WO2013021554A1 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
WO2013021554A1
WO2013021554A1 PCT/JP2012/004638 JP2012004638W WO2013021554A1 WO 2013021554 A1 WO2013021554 A1 WO 2013021554A1 JP 2012004638 W JP2012004638 W JP 2012004638W WO 2013021554 A1 WO2013021554 A1 WO 2013021554A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solid
state imaging
imaging device
incident
Prior art date
Application number
PCT/JP2012/004638
Other languages
English (en)
French (fr)
Inventor
繁 齋藤
小野澤 和利
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013527854A priority Critical patent/JP5983954B2/ja
Publication of WO2013021554A1 publication Critical patent/WO2013021554A1/ja
Priority to US14/171,953 priority patent/US9160951B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/702SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/188Plurality of such optical elements formed in or on a supporting substrate
    • G02B5/1885Arranged as a periodic array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0076Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a detector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors

Definitions

  • the present invention relates to a solid-state imaging device used for a digital camera or the like.
  • the lens used for the camera part has a short focal point, and the light incident on the solid-state imaging device has a wide angle (a large angle measured from the vertical axis of the incident surface of the solid-state imaging device). means.
  • a semiconductor integrated circuit having a plurality of light receiving portions is two-dimensionally arranged to convert an optical signal from a subject into an electrical signal. It has been converted. Since the sensitivity of a solid-state imaging device is defined by the magnitude of the output current of the light receiving element with respect to the amount of incident light, it is an important factor for improving sensitivity to reliably introduce incident light into the light receiving element. .
  • FIG. 10 is a diagram illustrating an example of a basic structure of a pixel included in a conventional solid-state imaging device.
  • the solid-state imaging device 500 includes a microlens 501, a color filter 502, a wiring layer 503, a light receiving element 506, and a Si substrate 507.
  • incident light 502 ⁇ / b> A (broken line) perpendicularly incident on the microlens 501 is color-separated by any one of the red (R), green (G), and blue (B) color filters 502.
  • the light is incident on the light receiving element 506 without being affected by light shielding by the wiring layer 503, and is converted into an electric signal.
  • FIG. 11 is a diagram illustrating an example of a peripheral pixel structure included in a conventional solid-state imaging device.
  • the peripheral pixels of the solid-state imaging device 510 since the incident angle of the incident light 502B (solid line) is increased, the light collection efficiency is improved by shifting the wiring layer 503 inward (shrink).
  • Patent Document 1 discloses a refractive index distribution type condensing element having an effective refractive index distribution with a fine structure that is approximately the same as or smaller than the wavelength of incident light.
  • a formed solid-state imaging device has been proposed.
  • the solid-state imaging device described in Patent Document 1 includes a refractive index distribution type condensing element having different refractive indexes at the center, middle, and periphery of the imaging region, so that the vertical direction of the incident surface is set on the peripheral pixels. Even if it is incident obliquely at a large angle with respect to the axis, incident light can be condensed on the light receiving element, and sensitivity equivalent to the sensitivity of the central portion of the solid-state imaging device can be obtained.
  • the above-described distributed refractive index type condensing element is formed by a plurality of zone regions having a concentric structure having a width equal to or smaller than the wavelength of incident light. Since a desired refractive index distribution is formed by a combination of minimum basic structures having different volume ratios of a refractive index material and a low refractive index material, the reproducibility accuracy of the refractive index distribution is determined by the combination of the minimum basic structures.
  • Patent Document 1 since there are only six patterns of the minimum basic structure, the reproducibility of the refractive index distribution is poor, the degree of design is low, and the light collection efficiency is reduced. Challenges arise. In order to suppress this, the prior art describes a structure that increases the number of steps of the minimum basic structure in the light collecting element. However, the number of masks and the number of manufacturing processes increase, resulting in an increase in cost. The problem of end up arises.
  • An object of the present invention is to provide a solid-state imaging device including a condensing element that can improve the condensing efficiency.
  • a solid-state imaging device is a solid-state imaging device in which unit pixels including a condensing element that condenses incident light are arranged, and the condensing element includes: It is composed of a plurality of zone regions having a concentric ring shape divided for each line width shorter than the wavelength of the incident light, and has an effective refractive index distribution controlled by a combination of the plurality of zone regions. In at least one of the plurality of zone regions, the light transmission film constituting the zone region is divided at intervals shorter than the wavelength of the incident light in the circumferential direction of the concentric structure. It is characterized by that.
  • an annular zone region is formed without going through the complicated process of dividing the light-transmitting film into a plurality of lamination processes and forming a pattern for each lamination process while aligning the mask between each process.
  • a highly accurate effective refractive index distribution is realizable.
  • the reproducibility of the desired refractive index distribution of the light collecting element can be improved without increasing the number of masks and the number of manufacturing steps.
  • the light collection efficiency is improved, and the sensitivity of the solid-state imaging device can be improved.
  • the light transmissive film constituting the zone region is composed of a plurality of arc-shaped light transmissive films divided at intervals shorter than the wavelength of the incident light.
  • the light transmission film constituting the zone region has an effective refractive index distribution having symmetry with respect to the center point of the arc.
  • the plurality of arc-shaped light transmission films may be continuous with an annular light transmission film disposed on the inner periphery or the outer periphery of the arc-shaped light transmission film.
  • the region adjacent to the arc-shaped light transmissive film is a region where the light transmissive film is not formed, an abrupt change in the effective refractive index occurs.
  • the arc-shaped light transmissive film is continuous with the adjacent annular light transmissive film disposed on the inner peripheral portion or the outer peripheral portion thereof, there is a rapid change in the effective refractive index. Since it does not occur, the quantization error of the effective refractive index distribution can be suppressed.
  • each of the plurality of arc-shaped light transmission films may be arranged on the same circumference with the center of the unit pixel as a concentric point.
  • the light transmission film constituting the zone region can have an effective refractive index distribution having symmetry with respect to the center of the unit pixel.
  • an imaging apparatus includes any one of the above-described solid-state imaging apparatus and an imaging lens for causing light to be incident on the light receiving surface.
  • the imaging lens is an interchangeable lens having a first imaging lens that makes incident light incident on the light receiving surface at a wide angle and a second imaging lens that makes incident light enter the light receiving surface telecentrically.
  • the solid-state imaging device can improve the reproducibility of the refractive index distribution of the light collecting element without increasing the number of masks and the number of manufacturing steps. Thereby, condensing efficiency improves and the sensitivity of a solid-state imaging device can be improved.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging apparatus (camera) according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a detailed configuration of the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a state where light from the imaging lens is incident on the solid-state imaging device at a wide angle.
  • FIG. 4 is a diagram illustrating a state in which light is incident on the solid-state imaging device from the imaging lens in a telecentric manner (the optical axis and the principal ray are substantially parallel).
  • FIG. 5A is a cross-sectional view illustrating an example of a basic structure of a unit pixel included in the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging apparatus (camera) according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a detailed configuration of the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 5B is an example of a top view of a condensing element formed in a unit pixel included in the solid-state imaging device of the present invention.
  • FIG. 6 is a diagram showing the minimum basic structure of the light collecting element according to the embodiment of the present invention.
  • FIG. 7A is a graph showing the quantization error of the effective refractive index distribution that occurs when the conventional minimum basic structure is used.
  • FIG. 7B is a graph showing the quantization error of the effective refractive index distribution that occurs when the minimum basic structure according to this embodiment is used.
  • FIG. 8A is a diagram illustrating a calculation result of a light condensing characteristic of a solid-state imaging device equipped with a conventional light condensing element.
  • FIG. 8A is a diagram illustrating a calculation result of a light condensing characteristic of a solid-state imaging device equipped with a conventional light condensing element.
  • FIG. 8B is a diagram showing a calculation result of the light condensing characteristic of the solid-state imaging device equipped with the light condensing element according to the embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a calculation result of the light condensing characteristic of the solid-state imaging device equipped with a condensing element having an ideal effective refractive index distribution with no quantization error.
  • FIG. 10 is a diagram illustrating an example of a basic structure of a pixel included in a conventional solid-state imaging device.
  • FIG. 11 is a diagram illustrating an example of the structure of peripheral pixels included in a conventional solid-state imaging device.
  • FIG. 1 is a diagram showing a schematic configuration of an imaging apparatus (camera) according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a detailed configuration of the solid-state imaging device according to the embodiment of the present invention.
  • the imaging apparatus illustrated in FIG. 1 includes a solid-state imaging apparatus 100, a lens 110, a DSP (digital signal processing circuit) 120, an image display device 130, and an image memory 140.
  • DSP digital signal processing circuit
  • the lens 110 is an interchangeable lens.
  • the present invention is not limited to a camera using an interchangeable lens such as a single-lens digital camera.
  • an imaging device not an interchangeable lens
  • a lens capable of zooming at a high magnification of 10 times or more It can also be used for cameras.
  • FIG. 3 is a diagram illustrating a state where light from the imaging lens is incident on the solid-state imaging device at a wide angle.
  • the imaging lens 110 ⁇ / b> A is selected as the lens 110 when light is incident at a wide angle.
  • FIG. 4 is a diagram illustrating a state in which light is incident on the solid-state imaging device from the imaging lens in a telecentric manner (the optical axis and the principal ray are substantially parallel).
  • the imaging lens 110 ⁇ / b> B is selected as the lens 110 when light is incident in a telecentric manner.
  • the imaging apparatus In the imaging apparatus according to the embodiment of the present invention, light is incident from the outside through the lens 110, and the incident light is converted into a digital signal by the solid-state imaging apparatus 100 and output.
  • the output digital signal is processed by the DSP 120 and output and recorded as a video signal in the image memory 140, and is output to the image display device 130 for image display.
  • the DSP 120 performs processing such as noise removal on the output signal of the solid-state imaging device 100 to generate a video signal, and camera system control that controls pixel scanning timing and gain in the solid-state imaging device 100. Part 122. For example, the DSP 120 performs correction related to a characteristic difference between pixels shared in a unit cell of the solid-state imaging device 100.
  • the solid-state imaging device 100 is formed of one chip, and the chip on which the solid-state imaging device 100 is formed and the chip on which the DSP 120 is formed are different chips. Therefore, since the manufacturing process of an imaging part and a process part can be isolate
  • the solid-state imaging device 100 is a CMOS (Complementary Metal Oxide Semiconductor) type solid-state imaging device, and as shown in FIGS. 1 and 2, a pixel unit (pixel array) 10 and a vertical scanning circuit (row scanning circuit) 14.
  • AD analog / digital converter
  • the pixel unit 10 is configured by arranging a plurality of unit cells 10A in a two-dimensional (matrix) manner in a well of a semiconductor substrate.
  • Each unit cell 10A includes a plurality of unit pixels (photoelectric conversion elements).
  • Each unit cell 10A is connected to a signal line controlled by the vertical scanning circuit 14 and a vertical signal line 19 that transmits a voltage signal from the unit cell 10A to the AD conversion circuit 25.
  • the vertical scanning circuit 14 scans the unit cells 10A in units of rows in the vertical direction, and selects a row of the unit cells 10A that outputs a voltage signal to the vertical signal line 19.
  • the communication / timing control unit 30 receives the master clock CLK0 and data DATA input via the external terminals, generates various internal clocks, and controls the reference signal generation unit 27, the vertical scanning circuit 14, and the like.
  • the reference signal generation unit 27 includes a DAC (digital / analog converter) 27 a that supplies a reference voltage RAMP for AD conversion to a column AD (column analog / digital converter) circuit 26 of the AD conversion circuit 25.
  • DAC digital / analog converter
  • the column amplifier 42, the signal holding switch 263, and the signal holding capacitor 262 are provided corresponding to the columns of the unit cells 10A.
  • the column amplifier 42 amplifies the voltage signal output from the unit cell 10A, and the signal holding capacitor 262 holds the amplified voltage signal transmitted via the signal holding switch 263.
  • By providing the column amplifier 42 it becomes possible to amplify the voltage signal of the unit cell 10A, and it becomes possible to improve the S / N and switch the gain.
  • the AD conversion circuit 25 includes a plurality of column AD circuits 26 provided corresponding to the columns of the unit cells 10A.
  • the column AD circuit 26 converts the analog voltage signal of the signal holding capacitor 262 output from the unit cell 10A into a digital signal using the reference voltage RAMP generated by the DAC 27a.
  • the column AD circuit 26 includes a voltage comparison unit 252, a switch 258, and a data storage unit 256.
  • the voltage comparison unit 252 compares an analog voltage signal obtained from the unit cell 10A via the vertical signal lines 19 (H0, H1,...) And the signal holding capacitor 262 with the reference voltage RAMP.
  • the data storage unit 256 is configured as a memory that holds a time until the voltage comparison unit 252 completes the comparison process and a result counted using the counter unit 254.
  • the stepped reference voltage RAMP generated by the DAC 27a is input to one input terminal of the voltage comparison unit 252 in common with the input terminal of the other voltage comparison unit 252, and the other input terminal corresponds to the corresponding one.
  • a signal holding capacitor 262 in the column is connected, and a voltage signal is input from the pixel unit 10.
  • the output signal of the voltage comparison unit 252 is supplied to the counter unit 254.
  • the column AD circuit 26 starts counting (counting) with the clock signal at the same time when the reference voltage RAMP is supplied to the voltage comparison unit 252, and the analog voltage signal input through the signal holding capacitor 262 is used as the reference voltage RAMP. And AD conversion is performed by counting until a pulse signal is obtained.
  • the column AD circuit 26 performs the AD conversion and the signal level (noise level) immediately after the pixel reset with respect to the voltage mode pixel signal (voltage signal) input via the signal holding capacitor 262 (true) A process of taking a difference from the signal level Vsig (according to the amount of received light) is performed. Thereby, noise signal components called fixed pattern noise (FPN: Fixed Pattern Noise) and reset noise can be removed from the voltage signal.
  • FPN Fixed Pattern Noise
  • the column AD circuit 26 is configured to take out only the true signal level Vsig by down-counting the noise level and up-counting the signal level.
  • the signal digitized by the column AD circuit 26 is a horizontal signal.
  • the signal is input to the output I / F 28 via the line 18.
  • the solid-state imaging device 100 shown in FIGS. 1 and 2 includes the column AD circuit 26, but the AD circuit may be configured outside the solid-state imaging device.
  • voltage signals are sequentially output from the pixel unit 10 for each row of the unit cells 10A. Then, an image for one pixel, that is, a frame image for the pixel unit 10 is shown as a set of voltage signals of the entire pixel unit 10.
  • FIG. 5A is a cross-sectional view showing an example of a basic structure of a unit pixel included in the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 5B is an example of a top view of a light collecting element formed in a unit pixel included in the solid-state imaging device of the present invention.
  • the unit pixel 11 included in the solid-state imaging device includes a light collecting element 1, a color filter 2, a wiring layer 3, and a light receiving element of a distributed refractive index lens. (Si photodiode) 6 and a Si substrate 7 are provided.
  • the film thickness of the light collecting element 1 is, for example, 1.2 ⁇ m.
  • a concentric ring-shaped region obtained by dividing the condensing element 1 into a donut shape with a width of the inner peripheral radius difference is defined as a zone region.
  • the condensing element 1 is formed by a combination of a plurality of zone regions, and the line width of each zone region is shorter than the wavelength of incident light.
  • the condensing element 1 has a two-stage structure of a lower light transmission film 33A and an upper light transmission film 33B.
  • SiO 2 having a thickness of a lower light-transmitting film 33A is, for example, 0.8 [mu] m
  • the SiO 2 film thickness is upper light-transmitting film 33B, for example, is 0.4 .mu.m.
  • a desired effective refractive index distribution can be realized by arbitrarily combining these effective refractive indexes in units of zone regions.
  • the solid-state imaging device according to the present invention has a feature that the effective refractive index distribution can be freely controlled only by changing the volume ratio between the light transmission film and the air in the zone region.
  • the light transmission film constituting the zone region is also incident in the circumferential direction of the concentric structure. It is divided at intervals shorter than the wavelength of light. According to the configuration of the condensing element 1, it is possible to realize an effective refractive index distribution with higher accuracy as compared with the conventional condensing element having an annular zone region.
  • the expression that the light transmission film constituting the zone region described above is divided at intervals shorter than the wavelength of the incident light in the circumferential direction of the concentric structure is expressed by the lower light transmission film 33A and the upper light.
  • a mode in which regions where both of the transmission films 33B are formed at the predetermined interval and regions where both the lower light transmission film 33A and the upper light transmission film 33B are not formed are alternately arranged in the circumferential direction of the concentric structure.
  • the regions where both the lower light transmitting film 33A and the upper light transmitting film 33B are formed at the predetermined interval and the regions where only the lower light transmitting film 33A is formed are alternately arranged in the circumferential direction of the concentric structure.
  • the light transmission film constituting the zone region is preferably composed of a plurality of arc-shaped light transmission films divided at intervals shorter than the wavelength of incident light.
  • the light transmissive film constituting the zone region has an effective refractive index distribution having symmetry with respect to the center point of the arc.
  • the above-mentioned arc-shaped light transmission film is light in which both the lower light transmission film 33A and the upper light transmission film 33B are divided at intervals shorter than the wavelength of incident light in the circumferential direction of the concentric structure. It is a unit of the transmission film, or only the lower light transmission film 33A is a unit of the light transmission film divided in the circumferential direction of the concentric structure at intervals shorter than the wavelength of the incident light.
  • the plurality of arc-shaped light transmissive films are composed of a lower light transmissive film 33A and an upper light transmissive film 33B, and are divided at a portion formed only by the lower light transmissive film 33A.
  • some of the plurality of arc-shaped light transmission films may be continuous with an annular light transmission film disposed on the inner periphery or the outer periphery thereof.
  • each of the plurality of arc-shaped light transmission films may be arranged on the same circumference with the center of the unit pixel 11 as a concentric point.
  • the light transmissive film constituting the zone region can have an effective refractive index distribution having symmetry with respect to the center of the unit pixel 11.
  • the condensing element 1 is formed by a combination of a plurality of zone regions having a concentric structure having a line width approximately equal to or smaller than the wavelength of the incident light. It functions as a microlens having a rate distribution. Furthermore, in at least one zone region among the plurality of zone regions, the concentric light transmitting film is divided in the circumferential direction at intervals shorter than the wavelength of light.
  • FIG. 6 is a diagram showing the minimum basic structure of the light collecting element according to the embodiment of the present invention.
  • 6A to 6L show the minimum basic structure for realizing the effective refractive index distribution of the condensing element included in the solid-state imaging device of the present invention.
  • the concentric structure of the light collecting element 1 shown in FIG. 5B is realized by appropriately combining the minimum basic structures shown in (a) to (l) of FIG.
  • the effective refractive index n eff can be expressed by the following equation.
  • n SiO2 and n Air are the refractive indexes of SiO 2 and air, respectively, and f represents the volume ratio of SiO 2 in the minimum basic structure.
  • the volume ratio f of SiO 2 is a value when the denominator the volume of the smallest basic structure, the volume of the SiO 2 was molecule, it means the fill factor. That is, the structure having a larger f has a higher effective refractive index, and the structure having a smaller f has a lower effective refractive index.
  • the condensing element 1 has a conventional minimum basic structure in order to reduce a quantization error that is a difference between a desired refractive index distribution and an effective refractive index distribution by the actually formed condensing element. It is formed by introducing a minimum basic structure in which variations in filling rate and shape are increased as compared with the above.
  • the minimum basic structure of 10 gradations shown in FIGS. 6A to 6L is used.
  • This is a gradation increase of 1.5 times or more with respect to 6 gradations, which is the conventional minimum basic structure described in Patent Document 1.
  • the conventional structure is a structure based on an annular structure constituting a concentric structure, whereas in the light collecting element 1 according to the present embodiment, the annular structure has a wavelength of incident light in the circumferential direction. This is because the gradation can be given also in the circumferential direction by dividing with a shorter width.
  • This increase in gradation is due to the idea of constructing a minimum basic structure in a three-dimensional cube as compared to the conventional construction of a minimum basic structure on a two-dimensional plane. This is essentially an effective means for improving the reproducibility of the refractive index distribution.
  • the greater the difference in the refractive index of the material that forms the condensing element the greater the effect of reducing the quantization error caused by the increase in gradation, so it is possible to reduce the cell size and widen the incident angle range. Is possible.
  • FIG. 7A is a graph showing the quantization error of the effective refractive index distribution that occurs when the conventional minimum basic structure is used.
  • FIG. 7B is a graph showing the quantization error of the effective refractive index distribution that occurs when the minimum basic structure according to this embodiment is used.
  • Both FIG. 7A and FIG. 7B show a desired desired refractive index distribution (target value) and an effective refractive index distribution that can be realized by using each minimum basic structure.
  • the parabola (target refractive index distribution) represented by the effective refractive index described in FIGS. 7A and 7B indicates the effective refractive index distribution for condensing incident light at the focal length Df, and is expressed by the following equation. Is done.
  • ⁇ n (x) ⁇ n max [(Ax 2 + Bxsin ⁇ ) / 2 ⁇ + C] (Formula 2-1)
  • A, B, and C are constants, and ⁇ n max is a refractive index difference (0.45) between SiO 2 and air in the light transmission film material.
  • each parameter when the refractive index of the incident side medium is n 0 and the refractive index of the output side medium is n 1 is as follows.
  • the condensing component is represented by a quadratic function of the distance x from the center of the pixel to the peripheral direction, and the deflection component is represented by the product of the distance x and a trigonometric function.
  • the quantization error is caused between the case where the conventional minimum basic structure is used and the case where the minimum basic structure of the present embodiment is used. There are major differences. When the conventional minimum basic structure is used, it is conceivable that the quantization error is large and the desired light collection performance cannot be realized, resulting in a reduction in light collection efficiency.
  • FIG. 8A is a diagram showing a calculation result of the light collection characteristics of a solid-state imaging device equipped with a conventional light collection element.
  • FIG. 8B is a figure which shows the calculation result of the condensing characteristic of the solid-state imaging device which mounts the condensing element based on embodiment of this invention.
  • FIG. 9 is a diagram illustrating a calculation result of the light collection characteristic of the solid-state imaging device equipped with a light collection element having an ideal effective refractive index distribution with no quantization error.
  • the condensing distribution by the condensing element 1 of the present invention is more efficiently collected in the light receiving element than the condensing distribution by the conventional condensing element. You can see the light.
  • a condensing loss is caused by blocking a part of incident light by a wiring layer which is a light shielding film in the solid-state imaging device.
  • the condensing element 1 of this invention it can condense efficiently to a light receiving element, without being interrupted by a wiring layer. This is a difference in reproducibility of the refractive index distribution occurring between the prior art and the present invention, and shows that the light collection performance can be improved by reducing the quantization error.
  • the light collection efficiency the light collection intensity obtained from the calculation result divided by the incident intensity
  • the light collection efficiency is compared with that of the present invention. did.
  • the light collection efficiency is 83%
  • the light collection efficiency is 88%, which is about 1.1 times that of the conventional one. Improvement effect was obtained.
  • the condensing element 1 of the present invention can realize the condensing performance equivalent to 90% of the condensing efficiency of the condensing element having the continuous refractive index distribution without quantization error shown in FIG. This shows that the effect of reducing the quantization error is sufficiently obtained.
  • the solid-state imaging device includes a condensing element that condenses incident light, and the condensing element is divided for each line width shorter than the wavelength of incident light. It is composed of a plurality of zone regions having a concentric ring shape, and has an effective refractive index distribution controlled by a combination of the plurality of zone regions. Further, in at least one zone region among the plurality of zone regions, the light transmission film constituting the zone region is divided at intervals shorter than the wavelength of the incident light in the circumferential direction of the concentric structure. Specifically, the light transmission film constituting the zone region is composed of a plurality of arc-shaped light transmission films divided at intervals shorter than the wavelength of incident light.
  • the light transmission film is divided into a plurality of stacking processes, and a pattern is formed for each stacking process while masking is performed between the processes.
  • a highly accurate effective refractive index distribution can be realized by combining the minimum basic structure having variations in filling factor and three-dimensional shape without going through the steps. Therefore, the reproducibility of the desired refractive index distribution of the light collecting element can be improved without increasing the number of masks and the number of manufacturing steps. Thereby, condensing efficiency improves and the sensitivity of a solid-state imaging device can be improved.
  • the solid-state imaging device and the imaging device of the present invention have been described based on the embodiments, the solid-state imaging device and the imaging device according to the present invention are not limited to the above-described embodiments. Another embodiment realized by combining arbitrary constituent elements in the above-described embodiment, and modifications obtained by applying various modifications conceivable by those skilled in the art to the above-described embodiment without departing from the gist of the present invention. Examples and various devices incorporating the solid-state imaging device or the imaging device according to the present invention are also included in the present invention.
  • the CMOS type solid-state imaging device is taken as an example.
  • the present invention is not limited to this, and the same effect can be obtained with a CCD type solid-state imaging device.
  • the solid-state imaging device of the present invention can improve the performance and reduce the price of image sensor-related products such as digital video cameras, digital still cameras, camera-equipped mobile phones, surveillance cameras, in-vehicle cameras, and broadcast cameras. And is industrially useful.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 固体撮像装置(100)が有する単位画素(11)は、入射光を集光する集光素子(1)を備え、集光素子(1)は、入射光の波長より短い線幅ごとに分割された、同心構造の円環形状を有する複数のゾーン領域で構成され、当該複数のゾーン領域の組み合わせにより制御された実効屈折率分布を有しており、当該複数のゾーン領域のうち少なくとも一つのゾーン領域では、当該ゾーン領域を構成する光透過膜が、同心構造の円周方向に、入射光の波長より短い間隔ごとに分割されている。

Description

固体撮像装置
 本発明は、デジタルカメラ等に使用される固体撮像装置に関するものである。
 デジタルカメラやカメラ付携帯電話の普及に伴い、固体撮像装置の市場は著しく拡大してきた。そして、近年はデジタルカメラの薄型化に対する要望が強くなってきている。これは言い換えれば、カメラ部分に用いるレンズが短焦点になるということであり、固体撮像装置に入射する光は広角(固体撮像装置の入射面の垂直軸から測定して大きな角度)になることを意味する。
 CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像装置では、複数の受光部分を有する半導体集積回路を2次元的に配列して、被写体からの光信号を電気信号に変換している。固体撮像装置の感度は、入射光量に対する受光素子の出力電流の大きさによって定義されていることから、入射した光を確実に受光素子に導入することが感度向上のため重要な要素となっている。
 そのためには、CCDやCMOSイメージセンサの最上部に形成されているマイクロレンズの集光効率を向上させる必要がある。現状のマイクロレンズは、樹脂製の球面レンズであり、CCD及びCMOSイメージセンサを始めとするほとんどの固体撮像装置に用いられている。
 図10は、従来の固体撮像装置が有する画素の基本構造の一例を示す図である。固体撮像装置500は、マイクロレンズ501と、カラーフィルタ502と、配線層503と、受光素子506と、Si基板507とで構成される。図10に示すように、マイクロレンズ501に垂直に入射した入射光502A(破線)は、赤色(R)、緑色(G)及び青色(B)のいずれかのカラーフィルタ502によって色分離された後、配線層503による遮光の影響を受けずに、受光素子506に入射し、電気信号へと変換される。
 図11は、従来の固体撮像装置が有する周辺画素の構造の一例を示す図である。固体撮像装置510の周辺画素では、入射光502B(実線)の入射角度が大きくなるため、配線層503を内側にずらす(シュリンクさせる)ことによって、集光効率の向上を図っている。
 しかしながら、微細な画素や小型カメラのような短焦点光学系では、周辺画素における入射光の入射角度は非常に大きくなり、これ以上の回路シュリンクができないといった問題が発生している。
 上記の周辺画素への広角入射の課題に対して、特許文献1には、入射光の波長と同程度かそれよりも小さな微細構造によって実効屈折率分布を有する屈折率分布型の集光素子を形成した固体撮像装置が提案されている。特許文献1に記載された固体撮像装置は、撮像領域の中心部、中間部、及び周辺部で屈折率が異なる屈折率分布型の集光素子を搭載することにより、周辺画素に入射面の垂直軸に対して大きな角度で斜め入射しても、受光素子に入射光を集光でき、固体撮像装置の中心部の感度と同等の感度を得ることができる。
特開2006-351972号公報
 しかしながら、前述した分布屈折率型の集光素子は、入射光の波長と同程度かそれよりも小さな幅の同心構造を有する複数のゾーン領域により形成されているが、当該ゾーン領域内において、高屈折率材料と低屈折率材料との体積比が異なる最小基本構造の組み合わせによって所望の屈折率分布を形成するため、上記最小基本構造の組み合わせにより、屈折率分布の再現性の精度が決まる。
 これにより、所望の屈折率分布と上記最小基本構造の組み合わせにより実際に形成される集光素子の有する実効屈折率分布との間に生じる量子化誤差が大きい場合、所望の集光特性を実現することが困難な場合が生じる。
 これに対し、特許文献1に開示された従来技術では、上記最小基本構造の組み合わせが6パターンしか存在しないため、屈折率分布の再現性が悪く、設計自由度が低く集光効率が低下するという課題が生じる。従来技術では、これを抑制するために、集光素子における上記最小基本構造の段数を増加させる構造について記載されているが、マスク枚数と製造工程数が増えるため、結果的にコストが高くなってしまうという課題が生じる。
 そこで、本発明は、上記課題に鑑みてなされたものであり、マスク枚数や製造工程数を増加させること無く、最小基本構造の組み合わせパターンを増加させることにより、屈折率分布の再現性を向上させることができ、集光効率を向上させることが可能な集光素子を備えた固体撮像装置を提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係る固体撮像装置は、入射光を集光する集光素子を備える単位画素が配置された固体撮像装置であって、前記集光素子は、前記入射光の波長より短い線幅ごとに分割された、同心構造の円環形状を有する複数のゾーン領域で構成され、当該複数のゾーン領域の組み合わせにより制御された実効屈折率分布を有しており、前記複数のゾーン領域のうち少なくとも一つのゾーン領域では、前記ゾーン領域を構成する光透過膜が、前記同心構造の円周方向において、前記入射光の波長より短い間隔ごとに分割されていることを特徴とする。
 上記構成によれば、光透過膜を複数回の積層工程に分け、各工程間でマスク合わせしながら積層工程ごとにパターン形成する、という複雑な工程を経ることなく、円環形状のゾーン領域を有する従来の集光素子と比較して、高精度な実効屈折率分布を実現できる。これにより、マスク枚数や製造工程数を増加させること無く、集光素子の所望の屈折率分布の再現性を向上させることができる。また、集光効率が向上し、固体撮像装置の感度を向上させることができる。
 また、前記ゾーン領域を構成する光透過膜は、前記入射光の波長より短い間隔ごとに分割された複数の円弧状の光透過膜で構成されていることが好ましい。
 これにより、ゾーン領域を構成する光透過膜は、円弧の中心点に対して対称性を有する実効屈折率分布となる。
 また、前記複数の円弧状の光透過膜は、当該円弧状の光透過膜の内周部もしくは外周部に配置された円環状の光透過膜と連続していてもよい。
 上記円弧状の光透過膜に隣接する領域が、光透過膜の形成されていない領域である場合、実効屈折率の急激な変化が生じてしまう。これに対して、上記円弧状の光透過膜が、その内周部もしくは外周部に配置された隣接する円環状の光透過膜と連続している場合には、実効屈折率の急激な変化が生じないので、実効屈折率分布の量子化誤差を抑制することが可能となる。
 また、前記複数の円弧状の光透過膜の各々は、前記単位画素の中心を同心点とした同一円周上に配置されていてもよい。
 これにより、ゾーン領域を構成する光透過膜は、単位画素の中心に対して対称性を有する実効屈折率分布となり得る。
 また、上記の課題を解決するために、本発明の一態様に係る撮像装置は、上述した固体撮像装置のいずれかと、前記受光面の上部に、光を入射させるための撮像レンズとを備え、前記撮像レンズは、入射光を前記受光面に広角に入射させる第1撮像レンズと、入射光を前記受光面にテレセントリックに入射させる第2撮像レンズとを有する交換レンズであることを特徴とする。
 上記構成によれば、広角入射用及びテレセントリック入射用のいずれの撮像レンズが選択されても、複雑な工程を経ることなく、いずれの撮像レンズにも対応し得る高精度な実効屈折率分布を実現できる。これにより、マスク枚数や製造工程数を増加させること無く、集光素子の所望の屈折率分布の再現性を向上させることができる。また、集光効率が向上し、撮像装置の感度を向上させることができる。
 本発明に係る固体撮像装置によれば、マスク枚数や製造工程数を増加させること無く、集光素子の屈折率分布の再現性を向上させることができる。これにより、集光効率が向上し、固体撮像装置の感度を向上させることができる。
図1は、本発明の実施の形態に係る撮像装置(カメラ)の概略構成を示す図である。 図2は、本発明の実施の形態に係る固体撮像装置の詳細な構成を示す図である。 図3は、撮像レンズから光が広角に固体撮像装置に入射する様子を示す図である。 図4は、撮像レンズから光がテレセントリック(光軸と主光線がほぼ平行)に固体撮像装置に入射する様子を示す図である。 図5Aは、本発明の実施の形態に係る固体撮像装置が有する単位画素の基本構造の一例を示す断面図である。 図5Bは、本発明の固体撮像装置が有する単位画素に形成された集光素子の上面図の一例である。 図6は、本発明の実施の形態に係る集光素子の最小基本構造を示す図である。 図7Aは、従来の最小基本構造を用いた場合に生じる実効屈折率分布の量子化誤差を示すグラフである。 図7Bは、本実施の形態に係る最小基本構造を用いた場合に生じる実効屈折率分布の量子化誤差を示すグラフである。 図8Aは、従来の集光素子を搭載した固体撮像装置の集光特性の計算結果を示す図である。 図8Bは、本発明の実施の形態に係る集光素子を搭載した固体撮像装置の集光特性の計算結果を示す図である。 図9は、量子化誤差のない理想的な実効屈折率分布を有する集光素子を搭載した固体撮像装置の集光特性の計算結果を示す図である。 図10は、従来の固体撮像装置が有する画素の基本構造の一例を示す図である。 図11は、従来の固体撮像装置が有する周辺画素の構造の一例を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら具体的に説明する。なお、本発明について、以下の実施の形態および添付の図面を用いて説明を行うが、これは例示を目的としており、本発明はこれらに限定されることを意図しない。
 図1は、本発明の実施の形態に係る撮像装置(カメラ)の概略構成を示す図である。また、図2は、本発明の実施の形態に係る固体撮像装置の詳細な構成を示す図である。図1に記載された撮像装置は、固体撮像装置100と、レンズ110と、DSP(デジタル信号処理回路)120と、画像表示デバイス130と、画像メモリ140とを備える。
 なお、一眼デジタルカメラでは、レンズ110は交換レンズである。但し、本発明は、一眼デジタルカメラのように交換レンズを用いるカメラに限定されるものではなく、例えば、交換レンズではなくても10倍以上の高倍率ズームが出来るレンズが搭載された撮像装置(カメラ)などにも用いることが出来る。
 図3は、撮像レンズから光が広角に固体撮像装置に入射する様子を示す図である。同図に示されるように、光を広角入射させる場合には、レンズ110として撮像レンズ110Aが選択される。また、図4は、撮像レンズから光がテレセントリック(光軸と主光線がほぼ平行)に固体撮像装置に入射する様子を示す図である。同図に示されるように、光をテレセントリックに入射させる場合には、レンズ110として撮像レンズ110Bが選択される。
 本発明の実施の形態に係る撮像装置では、レンズ110を介して外部から光が入射し、入射した光は固体撮像装置100によりデジタル信号に変換されて出力される。そして、出力されたデジタル信号はDSP120により処理されて映像信号として画像メモリ140に出力されて記録され、また画像表示デバイス130に出力されて画像表示される。
 DSP120は、固体撮像装置100の出力信号に対してノイズ除去等の処理を行って映像信号を生成する画像処理回路121と、固体撮像装置100における画素の走査タイミングおよびゲインの制御を行うカメラシステム制御部122とから構成される。DSP120は、例えば固体撮像装置100の単位セル内で共有される画素間での特性差に関する補正を行う。
 固体撮像装置100は1チップで形成され、固体撮像装置100が形成されたチップとDSP120が形成されたチップとは別チップとされる。これにより、固体撮像装置100の形成工程とDSP120の形成工程とを分離することで撮像部と処理部との製造工程を分離できるので、製造工程を削減して低コスト化を実現できる。また、タイミング制御、ゲイン制御および画像処理をユーザ毎に自由に設定することが可能となるため、使用の自由度を高くすることができる。
 固体撮像装置100は、CMOS(Complementary Metal Oxide Semiconductor)型の固体撮像装置であり、図1及び図2に示されるように、画素部(画素アレイ)10と、垂直走査回路(行走査回路)14と、通信・タイミング制御部30と、AD変換(アナログ/デジタルコンバータ)回路25と、参照信号生成部27と、出力I/F28と、信号保持スイッチ263と、信号保持容量262と、カラムアンプ42とを備える。以下、図2を参照して、固体撮像装置100の機能について説明する。
 画素部10は、複数の単位セル10Aが半導体基板のウェルに2次元状(行列状)に配列されて構成される。各単位セル10Aは、複数の単位画素(光電変換素子)を含んで構成される。各単位セル10Aは、垂直走査回路14で制御される信号線と、単位セル10Aからの電圧信号をAD変換回路25に伝達する垂直信号線19とに接続される。
 垂直走査回路14は、単位セル10Aを垂直方向に行単位で走査し、垂直信号線19に電圧信号を出力させる単位セル10Aの行を選択する。
 通信・タイミング制御部30は、外部端子を介して入力されたマスタークロックCLK0およびデータDATAを受け取り、種々の内部クロックを生成し参照信号生成部27および垂直走査回路14などを制御する。
 参照信号生成部27は、AD変換回路25のカラムAD(カラムアナログ/デジタルコンバータ)回路26にAD変換用の参照電圧RAMPを供給するDAC(デジタル/アナログコンバータ)27aを有する。
 カラムアンプ42、信号保持スイッチ263および信号保持容量262は、単位セル10Aの列に対応して設けられている。カラムアンプ42は、単位セル10Aから出力された電圧信号を増幅し、信号保持容量262は信号保持スイッチ263を介して伝達されてきた増幅された電圧信号を保持する。カラムアンプ42を設けることで、単位セル10Aの電圧信号を増幅することが可能となり、S/Nの改善およびゲインの切り替え等が可能となる。
 AD変換回路25は、単位セル10Aの列に対応して設けられたカラムAD回路26を複数有する。カラムAD回路26は、DAC27aで生成される参照電圧RAMPを用いて、単位セル10Aから出力された信号保持容量262のアナログの電圧信号をデジタル信号に変換する。
 カラムAD回路26は、電圧比較部252、スイッチ258およびデータ記憶部256から構成される。電圧比較部252は、単位セル10Aから垂直信号線19(H0、H1、・・・)および信号保持容量262を経由して得られるアナログの電圧信号を参照電圧RAMPと比較する。データ記憶部256は、電圧比較部252が比較処理を完了するまでの時間とカウンタ部254を利用してカウントした結果とを保持するメモリとして構成される。
 電圧比較部252の一方の入力端子には、他の電圧比較部252の入力端子と共通に、DAC27aで生成される階段状の参照電圧RAMPが入力され、他方の入力端子には、それぞれ対応する列の信号保持容量262が接続され、画素部10から電圧信号が入力される。電圧比較部252の出力信号はカウンタ部254に供給される。
 カラムAD回路26は、電圧比較部252に参照電圧RAMPが供給されると同時にクロック信号でのカウント(計数)を開始し、信号保持容量262を介して入力されたアナログの電圧信号を参照電圧RAMPと比較することによってパルス信号が得られるまでカウントすることでAD変換を行う。
 この際、カラムAD回路26は、AD変換とともに、信号保持容量262を介して入力された電圧モードの画素信号(電圧信号)に対して、画素リセット直後の信号レベル(ノイズレベル)と真の(受光光量に応じた)信号レベルVsigとの差分をとる処理を行う。これによって、固定パターンノイズ(FPN:Fixed Pattern Noise)およびリセットノイズ等と呼ばれるノイズ信号成分を電圧信号から取り除くことができる。
 なお、カラムAD回路26は、ノイズレベルをダウンカウントし、信号レベルをアップカウントすることで真の信号レベルVsigのみを取り出す構成であり、このカラムAD回路26でデジタル化された信号は、水平信号線18を介して出力I/F28に入力される。
 なお、図1及び図2に示した固体撮像装置100は、カラムAD回路26を搭載しているが、AD回路は固体撮像装置の外に構成されていても良い。
 以上、この構成により、画素部10からは、単位セル10Aの行ごとに電圧信号が順次出力される。そして、画素部10に対する1枚分の画像すなわちフレーム画像が、画素部10全体の電圧信号の集合で示されることとなる。
 次に、固体撮像装置100が有する集光素子の構造について説明する。
 図5Aは、本発明の実施の形態に係る固体撮像装置が有する単位画素の基本構造の一例を示す断面図である。また、図5Bは、本発明の固体撮像装置が有する単位画素に形成された集光素子の上面図の一例である。
 図5Aに示されるように、本発明の実施の形態に係る固体撮像装置が有する単位画素11は、分布屈折率型レンズの集光素子1と、カラーフィルタ2と、配線層3と、受光素子(Siフォトダイオード)6と、Si基板7とを備える。集光素子1の膜厚は、例えば、1.2μmである。
 集光素子1は、光透過膜であるSiO(屈折率n=1.45)が同心円状に配置された同心構造となっている。ここで、集光素子1を内周半径差の幅でドーナツ状に分割した同心構造の円環形状の領域をゾーン領域と定義する。集光素子1は、複数のゾーン領域の組み合わせにより形成されており、各ゾーン領域の線幅は、入射光の波長より短い。
 また、集光素子1は、下段光透過膜33Aと上段光透過膜33Bとの2段構造となっている。下段光透過膜33AであるSiOの膜厚は、例えば、0.8μmであり、上段光透過膜33BであるSiOの膜厚は、例えば、0.4μmである。また、SiOの周りの媒質は空気(屈折率n=1.00)である。ゾーン領域の線幅が、入射光の波長と同程度かそれより小さいときには、光が感じる実効屈折率は、光透過膜であるSiO(n=1.45)と周りの媒質である空気(n=1.00)との体積比により算出できる。この実効屈折率を、ゾーン領域単位で、任意に組み合わせることによって、所望の実効屈折率分布を実現することができる。このように、本発明における固体撮像装置は、上記ゾーン領域における光透過膜と空気との体積比を変えるだけで、実効屈折率分布を自由自在に制御できるという特徴を有している。
 さらに、図5Bに示されるように、集光素子1では、複数のゾーン領域のうち少なくとも1つのゾーン領域では、当該ゾーン領域を構成する光透過膜が、同心構造の円周方向にも、入射光の波長より短い間隔ごとに分割されている。この集光素子1の構成によれば、円環形状のゾーン領域を有する従来の集光素子と比較して、より高精度な実効屈折率分布を実現できる。
 ここで、上述した、ゾーン領域を構成する光透過膜が、同心構造の円周方向に、入射光の波長より短い間隔ごとに分割されている、という表現は、下段光透過膜33A及び上段光透過膜33Bの双方が上記所定の間隔で形成された領域と下段光透過膜33A及び上段光透過膜33Bの双方が形成されていない領域とが同心構造の円周方向に交互に配置された態様、下段光透過膜33A及び上段光透過膜33Bの双方が上記所定の間隔で形成された領域と下段光透過膜33Aのみが形成された領域とが同心構造の円周方向に交互に配置された態様、及び、下段光透過膜33Aのみが上記所定の間隔で形成された領域と下段光透過膜33A及び上段光透過膜33Bの双方が形成されていない領域とが同心構造の円周方向に交互に配置された態様に適用される。
 また、ゾーン領域を構成する光透過膜は、入射光の波長より短い間隔で分割された複数の円弧状の光透過膜で構成されていることが好ましい。これにより、ゾーン領域を構成する光透過膜は、円弧の中心点に対して対称性を有する実効屈折率分布となる。
 ここで、上述した、上記円弧状の光透過膜とは、下段光透過膜33A及び上段光透過膜33Bの双方が同心構造の円周方向に入射光の波長より短い間隔ごとに分割された光透過膜の一単位であり、または、下段光透過膜33Aのみが同心構造の円周方向に入射光の波長より短い間隔ごとに分割された光透過膜の一単位である。
 また、上記複数の円弧状の光透過膜は、下段光透過膜33Aと上段光透過膜33Bとで構成されており、下段光透過膜33Aのみで形成された部分で分割されている。また、上記複数の円弧状の光透過膜の一部は、その内周部もしくは外周部に配置された円環状の光透過膜と連続していてもよい。上段光透過膜33Bまで形成された円弧状の光透過膜に隣接する領域が、光透過膜の形成されていない領域である場合、実効屈折率の急激な変化が生じてしまう。これに対して、円弧状の光透過膜が、その内周部もしくは外周部に配置された隣接する円環状の光透過膜と連続している場合には、実効屈折率の急激な変化が生じないので、後述する実効屈折率分布の量子化誤差を抑制することが可能となる。
 さらには、上記複数の円弧状の光透過膜の各々は、単位画素11の中心を同心点とした同一円周上に配置されていてもよい。これにより、ゾーン領域を構成する光透過膜は、単位画素11の中心に対して対称性を有する実効屈折率分布となり得る。
 以上、集光素子1は、入射光の波長と同程度かそれよりも小さな線幅を有する同心構造の複数のゾーン領域の組み合わせにより形成されており、これにより、集光素子1は、実効屈折率分布を有するマイクロレンズとして機能する。さらに、上記複数のゾーン領域うち少なくとも一つのゾーン領域では、同心構造の光透過膜が、円周方向に、光の波長より短い間隔で分割されている。
 図6は、本発明の実施の形態に係る集光素子の最小基本構造を示す図である。図6の(a)~(l)は、本発明の固体撮像装置が有する集光素子の実効屈折率分布を実現するための最小基本構造である。図5Bに記載された集光素子1の同心構造は、図6の(a)~(l)に記載された最小基本構造が適宜組み合わされることにより実現される。
 ここで、実効屈折率neffは以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、nSiO2及びnAirは、それぞれ、SiO及び空気の屈折率であり、fは最小基本構造におけるSiOの体積比を表している。ここで、SiOの体積比fは、最小基本構造の体積を分母、SiOの体積を分子とした時の値であり、充填率を意味している。すなわち、fが大きい構造ほど、その構造が有する実効屈折率は高くなり、fが小さい構造ほど実効屈折率は低くなる。
 本実施の形態に係る集光素子1は、所望の屈折率分布と実際に形成される集光素子による実効屈折率分布との差異である量子化誤差を低減するために、従来の最小基本構造と比較して充填率及び形状のバリエーションを増加させた最小基本構造を導入することにより形成されている。
 具体的には、本発明の集光素子1を実現するにあたり、図6の(a)~(l)に示した10階調の最小基本構造が用いられる。これは、特許文献1に記載された従来の最小基本構造である6階調に対し、1.5倍以上の階調増加となっている。この要因は、従来構造が同心構造を構成する円環状構造を基本とした構造であることに対し、本実施の形態に係る集光素子1では、円環状構造を円周方向に入射光の波長より短い幅で分割することで、円周方向においても階調を持たせることができることに起因する。この階調増加は、従来の2次元平面上における最小基本構造の構築に対し、3次元立方体における最小基本構造を構築するという思想によるため、従来の段数増加や基本デザインルール増加のようなプロセス起因によるものではなく、本質的に屈折率分布の再現性を向上させる有効な手段である。また、集光素子を形成する材料の屈折率差が大きくなればなるほど、階調増加により生じる量子化誤差の低減効果が大きくなるため、セルサイズの微細化や入射角度範囲の広角化にも対応可能である。
 図7Aは、従来の最小基本構造を用いた場合に生じる実効屈折率分布の量子化誤差を示すグラフである。また、図7Bは、本実施の形態に係る最小基本構造を用いた場合に生じる実効屈折率分布の量子化誤差を示すグラフである。図7A及び図7Bともに、目的とする所望の屈折率分布(目標値)と、各々の最小基本構造を用いることにより実現可能な実効屈折率分布とを表している。図7A及び図7Bに記載された実効屈折率の表す放物線(目的の屈折率分布)は、入射光を焦点距離Dfで集光させるための実効屈折率分布を示しており、下の式で表される。
  Δn(x)=Δnmax[(Ax+Bxsinθ)/2π+C]  (式2-1)
 ここで、A、B、Cは定数であり、Δnmaxは、光透過膜材料でSiOと空気との屈折率差(0.45)である。
 また、上記式2-1は、入射側媒質の屈折率をn、出射側媒質の屈折率をnとしたときの各パラメータは、以下の通りである。
  A=-(k)/2Df          (式2-2)
  B=-k                (式2-3)
  k=2π/λ                (式2-4)
 これにより、目的とする焦点距離Df、対象とする入射光の入射角度θ、及び波長λごとに、集光素子を最適化することが可能となる。なお、上記式2-1において、集光成分は画素中央から周辺方向への距離xの2次関数によって表わされ、偏向成分は距離xと三角関数との積によって表されている。
 図7A及び図7Bに記載された実効屈折率分布の比較から明らかなように、従来の最小基本構造を用いた場合と本実施の形態の最小基本構造を用いた場合とでは、量子化誤差に大きな差異が存在する。従来の最小基本構造を用いた場合には、上記量子化誤差が大きく、所望の集光性能を実現することができず、集光効率の低下を生じることが考えられる。
 図8Aは、従来の集光素子を搭載した固体撮像装置の集光特性の計算結果を示す図である。また、図8Bは、本発明の実施の形態に係る集光素子を搭載した固体撮像装置の集光特性の計算結果を示す図である。さらに、図9は、量子化誤差のない理想的な実効屈折率分布を有する集光素子を搭載した固体撮像装置の集光特性の計算結果を示す図である。これらの計算結果は、有限要素法による電磁界シミュレーションにより、設定した光源より発生した光が固体撮像装置の表面に入射され、受光素子を含む固体撮像装置全域に光が伝播する様子を示している。入射光は波長540nm、入射角度は固体撮像装置表面に対して平行な設定とした。
 図8A及び図8Bに記載された集光特性の分布図を比較すると、従来の集光素子による集光分布に対し、本発明の集光素子1による集光分布は、受光素子に効率良く集光されている様子が確認できる。具体的には、従来の集光素子では、入射光の一部が固体撮像装置内の遮光膜である配線層に遮られることで集光ロスが生じている。これに対し、本発明の集光素子1では、配線層に遮られることなく受光素子に効率良く集光できている。これは、従来技術と本発明との間に生じている屈折率分布の再現性の差異であり、量子化誤差を低減することで集光性能を向上させることができることを示している。
 ここで、集光性能の向上効果を定量化するため、計算結果より得られた受光素子の受光強度を入射強度で割った値を集光効率とし、従来と本発明との集光効率を比較した。その結果、従来の固体撮像装置では、集光効率は83%であるのに対し、本発明の固体撮像装置では、集光効率は88%であり、従来と比較して約1.1倍の向上効果が得られた。この結果は、本発明の集光素子1が、図9に示した量子化誤差の無い連続屈折率分布を有する集光素子の集光効率90%と同程度な集光性能を実現できており、量子化誤差の低減による効果が十分に得られていることを示している。
 以上説明した通り、本発明の実施の形態に係る固体撮像装置は、入射光を集光する集光素子を備え、当該集光素子は、入射光の波長より短い線幅ごとに分割された、同心構造の円環形状を有する複数のゾーン領域で構成され、当該複数のゾーン領域の組み合わせにより制御された実効屈折率分布を有している。また、複数のゾーン領域のうち少なくとも一つのゾーン領域では、当該ゾーン領域を構成する光透過膜が、同心構造の円周方向に、入射光の波長より短い間隔ごとに分割されている。具体的には、ゾーン領域を構成する光透過膜は、入射光の波長より短い間隔で分割された複数の円弧状の光透過膜で構成されている。
 上述した本発明の固体撮像装置が有する集光素子の構成によれば、光透過膜を複数回の積層工程に分け、各工程間でマスク合わせしながら積層工程ごとにパターン形成する、という複雑な工程を経ることなく、充填率及び3次元形状のバリエーションを有する最小基本構造を組み合わせることにより、高精度な実効屈折率分布を実現できる。よって、マスク枚数や製造工程数を増加させること無く、集光素子の所望の屈折率分布の再現性を向上させることができる。これにより、集光効率が向上し、固体撮像装置の感度を向上させることができる。
 以上、本発明の固体撮像装置及び撮像装置について、実施の形態に基づいて説明してきたが、本発明に係る固体撮像装置及び撮像装置は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る固体撮像装置または撮像装置を内蔵した各種機器も本発明に含まれる。
 なお、上記実施の形態では、CMOS型の固体撮像装置を例に挙げたが、本発明は、これにとらわれることなく、CCD型の固体撮像装置でも同様の効果が得られる。
 本発明の固体撮像装置は、デジタルビデオカメラ、デジタルスチルカメラ、カメラ付携帯電話機、監視用カメラ、車載用カメラ、放送用カメラをはじめとするイメージセンサ関連製品の性能向上及び低価格化が実現可能であり、産業上有用である。
 1  集光素子
 2、502  カラーフィルタ
 3、503  配線層
 6、506  受光素子
 7、507  Si基板
 10  画素部
 10A  単位セル
 11  単位画素
 14  垂直走査回路
 18  水平信号線
 19  垂直信号線
 25  AD変換回路
 27  参照信号生成部
 27a  DAC
 28  出力I/F
 30  通信・タイミング制御部
 33A  下段光透過膜
 33B  上段光透過膜
 42  カラムアンプ
 100、500、510  固体撮像装置
 110  レンズ
 110A、110B  撮像レンズ
 120  DSP
 121  画像処理回路
 122  カメラシステム制御部
 130  画像表示デバイス
 140  画像メモリ
 252  電圧比較部
 254  カウンタ部
 256  データ記憶部
 258  スイッチ
 262  信号保持容量
 263  信号保持スイッチ
 501  マイクロレンズ
 502A、502B  入射光

Claims (5)

  1.  入射光を集光する集光素子を備える単位画素が配置された固体撮像装置であって、
     前記集光素子は、前記入射光の波長より短い線幅ごとに分割された、同心構造の円環形状を有する複数のゾーン領域で構成され、当該複数のゾーン領域の組み合わせにより制御された実効屈折率分布を有しており、
     前記複数のゾーン領域のうち少なくとも一つのゾーン領域では、前記ゾーン領域を構成する光透過膜が、前記同心構造の円周方向において、前記入射光の波長より短い間隔ごとに分割されている
     固体撮像装置。
  2.  前記ゾーン領域を構成する光透過膜は、前記入射光の波長より短い間隔ごとに分割された複数の円弧状の光透過膜で構成されている
     請求項1に記載の固体撮像装置。
  3.  前記複数の円弧状の光透過膜は、当該円弧状の光透過膜の内周部もしくは外周部に配置された円環状の光透過膜と連続している
     請求項1または2に記載の固体撮像装置。
  4.  前記複数の円弧状の光透過膜の各々は、前記単位画素の中心を同心点とした同一円周上に配置されている
     請求項2または3に記載の固体撮像装置。
  5.  請求項1~4のうちいずれか1項に記載の固体撮像装置と、
     前記集光素子よりも光の入射側に、当該光を入射させるための撮像レンズとを備え、
     前記撮像レンズは、前記光を前記集光素子に広角に入射させる第1撮像レンズと、前記光を前記集光素子にテレセントリックに入射させる第2撮像レンズとを有する交換レンズである
     撮像装置。
PCT/JP2012/004638 2011-08-08 2012-07-20 固体撮像装置 WO2013021554A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013527854A JP5983954B2 (ja) 2011-08-08 2012-07-20 固体撮像装置
US14/171,953 US9160951B2 (en) 2011-08-08 2014-02-04 Solid-state imaging apparatus having a light collecting element with an effective refractive index distribution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-172636 2011-08-08
JP2011172636 2011-08-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/171,953 Continuation US9160951B2 (en) 2011-08-08 2014-02-04 Solid-state imaging apparatus having a light collecting element with an effective refractive index distribution

Publications (1)

Publication Number Publication Date
WO2013021554A1 true WO2013021554A1 (ja) 2013-02-14

Family

ID=47668095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004638 WO2013021554A1 (ja) 2011-08-08 2012-07-20 固体撮像装置

Country Status (3)

Country Link
US (1) US9160951B2 (ja)
JP (1) JP5983954B2 (ja)
WO (1) WO2013021554A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101067A1 (ja) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. 集光素子および固体撮像装置
JP2009135236A (ja) * 2007-11-29 2009-06-18 Panasonic Corp 固体撮像素子
JP2010027875A (ja) * 2008-07-18 2010-02-04 Panasonic Corp 固体撮像素子
JP2010171861A (ja) * 2009-01-26 2010-08-05 Ricoh Co Ltd 撮像素子及び該撮像素子を備えた画像撮像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515971B2 (ja) * 2005-06-17 2010-08-04 パナソニック株式会社 集光素子の製造方法および位相シフトマスク
JP4456040B2 (ja) 2005-06-17 2010-04-28 パナソニック株式会社 固体撮像素子
JP4699917B2 (ja) * 2006-02-28 2011-06-15 パナソニック株式会社 固体撮像素子
JP2008010773A (ja) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd 固体撮像素子およびその製造方法
JP2008083189A (ja) * 2006-09-26 2008-04-10 Matsushita Electric Ind Co Ltd 位相シフトマスクおよび集光素子の製造方法
JP2008192771A (ja) * 2007-02-02 2008-08-21 Matsushita Electric Ind Co Ltd 固体撮像素子およびその製造方法
JP4551489B2 (ja) * 2009-01-06 2010-09-29 株式会社メニコン 回折レンズの製造方法
JP2010251489A (ja) * 2009-04-15 2010-11-04 Sony Corp 固体撮像装置および電子機器
JP5277063B2 (ja) * 2009-04-20 2013-08-28 パナソニック株式会社 集光素子、集光素子群および固体撮像装置
JP5390357B2 (ja) * 2009-12-04 2014-01-15 パナソニック株式会社 光学レンズ用プレス成形金型、ガラス製光学レンズ、及びガラス製光学レンズの製造方法
CN102472838B (zh) * 2010-05-10 2014-12-24 松下电器产业株式会社 衍射透镜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101067A1 (ja) * 2004-04-13 2005-10-27 Matsushita Electric Industrial Co., Ltd. 集光素子および固体撮像装置
JP2009135236A (ja) * 2007-11-29 2009-06-18 Panasonic Corp 固体撮像素子
JP2010027875A (ja) * 2008-07-18 2010-02-04 Panasonic Corp 固体撮像素子
JP2010171861A (ja) * 2009-01-26 2010-08-05 Ricoh Co Ltd 撮像素子及び該撮像素子を備えた画像撮像装置

Also Published As

Publication number Publication date
JP5983954B2 (ja) 2016-09-06
US9160951B2 (en) 2015-10-13
US20140152880A1 (en) 2014-06-05
JPWO2013021554A1 (ja) 2015-03-05

Similar Documents

Publication Publication Date Title
JP5283371B2 (ja) 固体撮像素子
JP5950126B2 (ja) 固体撮像素子および撮像装置
US10911738B2 (en) Compound-eye imaging device
KR101477645B1 (ko) 광학 부재, 고체 촬상 장치, 및 제조 방법
US8704934B2 (en) Solid-state imaging device having pixels arranged in a honeycomb structure
US20090190231A1 (en) Method and apparatus providing gradient index of refraction lens for image sensors
JP2013093554A (ja) 撮像素子および撮像装置
JP2008192771A (ja) 固体撮像素子およびその製造方法
JP2012204354A (ja) 固体撮像装置、固体撮像装置の製造方法及び電子機器
EP2669949B1 (en) Lens array for partitioned image sensor
US10170516B2 (en) Image sensing device and method for fabricating the same
JP2016139988A (ja) 固体撮像装置
JP2009266900A (ja) 固体撮像素子
US7646551B2 (en) Microlenses with patterned holes to produce a desired focus location
US20160028983A1 (en) Solid-state image pickup device and camera module
JP3571982B2 (ja) 固体撮像装置及びそれを備えた固体撮像システム
JP5496794B2 (ja) 固体撮像装置
JP2011243749A (ja) 固体撮像装置及びその製造方法
US8138467B2 (en) Color filter array including color filters only of first type and second type, method of fabricating the same, and image pickup device including the same
JP2004228645A (ja) 固体撮像装置及びこれを用いた光学機器
JP2014011239A (ja) 固体撮像装置および固体撮像装置の製造方法
JP5983954B2 (ja) 固体撮像装置
JP2009267000A (ja) 固体撮像素子
JP2012094601A (ja) 固体撮像装置及び撮像装置
JP2011175029A (ja) 撮像レンズおよび撮像モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527854

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822258

Country of ref document: EP

Kind code of ref document: A1