) in the axial direction. Moreover, it is not limited to those joined by welding or the like, but may be formed into a hollow column shape by extrusion molding or the like. In this case, the bead portion can be provided by pressing or the like after molding.
  • the shock absorbing member preferably has a quadrilateral or octagonal cross section such as a square or a hexagon in order to achieve both weight reduction and high rigidity.
  • the flange portion 2 is arranged such that the protruding direction of the flange portion 2 faces the same direction in the circumferential direction around the axis O.
  • the dimples 3 can be arranged side by side in the axial direction from the buckling start end side of the shock absorbing member. In this case, it is preferable that the dimples 3 are arranged at a length pitch on one side of the wall portion. Furthermore, it is preferable that the dimple 3 positioned closest to the start end is arranged at a position away from the start end by a half or more of the length of one side of the wall. Thereby, a bellows-like buckling deformation can be generated stably.
  • the shape of the bead portion is not limited to the dimple or bulge having the shape of the spherical surface described above as long as the function of the bead portion of the present invention is exhibited. You may have cross-sectional shapes, such as U shape.
  • the dimple 3 shown in FIGS. 8A and 8B includes a trough-shaped recess extending in a direction (transverse cross-sectional direction) orthogonal to the axial direction of the shock absorbing member 1. In this case, the function as the bead part of the present invention can be further enhanced.
  • the length L 1 of the trough-shaped dimple 3 in the direction perpendicular to the axis O of the shock absorbing member 1 is preferably 1/10 W ⁇ L 1 ⁇ 3/4 W (W: the width of the wall portion; Distance between ridge lines).
  • the length L 2 of the trough-shaped dimple 3 in the direction of the axis O of the impact absorbing member 1 is preferably 1/20 L 1 ⁇ L 2 ⁇ L 1 .
  • the distance L 3 between the dimple 3 and the ridgeline is preferably T ⁇ L 3 ⁇ 1 / 5T (T: plate thickness).
  • the concave-convex independent mode can be intentionally induced by disposing a bead portion at one corner portion of at least one wall portion of the impact absorbing member. That is, in the present invention, since the bead portion provided on the at least one wall portion is offset, the direction in which the ridge line of the corner portion on the side where the bead portion is biased is determined is collapsed. The ridgeline can also be caused to fall down in the same direction as the corner ridgeline that is the starting point.
  • the bead portion is arranged so as to be biased toward the corner portion. That is, the portion provided with the bead portion becomes a bellows valley portion (concave portion) in the cross section of the shock absorbing member after buckling deformation. For this reason, when a bead part is arranged on all the wall parts, the corner part to which the bead part is not given in the cross section becomes a bellows peak part (convex part) after buckling deformation. It is possible to prevent.
  • the bead portions are biased to the corner portions on the plurality of wall portions, it is considered that the bead portions are arranged in order from the wall portions that form the diagonal of the polygonal cross section. Preferred above.
  • disposing the bead portion so as to be biased toward the corner portion means that the bead portion is shifted toward the corner portion so that the bead portion does not cover the center portion of the wall portion (the center portion is not deformed).
  • the bead portion is preferably disposed in the vicinity of the corner portion located in the same direction in the circumferential direction.
  • the vicinity of the corner means a position close to the corner so as not to reach the ridge line of the corner (does not deform the corner), and the center of the bead is 1/4 or less than the width of the wall. The position closer to the corner side.
  • the ridgeline of the corner portion can be stably fallen down.
  • the buckling is stabilized, but the load supported by the corner portion is lowered, and as a result, the energy absorption amount due to the buckling deformation is lowered.
  • the corner portion with the flange portion is a joint portion between adjacent wall portions with the corner portion interposed therebetween, the deformation resistance is high and the load is hardly reduced. Therefore, when the buckling stability is required, it is possible to provide a bead portion at the flange portion or the corner portion where the flange portion is provided, and the bead portion is provided between the flange portion and the wall portion. It may be formed elongated.
  • the impact absorbing performance can be effectively exhibited even with respect to the torsional load.
  • the deformation state when an impact load is applied in the axial direction from one end side of the impact absorbing members of Examples 1 to 4 and Comparative Example 1 is obtained by FEM numerical analysis (computer simulation). It was.
  • the analysis conditions by this FEM numerical analysis were modeled on a linear hollow columnar member having a square cross section with a plate thickness of 1.4 mm, a side of 50 mm, and a length of 300 mm.
  • the material constants of this model are as shown in Table 1 below.
  • Comparative Example 1 is a so-called hat-shaped hollow columnar member in which two flange portions are arranged so as to face different directions in the circumferential direction.
  • the dimensions of the hat-shaped hollow columnar member are as shown in FIG. 9A.
  • FIG. 10 it can be seen that the buckling deformation proceeds in the uneven mixing mode from the initial stage of the buckling deformation.
  • Example 1 In Example 1, as shown in FIG. 9B, flange portions (projection amount 20 mm) are provided at two corner portions that form a diagonal of the hollow columnar member, and these two flange portions face the same direction in the circumferential direction. It is a case where it arrange
  • an impact absorbing member is provided on one of adjacent wall portions sandwiching two corner portions different from the corner portion provided with the flange portion in the configuration of the first embodiment.
  • a dimple that is recessed from the outer surface k of the wall portion, and the dimple is biased toward the corner portion located in the direction opposite to the direction in which the flange portion projects in the circumferential direction with respect to the central portion of the wall portion. This is the case.
  • the buckling deformation proceeds in the concave-convex independent mode from the initial stage of the buckling deformation.
  • the third embodiment is recessed from the outer surface of the shock absorbing member on one of the adjacent wall portions sandwiching two corner portions provided with flange portions in the configuration of the second embodiment.
  • This is a case where dimples are provided and the dimples are arranged so as to be biased toward the corners located in the direction opposite to the direction in which the flanges protrude in the circumferential direction with respect to the central part of the wall.
  • the buckling deformation proceeds in the concave-convex independent mode from the initial stage of the buckling deformation.
  • Example 4 is an example in which dimples are further provided in the flange portion of the impact absorbing member of Example 2 as shown in FIG. 9E. In this case, as shown in FIG. 14, it can be seen that the buckling deformation proceeds in the concave-convex independent mode from the initial stage of the buckling deformation.
  • the reaction force from the impact absorbing member shows the results of measurement of the relationship between the deformation amount and the deformation amount (crush amount).
  • the graph of FIG. 15A is for Example 1
  • the graph of FIG. 15B is for Example 2
  • the graph of FIG. 14C is for Example 3
  • the graph of FIG. 14D is for Example 4.
  • Each graph is shown by comparison with Comparative Example 1.
  • the product of the reaction force from the impact absorbing member and the amount of crushing corresponds to the amount of energy absorbed, the higher the reaction force, the better the impact absorbing performance.
  • FIGS. 16A to 16D the relationship between the deformation amount (crush amount) and the absorbed energy amount is measured.
  • FIGS. 16A to 16D the graph of FIG. 16A is for Example 1
  • the graph of FIG. 16B is for Example 2
  • the graph of FIG. 16C is for Example 3
  • the graph of FIG. 15D is for Example 4.
  • Each graph is shown by comparison with Comparative Example 1.
  • the amount of deformation (the amount of collapse) is greater than that of the uneven mixed mode of Comparative Example 1 by inducing the uneven independent mode. It can be seen that the ratio of the absorbed amount of impact energy to) is high, and that excellent impact absorbing performance is exhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vibration Dampers (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

 軸線(O)と、該軸線(O)に対して平行に延びる複数の矩形状壁部(1a、1b、1c、1d)と、軸線(O)に対して垂直な多角形断面とを有し、外部から加わる衝撃エネルギーを軸線(O)方向に座屈変形しながら吸収する、軸線(O)方向に延びる中空柱状の衝撃吸収部材(1)が、複数の壁部のうち少なくとも二組の隣接する壁部によって形成される少なくとも2つの角部(1e、1f、1g、1h)から突出する少なくとも2つのフランジ部(2a、2b、2c、2d)を具備し、該少なくとも2つのフランジ部は、その前記角部から突出する方向が周方向において同じ方向を向くように配置されている。

Description

衝撃吸収部材
 本発明は、外部から加わる衝撃エネルギーを座屈変形しながら吸収する衝撃吸収部材に関する。
 近年、自動車などの分野では、燃費や運動性能の向上を図る一方、更なる衝突安全性の向上が求められている。自動車の車体は、軽量化と高剛性化を両立させるため、モノコックボディと呼ばれるフレームとボディとを一体化した車体構造が一般的に採用されている。また、自動車の車体には、衝突時に運転手および同乗者の生存空間を確保するため、例えばエンジンルールやトランクルームなどの客室以外の空間を優先的に潰しながら、客室に加わる衝撃をできるだけ緩和し、客室の変形を最小限に留める、いわゆる衝撃吸収構造が広く採用されている。
 従って、衝突安全性に優れた車体構造とするためには、衝突時の衝撃エネルギーを如何に有効に吸収させるかが重要な課題となる。このため、衝突時の衝撃エネルギーを効率良く吸収させるための衝撃吸収部材の開発が積極的に進められている(例えば、特許文献1~16を参照。)。
 一般に、衝撃吸収部材には、鋼板をプレス成形したものを溶接等で接合し、中空柱状に成形した薄肉構造体(中空柱状部材)が用いられる。また、衝撃吸収部材は、上述した軽量化と高剛性化を両立させるため、例えば四角形や六角形などの多角形状の断面を有た中空部材より成る。このような衝撃吸収部材は、例えば車体のフロントサイドメンバーなどに使用されており、衝突時にその一端側から衝撃荷重を受けたときに、軸線方向に座屈変形(軸圧潰)することで衝撃エネルギーを吸収する。従って、衝撃吸収性能を高めるためには、このような座屈変形を効率良く生じさせることと、その座屈荷重を高めることの2つが重要となる。
 従来、このような課題に対する材料面からの対策として、衝撃吸収部材板を製造するために、比較的厚い鋼板や、比較的強度の高い高強度鋼板を用いたりして、座屈荷重を高めることが行われている。一方、構造面からの対策としては、ビードと呼ばれる座屈変形の端緒を与える窪み(ビード部)を設けて、効率良く座屈変形を生じさせることが行われている。また、中空の衝撃吸収部材の断面を多角形状とすることで、座屈荷重を高めることが行われている。
 然しながら、上述した衝撃吸収部材の板厚を厚くすることは、部材の重量増加につながるため、この衝撃吸収部材を採用する車体の重量増加を招き、その結果として自動車の燃費や走行性能を悪化させることになる。また、高強度鋼板は、その強度に反比例して伸び率が低下するのが一般的である。このため、成形性も悪化し、現状では衝撃吸収部材用鋼板の高強度化には自ずと限界がある。
 ところで、単に衝撃吸収部材の座屈荷重を増加させることは、座屈を生じさせる最低衝撃荷重の増大につながる。この場合、衝撃吸収部材に加わる衝撃荷重が衝撃吸収部材の変形によって吸収されることなく、そのまま客室などの他の構造部分へと伝わることになる。また、本来は変形すべきでない箇所に座屈変形が生じたり、客室の変形により運転手および同乗者の生存空間を確保することが困難となったり、大きな加速度変化が運転手および同乗者に加わったりすることで、運転手および同乗者への傷害の危険性が高まることになる。
 このため、衝撃吸収部材では、例えば、座屈の開始端から断面形状を極力一定に保ちながら、座屈による変形量を確保するために、衝撃吸収部材を直線化する設計がなされている。また、衝撃吸収部材に加わる初期衝撃荷重を低下させるために、上述したビードの配置によって衝突時に蛇腹状の座屈変形を安定して生じさせることが行われている。
 然しながら、上述したビードの配置については、それを求める確固とした理論はなく、衝撃吸収部材に対する座屈試験やコンピューターシミュレーションなどを多数繰り返すことによって求めているのが現状である。このため、各種の車両毎に上記実験やシミュレーションを繰り返す必要があり、設計効率が悪いだけでなく、実際の衝突時に予想される様々な荷重条件や座屈モードに対応することができないために、そのような手法を用いてビードの配置を最適化することは非常に困難である。
特開2009-286221号公報 特開2009-285668号公報 特開2009-168115号公報 特開2009-154587号公報 特開2009-113596号公報 特開2008-018792号公報 特開2007-030725号公報 特開2006-207726号公報 特開2006-207724号公報 特開2005-225394号公報 特開2005-153567号公報 特開2005-001462号公報 特開平10-138950号公報 特開平09-277954号公報 特開平09-277953号公報 特開平2011-56997号公報
 ところで、上述した衝撃吸収部材を蛇腹状に座屈変形させる座屈モード(Compact-mode)の中には、「凹凸混合モード」と呼ばれるものと、「凹凸独立モード」と呼ばれるものがある。このうち、凹凸混合モードは、衝撃荷重を加えることによって蛇腹状に座屈変形した中空柱状の衝撃吸収部材の任意の横断面において、蛇腹の谷部(凹部)と山部(凸部)が混在する変形モードである。一方、凹凸独立モードは、同じく任意の横断面において、凹部または凸部のみが存在する変形モードである。この場合、凹凸独立モードは、凹凸混合モードよりも部材全体に対する変形部分の割合が大きくなるため、その変形量(潰れ量)に対する衝撃エネルギーの吸収量が高く、優れた衝撃吸収性能を発揮することが可能となる。
 然しながら、従来の衝撃吸収部材では、軸線方向に蛇腹状に座屈変形させながら、その衝撃エネルギーの吸収量を高めることについて様々な工夫がなされているものの、上述した凹凸独立モードを意図的に誘発させることについては全く考慮されていなかった。すなわち、従来の衝撃吸収部材による座屈モードは、凹凸混合モードが主であり、凹凸独立モードを発生させるメカニズムまでは解明されていなかった。
 そこで、本発明は、このような従来の事情に鑑みて提案されたものであり、衝撃吸収特性に優れた衝撃吸収部材、特に、凹凸独立モードを意図的に誘発させることを可能とした衝撃吸収部材を提供することを目的とする。
 上述の目的を達成するため、本発明によれば、軸線と、該軸線に対して平行に延びる複数の矩形状壁部と、前記軸線に対して垂直な多角形断面とを有し、外部から加わる衝撃エネルギーを前記軸線方向に座屈変形しながら吸収する、前記軸線方向に延びる中空柱状の衝撃吸収部材において、前記複数の壁部のうち少なくとも二組の隣接する壁部によって形成される少なくとも2つの角部から突出する少なくとも2つのフランジ部を具備し、該少なくとも2つのフランジ部は、その前記角部から突出する方向が周方向において同じ方向を向くように配置されている衝撃吸収部材が提供される。
 前記衝撃吸収部材は、少なくとも1つの壁部にビード部を設けることができる。ビード部は、該衝撃吸収部材の外表面から凹んだディンプルまたは外表面から突出した膨隆とすることができる。ディンプルは、周方向においてフランジ部が突出する方向とは逆方向に位置する角部側に偏倚させて配置され、膨隆は、周方向においてフランジ部が突出する方向に位置する角部側に偏倚させて配置されることが好ましい。
 さらに、前記壁部および/または角部に、軸線方向に座屈変形するときに各角部の稜線が周方向において同じ方向に倒れ込みながら座屈し始めるように、その方向を決定するための座屈誘発部を設けることによって、上記凹凸独立モードを意図的に誘発させることができる。
 以上のように、本発明によれば、衝撃吸収特性に優れた衝撃吸収部材を提供することが可能であり、特に、上記凹凸独立モードを意図的に誘発させることによって、軸線方向に効率良く座屈変形を生じさせることができ、その結果、外部から加わる衝撃エネルギーの吸収量を高めて、優れた衝撃吸収性能を発揮することが可能となる。
正方形状の断面を有した中空柱状部材に、その一端側から軸線方向に衝撃荷重を加えたときに、中空柱状部材に生じる変形をFEM数値解析により求めた斜視図であり、局所的な座屈によって折れ曲がった状態を示す図である。 図1Aと同様の中空柱状部材に生じる変形をFEM数値解析により求めた斜視図であり、軸線方向に不規則に座屈変形した非コンパクトモードを示している。 図1Aと同様の中空柱状部材に生じる変形をFEM数値解析により求めた斜視図であり、軸線方向に蛇腹状に座屈変形するコンパクトモードのうち凹凸混合モードを示す図である。 図1Aと同様の中空柱状部材に生じる変形をFEM数値解析により求めた斜視図であり、軸線方向に蛇腹状に座屈変形するコンパクトモードのうち凹凸独立モードを示す図である。 凹凸混合モードにおける中空柱状部材の軸線に対して垂直な任意の横断面を例示する模式図である。 凹凸混合モードにおける中空柱状部材の軸線に対して垂直な図2Aとは異なる他の横断面を例示する模式図である。 凹凸独立モードにおける中空柱状部材の軸線に対して垂直な任意の横断面を示す模式図である。 凹凸独立モードにおける中空柱状部材の軸線に対して垂直な図3Aとは異なる他の横断面を例示する模式図である。 フランジ部が突出する方向を説明するための断面模式図であり、フランジ部が一方の壁部に沿って延長された構成を示す図である。 フランジ部が突出する方向を説明するための断面模式図であり、フランジ部が一方およ他方の壁をそれぞれ異なる角度で折り曲げることによって形成されている構成を示す図である。 本発明による衝撃吸収部材の1つの実施の形態における座屈変形を説明するための断面模式図である。 本発明による衝撃吸収部材の他の実施の形態における座屈変形を説明するための断面模式図である。 本発明による衝撃吸収部材の更に別の実施の形態における座屈変形を説明するための断面模式図である。 本発明による衝撃吸収部材の更に別の実施の形態における座屈変形を説明するための断面模式図である。 本発明による衝撃吸収部材の更に別の実施の形態における座屈変形を説明するための断面模式図である。 本発明による衝撃吸収部材の更に別の実施の形態を示す斜視図である。 本発明による衝撃吸収部材の更に別の実施の形態を示す斜視図である。 本発明による衝撃吸収部材の更に別の実施の形態を示す斜視図である。 本発明による衝撃吸収部材の更に別の実施の形態を示す斜視図である。 本発明による衝撃吸収部材の更に別の実施の形態を示す斜視図である。 比較例1の各衝撃吸収部材について衝撃荷重を加える前の状態を示す斜視図である。 実施例1の各衝撃吸収部材について衝撃荷重を加える前の状態を示す斜視図である。 実施例2の各衝撃吸収部材について衝撃荷重を加える前の状態を示す斜視図である。 実施例3の各衝撃吸収部材について衝撃荷重を加える前の状態を示す斜視図である。 実施例4の各衝撃吸収部材について衝撃荷重を加える前の状態を示す斜視図である。 比較例1の衝撃吸収部材に衝撃荷重を加えたときの変形状態をFEM数値解析により求めた斜視図である。 実施例1の衝撃吸収部材に衝撃荷重を加えたときの変形状態をFEM数値解析により求めた斜視図である。 実施例2の衝撃吸収部材に衝撃荷重を加えたときの変形状態をFEM数値解析により求めた斜視図である。 実施例3の衝撃吸収部材に衝撃荷重を加えたときの変形状態をFEM数値解析により求めた斜視図である。 実施例4の衝撃吸収部材に衝撃荷重を加えたときの変形状態をFEM数値解析により求めた斜視図である。 実施例1と比較例1の衝撃吸収部材に衝撃荷重を加えたときの衝撃吸収部材からの反力と変形量(潰れ量)との関係を測定したグラフである。 実施例2と比較例1の衝撃吸収部材に衝撃荷重を加えたときの衝撃吸収部材からの反力と変形量(潰れ量)との関係を測定したグラフである。 実施例3と比較例1の衝撃吸収部材に衝撃荷重を加えたときの衝撃吸収部材からの反力と変形量(潰れ量)との関係を測定したグラフである。 実施例4と比較例1の衝撃吸収部材に衝撃荷重を加えたときの衝撃吸収部材からの反力と変形量(潰れ量)との関係を測定したグラフである。 実施例1と比較例1の衝撃吸収部材に衝撃荷重を加えたときの変形量(潰れ量)と吸収したエネルギー量との関係を測定したグラフである。 実施例2と比較例1の衝撃吸収部材に衝撃荷重を加えたときの変形量(潰れ量)と吸収したエネルギー量との関係を測定したグラフである。 実施例3と比較例1の衝撃吸収部材に衝撃荷重を加えたときの変形量(潰れ量)と吸収したエネルギー量との関係を測定したグラフである。 実施例4と比較例1の衝撃吸収部材に衝撃荷重を加えたときの変形量(潰れ量)と吸収したエネルギー量との関係を測定したグラフである。
 以下、本発明を適用した衝撃吸収部材について、図面を参照して詳細に説明する。
 本発明による衝撃吸収部材は、軸線と、該軸線に対して平行に延びる複数の矩形状壁部と、前記軸線に対して垂直な多角形断面とを有し、外部から加わる衝撃エネルギーを前記軸線方向に座屈変形しながら吸収する前記軸線方向に延びる中空柱状の衝撃吸収部材である。前記複数の壁部のうち少なくとも二組の隣接する壁部によって形成される少なくとも2つの角部から少なくとも2つのフランジ部が突出しており、該少なくとも2つのフランジ部は、その前記角部から突出する方向が周方向において同じ方向を向くように配置されている。
 さらに、該衝撃吸収部材は、少なくとも1つの壁部にビード部を設けることができる。ビード部は、該衝撃吸収部材の外表面から凹んだディンプルまたは外表面から突出した膨隆とすることができる。ディンプルは、周方向においてフランジ部が突出する方向とは逆方向に位置する角部側に偏倚させて配置され、膨隆は、周方向においてフランジ部が突出する方向に位置する角部側に偏倚させて配置されることが好ましい。
 以下、本発明を適用した衝撃吸収部材について、図面を参照して詳細に説明する。
 図1A~図1Dを参照すると、正方形状の断面を有する直線状の中空柱状部材に対して、その一端側から軸線方向に衝撃荷重を加えたときに、この中空柱状部材に生じる各種の変形モードが示されている。図1A~図1Dに示す変形モードは、これらの中空柱状部材に衝撃荷重を加えたときの変形状態をFEM(Finite Element Method)数値解析(コンピューターシミュレーション)により求めたものである。
 図1Aは、局所的な座屈によって折れ曲がった状態を表している。一方、図1Bは、軸線方向に不規則に座屈変形した非コンパクトモードを表している。図1C、1Dは、軸線方向に蛇腹状に座屈変形するモード、すなわち軸線方向において山部と谷部とを交互に繰り返しながら圧潰するコンパクトモードを表している。特に、図1Cは、コンパクトモードのうち凹凸混合モードを表している。この凹凸混合モードは、図2A、2Bに模式的に例示する中空柱状部材の任意の横断面において、蛇腹の谷部(凹部)と山部(凸部)が混在して表れるモードである。これに対して、図1Dは、コンパクトモードのうち凹凸独立モードを表している。この凹凸独立モードは、図3A、3Bに模式的に示す中空柱状部材の任意の横断面において、蛇腹の谷部(凹部)または山部(凸部)のみが表れるモードである。「凹凸独立モード」および「凹凸混合モード」との用語は、「拡張モード(extension mode)」および「不拡張モード(inextension mode)」とも称されることがある。
 この場合、図1Aに示す変形モードから図1Dに示す変形モードに向かうに従って、部材全体に対する変形部分の割合が大きくなる。従って、部材の変形量(潰れ量)に対する衝撃エネルギーの吸収量が最も高いのは、図1Dに示す凹凸独立モードである。すなわち、この凹凸独立モードは、軸線方向に最も効率良く座屈変形を生じさせることができるため、非常に優れた衝撃吸収性能を示すことになる。
 上述したように、本発明を適用した衝撃吸収部材では、少なくとも2つの角部にフランジ部が設けられており、該フランジ部は、角部から突出する方向が周方向において同じ方向を向くように配置されている。これにより、上記凹凸独立モードを意図的に誘発させることが可能である。
 ここで、フランジ部が突出する方向とは、例えば図4Aに模式的に示すフランジ部100Aのように、このフランジ部100Aを構成する一方の壁部101と当該フランジ部100Aとの為す角αと、他方の壁部102と当該フランジ部100Aとの為す角βとのうち、その開き角が小さくなる側の壁部(本図では、β<αにより他方の壁部102)が位置する方向を言い、この方向(向き)を衝撃吸収部材の周方向におけるフランジ部100Aが突出する方向としている。
 また、図4Aでは、このフランジ部100Aが一方の壁部101に沿って延長された構成(β<α=180゜)となっているが、フランジ部は、このような構成に必ずしも限定されるものではなく、例えば図4Bに模式的に示すフランジ部100Bのように、一方の壁部101および他方の壁102をそれぞれ異なる角度で折り曲げてフランジ部100Bを構成(β<α<180゜)することも可能であり、場合によっては、β<180゜<αとなるフランジ部(図示せず。)を構成することも可能である。
 例えば図5Aに示す正方形状の断面を有する中空部材より成る衝撃吸収部材1Aは、中心軸線Oと、該中心軸線Oの周囲に配置された4つの壁部1a、1b、1c、1dとを有しており、該4つの壁部1a、1b、1c、1dの各間を接合することによって、4つの角部1e、1f、1g、1hからフランジ部2a、2b、2c、2dが形成される。各フランジ部2a、2b、2c、2dは、その角部1e、1f、1g、1hから突出する方向Xが、軸線Oを中心とした周方向において同じ方向Yを向くように配置されている。
 この場合、衝撃吸収部材1の一端側から軸線方向に衝撃荷重を加えることによって、各角部1e、1f、1g、1hの稜線が軸線Oを中心とした周方向において同じ方向Y、すなわち各フランジ部2a、2b、2c、2dに対する開き角が小さくなる側の壁部1a、1b、1c、1dが位置する方向Xに倒れ込みながら座屈し始める。これにより、上記凹凸独立モードを意図的に誘発させることができる。
 また、図5Bに示す正方形状の断面を有する衝撃吸収部材1Bのように、壁部1a、1dからなるパネルと、壁部1b、1cからなるパネルとを壁部1a、1bの間と壁部1c、1dの間で接合することによって、2つの角部1e、1gからフランジ部2が突出して設けられた場合、各フランジ部2は、その角部1e、1gから突出する方向Xが軸線Oを中心とした周方向において同じ方向Yを向くように配置する。
 さらに、この衝撃吸収部材1Bにおいて、フランジ部2が設けられた角部1e、1gとは異なる角部1f、1hを挟んで隣接する一方の壁部1a、1cに、外表面から凹んだディンプル3を設けた場合、各ディンプル3は、当該壁部1a、1cの中央部に対して、軸線Oを中心とした周方向においてフランジ部2が突出する方向Xとは逆方向に位置する角部1f、1h側に偏倚させて配置する。
 この場合、衝撃吸収部材1Bの一端側から軸線方向に衝撃荷重を加えることによって、角部1e、1gの稜線が軸線Oを中心とした周方向において同じ方向Y、すなわち各フランジ部2に対する開き角が小さくなる側の壁部1b、1dが位置する方向Xに倒れ込みながら座屈し始める。また、角部1f、1hの稜線が軸線Oを中心とした周方向において同じ方向Y、すなわちディンプル3を設けた側(X方向)に倒れ込みながら座屈し始める。これにより、上記凹凸独立モードを意図的に誘発させることができる。
 また、図5Cに示す正方形状の断面を有する衝撃吸収部材1Cのように、壁部1a′、1d′からなるパネルと、壁部1b′、1c′からなるパネルとを壁部1a′、1b′の間と壁部1c′、1d′の間で接合することによって、2つの角部1e′、1g′からフランジ部2′が突出して設けられた場合、各フランジ部2′は、角部1e′、1g′から突出する方向X′が軸線Oを中心とした周方向において同じ方向Y′を向くように配置する。
 さらに、この衝撃吸収部材1Cにおいて、フランジ部2′が設けられた角部1e′、1g′とは異なる角部1f′、1h′を挟んで隣接する一方の壁部1a′、1c′に、その外表面から突出した膨隆3′を設けた場合、各膨隆3′は、当該壁部1a′、1c′の中央部に対して、軸線Oを中心とした周方向においてフランジ部2′が突出する方向X′に位置する角部1f′、1h′側に偏倚させて配置する。
 この場合、衝撃吸収部材1Cの一端側から軸線方向に衝撃荷重を加えることによって、角部1e′、1g′の稜線が軸線Oを中心とした周方向において同じ方向Y′、すなわち各フランジ部2′に対する開き角が小さくなる側の壁部1a′、1c′が位置する方向X′に倒れ込みながら座屈し始める。また、角部1f′、1h′の稜線が軸線Oを中心とした周方向において同じ方向Y、すなわち膨隆3′を設けた側とは反対側(X′方向)に倒れ込みながら座屈し始める。これにより、上記凹凸独立モードを意図的に誘発させることができる。
 本発明を適用した別の衝撃吸収部材では、上述したように1つの角部にフランジ部を設けると共に、少なくとも1つの壁部に衝撃吸収部材の外表面から凹んだディンプルまたは外表面から突出した膨隆を設る。ディンプルを設ける場合、該ディンプルは、軸線Oを中心とした周方向においてフランジ部が突出する方向とは逆方向に位置する角部側に偏倚させて配置する。膨隆を設ける場合、該膨隆は、軸線Oを中心とした周方向においてフランジ部が突出する方向に位置する角部側に偏倚させて配置する。これにより、上記凹凸独立モードを意図的に誘発させることが可能である。
 例えば図6Aに示す正方形状の断面を有する衝撃吸収部材1Dのように、壁部1a、1d、1c、1bからなるパネルを壁部1a、1bの間で接合することによって、1つの角部1eからフランジ部2が突出して設けられた場合、このフランジ部2が設けられた角部1eとは異なる角部1f、1g、1hを挟んで隣接する一方の壁部1a、1c、1dに、衝撃吸収部材1Dの外表面から凹んだディンプル3を設け、かつ、各ディンプル3を、当該壁部1a、1c、1dの中央部に対して、軸線Oを中心とした周方向においてフランジ部2が突出する方向Xとは逆方向に位置する角部1f、1h、1g側に偏倚させて配置する。
 この場合、衝撃吸収部材1Dの一端側から軸線方向に衝撃荷重を加えることによって、角部1eの稜線が軸線Oを中心とした周方向において同じ方向Y、すなわち各フランジ部2に対する開き角が小さくなる側の壁部1bが位置する方向Xに向かって倒れ込みながら座屈し始める。また、それ以外の角部1f、1g、1hの稜線が軸線Oを中心とした周方向において同じ方向Y、すなわちディンプル3を設けた側(X方向)に倒れ込みながら座屈し始める。これにより、上記凹凸独立モードを意図的に誘発させることができる。
 また、図6Bに示す正方形状の断面を有する衝撃吸収部材1Eのように、壁部1a′、1d′、1c′、1b′からなるパネルを壁部1a′、1b′の間で接合することによって、1つの角部1eからフランジ部2′が突出して設けられた場合、このフランジ部27が設けられた角部1e′とは異なる角部1f′、1g′、1h′を挟んで隣接する一方の壁部1a′、1c′、1d′に、衝撃吸収部材1Eの外表面から突出した膨隆3′を設け、かつ、各膨隆部3′を、当該壁部1a′、1c′、1d′の中央部に対して、軸線Oを中心とした周方向においてフランジ部2が突出する方向X′に位置する角部1f′、1h′、1g′側に偏倚させて配置する。
 この場合、衝撃吸収部材1Eの一端側から軸線方向に衝撃荷重を加えることによって、角部1e′の稜線が軸線Oを中心とした周方向において同じ方向Y′、すなわち各フランジ部2′に対する開き角が小さくなる側の壁部1a′が位置する方向Xに倒れ込みながら座屈し始める。また、それ以外の角部1f′、1g′、1h′の稜線が軸線Oを中心とした周方向において同じ方向Y′、すなわち膨隆3′を設けた側とは反対側(X′方向)に倒れ込みながら座屈し始める。これにより、上記凹凸独立モードを意図的に誘発させることができる。
 以上のように、本発明のフランジ部およびビード部は、上記凹凸独立モードを意図的に誘発させる座屈誘発部として、衝撃吸収部材が軸線方向に座屈変形するときに、各角部の稜線が軸線Oを中心とした周方向において同じ方向に倒れ込みながら座屈し始めるように、その方向を決定する機能を有する。また、本発明のビード部は、上記従来のビード部のように座屈変形の端緒を与える機能とは異なり、直接的に座屈変形の端緒とはならず、むしろ角部の稜線が倒れ込んだ後(座屈後)に、凹凸独立モードへと速やかに移行させる機能を有する。
 したがって、本発明を適用した衝撃吸収部材では、上記凹凸独立モードを意図的に誘発させることによって、軸線方向に効率良く座屈変形を生じさせることができ、その結果、外部から加わる衝撃エネルギーの吸収量を高めて、優れた衝撃吸収性能を発揮することが+可能となる。
 そして、自動車等の車体において、このような衝撃吸収部材を採用した場合には、車体の軽量化と高剛性化を両立させながら、燃費および運動性能の向上を図りつつ、衝突安全性に優れた車体構造とすることが可能である。
 本実施形態では、図5A~図5Cおよび図6A、6Bに示す衝撃吸収部材1A~1Eを例示したが、本発明を適用した衝撃吸収部材については、このような形態に限らず、種々の形態をとることが可能である。すなわち、本発明は、多角形状の断面を有して、外部から加わる衝撃エネルギーを軸線方向に座屈変形(軸圧潰)しながら吸収する中空柱状の衝撃吸収部材に対して幅広く適用することが可能である。
 具体的に、衝撃吸収部材としては、例えば、鋼板をプレス成形したものを溶接等で接合することによってフランジ部が形成された中空柱状の薄肉構造体(中空柱状部材)からなるものを挙げることができる。ビード部は、この中空柱状部材を接合する前後にプレス加工等により設けることができる。
 なお、衝撃吸収部材の材質については、上述した鋼板からなるものに限らず、例えば、鉄、アルミニウム、銅、またはそれらの合金などの金属材料や、FRPなどの樹脂材料等、外部から加わる衝撃エネルギーを軸線方向に座屈変形(軸圧潰)しながら吸収可能なものであればよい。また、溶接等により接合したものに限らず、押出成形等により中空柱状に成形されたものであってもよい。この場合、ビード部は、成形後にプレス加工等により設けることができる。
 また、衝撃吸収部材は、軽量化と高剛性化を両立させるため、例えば四角形や六角形など四~八角形状の断面を有することが好ましい。この場合、例えば図7A~図7Cに示す六角形状の断面を有する衝撃吸収部材においても、フランジ部2の突出する方向が軸線Oを中心とした周方向において同じ方向を向くように当該フランジ部2を配置することで、上記凹凸独立モードを意図的に誘発させることが可能である。
 また、図8A、8Bに示すように、ディンプル3は、衝撃吸収部材の座屈の開始端側から軸線方向に並べて配置することができる。この場合、ディンプル3は、壁部の一辺の長さピッチで配置することが好ましい。さらに、最も開始端側に位置するディンプル3は、この開始端から壁部の一辺の長さの1/2以上離れた位置に配置することが好ましい。これにより、蛇腹状の座屈変形を安定して生じさせることができる。
 また、ビード部の形状については、上記本発明のビード部の機能を発揮するものであれば、既述した球面の一部を有した形状のディンプルや膨隆に限定されず、例えばV字状やU字状等の断面形状を有していてもよい。図8A、8Bに示すディンプル3は、衝撃吸収部材1の軸線方向と直交する方向(横断面方向)に延びるトラフ形の凹所より成る。この場合、上記本発明のビード部としての機能を更に高めることができる。トラフ形のディンプル3の衝撃吸収部材1の軸線Oに垂直な方向の長さL1は、好ましくは1/10W≦L1≦3/4W(W:壁部の幅であり衝撃吸収部材1の稜線間の距離)とする。トラフ形のディンプル3の衝撃吸収部材1の軸線Oの方向の長さL2は、好ましくは1/20L1≦L2≦L1とする。更に、ディンプル3と稜線との間の距離L3は、好ましくはT≦L3≦1/5T(T:板厚)とする。
 本発明によれば、衝撃吸収部材の少なくとも1つの壁部において一方の角部に偏倚させてビード部を配置することによって、上記凹凸独立モードを意図的に誘発させることが可能である。すなわち、本発明では、少なくとも1つの壁部に偏倚して設けられたビード部を起点にして、該ビード部が偏倚した側にある角部の稜線が倒れ込む方向が決まるため、その他の角部の稜線についても、その起点となった角部の稜線と同一方向に倒れ込みを誘発させることができる。
 然しながら、このような角部の同一方向への倒れ込みを安定化させるためには、2つの壁部にビード部を角部側に偏倚させて配置することがより好ましく、更に、全ての壁部にビード部を角部側に偏倚させて配置することが最も好ましい。すなわち、ビード部を付与した部分は、座屈変形後に衝撃吸収部材の断面内で蛇腹の谷部(凹部)となる。このため、全ての壁部にビード部を配置した場合には、その横断面においてビード部が付与されていない角部が座屈変形後に蛇腹の山部(凸部)となるといったことを未然に防ぐことが可能である。なお、複数の壁部にビード部を角部側に偏倚させて配置する場合は、多角形状の断面の対角を為す壁部から順に配置していくことが、ビード部の配置のバランスを考える上で好ましい。
 また、本発明において、ビード部を角部側に偏倚させて配置するとは、ビード部が壁部の中央部にかからない(中央部を変形させない)程度に角部側にずらして配置することを言う。さらに、ビード部は、周方向において同じ方向に位置する角部の近傍に配置することが好ましい。ここで、角部の近傍とは、角部の稜線にかからない(角部を変形させない)程度に角部に近づけた位置をいい、ビード部の中心を壁部の幅に対して1/4以下ほど角部側に近づけた位置を言う。本発明では、ビード部を角部の近傍に配置することで、上記角部の稜線の倒れ込みを安定して行わせることができる。
 一方、角部にビード部が形成されると、座屈は安定するものの、角部が支える荷重が低下するために、その結果として座屈変形によるエネルギー吸収量が低下することになる。但し、フランジ部がある角部は、この角部を挟んで隣接する壁部の接合部分であるため、変形抵抗が高く、荷重の低下が少ない。したがって、座屈安定性を求める場合には、フランジ部や、このフランジ部が設けられた角部にビード部を設けることも可能であり、また、フランジ部と壁部との間でビード部を細長く形成してもよい。
 また、本発明では、ビード部を偏倚させる方向を衝撃吸収部材に加わる捻れ方向の荷重の向きと一致させることで、この捻れ荷重に対しても有効に衝撃吸収性能を発揮させることができる。
 以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
 本実施例では、先ず、実施例1~4および比較例1の衝撃吸収部材に対して、その一端側から軸線方向に衝撃荷重を加えたときの変形状態をFEM数値解析(コンピュータシミュレーション)により求めた。なお、このFEM数値解析による解析条件は、板厚1.4mm、一辺が50mm、長さが300mmの四角形状の断面を有する直線状の中空柱状部材をモデルとした。このモデルの材料定数は、下記表1のとおりである。
Figure JPOXMLDOC01-appb-T000001
 そして、この中空柱状部材の一端(上端)側に1000kgの剛体壁を4.44m/sで落下させたときの変形状態を求めた。なお、このFEM数値解析で使用する構成方程式は、下記に示すSwift+Cowper-Symondsの式である。また、解析時間は50msとした。
Figure JPOXMLDOC01-appb-M000002
(比較例1)
 比較例1は、図9Aに示すように、いわゆるハット型の中空柱状部材であり、2つのフランジ部が周方向において異なる方向を向くように配置された場合である。なお、このハット型の中空柱状部材の寸法は、図9Aに示すとおりである。この場合、図10に示すように、座屈変形の初期段階から凹凸混合モードで座屈変形が進むことがわかる。
(実施例1)
 実施例1は、図9Bに示すように、上記中空柱状部材の対角を為す2つの角部にフランジ部(突出量20mm)が設けられ、これら2つのフランジ部が周方向において同じ方向を向くように配置された場合である。この場合、図11に示すように、座屈変形の初期段階から凹凸独立モードで座屈変形が進むことがわかる。
(実施例2)
 実施例2は、図9Cに示すように、上記実施例1の構成に、更にフランジ部が設けられた角部とは異なる2つの角部を挟んで隣接する壁部の一方に、衝撃吸収部材の外表面kら凹んだディンプルを設け、かつ、このディンプルを、当該壁部の中央部に対して、周方向においてフランジ部が突出する方向とは逆方向に位置する角部側に偏倚させて配置した場合である。この場合、図12に示すように、座屈変形の初期段階から凹凸独立モードで座屈変形が進むことがわかる。
(実施例3)
 実施例3は、図9Dに示すように、上記実施例2の構成に、更にフランジ部が設けられた2つの角部を挟んで隣接する壁部の一方に、衝撃吸収部材の外表面から凹んだディンプルが設け、かつ、このディンプルを、当該壁部の中央部に対して、周方向においてフランジ部が突出する方向とは逆方向に位置する角部側に偏倚させて配置した場合である。この場合、図13に示すように、座屈変形の初期段階から凹凸独立モードで座屈変形が進むことがわかる。
(実施例4)
 実施例4は、図9Eに示すように、実施例2の衝撃吸収部材において、更にフランジ部にディンプルを設けた例である。この場合、図14に示すように、座屈変形の初期段階から凹凸独立モードで座屈変形が進むことがわかる。
 次に、実施例1~4および比較例1の衝撃吸収部材に対して、その一端側から軸線方向に衝撃荷重を加えたときに、衝撃吸収部材からの反力(衝撃エネルギーに対する部材の抵抗力)と変形量(潰れ量)との関係を測定した結果を図15A~図15Dに示す。図15A~図15Dにおいて、図15Aのグラフは実施例1の場合、図15Bのグラフは実施例2の場合、図14Cのグラフは実施例3の場合、図14Dのグラフは実施例4の場合であり、各グラフは比較例1との比較で表している。なお、衝撃吸収部材からの反力と潰れ量との積が吸収したエネルギー量に相当するため、反力が高いほど優れた衝撃吸収性能を有することになる。
 また、実施例1~4および比較例1の衝撃吸収部材に対して、その一端側から軸線方向に衝撃荷重を加えたときに、変形量(潰れ量)と吸収したエネルギー量との関係を測定した結果を図16A~図16Dに示す。図16A~図16Dにおいて、図16Aのグラフは実施例1の場合、図16Bのグラフは実施例2の場合、図16Cのグラフは実施例3の場合、図15Dのグラフは実施例4の場合であり、各グラフは比較例1との比較で表している。
 図15A~図15Dおよび図16A~図16Dに示すように、実施例1~3の衝撃吸収部材では、凹凸独立モードを誘発させることによって、比較例1の凹凸混合モードよりも変形量(潰れ量)に対する衝撃エネルギーの吸収量の割合が高くなっており、優れた衝撃吸収性能を発揮していることがわかる。
 1A  衝撃吸収部材
 1B  衝撃吸収部材
 1C  衝撃吸収部材
 1D  衝撃吸収部材
 1E  衝撃吸収部材
 1a  壁部
 1b  壁部
 1c  壁部
 1d  壁部
 1a′  壁部
 1b′  壁部
 1c′  壁部
 1d′  壁部
 1e  角部
 1f  角部
 1g  角部
 1h  角部
 1e′  角部
 1f′  角部
 1g′  角部
 1h′  角部
 2a  フランジ部
 2b  フランジ部
 2c  フランジ部
 2d  フランジ部
 2a′  フランジ部
 2b′  フランジ部
 2c′  フランジ部
 2d′  フランジ部
 3  ディンプル
 3′  膨隆

Claims (6)

  1.  軸線と、該軸線に対して平行に延びる複数の矩形状壁部と、前記軸線に対して垂直な多角形断面とを有し、外部から加わる衝撃エネルギーを前記軸線方向に座屈変形しながら吸収する、前記軸線方向に延びる中空柱状の衝撃吸収部材において、
     前記複数の壁部のうち少なくとも二組の隣接する壁部によって形成される少なくとも2つの角部から突出する少なくとも2つのフランジ部を具備し、
     該少なくとも2つのフランジ部は、その前記角部から突出する方向が周方向において同じ方向を向くように配置されている衝撃吸収部材。
  2.  前記少なくとも1つの壁部にビード部が設けられており、該ビード部は、前記衝撃吸収部材の外表面から凹んだディンプルまたは外表面から突出した膨隆であって、前記ディンプルは、周方向において前記フランジ部が突出する方向とは逆方向に位置する角部側に偏倚させて配置され、前記膨隆は、周方向において前記フランジ部が突出する方向に位置する角部側に偏倚させて配置されている請求項1に記載の衝撃吸収部材。
  3.  前記ビード部は、前記フランジ部が突出する方向とは逆方向に位置する角部の近傍に配置されていることを特徴とする請求項2に記載の衝撃吸収部材。
  4.  前記ビード部は、前記軸線方向と直交する方向に延びるトラフ形に形成されたディンプルである請求項2または3に記載の衝撃吸収部材。
  5.  前記ビード部は、前記座屈の開始端側から軸線方向に並んで配置されている請求項2~4の何れか一項に記載の衝撃吸収部材。
  6.  多角形状の断面を有して、外部から加わる衝撃エネルギーを軸線方向に座屈変形しながら吸収する中空柱状の衝撃吸収部材であって、
     前記衝撃吸収部材の壁部および/または角部に、前記軸線方向に座屈変形するときに各角部の稜線が周方向において同じ方向に倒れ込みながら座屈し始めるように、その方向を決定するための座屈誘発部が設けられていることを特徴とする衝撃吸収部材。
PCT/JP2012/070092 2011-08-09 2012-08-07 衝撃吸収部材 WO2013021996A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137035037A KR101779568B1 (ko) 2011-08-09 2012-08-07 충격 흡수 부재
CN201280038484.8A CN103717938B (zh) 2011-08-09 2012-08-07 冲击吸收构件
KR1020167008726A KR20160043127A (ko) 2011-08-09 2012-08-07 충격 흡수 부재
JP2013528035A JP5549783B2 (ja) 2011-08-09 2012-08-07 衝撃吸収部材
US14/237,743 US9228629B2 (en) 2011-08-09 2012-08-07 Shock absorbing member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011174201 2011-08-09
JP2011-174201 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013021996A1 true WO2013021996A1 (ja) 2013-02-14

Family

ID=47668503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070092 WO2013021996A1 (ja) 2011-08-09 2012-08-07 衝撃吸収部材

Country Status (6)

Country Link
US (1) US9228629B2 (ja)
JP (1) JP5549783B2 (ja)
KR (2) KR20160043127A (ja)
CN (1) CN103717938B (ja)
TW (1) TWI518261B (ja)
WO (1) WO2013021996A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725303B1 (ko) * 2011-08-09 2017-04-10 신닛테츠스미킨 카부시키카이샤 충격 흡수 부재
AT515804B1 (de) 2014-12-11 2015-12-15 Siemens Ag Oesterreich Verformungselement
TWI658960B (zh) * 2017-10-31 2019-05-11 日商新日鐵住金股份有限公司 構造材
TWI630135B (zh) * 2017-11-21 2018-07-21 財團法人金屬工業研究發展中心 車架模組化鋼樑
CN110103259A (zh) * 2019-05-05 2019-08-09 南京理工大学 扭转吸能装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170082A (ja) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd エネルギ吸収装置
JP2005247166A (ja) * 2004-03-05 2005-09-15 Nissan Motor Co Ltd 衝撃エネルギ吸収部材及びその製造方法
JP2009113675A (ja) * 2007-11-07 2009-05-28 Toyota Motor Corp 車両用エネルギー吸収部材、車両前部構造、及び車両後部構造。
JP2011016411A (ja) * 2009-07-08 2011-01-27 Mazda Motor Corp 車両用フレーム構造及び車両用フレーム製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287871A (ja) 1985-06-17 1986-12-18 Toyota Motor Corp 自動車のサイドメンバ
JP3676491B2 (ja) 1996-04-12 2005-07-27 新日本製鐵株式会社 衝撃吸収部材
JPH09277954A (ja) 1996-04-15 1997-10-28 Nippon Steel Corp テーパー付き衝撃吸収部材
JPH10138950A (ja) 1996-11-12 1998-05-26 Nissan Motor Co Ltd 衝撃吸収部材およびその製造方法
DE10321766A1 (de) * 2003-05-15 2004-12-09 Benteler Automobiltechnik Gmbh Crashbox
JP4621883B2 (ja) 2003-06-10 2011-01-26 株式会社 ニッセイ 車両の衝撃吸収部材
JP2005153567A (ja) 2003-11-20 2005-06-16 Toyota Motor Corp 衝撃吸収部材
JP4365232B2 (ja) 2004-02-13 2009-11-18 トヨタ自動車株式会社 車両の衝撃吸収部材
JP4371059B2 (ja) 2005-01-28 2009-11-25 住友金属工業株式会社 衝撃吸収部材
JP4604740B2 (ja) 2005-01-28 2011-01-05 住友金属工業株式会社 衝撃吸収部材
JP4818655B2 (ja) 2005-07-28 2011-11-16 アイシン精機株式会社 衝撃吸収部材
JP4350731B2 (ja) 2006-07-11 2009-10-21 豊田鉄工株式会社 車両用衝撃吸収部材
JP5348910B2 (ja) 2007-03-01 2013-11-20 新日鐵住金株式会社 衝撃吸収部材及びその配置構造
JP5330674B2 (ja) 2007-11-05 2013-10-30 豊田鉄工株式会社 クラッシュボックス
JP5078597B2 (ja) 2007-12-25 2012-11-21 住友軽金属工業株式会社 衝撃吸収構造
JP5167823B2 (ja) 2008-01-15 2013-03-21 トヨタ自動車株式会社 衝撃吸収部材
JP5114676B2 (ja) 2008-05-27 2013-01-09 新日鐵住金株式会社 鋼製中空柱状部材
JP5141379B2 (ja) 2008-05-28 2013-02-13 新日鐵住金株式会社 鋼製中空柱状部材
US8539737B2 (en) * 2008-09-19 2013-09-24 Ford Global Technologies, Llc Twelve-cornered strengthening member
US9533710B2 (en) * 2008-09-19 2017-01-03 Ford Global Technologies, Llc Twelve-cornered strengthening member
JP5353209B2 (ja) * 2008-11-28 2013-11-27 トヨタ自動車株式会社 衝撃吸収部材
US8317258B2 (en) 2009-07-08 2012-11-27 Mazda Motor Corporation Frame structure for vehicle
JP2011056997A (ja) * 2009-09-07 2011-03-24 Nippon Steel Corp 金属製中空柱状部材
CN102483119B (zh) * 2009-09-14 2013-11-20 丰田自动车株式会社 冲击吸收结构
US8827352B2 (en) * 2012-02-29 2014-09-09 GM Global Technology Operations LLC Bumper retention system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170082A (ja) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd エネルギ吸収装置
JP2005247166A (ja) * 2004-03-05 2005-09-15 Nissan Motor Co Ltd 衝撃エネルギ吸収部材及びその製造方法
JP2009113675A (ja) * 2007-11-07 2009-05-28 Toyota Motor Corp 車両用エネルギー吸収部材、車両前部構造、及び車両後部構造。
JP2011016411A (ja) * 2009-07-08 2011-01-27 Mazda Motor Corp 車両用フレーム構造及び車両用フレーム製造方法

Also Published As

Publication number Publication date
TWI518261B (zh) 2016-01-21
KR20160043127A (ko) 2016-04-20
KR101779568B1 (ko) 2017-09-18
KR20140013103A (ko) 2014-02-04
US20140174867A1 (en) 2014-06-26
CN103717938A (zh) 2014-04-09
CN103717938B (zh) 2017-05-17
US9228629B2 (en) 2016-01-05
JPWO2013021996A1 (ja) 2015-03-05
JP5549783B2 (ja) 2014-07-16
TW201319425A (zh) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5949925B2 (ja) クラッシュボックス及び自動車車体
US9090288B2 (en) Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
JP5549783B2 (ja) 衝撃吸収部材
JP5549964B2 (ja) 耐衝突性能に優れた車両用骨格部材構造
WO2020085381A1 (ja) 自動車骨格部材および電気自動車
WO2012081269A1 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP5488769B2 (ja) 衝撃吸収部材
JP5179390B2 (ja) エネルギー吸収部材
JP4604740B2 (ja) 衝撃吸収部材
WO2014126183A1 (ja) エネルギー吸収部材
KR20210115035A (ko) 차량용 구조 부재
JPH09277953A (ja) 衝撃吸収部材
WO2012098787A1 (ja) 凹凸部を有する板材並びにこれを用いた車両パネル及び積層構造体
JP5034793B2 (ja) 衝撃吸収方法
JP5861288B2 (ja) 車両の前部車体構造
JP4096615B2 (ja) 車体骨格部材構造
JP2004255983A (ja) 自動車のパネル部材およびパネル部材の成形方法
WO2020054859A1 (ja) パネル部材
JP2021172117A (ja) 自動車骨格部材および電気自動車
EP3604086B1 (en) Shock-absorbing member and side member of automobile
JP2001132788A (ja) アルミニウム合金押出形材からなる軸圧壊特性に優れたエネルギー吸収部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528035

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137035037

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14237743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822909

Country of ref document: EP

Kind code of ref document: A1