WO2013011954A1 - 有機エレクトロルミネッセンス素子およびそれに用いる化合物 - Google Patents

有機エレクトロルミネッセンス素子およびそれに用いる化合物 Download PDF

Info

Publication number
WO2013011954A1
WO2013011954A1 PCT/JP2012/067969 JP2012067969W WO2013011954A1 WO 2013011954 A1 WO2013011954 A1 WO 2013011954A1 JP 2012067969 W JP2012067969 W JP 2012067969W WO 2013011954 A1 WO2013011954 A1 WO 2013011954A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
substituted
electron
organic electroluminescence
Prior art date
Application number
PCT/JP2012/067969
Other languages
English (en)
French (fr)
Inventor
哲也 中川
安達 千波矢
洸子 野村
メーヘシュ ガーボル
圭朗 那須
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to KR1020147002067A priority Critical patent/KR102006506B1/ko
Priority to EP12815130.5A priority patent/EP2733762B1/en
Priority to JP2013524706A priority patent/JP5565742B2/ja
Priority to CN201280035225.XA priority patent/CN103650195B/zh
Priority to US14/233,029 priority patent/US9660198B2/en
Publication of WO2013011954A1 publication Critical patent/WO2013011954A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/50Oxidation-reduction potentials, e.g. excited state redox potentials

Definitions

  • the present invention relates to an organic electroluminescence element (organic EL element) having high luminous efficiency and a luminescent material used therefor.
  • Patent Documents 1 to 4 describe organic electroluminescence devices using a compound in which an acridine skeleton and a fluorene skeleton are spiro-bonded as a host material for a hole transport layer.
  • Patent Document 1 also describes an organic electroluminescence device using a compound in which an acridine skeleton and an anthrone skeleton are spiro-bonded as a host material for a hole transport layer.
  • Patent Documents 5 to 14 describe organic electroluminescent devices using a compound in which an acridine skeleton and a fluorene skeleton are spiro-bonded in a light emitting layer.
  • the present inventors have clarified that a specific spiro compound having an acridine skeleton is useful as a light emitting material of an organic electroluminescence device.
  • a spiro compound having an acridine skeleton is useful as a delayed fluorescent material, and it has been clarified that an organic electroluminescence device having high emission efficiency can be provided at low cost.
  • the present inventors have provided the following present invention as means for solving the above-mentioned problems.
  • An organic electroluminescence device having an anode, a cathode, and at least one organic layer including a light emitting layer between the anode and the cathode, and represented by the following general formula (1) in the light emitting layer
  • An organic electroluminescence device comprising a compound.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 17 are each independently a hydrogen atom or an electron donating group, One represents an electron donating group.
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom or an electron withdrawing group having no unshared electron pair at the ⁇ -position.
  • Z is a single bond, at least one of R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 does not have an unshared electron pair at the ⁇ -position. It is a group.
  • [2] The organic electroluminescence device according to [1], which emits delayed fluorescence.
  • R 21 , R 22 , R 23 , R 24 and R 25 are each independently a hydrogen atom or an electron-donating group, and at least one represents an electron-donating group.
  • At least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 in the general formula (1) is any one of the following general formulas (3) to (5)
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 41 and R 42 together form a ring structure.
  • R 42 and R 43 may together form a ring structure.
  • R 51 , R 52 and R 53 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 51 and R 52 together form a ring structure.
  • R 52 and R 53 may be combined to form a ring structure.
  • At least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 in the general formula (1) has one of the following structures: [1] The organic electroluminescence device according to any one of [6]. [11] At least one of R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 in the general formula (1) is a cyano group or the following general formulas (6) to (9 The organic electroluminescent device according to any one of [1] to [10], which has a structure represented by any of the following: [In the above formula, R 61 and R 62 each independently represents a substituted or unsubstituted aryl group.
  • R 71 and R 72 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 71 and R 72 may form a ring structure together.
  • R 81 , R 82 and R 83 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 81 and R 82 together form a ring structure.
  • R 82 and R 83 may be combined to form a ring structure.
  • R 91 represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and Z represents a linking group necessary for forming a heteroaromatic ring.
  • Z represents a linking group necessary for forming a heteroaromatic ring.
  • At least one of R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 in the general formula (1) has any one of the following structures: [1] The organic electroluminescence device according to any one of [10] to [10].
  • R 9 ′ , R 10 ′ , R 11 ′ , R 12 ′ , R 13 ′ , R 14 ′ , R 15 ′ and R 16 ′ each independently represents a hydrogen atom or a cyano group.
  • Z ′ represents a single bond or> C ⁇ Y, and Y represents O, S, C (CN) 2 or C (COOH) 2 .
  • Z ′ is a single bond,> C ⁇ O or> C ⁇ S
  • R 9 ′ , R 10 ′ , R 11 ′ , R 12 ′ , R 13 ′ , R 14 ′ , R 15 ′ and R 16 ′ At least one of is a cyano group.
  • At least one of R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ , R 6 ′ , R 7 ′ and R 8 ′ in the general formula (1 ′) is an electron donating group.
  • At least one of R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ , R 6 ′ , R 7 ′ and R 8 ′ in the general formula (1 ′) is represented by the following general formula ( [14]
  • R 21 , R 22 , R 23 , R 24 and R 25 are each independently a hydrogen atom or an electron-donating group, and at least one represents an electron-donating group.
  • R 21 , R 22 , R 23 , R 24 and R 25 are each independently a hydrogen
  • At least one of R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ , R 6 ′ , R 7 ′ and R 8 ′ in the general formula (1 ′) is represented by the following general formula ( The compound according to any one of [14] to [17], which has a structure represented by any one of 3) to (5).
  • R 31 and R 32 each independently represent a substituted or unsubstituted aryl group, and the aryl group represented by R 31 and the aryl group represented by R 32 may be linked.
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 41 and R 42 together form a ring structure.
  • R 42 and R 43 may together form a ring structure.
  • R 51 , R 52 and R 53 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 51 and R 52 together form a ring structure.
  • R 52 and R 53 may be combined to form a ring structure.
  • At least one of R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ , R 6 ′ , R 7 ′ and R 8 ′ in the general formula (1 ′) is any of the following: [14]
  • a delayed fluorescent material comprising a compound represented by the following general formula (1). [In General Formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 17 are each independently a hydrogen atom or an electron donating group, One represents an electron donating group.
  • a delayed fluorescent material comprising a compound represented by the following general formula (1 ′).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ , R 6 ′ , R 7 ′ , R 8 ′ and R 17 ′ are each independently hydrogen.
  • R 9 ′ , R 10 ′ , R 11 ′ , R 12 ′ , R 13 ′ , R 14 ′ , R 15 ′ and R 16 ′ each independently represents a hydrogen atom or a cyano group.
  • Z ′ represents a single bond or> C ⁇ Y, and Y represents O, S, C (CN) 2 or C (COOH) 2 .
  • Z ′ is a single bond,> C ⁇ O or> C ⁇ S
  • R 9 ′ , R 10 ′ , R 11 ′ , R 12 ′ , R 13 ′ , R 14 ′ , R 15 ′ and R 16 ′ At least one of is a cyano group.
  • the organic electroluminescence element of the present invention has high luminous efficiency and can be provided at low cost. Moreover, the compound of this invention is very useful as a luminescent material of such an organic electroluminescent element.
  • FIG. 2 is a schematic cross-sectional view showing a layer configuration of an organic electroluminescence element of Example 1.
  • FIG. 2 is a PL emission spectrum in Example 1.
  • 3 is a graph showing PL transient attenuation in Example 1.
  • 2 is an electroluminescence (EL) spectrum of the organic electroluminescence element of Example 1.
  • FIG. 3 is a graph showing current density-voltage characteristics-luminance characteristics of the organic electroluminescence element of Example 1.
  • FIG. 3 is a graph showing the external quantum efficiency-current density characteristics of the organic electroluminescence device of Example 1. It is PL emission spectrum in Example 141. It is a graph which shows PL transient attenuation
  • 14 is a graph showing current density-voltage characteristics-luminance characteristics of the organic electroluminescence element of Example 141.
  • 14 is a graph showing the external quantum efficiency-current density characteristics of the organic electroluminescence device of Example 141.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the organic electroluminescence device of the present invention is characterized in that the light emitting layer contains a compound represented by the following general formula (1). Therefore, first, the compound represented by the general formula (1) will be described.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 17 in the general formula (1) are each independently a hydrogen atom or an electron donating group, and at least one Represents an electron donating group. When two or more of these represent an electron donating group, the two or more electron donating groups may be the same or different. Preferred is the case where they are identical.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 those representing an electron donating group are R 2 , R 3 , R 4 , R 5 , R 6 , R 7.
  • R 17 and more preferably any of R 2 , R 3 , R 6 , R 7 and R 17 . More preferably, it is R 17 or any one or two of R 2 , R 3 , R 6 and R 7 , and in the case of two , with any one of R 2 and R 3 , R 6 and R 7 are preferred.
  • the electron donating groups represented by R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 17 donate electrons to these rings when attached to the spiro ring. It is a group having properties.
  • the electron donating group may be an aromatic group, a heteroaromatic group, or an aliphatic group, or may be a group in which two or more of these are combined.
  • Examples of the electron donor group may be an alkyl group (which may be linear, branched or cyclic, preferably have 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, As a methyl group, an ethyl group, a propyl group, a pentyl group, a hexyl group, and an isopropyl group) or an alkoxy group (straight, branched, or cyclic), preferably 1 carbon atom 6 or more, more preferably 1 to 3 carbon atoms, and specific examples include a methoxy group), an amino group or a substituted amino group (preferably an amino group substituted with an aromatic group, Examples include diphenylamino group, anilyl group, and tolylamino group), aryl group (which may be monocyclic or fused ring, and may be further substituted with aryl group.
  • alkyl group which may be linear, branched or cyclic, preferably have 1 to 6 carbon atoms, more
  • An electron-donating group containing a heterocyclic structure preferably an electron-withdrawing group containing a nitrogen atom or a sulfur atom, and specific examples include thiophenyl
  • a benzothiophenyl group, a julolidyl group, a pyrrolyl group, an indolyl group, and a carbazolyl group preferably has a ⁇ p value of ⁇ 0.06 or less, more preferably ⁇ 0.14 or less, and even more preferably ⁇ 0.28 or less.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are preferably a hydrogen atom or an aryl group substituted with an electron donating group.
  • the aryl group here may be composed of one aromatic ring, or may have a structure in which two or more aromatic rings are fused.
  • the aryl group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 14 carbon atoms (ie, a phenyl group, 1-naphthyl). Group, 2-naphthyl group) is more preferred, and phenyl group is most preferred.
  • the electron donating group substituted for the aryl group preferably has the above-mentioned ⁇ p value.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are more preferably a hydrogen atom or a group represented by the following general formula (2).
  • R 21 , R 22 , R 23 , R 24 and R 25 each independently represent a hydrogen atom or an electron donating group. However, at least one of these represents an electron donating group.
  • the electron donating group here preferably has the above-mentioned ⁇ p value.
  • R 21 , R 22 , R 23 , R 24 and R 25 it is preferable that R 22 and R 24 are electron donating groups, or R 23 is an electron donating group, and R 23 is an electron donating group. More preferably.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 have a structure represented by a hydrogen atom or any one of the following general formulas (3) to (5) More preferably it is.
  • R 31 and R 32 each independently represent a substituted or unsubstituted aryl group, and the aryl group represented by R 31 and the aryl group represented by R 32 may be linked.
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 41 and R 42 together form a ring structure.
  • R 42 and R 43 may together form a ring structure.
  • R 51 , R 52 and R 53 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 51 and R 52 together form a ring structure.
  • R 52 and R 53 may be combined to form a ring structure.
  • the ring structure formed by R 41 and R 42 , R 42 and R 43 , R 51 and R 52 , and R 52 and R 53 together may be an aromatic ring, a heteroaromatic ring, or an aliphatic ring. It is preferably an aromatic ring or a heteroaromatic ring, more preferably an aromatic ring.
  • Specific examples of the ring structure include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and the like.
  • the aryl group as used herein may be composed of one aromatic ring or may have a structure in which two or more aromatic rings are fused.
  • the aryl group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 14 carbon atoms (ie, a phenyl group, 1-naphthyl). Group, 2-naphthyl group) is even more preferred.
  • the alkyl group as used herein may be linear, branched, or cyclic. Preference is given to a linear or branched alkyl group.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 6 carbon atoms (ie, a methyl group, an ethyl group, n-propyl group, isopropyl group) is even more preferable.
  • Examples of the cyclic alkyl group include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • substituent for the aryl group and the alkyl group include an alkyl group, an aryl group, an alkoxy group, and an aryloxy group.
  • alkoxy group that can be employed as the substituent may be linear, branched, or cyclic. Preferred is a linear or branched alkoxy group.
  • the alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 6 carbon atoms (ie, a methoxy group, an ethoxy group, n-propoxy group, isopropoxy group) is even more preferable.
  • Examples of the cyclic alkoxy group include a cyclopentyloxy group, a cyclohexyloxy group, and a cycloheptyloxy group.
  • the aryloxy group that can be employed as a substituent may be composed of one aromatic ring or may have a structure in which two or more aromatic rings are fused.
  • the aryloxy group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 14 carbon atoms, and more preferably 6 to 10 carbon atoms (ie, phenyloxy group, 1 -Naphtyloxy group, 2-naphthyloxy group) is even more preferable.
  • Examples of the substituent for the alkyl group and aryl group in the general formulas (3) to (5) include groups exhibiting electron donating properties.
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 in the general formula (1) are each independently a hydrogen atom or an electron withdrawing group having no unshared electron pair at the ⁇ -position. Represents. However, when Z is a single bond, at least one of these represents an electron-withdrawing group having no unshared electron pair at the ⁇ -position. When two or more of these represent an electron withdrawing group, the two or more electron withdrawing groups may be the same or different. Preferred is the case where they are identical.
  • R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 those representing an electron withdrawing group are R 10 , R 11 , R 12 , R 13 , R 14 and R 15.
  • R 10 , R 11 , R 14, and R 15 is more preferable. More preferably, any one or two of R 10 , R 11 , R 14 and R 15 , and in the case of two, any one of R 10 and R 11 , and any of R 14 and R 15 It is preferable that it is one.
  • the electron withdrawing group represented by R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 in the general formula (1) draws electrons from the spiro ring when bonded to the spiro ring. It is a group having properties. However, an electron withdrawing group having an unshared electron pair at the ⁇ -position (for example, a halogen atom) is excluded.
  • the electron withdrawing group may be an aromatic group, a heteroaromatic group, or an aliphatic group, or may be a group in which two or more of these are combined.
  • Examples of the electron withdrawing group include a nitro group and a perfluoroalkyl group (preferably having 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and specific examples include a trifluoromethyl group).
  • Sulfonyl group, electron-withdrawing group containing a heterocyclic structure preferably an electron-withdrawing group containing a heterocyclic structure containing a nitrogen atom or a sulfur atom, and specific examples include oxadiazolyl group, benzothiadiazolyl group, tetrazolyl group, thiazolyl group , An imidazolyl group), a group containing a phosphine oxide structure, a cyano group, and the like.
  • the group of electron withdrawing groups include a group in which a cyano group is removed from the specific examples of the electron withdrawing groups.
  • the electron withdrawing group preferably has a ⁇ p value of 0.02 or more, more preferably 0.34 or more, and even more preferably 0.62 or more.
  • At least one of R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 and R 16 is represented by a cyano group or any one of the following general formulas (6) to (9). It is preferable to have a structure.
  • R 61 and R 62 each independently represents a substituted or unsubstituted aryl group.
  • R 71 and R 72 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 71 and R 72 may form a ring structure together.
  • R 81 , R 82 and R 83 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R 81 and R 82 together form a ring structure.
  • R 82 and R 83 may be combined to form a ring structure.
  • R 91 represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group
  • Z represents a linking group necessary for forming a heteroaromatic ring.
  • the connecting chain of Z may be composed only of carbon atoms, may be composed only of heteroatoms, or may be a mixture of carbon atoms and heteroatoms. As a hetero atom, a nitrogen atom is preferable.
  • the connecting chain is preferably 2 to 4 atoms long, and more preferably 2 or 3 atoms long.
  • aryl group and alkyl group refer to the explanation and preferred range of the aryl group and alkyl group that can be taken by R 41 , R 42 , R 43 , R 51 , R 52 and R 53. Can do.
  • substituent for the aryl group or alkyl group in the general formulas (6) to (9) include an electron-withdrawing group in addition to the alkyl group, aryl group, alkyloxy group, and aryloxy group. it can.
  • R 17 in the general formula (1) represents a hydrogen atom or an electron donating group
  • the electron donating group of R 17 is the above R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7.
  • the electron donating group for R 17 is also preferably an unsubstituted aryl group, and more preferably an unsubstituted phenyl group.
  • the electron donating group for R 17 may be the same as or different from the electron donating group for R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 .
  • Y represents O, S, C (CN) 2 or C (COOH) 2 .
  • Z in the general formula (1) is a carbonyl group.
  • a compound group in which R 17 is an aryl group and Z is a carbonyl group or> C ⁇ C (CN) 2 is more preferable.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ , R 6 ′ , R 7 ′ , R 8 ′ and R 17 ′ are each independently a hydrogen atom Or it is an electron-donating group, Comprising: At least 1 represents an electron-donating group.
  • R 9 ′ , R 10 ′ , R 11 ′ , R 12 ′ , R 13 ′ , R 14 ′ , R 15 ′ and R 16 ′ each independently represents a hydrogen atom or a cyano group.
  • Z ′ represents a single bond or> C ⁇ Y, and Y represents O, S, C (CN) 2 or C (COOH) 2 .
  • the molecular weight of the compound represented by the general formula (1) is preferably 1500 or less, and preferably 1200 or less when it is intended to use an organic layer containing the compound by forming a film by a vapor deposition method, for example. More preferably, it is more preferably 1000 or less, and even more preferably 800 or less. About the lower limit of molecular weight, it can be set as 350 or more, for example.
  • D1 to D3 represent an aryl group substituted with the above electron donating group
  • A1 to A5 represent the above electron withdrawing group
  • H represents a hydrogen atom
  • Ph represents a phenyl group.
  • the method for synthesizing the compound represented by the general formula (1) is not particularly limited.
  • the synthesis of the compound represented by the general formula (1) can be performed by appropriately combining known synthesis methods and conditions.
  • a preferred synthesis method includes a synthesis method represented by the following scheme.
  • a method of synthesizing a compound of the general formula (15) in which one electron donating group D is substituted on the acridine skeleton, R 17 is substituted on the nitrogen atom of the acridine skeleton, and one electron withdrawing group A is substituted on the fluorene skeleton. is given as a typical example.
  • n-butyllithium is reacted with the halogen-substituted diphenylamine represented by the general formula (11), and further the fluorene represented by the general formula (12) is reacted.
  • a cyclene reaction is carried out by adding acetic acid and concentrated hydrochloric acid to the fluorene derivative represented by the general formula (13) thus obtained and heating to obtain the target product represented by the general formula (14).
  • X in the general formula (11) represents a halogen atom. Specific examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a chlorine atom, a bromine atom, and an iodine atom are preferable, and a bromine atom is more preferable.
  • D in the general formulas (11), (13) and (14) represents an electron donating group, and A in the general formulas (12), (13) and (14) represents an electron withdrawing group.
  • the method of synthesizing the compound represented by the general formula (1) other than the general formula (14) can be synthesized according to the method of the above scheme.
  • the compounds represented by the general formula (1) those having an anthrone skeleton, anthraquinone substituted with an electron withdrawing group A (instead of the compound represented by the general formula (12) of the above scheme)
  • anthracene-9,10-quinone By using anthracene-9,10-quinone), it can be synthesized in the same manner.
  • a spiro compound in which a halogen atom is substituted at the position where the cyano group is to be introduced is synthesized, and then the halogen is reacted by reacting CuCN with the halogen atom. Atoms can be converted to cyano groups. The details of these reactions can be referred to the synthesis examples described below.
  • the compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
  • the organic electroluminescence device of the present invention has a structure having an anode, a cathode, and an organic layer between the anode and the cathode.
  • the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
  • the organic electroluminescent element of this invention contains the compound represented by General formula (1) in a light emitting layer. If the compound represented by the general formula (1) is used as a thermally activated delayed fluorescent material in a light emitting layer of an organic electroluminescence device, high luminous efficiency can be achieved at a lower cost than before.
  • the organic electroluminescence element of the present invention has a structure in which at least an anode, an organic layer, and a cathode are laminated.
  • the organic electroluminescence device of the present invention preferably comprises a plurality of organic layers.
  • the organic layers other than the light-emitting layer are called a hole injection layer, a hole transport layer, an electron block layer, a light-emitting layer, a hole block layer, an electron transport layer, an electron injection layer, or the like depending on their functions. They can be used in combination.
  • anode and cathode include: anode / light emitting layer / cathode, anode / hole injection layer / light emitting layer / cathode, anode / hole injection layer / hole transport layer / light emitting layer / cathode, anode / hole injection.
  • anode / organic layer / cathode structures can be formed on a substrate.
  • adopted by this invention is not limited to these.
  • the compound represented by the general formula (1) is particularly preferably used in the light emitting layer, but the use of the compound represented by the general formula (1) as a charge transport material or the like in an organic layer other than the light emitting layer is excluded. Not what you want.
  • each organic layer or electrode constituting the organic electroluminescence element of the present invention When manufacturing each organic layer or electrode constituting the organic electroluminescence element of the present invention, a known manufacturing method can be appropriately selected and employed. For each organic layer or electrode, various materials employed in known organic electroluminescence elements can be selected and used. Furthermore, the organic electroluminescence element of the present invention can be modified as necessary with various modifications that can be easily conceived from known techniques and known techniques. Hereinafter, typical materials constituting the organic electroluminescence element will be described. However, materials that can be used for the organic electroluminescence element of the present invention are not limitedly interpreted by the following description.
  • the substrate functions as a support for supporting the structure of the anode / organic layer / cathode and also functions as a substrate in manufacturing the structure of the anode / organic layer / cathode.
  • the substrate may be made of a transparent material, or may be made of a translucent or opaque material. In the case where light emission is extracted from the anode side, it is preferable to use a transparent substrate. Examples of the material constituting the substrate include glass, quartz, metal, polycarbonate, polyester, polymethacrylate, and polysulfone. If a flexible substrate is used, a flexible organic electroluminescence element can be obtained.
  • the anode has a function of injecting holes toward the organic layer.
  • a material having a high work function is preferably used.
  • a material having 4 eV or more is preferably used.
  • metal for example, aluminum, gold, silver, nickel, palladium, platinum
  • metal oxide for example, indium oxide, tin oxide, zinc oxide, a mixture of indium oxide and tin oxide [ITO], zinc oxide
  • ITO indium oxide
  • IZO metal halide
  • carbon black carbon black.
  • conductive polymers such as polyaniline, poly (3-methylthiophene), polypyrrole and the like.
  • the transmittance is preferably 10% or more, more preferably 50% or more, and further preferably 80% or more.
  • the thickness of the anode is usually 3 nm or more and preferably 10 nm or more.
  • the upper limit can be set to, for example, 1 ⁇ m or less, but may be thicker when transparency is not required for the anode.
  • the anode may have the above function as a substrate.
  • the anode can be formed, for example, by vapor deposition, sputtering, or coating.
  • a conductive polymer When a conductive polymer is used for the anode, it is also possible to form the anode on the substrate using an electrolytic polymerization method.
  • surface treatment can be performed for the purpose of improving the hole injection function. Specific examples of the surface treatment include plasma treatment (for example, argon plasma treatment, oxygen plasma treatment), UV treatment, ozone treatment, and the like.
  • the hole injection layer has a function of transporting holes from the anode to the light emitting layer side. Since the hole injection layer is generally formed on the anode, the hole injection layer is preferably a layer having excellent adhesion to the anode surface. For this reason, it is preferable to comprise with a material with high thin film formation ability.
  • the hole transport layer has a function of transporting holes to the light emitting layer side.
  • the hole transport layer is made of a material excellent in hole transportability.
  • a hole transport material having high hole mobility and low ionization energy is used. An ionization energy of, for example, 4.5 to 6.0 eV can be preferably selected.
  • As the hole transport material various materials that can be used for the hole injection layer or the hole transport layer of the organic electroluminescence element can be appropriately selected and used.
  • the hole transport material may be a polymer material having a repeating unit or a low molecular compound.
  • hole transport materials include aromatic tertiary amine compounds, styrylamine compounds, oxadiazole derivatives, imidazole derivatives, triazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazoles
  • Examples thereof include derivatives, polyarylalkane derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, silane polymers, aniline copolymers, thiophene polymers, and porphyrin compounds.
  • Preferred examples of the hole transporting material include aromatic tertiary amine compounds. Specifically, triphenylamine, tolylamine, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1 , 1′-biphenyl-4,4′-diamine, N, N, N ′, N ′-(4-methylphenyl) -1,1′-phenyl-4,4′-diamine, N, N, N ′ , N ′-(4-Methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N′-diphenyl-N, N′-dinaphthyl-1,1′-biphenyl-4,4 ′ -Diamine, N, N '-(methylphenyl) -N, N'-(4-n-butylphenyl) -phenanthrene-9,10-diamine, N, N-bis (4
  • phthalocyanine-based compounds may also be mentioned as preferred hole transport materials.
  • metal oxides such as poly (ethylenedioxy) thiophene (PEDOT) and molybdenum oxide, and known aniline derivatives can also be preferably used.
  • the hole transport material used in the present invention may be used by selecting only one kind per layer, or may be used by combining two or more kinds per layer.
  • the hole injection layer and the hole transport layer can be formed by, for example, a vapor deposition method, a sputtering method, or a coating method.
  • the thickness of the hole injection layer or the hole transport layer is usually 3 nm or more, and preferably 10 nm or more.
  • the upper limit value can be set to 5 ⁇ m or less, for example.
  • the light emitting layer of the organic electroluminescence device of the present invention may contain a host material and a dopant material, or may consist of only a single material.
  • the light emitting layer of the organic electroluminescent element of the present invention contains a compound represented by the general formula (1).
  • the dopant material is preferably used at 10 wt% or less, more preferably 6 wt% or less, in order to prevent concentration quenching.
  • the dopant material and the host material one kind of material may be used alone, or two or more kinds of materials may be used in combination. Doping can be performed by co-evaporation of a host material and a dopant material. At this time, the host material and the dopant material may be mixed in advance and then simultaneously deposited.
  • Examples of the host material used for the light-emitting layer include carbazole derivatives, quinolinol derivative metal complexes, oxadiazole derivatives, distyrylarylene derivatives, and diphenylanthracene derivatives.
  • materials proposed as host materials for the light emitting layer can be appropriately selected and used.
  • a preferred host material for example, a compound represented by the following general formula (10) can be given.
  • Z represents a q-valent linking group, and q represents an integer of 2 to 4.
  • R 101 and R 102 each independently represent a substituent, and n 101 and n 102 each independently represent an integer of 0 to 4.
  • n101 is any integer of 2 to 4
  • n101 R 101's may be the same as or different from each other
  • n102 R 102 may be the same as or different from each other.
  • R 101 , R 102 , n101 and n102 in each of q structural units may be the same as or different from each other.
  • Examples of the substituent represented by R 101 and R 102 in the general formula (10) include a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted aryloxy group. And a substituted or unsubstituted alkenyl group, a substituted or unsubstituted amino group, a halogen atom, and a cyano group.
  • n101 and n102 are each independently preferably an integer of 0 to 3, more preferably an integer of 0 to 2. Moreover, it is also preferable that both n101 and n102 are 0.
  • Z in the general formula (10) is preferably a linking group containing an aromatic ring or a heterocyclic ring.
  • the aromatic ring may be a single ring or a fused ring in which two or more aromatic rings are fused.
  • the number of carbon atoms in the aromatic ring is preferably 6 to 22, more preferably 6 to 18, still more preferably 6 to 14, and still more preferably 6 to 10.
  • Specific examples of the aromatic ring include a benzene ring and a naphthalene ring.
  • the heterocyclic ring may be a single ring or a fused ring in which one or more heterocyclic rings and an aromatic ring or a heterocyclic ring are fused.
  • the number of carbon atoms in the heterocyclic ring is preferably 5 to 22, more preferably 5 to 18, still more preferably 5 to 14, and still more preferably 5 to 10.
  • the hetero atom constituting the heterocyclic ring is preferably a nitrogen atom.
  • Specific examples of the heterocyclic ring include a pyridine ring, a pyridazine ring, a pyrimidine ring, a triazine ring, a triazole ring, and a benzotriazole ring.
  • Z in the general formula (10) contains an aromatic ring or a heterocyclic ring, and may contain a non-aromatic linking group. Examples of such a non-aromatic linking group include those having the following structure.
  • R 107 , R 108 , R 109 and R 110 in the above non-aromatic linking group each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, substituted or unsubstituted It is preferable that the alkyl group is a substituted or unsubstituted aryl group.
  • R 111 , R 112 and R 113 each independently represent a substituent, n111 and n112 each independently represent an integer of 1 to 4, and n113 is any of 1 to 5 Represents an integer.
  • At least one R 111 , at least one R 112 , and at least one R 113 are aryl groups.
  • n111 is an integer of 2 to 4, it may be the being the same or different each n111 amino R 111
  • n112 is an integer of 2 to 4
  • n112 amino R 112 may be the same as or different from each other.
  • n113 is an integer of 2 to 5
  • n113 R 113 may be the same as or different from each other.
  • n111, n112 and n113 are preferably 1 to 3, more preferably 1 or 2.
  • the hole blocking layer has a function of preventing holes passing through the light emitting layer from moving to the cathode side. It is preferably formed between the light emitting layer and the organic layer on the cathode side.
  • the organic material forming the hole blocking layer include an aluminum complex compound, a gallium complex compound, a phenanthroline derivative, a silole derivative, a quinolinol derivative metal complex, an oxadiazole derivative, and an oxazole derivative.
  • BCP 2,9-dimethyl And -4,7-diphenyl-1,10-phenanthroline
  • the hole block layer can be formed by, for example, a vapor deposition method, a sputtering method, or a coating method.
  • the thickness of the hole block layer is usually 3 nm or more, and preferably 10 nm or more.
  • the upper limit value can be set to 5 ⁇ m or less, for example.
  • the electron injection layer has a function of transporting electrons from the cathode to the light emitting layer. Since the electron injection layer is generally formed so as to be in contact with the cathode, it is preferably a layer having excellent adhesion to the cathode surface.
  • the electron transport layer has a function of transporting electrons to the light emitting layer side.
  • the electron transport layer is made of a material having excellent electron transport properties. For the electron injection layer and the electron transport layer, an electron transport material having high electron mobility and high ionization energy is used. As the electron transport material, various materials that can be used for the electron injection layer or the electron transport layer of the organic electroluminescence element can be appropriately selected and used.
  • the electron transport material may be a polymer material having a repeating unit or a low molecular compound.
  • electron transport materials include fluorenone derivatives, anthraquinodimethane derivatives, diphenoquinone derivatives, thiopyran dioxide derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, perylenetetracarboxylic acid derivatives, quinoxaline derivatives. , Fluorenylidenemethane derivatives, anthraquinodimethane derivatives, anthrone derivatives and the like.
  • preferred electron transport materials include 2,5-bis (1-phenyl) -1,3,4-oxazole, 2,5-bis (1-phenyl) -1,3,4-thiazole, 2,5 -Bis (1-phenyl) -1,3,4-oxadiazole, 2- (4′-tert-butylphenyl) -5- (4 ′′ -biphenyl) 1,3,4-oxadiazole, 2, 5-bis (1-naphthyl) -1,3,4-oxadiazole, 1,4-bis [2- (5 -phenyloxadiazolyl)] benzene, 1,4-bis [2- (5-phenyl) Oxadiazolyl) -4-tert-butylbenzene], 2- (4′-tert- butylphenyl) -5- (4 ′′ -biphenyl) -1,3,4-thiadiazole, 2,5-bis (1- Naphthyl) -1,3,4-thiadiazole, 1,4
  • the electron transport material used in the present invention may be used by selecting only one kind for one layer, or may be used by combining two or more kinds for one layer.
  • the electron injection layer and the electron transport layer can be formed by, for example, a vapor deposition method, a sputtering method, or a coating method.
  • the thickness of the electron injection layer or the electron transport layer is usually 3 nm or more, and preferably 10 nm or more.
  • the upper limit value can be set to 5 ⁇ m or less, for example.
  • the cathode has a function of injecting electrons toward the organic layer.
  • a material having a low work function is preferably used.
  • a material having 4 eV or less is preferably used.
  • Specific examples include metals (eg, tin, magnesium, indium, calcium, aluminum, silver) and alloys (eg, aluminum-lithium alloy, magnesium-silver alloy, magnesium-indium alloy).
  • metals eg, tin, magnesium, indium, calcium, aluminum, silver
  • alloys eg, aluminum-lithium alloy, magnesium-silver alloy, magnesium-indium alloy.
  • the transmittance is preferably 10% or more, more preferably 50% or more, and further preferably 80% or more.
  • the thickness of the cathode is usually 3 nm or more, and preferably 10 nm or more.
  • the upper limit value can be set to 1 ⁇ m or less, for example, but may be thicker if the cathode is not required to be transparent.
  • the cathode can be formed, for example, by vapor deposition or sputtering.
  • a protective layer is preferably formed on the cathode in order to protect the cathode.
  • Such a protective layer is preferably a layer made of a stable metal having a high work function. For example, a metal layer such as aluminum, silver, copper, nickel, chromium, gold, or platinum can be formed.
  • the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention. For details, see “Organic EL Display” by Osamu Shigeru Tokito, Chiba Adachi, and Hideyuki Murata. ) Can be referred to. In particular, the organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination that is in great demand.
  • the solid obtained by concentrating the obtained fraction was recrystallized with a mixed solvent of acetone and methanol to obtain an acicular yellow solid (Compound 1) in a yield of 0.81 g and a yield of 50%.
  • the compound was identified by 1 H-NMR, 13 C-NMR, TOF-Mass and elemental analysis.
  • Example 1 In this example, a test was performed using Compound 1 synthesized in Synthesis Example 1, and an organic electroluminescence device having a structure shown in FIG. 1 was produced.
  • FIG. 2 shows a PL emission spectrum at an excitation wavelength of 339 nm. The co-deposited film emitted green light, and the PL quantum yield was as high as 35%.
  • the PL transient attenuation of the co-deposited film was measured using a streak camera.
  • the measurement results are shown in FIG.
  • the PL transient decay curve agreed well with the two-component fitting, and a short-life component of 18 ns and a long-life component of 5.2 ms were observed. That is, with compound 1, in addition to short-lived fluorescence, thermally activated delayed fluorescence derived from long-lived components was observed.
  • ITO Indium tin oxide
  • mCP3 was formed thereon with a thickness of 60 nm.
  • 6% by weight of Compound 1 and mCP were co-evaporated to form a light emitting layer 4 with a thickness of 20 nm.
  • Bphen5 was formed thereon with a thickness of 40 nm.
  • magnesium-silver (MgAg) 6 was vacuum-deposited with a thickness of 100 nm, and then aluminum (Al) 7 was deposited with a thickness of 20 nm to obtain an organic electroluminescence device having the layer structure shown in FIG. Since the produced organic EL element showed green light emission and agreed well with the PL spectrum, it was confirmed that the light emission from the element was derived from the compound 1.
  • ITO Indium tin oxide
  • TAPC is formed thereon with a thickness of 40 nm.
  • 6 wt% of Compound 1 and TPSi—F were co-evaporated to form a light emitting layer with a thickness of 20 nm.
  • TmPyPB was formed thereon with a thickness of 35 nm.
  • lithium fluoride (LiF) was vacuum-deposited by 1 nm, and then aluminum (Al) was vapor-deposited to a thickness of 60 nm to obtain an organic electroluminescence element.
  • FIG. 4 shows an electroluminescence (EL) spectrum.
  • FIG. 5 shows current density-voltage characteristics-luminance characteristics
  • FIG. 6 shows external quantum efficiency-current density characteristics. It was confirmed that the external quantum efficiency was as high as 10%.
  • Example 2 to 140 In the same manner as in Example 1, the usefulness of compounds 2 to 140 and 142 to 354 can be confirmed.
  • Example 141 In this example, the same test as in Example 1 was performed using Compound 141, and an organic electroluminescence device was produced. (1) Observation of delayed fluorescence 10 wt% of compound 141 and DPEPO or UGH2 were co-evaporated to form a film on a quartz substrate, and PL emission spectrum, PL quantum yield, and PL transient were obtained in the same manner as in Example 1. Attenuation was measured. FIG. 7 shows a PL emission spectrum at an excitation wavelength of 339 nm, and FIG. 8 shows a PL transient decay curve. With compound 141, in addition to short-lived fluorescence, thermally activated delayed fluorescence derived from long-lived components was observed. The PL quantum yield was confirmed to be as high as 74% when co-deposited with DPEPO and 80% when co-deposited with UGH2.
  • ITO Indium tin oxide
  • NPD NPD
  • mCP was formed to a thickness of 10 nm.
  • a light emitting layer was formed to a thickness of 40 nm by co-evaporation of 9% by weight of compound 141 and DPEPO. Further thereon, DPEPO was formed into a film with a thickness of 20 nm.
  • FIG. 9 shows an electroluminescence (EL) spectrum. Since it was in good agreement with the PL spectrum, it was confirmed that light emission from the device was derived from compound 141.
  • FIG. 10 shows current density-voltage characteristics-luminance characteristics
  • FIG. 11 shows external quantum efficiency-current density characteristics. The external quantum efficiency was confirmed to be as high as 10.7%.
  • the organic electroluminescence device of the present invention can be manufactured at low cost and can realize high luminous efficiency. Moreover, the compound of this invention is useful as a luminescent material for such an organic electroluminescent element. For this reason, this invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

下記一般式で表される化合物を発光層に用いた有機エレクトロルミネッセンス素子は、発光効率が高くて、安価に製造することができる[R~RおよびR17の少なくとも1つは電子供与基で、他は水素原子を表し、R~R16の少なくとも1つはα位に非共有電子対を持たない電子吸引基で、他は水素原子を表し、Zは単結合またはまたは>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。ただし、Zが単結合であるとき、R~R16の少なくとも1つはα位に非共有電子対を持たない電子吸引基である。]

Description

有機エレクトロルミネッセンス素子およびそれに用いる化合物
 本発明は、発光効率が高い有機エレクトロルミネッセンス素子(有機EL素子)とそれに用いる発光材料に関する。
 有機エレクトロルミネッセンス素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、ホール輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、アクリジン骨格を有するスピロ化合物を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられ、これまでにも幾つかの提案がなされてきている。
 例えば、特許文献1~4には、アクリジン骨格とフルオレン骨格をスピロ結合した化合物をホール輸送層のホスト材料として用いた有機エレクトロルミネッセンス素子が記載されている。そのうち、特許文献1には、アクリジン骨格とアントロン骨格をスピロ結合した化合物をホール輸送層のホスト材料として用いた有機エレクトロルミネッセンス素子も記載されている。また、特許文献5~14には、アクリジン骨格とフルオレン骨格をスピロ結合した化合物を発光層に用いた有機エレクトロルミネッセンス素子が記載されている。
中国特許公開第101659638号公報 米国特許公開2004/219386号公報 米国特許公開2010/19658号公報 国際公開2007/105906号公報 国際公開2006/33564号公報 国際公開2006/80637号公報 国際公開2006/80638号公報 国際公開2006/80640号公報 国際公開2006/80641号公報 国際公開2006/80642号公報 国際公開2006/80643号公報 国際公開2006/80644号公報 国際公開2006/80645号公報 国際公開2006/80646号公報
 このようにアクリジン骨格を有するスピロ化合物については、これまで種々の検討がなされており、有機エレクトロルミネッセンス素子への応用に関する幾つかの提案がなされている。しかしながら、アクリジン骨格を有するスピロ化合物のすべてについて網羅的な研究がされ尽くされているとは言えない。特に、アクリジン骨格を有するスピロ化合物の有機エレクトロルミネッセンス素子の発光材料としての用途については、一部の化合物について有用性が確認されているに過ぎない。また、アクリジン骨格を有するスピロ化合物の化学構造とその化合物の発光材料としての有用性の間には、明確な関係が見出されるに至っておらず、化学構造に基づいて発光材料としての有用性を予測することは困難な状況にある。さらに、アクリジン骨格を有するスピロ化合物は、合成が必ずしも容易ではないことから、化合物を提供すること自体に困難が伴うこともある。本発明者らはこれらの課題を考慮して、これまでに開発・検討されるに至っていないアクリジン骨格を有するスピロ化合物を合成して、その有機エレクトロルミネッセンス素子の発光材料としての有用性を評価することを目的として検討を進めた。また、発光材料として有用な化合物の一般式を導きだし、発光効率が高い有機エレクトロルミネッセンス素子の構成を一般化することも目的として鋭意検討を進めた。
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、アクリジン骨格を有する特定のスピロ化合物が有機エレクトロルミネッセンス素子の発光材料として有用であることを明らかにした。特に、アクリジン骨格を有するスピロ化合物の中に、遅延蛍光材料として有用な化合物があることを初めて見出し、発光効率が高い有機エレクトロルミネッセンス素子を安価に提供しうることを明らかにした。本発明者らは、この知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。
[1] 陽極、陰極、および前記陽極と前記陰極の間に発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、前記発光層に下記一般式(1)で表される化合物を含むことを特徴とする有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000013
[一般式(1)において、R、R、R、R、R、R、R、RおよびR17は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R、R10、R11、R12、R13、R14、R15およびR16は、各々独立に水素原子またはα位に非共有電子対を持たない電子吸引基である。Zは、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。ただし、Zが単結合であるとき、R、R10、R11、R12、R13、R14、R15およびR16の少なくとも1つはα位に非共有電子対を持たない電子吸引基である。]
[2] 遅延蛍光を放射することを特徴とする[1]に記載の有機エレクトロルミネッセンス素子。
[3] 一般式(1)のZが単結合であることを特徴とする[1]または[2]に記載の有機エレクトロルミネッセンス素子。
[4] 一般式(1)のZがカルボニル基であることを特徴とする[1]または[2]に記載の有機エレクトロルミネッセンス素子。
[5] 一般式(1)のZが>C=C(CN)であることを特徴とする[1]または[2]に記載の有機エレクトロルミネッセンス素子。
[6] 一般式(1)のR17がアリール基であることを特徴とする[1]~[5]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
[7] 一般式(1)のR、R、R、R、R、R、RおよびRの少なくとも1つが、電子供与基で置換されたアリール基であることを特徴とする[1]~[6]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
[8] 一般式(1)のR、R、R、R、R、R、RおよびRの少なくとも1つが、下記一般式(2)で表される構造を有することを特徴とする[1]~[6]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000014
[一般式(2)において、R21、R22、R23、R24およびR25は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。]
[9] 一般式(1)のR、R、R、R、R、R、RおよびRの少なくとも1つが、下記一般式(3)~(5)のいずれかで表される構造を有することを特徴とする[1]~[6]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000015
[上式において、R31およびR32は、各々独立に置換もしくは無置換のアリール基を表し、R31が表すアリール基とR32が表すアリール基は連結していてもよい。R41、R42およびR43は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R41およびR42は一緒になって環構造を形成していてもよく、R42およびR43は一緒になって環構造を形成していてもよい。R51、R52およびR53は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R51およびR52は一緒になって環構造を形成していてもよく、R52およびR53は一緒になって環構造を形成していてもよい。]
[10] 一般式(1)のR、R、R、R、R、R、RおよびRの少なくとも1つが、下記のいずれかの構造を有することを特徴とする[1]~[6]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000016
[11] 一般式(1)のR、R10、R11、R12、R13、R14、R15およびR16の少なくとも1つが、シアノ基、または下記一般式(6)~(9)のいずれかで表される構造を有することを特徴とする[1]~[10]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000017
[上式において、R61およびR62は、各々独立に置換もしくは無置換のアリール基を表す。R71およびR72は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R71およびR72は一緒になって環構造を形成していてもよい。R81、R82およびR83は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R81およびR82は一緒になって環構造を形成していてもよく、R82およびR83は一緒になって環構造を形成していてもよい。R91は水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、Zはヘテロ芳香環を形成するのに必要な連結基を表す。]
[12] 一般式(1)のR、R10、R11、R12、R13、R14、R15およびR16の少なくとも1つが、下記のいずれかの構造を有することを特徴とする[1]~[10]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000018
[13] 前記一般式(1)で表される化合物を発光層のドーパントとして用いたことを特徴とする[1]~[12]のいずれか一項に記載の有機エレクトロルミネッセンス素子。
[14] 下記一般式(1’)で表される化合物。
Figure JPOXMLDOC01-appb-C000019
[一般式(1’)において、R1’、R2’、R3’、R4’、R5’、R6’、R7’、R8’およびR17’は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’は、各々独立に水素原子またはシアノ基を表す。Z’は、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。Z’が単結合、>C=Oまたは>C=Sであるとき、R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’の少なくとも1つはシアノ基である。]
[15] 一般式(1’)のZ’が単結合であることを特徴とする[14]に記載の化合物。
[16] 一般式(1’)のZ’がカルボニル基であることを特徴とする[14]に記載の化合物。
[17] 一般式(1’)のZ’が>C=C(CN)であることを特徴とする[14]に記載の化合物。
[18] 一般式(1’)のR17’がアリール基であることを特徴とする[14]~[17]のいずれか一項に記載の化合物。
[19] 一般式(1’)のR1’、R2’、R3’、R4’、R5’、R6’、R7’およびR8’の少なくとも1つが、電子供与基で置換されたアリール基であることを特徴とする[14]~[17]のいずれか一項に記載の化合物。
[20] 一般式(1’)のR1’、R2’、R3’、R4’、R5’、R6’、R7’およびR8’の少なくとも1つが、下記一般式(2)で表される構造を有することを特徴とする[14]~[17]のいずれか一項に記載の化合物。
Figure JPOXMLDOC01-appb-C000020
[一般式(2)において、R21、R22、R23、R24およびR25は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。]
[21] 一般式(1’)のR1’、R2’、R3’、R4’、R5’、R6’、R7’およびR8’の少なくとも1つが、下記一般式(3)~(5)のいずれかで表される構造を有することを特徴とする[14]~[17]のいずれか一項に記載の化合物。
Figure JPOXMLDOC01-appb-C000021
[上式において、R31およびR32は、各々独立に置換もしくは無置換のアリール基を表し、R31が表すアリール基とR32が表すアリール基は連結していてもよい。R41、R42およびR43は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R41およびR42は一緒になって環構造を形成していてもよく、R42およびR43は一緒になって環構造を形成していてもよい。R51、R52およびR53は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R51およびR52は一緒になって環構造を形成していてもよく、R52およびR53は一緒になって環構造を形成していてもよい。]
[22] 一般式(1’)のR1’、R2’、R3’、R4’、R5’、R6’、R7’およびR8’の少なくとも1つが、下記のいずれかの構造を有することを特徴とする[14]~[17]のいずれか一項に記載の化合物。
Figure JPOXMLDOC01-appb-C000022
 [23] 下記一般式(1)で表される化合物からなる遅延蛍光材料。
Figure JPOXMLDOC01-appb-C000023
[一般式(1)において、R、R、R、R、R、R、R、RおよびR17は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R、R10、R11、R12、R13、R14、R15およびR16は、各々独立に水素原子またはα位に非共有電子対を持たない電子吸引基であるZは、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。ただし、Zが単結合であるとき、R、R10、R11、R12、R13、R14、R15およびR16の少なくとも1つはα位に非共有電子対を持たない電子吸引基である。]
[24] 下記一般式(1’)で表される化合物からなる遅延蛍光材料。
Figure JPOXMLDOC01-appb-C000024
[一般式(1’)において、R1’、R2’、R3’、R4’、R5’、R6’、R7’、R8’およびR17’は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’は、各々独立に水素原子またはシアノ基を表す。Z’は、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。Z’が単結合、>C=Oまたは>C=Sであるとき、R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’の少なくとも1つはシアノ基である。]
 本発明の有機エレクトロルミネッセンス素子は、発光効率が高くて、安価に提供することが可能である。また、本発明の化合物は、そのような有機エレクトロルミネッセンス素子の発光材料として極めて有用である。
実施例1の有機エレクトロルミネッセンス素子の層構成を示す概略断面図である。 実施例1におけるPL発光スペクトルである。 実施例1におけるPL過渡減衰を示すグラフである。 実施例1の有機エレクトロルミネッセンス素子のエレクトロルミネッセンス(EL)スペクトルである。 実施例1の有機エレクトロルミネッセンス素子の電流密度-電圧特性-輝度特性を示すグラフである。 実施例1の有機エレクトロルミネッセンス素子の外部量子効率-電流密度特性を示すグラフである。 実施例141におけるPL発光スペクトルである。 実施例141におけるPL過渡減衰を示すグラフである。 実施例141の有機エレクトロルミネッセンス素子のエレクトロルミネッセンス(EL)スペクトルである。 実施例141の有機エレクトロルミネッセンス素子の電流密度-電圧特性-輝度特性を示すグラフである。 実施例141の有機エレクトロルミネッセンス素子の外部量子効率-電流密度特性を示すグラフである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[一般式(1)で表される化合物]
 本発明の有機エレクトロルミネッセンス素子は、下記一般式(1)で表される化合物を発光層に含むことを特徴とする。そこで、一般式(1)で表される化合物について、まず説明する。
Figure JPOXMLDOC01-appb-C000025
 一般式(1)のR、R、R、R、R、R、R、RおよびR17は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。これらの2つ以上が電子供与基を表すとき、2つ以上の電子供与基は同一であっても異なっていてもよい。好ましいのは、同一である場合である。R、R、R、R、R、R、RおよびRのうち、電子供与基を表すものはR、R、R、R、R、RおよびR17のいずれかであることが好ましく、R、R、R、RおよびR17のいずれかであることがより好ましい。さらに好ましくは、R17であるか、あるいは、R、R、RおよびRのいずれか1つまたは2つであり、2つである場合はRおよびRのいずれか1つと、RおよびRのいずれか1つであることが好ましい。
 R、R、R、R、R、R、R、RおよびR17が表す電子供与基は、スピロ環に結合したときに電子をこれらの環に対して供与する性質を有する基である。電子供与基は、芳香族基、ヘテロ芳香族基、脂肪族基のいずれであってもよく、これらの2つ以上が複合した基であってもよい。電子供与基の例として、アルキル基(直鎖状、分枝状、環状のいずれであってもよく、好ましくは炭素数1~6であり、より好ましくは炭素数1~3であり、具体例としてメチル基、エチル基、プロピル基、ペンチル基、ヘキシル基、イソプロピル基を挙げることができる)、アルコキシ基(直鎖状、分枝状、環状のいずれであってもよく、好ましくは炭素数1~6であり、より好ましくは炭素数1~3であり、具体例としてメトキシ基を挙げることができる)、アミノ基または置換アミノ基(好ましくは芳香族基で置換されたアミノ基であり、具体例としてジフェニルアミノ基、アニリル基、トリルアミノ基を挙げることができる)、アリール基(単環でも融合環でもよいし、さらにアリール基で置換されていてもよく、具体例としてフェニル基、ビフェニル基、ターフェニル基を挙げることができる)、複素環構造を含む電子供与基(好ましくは窒素原子または硫黄原子を含む複素環構造を含む電子吸引基であり、具体例として、チオフェニル基、ベンゾチオフェニル基、ジュロリジル基、ピロリル基、インドリル基、カルバゾリル基を挙げることができる)等を挙げることができる。電子供与基は、例えばσp値が-0.06以下であるものが好ましく、-0.14以下であるものがより好ましく、-0.28以下であるものがさらに好ましい。
 これらの中で、R、R、R、R、R、R、RおよびRは、水素原子、または電子供与基で置換されたアリール基であることが好ましい。ここでいうアリール基は、1つの芳香環からなるものであってもよいし、2以上の芳香環が融合した構造を有するものであってもよい。アリール基の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であること(すなわちフェニル基、1-ナフチル基、2-ナフチル基)がさらにより好ましく、フェニル基が最も好ましい。また、アリール基に置換する電子供与基は、上記のσp値を有するものであることが好ましい。
 R、R、R、R、R、R、RおよびRは、水素原子または下記一般式(2)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000026
 一般式(2)において、R21、R22、R23、R24およびR25は、各々独立に水素原子または電子供与基を表す。ただし、これらの少なくとも1つは電子供与基を表す。ここでいう電子供与基は、上記のσp値を有するものであることが好ましい。R21、R22、R23、R24およびR25の中では、R22およびR24が電子供与基であるか、R23が電子供与基であることが好ましく、R23が電子供与基であることがより好ましい。
 R、R、R、R、R、R、RおよびRは、水素原子または下記一般式(3)~(5)のいずれかで表される構造を有するものであることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000027
 上式において、R31およびR32は、各々独立に置換もしくは無置換のアリール基を表し、R31が表すアリール基とR32が表すアリール基は連結していてもよい。R41、R42およびR43は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R41およびR42は一緒になって環構造を形成していてもよく、R42およびR43は一緒になって環構造を形成していてもよい。R51、R52およびR53は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R51およびR52は一緒になって環構造を形成していてもよく、R52およびR53は一緒になって環構造を形成していてもよい。
 R41およびR42、R42およびR43、R51およびR52、ならびにR52およびR53が一緒になって形成する環構造は、芳香環、ヘテロ芳香環、脂肪環のいずれであってもよいが、芳香環またはヘテロ芳香環であることが好ましく、芳香環であることがより好ましい。環構造の具体例として、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環などを挙げることができる。
 本明細書でいうアリール基は、1つの芳香環からなるものであってもよいし、2以上の芳香環が融合した構造を有するものであってもよい。アリール基の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であること(すなわちフェニル基、1-ナフチル基、2-ナフチル基)がさらにより好ましい。
 本明細書でいうアルキル基は、直鎖状であっても、分枝状であっても、環状であってもよい。好ましいのは直鎖状または分枝状のアルキル基である。アルキル基の炭素数は、1~20であることが好ましく、1~12であることがより好ましく、1~6であることがさらに好ましく、1~3であること(すなわちメチル基、エチル基、n-プロピル基、イソプロピル基)がさらにより好ましい。環状のアルキル基としては、例えばシクロペンチル基、シクロヘキシル基、シクロヘプチル基を挙げることができる。
 アリール基やアルキル基の置換基としては、アルキル基、アリール基、アルコキシ基、アリールオキシ基を挙げることができる。置換基として採用しうるアルキル基とアリール基の説明と好まし範囲は、上記と同じである。また、置換基として採用しうるアルコキシ基は、直鎖状であっても、分枝状であっても、環状であってもよい。好ましいのは直鎖状または分枝状のアルコキシ基である。アルコキシ基の炭素数は、1~20であることが好ましく、1~12であることがより好ましく、1~6であることがさらに好ましく、1~3であること(すなわちメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基)がさらにより好ましい。環状のアルコキシ基としては、例えばシクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基を挙げることができる。また、置換基として採用しうるアリールオキシ基は、1つの芳香環からなるものであってもよいし、2以上の芳香環が融合した構造を有するものであってもよい。アリールオキシ基の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であること(すなわちフェニルオキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基)がさらにより好ましい。
 一般式(3)~(5)中のアルキル基とアリール基の置換基としては、電子供与性を示す基も挙げることができる。
 R、R、R、R、R、R、RおよびRが表す電子供与基の好ましい具体例を以下に列挙する。ただし、一般式(1)において採用することができる電子供与基は、これらの具体例によって限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000028
 一般式(1)のR、R10、R11、R12、R13、R14、R15およびR16は、各々独立に水素原子またはα位に非共有電子対を持たない電子吸引基を表す。ただし、Zが単結合であるとき、これらの少なくとも1つはα位に非共有電子対を持たない電子吸引基を表す。これらの2つ以上が電子吸引基を表すとき、2つ以上の電子吸引基は同一であっても異なっていてもよい。好ましいのは、同一である場合である。R、R10、R11、R12、R13、R14、R15およびR16のうち、電子吸引基を表すものはR10、R11、R12、R13、R14およびR15のいずれかであることが好ましく、R10、R11、R14およびR15のいずれかであることがより好ましい。さらに好ましくは、R10、R11、R14およびR15のいずれか1つまたは2つであり、2つである場合はR10およびR11のいずれか1つと、R14およびR15のいずれか1つであることが好ましい。
 一般式(1)のR、R10、R11、R12、R13、R14、R15およびR16が表す電子吸引基は、スピロ環に結合したときに電子をスピロ環から吸引する性質を有する基である。ただし、α位に非共有電子対を持つ電子吸引基(例えばハロゲン原子)は除かれる。電子吸引基は、芳香族基、ヘテロ芳香族基、脂肪族基のいずれであってもよく、これらの2つ以上が複合した基であってもよい。電子吸引基の例として、ニトロ基、パーフルオロアルキル基(好ましくは炭素数1~6であり、より好ましくは炭素数1~3であり、具体例としてトリフルオロメチル基を挙げることができる)、スルホニル基、複素環構造を含む電子吸引基(好ましくは窒素原子または硫黄原子を含む複素環構造を含む電子吸引基であり、具体例として、オキサジアゾリル基、ベンゾチアジアゾリル基、テトラゾリル基、チアゾリル基、イミダゾリル基等を挙げることができる)、フォスフィンオキシド構造を含む基、シアノ基等を挙げることができる。電子吸引基の群として、例えば上記の電子吸引基の具体例からシアノ基を除いた群を挙げることができる。電子吸引基は、例えばσp値が0.02以上であるものが好ましく、0.34以上であるものがより好ましく、0.62以上であるものがさらに好ましい。
 R、R10、R11、R12、R13、R14、R15およびR16のうちの少なくとも1つは、シアノ基、または下記一般式(6)~(9)のいずれかで表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000029
 上式において、R61およびR62は、各々独立に置換もしくは無置換のアリール基を表す。R71およびR72は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R71およびR72は一緒になって環構造を形成していてもよい。R81、R82およびR83は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R81およびR82は一緒になって環構造を形成していてもよく、R82およびR83は一緒になって環構造を形成していてもよい。R91は水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、Zはヘテロ芳香環を形成するのに必要な連結基を表す。Zの連結鎖は炭素原子のみからなるものであってもよいし、ヘテロ原子のみからなるものであってもよいし、炭素原子とヘテロ原子が混在しているものであってもよい。ヘテロ原子としては、窒素原子が好ましい。また、連結鎖は2~4原子長であることが好ましく、2または3原子長であることがより好ましい。
 ここでいうアリール基とアルキル基の説明と好ましい範囲については、R41、R42、R43、R51、R52およびR53が採りうるアリール基とアルキル基の説明と好ましい範囲を参照することができる。ただし、一般式(6)~(9)におけるアリール基やアルキル基の置換基としては、アルキル基、アリール基、アルキルオキシ基、アリールオキシ基の他に、電子吸引性を示す基も挙げることができる。
 R、R10、R11、R12、R13、R14、R15およびR16が表す電子吸引基の好ましい具体例を以下に列挙する。ただし、一般式(1)において採用することができる電子吸引基は、これらの具体例によって限定的に解釈されることはない。
Figure JPOXMLDOC01-appb-C000030
 一般式(1)におけるR17は、水素原子または電子供与基を表し、R17の電子供与基については、上記のR、R、R、R、R、R、RおよびRにおける電子供与基の説明と好ましい範囲を参照することができる。ただし、R17の電子供与基は、無置換のアリール基であることも好ましく、その中では無置換のフェニル基であることがより好ましい。R17の電子供与基は、R、R、R、R、R、R、RおよびRにおける電子供与基と同一であっても異なっていてもよい。
 一般式(1)におけるZは、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。例えばYがOである場合は、一般式(1)におけるZはカルボニル基となる。発光効率の観点からは、例えば、R17がアリール基であって、Zがカルボニル基または>C=C(CN)である化合物群などが、より好ましい。
 上記の一般式(1)で表される化合物のうち、以下の一般式(1’)で表される化合物は新規化合物である。
Figure JPOXMLDOC01-appb-C000031
 一般式(1’)において、R1’、R2’、R3’、R4’、R5’、R6’、R7’、R8’およびR17’は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’は、各々独立に水素原子またはシアノ基を表す。Z’は、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。Z’が単結合、>C=Oまたは>C=Sであるとき、R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’の少なくとも1つはシアノ基である。
 一般式(1’)における電子供与基、電子吸引基の説明と好ましい範囲については、上記一般式(1)における対応する記載を参照することができる。
 一般式(1)で表される化合物の分子量は、例えば該化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値については、例えば350以上とすることができる。
 以下において、一般式(1)で表される化合物の具体例を例示するが、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。なお、表中において、D1~D3は上記の電子供与基で置換されたアリール基を表し、A1~A5は上記の電子吸引基を表し、Hは水素原子を表し、Phはフェニル基を表す。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
[一般式(1)で表される化合物の合成法]
 一般式(1)で表される化合物の合成法は特に制限されない。一般式(1)で表される化合物の合成は、既知の合成法や条件を適宜組み合わせることにより行うことができる。
 例えば、好ましい合成法として、下記のスキームで表される合成法を挙げることができる。ここでは、アクリジン骨格に電子供与基Dが1つ置換し、アクリジン骨格の窒素原子にR17が置換し、フルオレン骨格に電子吸引基Aが1つ置換した一般式(15)の化合物の合成法を典型例として挙げている。
Figure JPOXMLDOC01-appb-C000042
 上記のスキームでは、まず一般式(11)で表されるハロゲン置換ジフェニルアミンに対して、n-ブチルリチウムを反応させ、さらに一般式(12)で表されるフルオレンを反応させる。これによって得られる一般式(13)で表されるフルオレン誘導体に、酢酸と濃塩酸を添加して加熱することにより閉環反応を行い、一般式(14)で表される目的生成物を得ることができる。一般式(11)におけるXはハロゲン原子を表す。具体的にはフッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子、ヨウ素原子が好ましく、臭素原子がより好ましい。一般式(11)、(13)および(14)におけるDは電子供与基を表し、一般式(12)、(13)および(14)におけるAは電子吸引基を表す。第1ステップのカップリング反応と、第2ステップの閉環反応には、同種のカップリング反応や閉環反応に通常用いられている反応条件を採用することができる。
 一般式(14)以外の一般式(1)で表される化合物の合成法は、上記のスキームの方法に準じて合成することができる。例えば、一般式(1)で表される化合物のうち、アントロン骨格を有するものについては、上記スキームの一般式(12)で表される化合物の代わりに、電子吸引基Aで置換されたアントラキノン(アントラセン-9,10-キノン)を用いることにより、同様に合成することができる。また、スピロ環に導入しようとしている電子供与基Dの種類や電子吸引基Aの種類によっては、その置換基に特有の反応を利用することも可能である。例えば、電子吸引基としてシアノ基を導入しようとする場合は、シアノ基を導入しようとしている位置にハロゲン原子が置換したスピロ化合物を合成しておいて、次いでCuCNとハロゲン原子を反応させることによってハロゲン原子をシアノ基へ変換することができる。
 これらの反応の詳細については、後述の合成例を参考にすることができる。また、一般式(1)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。
[有機エレクトロルミネッセンス素子]
 本発明の有機エレクトロルミネッセンス素子は、陽極、陰極、および陽極と陰極の間に有機層を有する構造を備えている。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。本発明の有機エレクトロルミネッセンス素子は、発光層に一般式(1)で表される化合物を含むものである。
 一般式(1)で表される化合物を、熱活性化遅延蛍光材料として有機エレクトロルミネッセンス素子の発光層に用いれば、高い発光効率を従来よりも安価に達成しうる。従来は、発光効率が高い有機エレクトロルミネッセンス素子を製造するために、励起子生成効率が高いリン光材料を用いた研究が活発に行われてきた。しかしながら、リン光材料を用いる場合は、IrやPtといった希少金属を利用する必要があるため、コストが高くなるという問題があった。遅延蛍光材料を用いれば、このような高価な材料を必要としないため、発光効率が高い有機エレクトロルミネッセンス素子を安価に提供することが可能になる。
 本発明の有機エレクトロルミネッセンス素子は、少なくとも陽極と有機層と陰極を積層した構造を有するものである。単層型有機エレクトロルミネッセンス素子の場合は、陽極と陰極の間に発光層だけを備えているが、本発明の有機エレクトロルミネッセンス素子には複数の有機層を備えていることが好ましい。発光層以外の有機層は、その機能に応じて、ホール注入層、ホール輸送層、電子ブロック層、発光層、ホールブロック層、電子輸送層、電子注入層などと呼ばれ、既知の材料を適宜組み合わせて用いることができる。陽極と陰極を含めた具体的な構成例として、陽極\発光層\陰極、陽極\ホール注入層\発光層\陰極、陽極\ホール注入層\ホール輸送層\発光層\陰極、陽極\ホール注入層\発光層\電子注入層\陰極、陽極\ホール注入層\ホール輸送層\発光層\電子注入層\陰極、陽極\ホール注入層\発光層\電子輸送層\電子注入層\陰極、陽極\ホール注入層\ホール輸送層\発光層\電子輸送層\電子注入層\陰極、陽極\発光層\電子注入層\陰極、陽極\発光層\電子注入層\電子輸送層\陰極、陽極\ホール注入層\発光層\ホール阻止層\電子注入層\陰極を挙げることができる。これらの陽極\有機層\陰極の構造は、基板の上に形成することができる。なお、本発明で採用することができる構成はこれらに限定されるものではない。また、一般式(1)で表される化合物は発光層に用いることが特に好ましいが、一般式(1)で表される化合物を電荷輸送材料等として発光層以外の有機層に用いることを排除するものではない。
 本発明の有機エレクトロルミネッセンス素子を構成する各有機層や電極を製造する際には、既知の製造方法を適宜選択して採用することができる。また、各有機層や電極には、既知の有機エレクトロルミネッセンス素子に採用されている種々の材料を選択して用いることができる。さらに、本発明の有機エレクトロルミネッセンス素子には、公知の技術や公知の技術から容易に想到しうる様々な改変を必要に応じて加えることができる。以下において、有機エレクトロルミネッセンス素子を構成する代表的な材料について説明するが、本発明の有機エレクトロルミネッセンス素子に用いることができる材料は以下の記載によって制限的に解釈されることはない。
(基板)
 基板は、陽極\有機層\陰極の構造を支える支持体として機能するとともに、陽極\有機層\陰極の構造を製造する際の基板として機能するものである。基板は、透明材料で構成されていても、半透明ないし不透明な材料で構成されていてもよい。陽極側から発光を取り出す場合は、透明な基板を用いることが好ましい。基板を構成する材料として、ガラス、石英、金属、ポリカーボネート、ポリエステル、ポリメタクリレート、ポリスルホンを挙げることができる。可撓性を有する基板を用いれば、フレキシブルな有機エレクトロルミネッセンス素子とすることができる。
(陽極) 
 陽極は、有機層へ向けてホールを注入する機能を有する。そのような陽極としては、仕事関数が高い材料を用いることが好ましく、例えば4eV以上の材料を用いることが好ましい。具体的には、金属(例えば、アルミニウム、金、銀、ニッケル、パラジウム、白金)、金属酸化物(例えば、酸化インジウム、酸化スズ、酸化亜鉛、酸化インジウムと酸化スズの混合物[ITO]、酸化亜鉛と酸化インジウムの混合物[IZO])、ハロゲン化金属(例えば、ヨウ化銅)、カーボンブラックを挙げることができる。また、ポリアニリン、ポリ(3-メチルチオフェン)、ポリピロール等の導電性ポリマーを用いることも可能である。陽極側から発光を取り出す場合は、ITOやIZOなどの発光に対する透過率が高い材料を用いることが好ましい。透過率は、10%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることがさらに好ましい。また、陽極の厚みは、通常は3nm以上であり、10nm以上であることが好ましい。上限値は、例えば1μm以下とすることができるが、陽極に透明性が要求されない場合はさらに厚くてもよく、例えば、上記の基板としての機能を陽極が兼ね備えるようにすることもできる。陽極は、例えば蒸着法、スパッタリング法、塗布法により形成することができる。導電性ポリマーを陽極に用いる場合は、電解重合法を用いて基板上に陽極を形成することも可能である。陽極の形成後は、ホール注入機能を向上させること等を目的として表面処理を行うことができる。表面処理の具体例として、プラズマ処理(例えば、アルゴンプラズマ処理、酸素プラズマ処理)、UV処理、オゾン処理などが挙げられる。
(ホール注入層およびホール輸送層) 
 ホール注入層は、ホールを陽極から発光層側へ輸送する機能を有する。ホール注入層は、一般に陽極の上に形成されることから、陽極表面との密着性に優れた層であることが好ましい。このため、薄膜形成能が高い材料で構成されることが好ましい。ホール輸送層は、ホールを発光層側へ輸送する機能を有している。ホール輸送層には、ホール輸送性に優れた材料から構成される。
 ホール注入層およびホール輸送層には、ホール移動度が高くてイオン化エネルギーが小さいホール輸送材料を用いる。イオン化エネルギーは、例えば4.5~6.0eVのものを好ましく選択することができる。ホール輸送材料としては、有機エレクトロルミネッセンス素子のホール注入層またはホール輸送層に用いることができるとされている種々の材料を適宜選択して用いることができる。ホール輸送材料は、繰り返し単位を有するポリマー材料であってもよいし、低分子化合物であってもよい。
 ホール輸送材料として、例えば、芳香族第三級アミン化合物、スチリルアミン化合物、オキサジアゾール誘導体、イミダゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、ポリアリールアルカン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、シラン系重合体、アニリン系共重合体、チオフェン系重合体、ポルフィリン化合物を挙げることができる。
 好ましいホール輸送材料として芳香族第三級アミン化合物を挙げることができ、具体的には、トリフェニルアミン、トリトリルアミン、N,N’-ジフェニル-N,N’-(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N,N’,N’-(4-メチルフェニル)-1,1’-フェニル-4,4’-ジアミン、N,N,N’,N’-(4-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ジナフチル-1,1’-ビフェニル-4,4’-ジアミン、N,N’-(メチルフェニル)-N,N’-(4-n-ブチルフェニル)-フェナントレン-9,10-ジアミン、N,N-ビス(4-ジ-4-トリルアミノフェニル)-4-フェニル-シクロヘキサン、N,N’-ビス(4’-ジフェニルアミノ-4-ビフェニリル)-N,N’-ジフェニルベンジジン、N,N’-ビス(4’-ジフェニルアミノ-4-フェニル)-N,N’-ジフェニルベンジジン、N,N’-ビス(4’-ジフェニルアミノ-4-フェニル)-N,N’-ジ(1-ナフチル)ベンジジン、N,N’-ビス(4’-フェニル(1-ナフチル)アミノ-4-フェニル)-N,N’-ジフェニルベンジジン、N,N’-ビス(4’-フェニル(1-ナフチル)アミノ-4-フェニル)-N,N’-ジ(1-ナフチル)ベンジジン等を挙げることができる。また、好ましいホール輸送材料としてフタロシアニン系化合物を挙げることもでき、具体的には、H2Pc、CuPc、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2SiPc、(HO)AlPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc-O-GaPcを挙げることができる[Pcはフタロシアニンを表す]。さらに、ポリ(エチレンジオキシ)チオフェン(PEDOT)、酸化モリブデン等の金属酸化物、公知のアニリン誘導体も好ましく用いることができる。
 本発明で用いるホール輸送材料は、1層に1種のみを選択して用いてもよいし、1層に2種以上を組み合わせて用いてもよい。また、ホール注入層やホール輸送層は、例えば蒸着法、スパッタリング法、塗布法により形成することができる。ホール注入層やホール輸送層の厚みは、通常は3nm以上であり、10nm以上であることが好ましい。上限値は、例えば5μm以下とすることができる。
(発光層)
 本発明の有機エレクトロルミネッセンス素子の発光層は、ホスト材料とドーパント材料を含むものであってもよいし、単一材料のみからなるものであってもよい。本発明の有機エレクトロルミネッセンス素子の発光層は、一般式(1)で表される化合物を含む。
 発光層がホスト材料とドーパント材料を含むとき、濃度消光を防ぐために、ドーパント材料はホスト材料に対して10重量%以下で用いることが好ましく、6重量%以下で用いることがより好ましい。ドーパント材料およびホスト材料は、いずれも1種の材料を単独で用いてもよいし、2種以上の材料を組み合わせて用いてもよい。ドーピングは、ホスト材料とドーパント材料を共蒸着することにより行うことができるが、このときホスト材料とドーパント材料はあらかじめ混合しておいてから同時に蒸着してもよい。
 発光層に用いられるホスト材料として、カルバゾール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、ジスチリルアリーレン誘導体、ジフェニルアントラセン誘導体等が挙げられる。これら以外にも、発光層のホスト材料として提案されているものを適宜選択して用いることができる。好ましいホスト材料として、例えば下記一般式(10)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000043
 一般式(10)において、Zはq価の連結基を表し、qは2~4のいずれかの整数を表す。R101およびR102は各々独立に置換基を表し、n101およびn102は各々独立に0~4のいずれかの整数を表す。n101が2~4のいずれかの整数であるとき、n101個のR101はそれぞれ互いに同一であっても異なっていてもよく、n102が2~4のいずれかの整数であるとき、n102個のR102はそれぞれ互いに同一であっても異なっていてもよい。さらに、q個の各構造単位におけるR101、R102、n101およびn102は、互いに同一であっても異なっていてもよい。
 一般式(10)におけるR101およびR102が表す置換基として、例えば置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリール基、置換もしくは無置換のアリールオキシ基、置換もしくは無置換のアルケニル基、置換もしくは無置換のアミノ基、ハロゲン原子、シアノ基を挙げることができる。好ましいのは、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換のアルコキシ基、置換もしくは無置換のアリールオキシ基であり、より好ましいのは、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基である。
 n101およびn102は、各々独立に0~3のいずれかの整数であることが好ましく、0~2のいずれかの整数であることがより好ましい。また、n101およびn102がいずれも0であるものも好ましい。
 一般式(10)におけるZは、芳香環または複素環を含む連結基であることが好ましい。芳香環は、単環であっても、2以上の芳香環が融合した融合環であってもよい。芳香環の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であることがさらにより好ましい。芳香環の具体例として、ベンゼン環、ナフタレン環を挙げることができる。複素環は、単環であっても、1以上の複素環と芳香環または複素環が融合した融合環であってもよい。複素環の炭素数は5~22であることが好ましく、5~18であることがより好ましく、5~14であることがさらに好ましく、5~10であることがさらにより好ましい。複素環を構成する複素原子は窒素原子であることが好ましい。複素環の具体例として、ピリジン環、ピリダジン環、ピリミジン環、トリアジン環、トリアゾール環、ベンゾトリアゾール環を挙げることができる。一般式(10)におけるZは、芳香環または複素環を含むとともに、非芳香族連結基を含んでいてもよい。そのような非芳香族連結基として、以下の構造を有するものを挙げることができる。
Figure JPOXMLDOC01-appb-C000044
 上記の非芳香族連結基におけるR107、R108、R109およびR110は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基であることが好ましい。
 好ましいホスト材料として、例えば下記一般式(11)で表される化合物も挙げることができる。
Figure JPOXMLDOC01-appb-C000045
 一般式(11)において、R111、R112およびR113は各々独立に置換基を表し、n111およびn112は各々独立に1~4のいずれかの整数を表し、n113は1~5のいずれかの整数を表す。少なくとも1つのR111、少なくとも1つのR112、および少なくとも1つのR113は、アリール基である。n111が2~4のいずれかの整数であるとき、n111個のR111はそれぞれ互いに同一であっても異なっていてもよく、n112が2~4のいずれかの整数であるとき、n112個のR112はそれぞれ互いに同一であっても異なっていてもよく、n113が2~5のいずれかの整数であるとき、n113個のR113はそれぞれ互いに同一であっても異なっていてもよい。
 一般式(11)におけるn111、n112およびn113は1~3であることが好ましく、1または2であることがより好ましい。
 以下において、一般式(10)または一般式(11)で表される化合物の具体例を例示するが、本発明において用いることができる一般式(10)または一般式(11)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000046
(ホールブロック層)
 ホールブロック層は、発光層を経由したホールが陰極側へ移動するのを防げる機能を有する。発光層と陰極側の有機層との間に形成されることが好ましい。ホールブロック層を形成する有機材料としては、アルミニウム錯体化合物、ガリウム錯体化合物、フェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体を挙げることができる。具体的には、ビス(8-ヒドロキシキノリナート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-ヒドロキシキノリナート)(4-フェニルフェノラート)ガリウム、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)等を挙げることができる。ホールブロック層には、1種の有機材料を選択して単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、ホールブロック層は、例えば蒸着法、スパッタリング法、塗布法により形成することができる。ホールブロック層の厚みは、通常は3nm以上であり、10nm以上であることが好ましい。上限値は、例えば5μm以下とすることができる。
(電子注入層および電子輸送層) 
 電子注入層は、電子を陰極から発光層側へ輸送する機能を有する。電子注入層は、一般に陰極に接するように形成されることから、陰極表面との密着性に優れた層であることが好ましい。電子輸送層は、電子を発光層側へ輸送する機能を有している。電子輸送層には、電子輸送性に優れた材料から構成される。
 電子注入層および電子輸送層には、電子移動度が高くてイオン化エネルギーが大きい電子輸送材料を用いる。電子輸送材料としては、有機エレクトロルミネッセンス素子の電子注入層または電子輸送層に用いることができるとされている種々の材料を適宜選択して用いることができる。電子輸送材料は、繰り返し単位を有するポリマー材料であってもよいし、低分子化合物であってもよい。
 電子輸送材料として、例えば、フルオレノン誘導体、アントラキノジメタン誘導体、ジフェノキノン誘導体、チオピランジオキシド誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ペリレンテトラカルボン酸誘導体、キノキサリン誘導体、フレオレニリデンメタン誘導体、アントラキノジメタン誘導体、アントロン誘導体等を挙げることができる。好ましい電子輸送材料の具体例として、2,5-ビス(1-フェニル)-1,3,4-オキサゾール、2,5-ビス(1-フェニル)-1,3,4-チアゾール、2,5-ビス(1-フェニル)-1,3,4-オキサジアゾール、2-(4’-tert-ブチルフェニル)-5-(4”-ビフェニル)1,3,4-オキサジアゾール、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール、1,4-ビス[2-(5 -フェニルオキサジアゾリル)]ベンゼン、1,4-ビス[2-(5-フェニルオキサジアゾリル)-4-tert-ブチルベンゼン]、2-(4’-tert- ブチルフェニル)-5-(4”-ビフェニル)-1,3,4-チアジアゾール、2,5-ビス(1-ナフチル)-1,3,4-チアジアゾール、1,4-ビス[2-(5-フェニルチアジアゾリル)]ベンゼン、2-(4’-tert-ブチルフェニル)-5-(4”-ビフェニル)-1,3,4-トリアゾール、2,5-ビス(1-ナフチル)-1,3,4-トリアゾール、1,4-ビス[2-(5-フェニルトリアゾリル)]ベンゼン、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)クロロガリウム、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリナート)(2-ナフトラート)ガリウム等が挙げられる。
 本発明で用いる電子輸送材料は、1層に1種のみを選択して用いてもよいし、1層に2種以上を組み合わせて用いてもよい。また、電子注入層や電子輸送層は、例えば蒸着法、スパッタリング法、塗布法により形成することができる。電子注入層や電子輸送層の厚みは、通常は3nm以上であり、10nm以上であることが好ましい。上限値は、例えば5μm以下とすることができる。
(陰極)
 陰極は、有機層へ向けて電子を注入する機能を有する。そのような陰極としては、仕事関数が低い材料を用いることが好ましく、例えば4eV以下の材料を用いることが好ましい。具体的には、金属(例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀)、合金(例えば、アルミニウム-リチウム合金、マグネシウム-銀合金、マグネシウム-インジウム合金)を挙げることができる。陰極側から発光を取り出す場合は、透過率が高い材料を用いることが好ましい。透過率は、10%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることがさらに好ましい。また、陰極の厚みは、通常は3nm以上であり、10nm以上であることが好ましい。上限値は、例えば1μm以下とすることができるが、陰極に透明性が要求されない場合はさらに厚くてもよい。陰極は、例えば蒸着法、スパッタリング法により形成することができる。陰極の上には、陰極を保護するために保護層を形成することが好ましい。そのような保護層は、仕事関数が高くて安定な金属からなる層であることが好ましく、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属層を形成することができる。
 本発明の有機エレクトロルミネッセンス素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明に応用することができる。
 以下に合成例、試験例および製造例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(合成例1)
 本合成例において、以下のスキームにしたがって化合物1を合成した。
Figure JPOXMLDOC01-appb-C000047
 2-ブロモトリフェニルアミン6.0g(18.5mmol、100mL、化合物a)を三つ口フラスコに入れ、フラスコ内を窒素置換し、テトラヒドロフラン(THF)50mLを加えて攪拌した。攪拌後、この溶液を-78℃に冷却して20分攪拌した。攪拌後、n-ブチルリチウムヘキサン溶液11.2mL(18.5mmol)をシリンジにより加え、-78℃で2時間攪拌した。次に、この溶液を、2,7-ジブロモ-9-フルオレノン5.0g(14.8mmol、化合物b)とテトラヒドロフラン200mLの混合物へ滴下ロートを用いて加えた。この混合物を室温で20時間攪拌した。攪拌後、この溶液へ水を加えて30分攪拌した。この混合物に酢酸エチルを加えて抽出した。有機層と水層を分離し有機層に硫酸ナトリウムを加えて乾燥した。この混合物を吸引ろ過してろ液を得た。得られたろ液を濃縮し、そのまま次の反応に用いた。
 2,7-ジブロモ-9-(2-(ジフェニルアミノ)フェニル)-9H-フルオレン-9-オール(14.8mmol、化合物c)を300mLナスフラスコに入れ、酢酸100mL、濃塩酸3.0mLを加え、130℃で加熱攪拌した。反応終了後、この混合物を吸引ろ過して固体を得た。得られた固体をメタノールおよび水で洗浄し、得られた固体をテトラヒドロフラン1Lに溶解し、シリカゲルを用いてろ過を行った。得られたろ液を濃縮して得た固体をアセトンおよび酢酸エチルの混合溶媒で洗浄したところ、粉末状白色固体を収量4.26g、収率51%で得た。
 2',7'-ジブロモ-10-フェニル-10H-スピロ[アクリジン-9,9'-フルオレン]2.00g(3.53mmol、化合物d)、シアン化銅(I)0.792g(8.84mmol)を100mL三つ口フラスコに入れ、フラスコ内を窒素置換した。この混合物へ、N-メチル-2-ピロリジノン50mLを加えた。この混合物を170℃で20時間攪拌した。次に、この混合物を水酸化ナトリウム水溶液に加えて攪拌し、次亜塩素酸ナトリウム水溶液を加えてさらに30分間攪拌した。この混合物をトルエンに溶解した後、水層と有機層を分離し、有機層を水で洗浄した。この有機層を硫酸マグネシウムにより乾燥した。得られた混合物を吸引ろ過してろ液を得た。さらに、得られたろ液を濃縮し、シリカゲルカラムクロマトグラフィーにより精製した。カラムクロマトグラフィーは、トルエン:ヘキサン=1:2を展開溶媒として用い、次いでトルエン、トルエン:酢酸エチル=50:1の混合溶媒を展開溶媒として用いることにより行った。得られたフラクションを濃縮して得た固体をクロロホルムに溶解し、GPCを用いて分離した。得られたフラクションを濃縮して得た固体をアセトンとメタノールの混合溶媒で再結晶し、針状黄色固体(化合物1)を収量0.81g、収率50%で得た。化合物の同定はH-NMR,13C-NMR,TOF-Massおよび元素分析により行った。
1H-NMR (500 MHz, CDCl3, TMS, δ): 6.26 (dd, J=7.8Hz, 1.5Hz, 2H), 6.42 (dd, J=8.4Hz, 0.8Hz, 2H), 6.62 (td,J=7.4Hz, 1.1Hz, 2H), 7.01 (td, J=7.8Hz, 1.5Hz, 2H), 7.49 (d, J=7.8Hz, 2H), 7.61 (t, J=7.5Hz, 1H), 7.73-7.76 (m, 6H), 7.94 (d, J=8.3Hz, 2H)
13C-NMR (125MHz, CDCl3, δ): 157.49, 141.50, 141.12, 140.30, 132.20, 131.32, 130.91, 129.97, 128.87, 128.36, 127.11, 121.62, 121.29, 120.96, 118.72, 115.48, 113.20, 57.25
TOF-Mass [M+]:Anal. Calcd for C33H19N3: 458.16, found: 458.24
元素分析: Anal. Calcd for C33H19N3:C 86.63, H 4.19, N 9.18%; found:C 86.82, H 4.23, N 9.16%.
(合成例2~282および284~354)
 合成例1と同様にして、化合物2~282および284~354を合成することができる。
(合成例283)
 本合成例において、以下のスキームにしたがって化合物283を合成した。
Figure JPOXMLDOC01-appb-C000048
 既知化合物である10-フェニル-[スピロアクリジン-9(10H),9’(10’H)アントラセン]-10’-オン1.5g(3.4mmol、化合物141)、1,4-ジアザビシクロ[2.2.2]オクタン(略称:DABCO)3.9g(34mmol)を100mL三つ口フラスコに入れ、フラスコ内を窒素置換した。この混合物へ、ジクロロメタン60mLを加えて攪拌した。攪拌後、マロノニトリル2.3g(34mmol)を加えた後、四塩化チタン6.5g(34mmol)を少量ずつ加えた。この混合物へ、ピリジン2.7g(34mmol)を少量ずつ加え、窒素気流下、室温で20時間攪拌した。攪拌後、この混合物に水を加えて攪拌した。攪拌後、この混合物にクロロホルムを加えて抽出した。抽出後、有機層と水層を分離し、有機層を飽和食塩水で洗浄した。洗浄後、有機層に硫酸マグネシウムを加えて乾燥した。乾燥後、この混合物を吸引ろ過してろ液を得た。得られたろ液を濃縮して得た固体をシリカゲルカラムクロマトグラフィーにより精製した。カラムクロマトグラフィーの展開溶媒はジクロロメタン:ヘキサン=1:1の混合溶媒を展開溶媒として用いることにより行った。
 得られたフラクションを濃縮して得た固体にエタノールを加えて超音波を照射した。照射後、この固体を回収したところ、淡橙色粉末状固体(化合物283)を収量0.15g、収率9.0%で得た。
1H-NMR (500 MHz, CDCl3, TMS, δ): 8.25 (d, J=8.0Hz, 2H), 7.72 (t, J=7.3Hz, 2H), 7.59 (t, J=7.5Hz, 1H), 7.49-7.41 (m, 8H), 6.94 (t, J=7.8Hz, 2H), 6.65 (t, J=7.5Hz, 2H), 6.39-6.34 (m, 4H).
MS(MALDI): m/z calcd:483.17 [M+H]+; found: 483.08.
(実施例1)
 本実施例において、合成例1で合成した化合物1を用いて試験を行うとともに、図1に示す構造の有機エレクトロルミネッセンス素子を作製した。
(1)遅延蛍光の観測
 10重量%の化合物1とmCPを共蒸着することにより石英基板上に製膜し、PL発光スペクトル、PL量子収率、PL過渡減衰を測定した。図2に励起波長339nmにおけるPL発光スペクトルを示す。共蒸着膜は緑色発光を示し、PL量子収率は35%と高い値を示した。次に化合物1の熱活性化遅延蛍光特性を検討するために、ストリークカメラを用いて共蒸着膜のPL過渡減衰を測定した。測定結果を図3に示す。PL過渡減衰曲線は2成分のフィッティングによく一致し、18nsの短寿命成分と5.2msの長寿命成分が観測された。すなわち、化合物1によって、短寿命の蛍光に加え、長寿命成分に由来する熱活性化遅延蛍光が観測された。
(2)有機エレクトロルミネッセンス素子1の作製
 ガラス1上にインジウム・スズ酸化物(ITO)2をおよそ30~100nmの厚さで製膜し、さらにその上にmCP3を60nmの厚さで製膜した。次いで、6重量%の化合物1とmCPを共蒸着することによって発光層4を20nmの厚さで製膜した。さらにその上にBphen5を厚さ40nmで製膜した。次いで、マグネシウム-銀(MgAg)6を100nm真空蒸着し、次いでアルミニウム(Al)7を20nmの厚さに蒸着して、図1に示す層構成を有する有機エレクトロルミネッセンス素子とした。作成した有機EL素子は緑色発光を示し、PLスペクトルとよく一致したことから、素子からの発光は化合物1に由来することが確認された。
(2)有機エレクトロルミネッセンス素子2の作製
 ガラス上にインジウム・スズ酸化物(ITO)をおよそ30~100nmの厚さで製膜し、さらにその上にTAPCを40nmの厚さで製膜し、mCPを5nmの厚さで製膜した。次いで、6重量%の化合物1とTPSi-Fを共蒸着することによって発光層を20nmの厚さで製膜した。さらにその上にTmPyPBを厚さ35nmで製膜した。次いで、フッ化リチウム(LiF)を1nm真空蒸着し、次いでアルミニウム(Al)を60nmの厚さに蒸着して、有機エレクトロルミネッセンス素子とした。図4にエレクトロルミネッセンス(EL)スペクトルを示す。図5に電流密度-電圧特性-輝度特性を示し、図6に外部量子効率-電流密度特性を示す。外部量子効率は10%と高いことが確認された。
Figure JPOXMLDOC01-appb-C000049
(実施例2~140)
 実施例1と同様にして、化合物2~140および142~354についても有用性を確認することができる。
(実施例141)
 本実施例において、化合物141を用いて実施例1と同様の試験を行うとともに、有機エレクトロルミネッセンス素子を作製した。
(1)遅延蛍光の観測
 10重量%の化合物141とDPEPOまたはUGH2を共蒸着することにより石英基板上に製膜して、実施例1と同様にしてPL発光スペクトル、PL量子収率、PL過渡減衰を測定した。図7に励起波長339nmにおけるPL発光スペクトルを示し、図8にPL過渡減衰曲線を示す。化合物141によって、短寿命の蛍光に加え、長寿命成分に由来する熱活性化遅延蛍光が観測された。PL量子収率はDPEPOと共蒸着した場合が74%、UGH2と共蒸着した場合が80%と高いことが確認された。
(2)有機エレクトロルミネッセンス素子の作製
 ガラス上にインジウム・スズ酸化物(ITO)をおよそ100nmの厚さで製膜し、さらにその上にNPDを40nmの厚さで製膜し、さらにその上にmCPを10nmの厚さで製膜した。次いで、9重量%の化合物141とDPEPOを共蒸着することによって発光層を40nmの厚さで製膜した。さらにその上に、DPEPOを厚さ20nmで製膜した。次いで、マグネシウム-銀(MgAg=10:1)を100nm真空蒸着し、次いでアルミニウム(Al)を10nmの厚さに蒸着して有機エレクトロルミネッセンス素子とした。図9にエレクトロルミネッセンス(EL)スペクトルを示す。PLスペクトルとよく一致したことから、素子からの発光は化合物141に由来することが確認された。図10に電流密度-電圧特性-輝度特性を示し、図11に外部量子効率-電流密度特性を示す。外部量子効率は10.7%と高いことが確認された。
Figure JPOXMLDOC01-appb-C000050
 本発明の有機エレクトロルミネッセンス素子は、低コストで製造することが可能であり、高い発光効率を実現しうるものである。また、本発明の化合物は、そのような有機エレクトロルミネッセンス素子用の発光材料として有用である。このため、本発明は産業上の利用可能性が高い。
 1 ガラス
 2 ITO
 3 mCP
 4 発光層
 5 Bphen
 6 MgAg
 7 Al

Claims (24)

  1.  陽極、陰極、および前記陽極と前記陰極の間に発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、前記発光層に下記一般式(1)で表される化合物を含むことを特徴とする有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、R、R、R、R、R、R、R、RおよびR17は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R、R10、R11、R12、R13、R14、R15およびR16は、各々独立に水素原子またはα位に非共有電子対を持たない電子吸引基である。Zは、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。ただし、Zが単結合であるとき、R、R10、R11、R12、R13、R14、R15およびR16の少なくとも1つはα位に非共有電子対を持たない電子吸引基である。]
  2.  遅延蛍光を放射することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
  3.  一般式(1)のZが単結合であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
  4.  一般式(1)のZがカルボニル基であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
  5.  一般式(1)のZが>C=C(CN)であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
  6.  一般式(1)のR17がアリール基であることを特徴とする請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  7.  一般式(1)のR、R、R、R、R、R、RおよびRの少なくとも1つが、電子供与基で置換されたアリール基であることを特徴とする請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  8.  一般式(1)のR、R、R、R、R、R、RおよびRの少なくとも1つが、下記一般式(2)で表される構造を有することを特徴とする請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)において、R21、R22、R23、R24およびR25は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。]
  9.  一般式(1)のR、R、R、R、R、R、RおよびRの少なくとも1つが、下記一般式(3)~(5)のいずれかで表される構造を有することを特徴とする請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000003
    [上式において、R31およびR32は、各々独立に置換もしくは無置換のアリール基を表し、R31が表すアリール基とR32が表すアリール基は連結していてもよい。R41、R42およびR43は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R41およびR42は一緒になって環構造を形成していてもよく、R42およびR43は一緒になって環構造を形成していてもよい。R51、R52およびR53は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R51およびR52は一緒になって環構造を形成していてもよく、R52およびR53は一緒になって環構造を形成していてもよい。]
  10.  一般式(1)のR、R、R、R、R、R、RおよびRの少なくとも1つが、下記のいずれかの構造を有することを特徴とする請求項1~6のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000004
  11.  一般式(1)のR、R10、R11、R12、R13、R14、R15およびR16の少なくとも1つが、シアノ基、または下記一般式(6)~(9)のいずれかで表される構造を有することを特徴とする請求項1~10のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000005
    [上式において、R61およびR62は、各々独立に置換もしくは無置換のアリール基を表す。R71およびR72は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R71およびR72は一緒になって環構造を形成していてもよい。R81、R82およびR83は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R81およびR82は一緒になって環構造を形成していてもよく、R82およびR83は一緒になって環構造を形成していてもよい。R91は水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、Zはヘテロ芳香環を形成するのに必要な連結基を表す。]
  12.  一般式(1)のR、R10、R11、R12、R13、R14、R15およびR16の少なくとも1つが、下記のいずれかの構造を有することを特徴とする請求項1~10のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
  13.  前記一般式(1)で表される化合物を発光層のドーパントとして用いたことを特徴とする請求項1~12のいずれか一項に記載の有機エレクトロルミネッセンス素子。
  14.  下記一般式(1’)で表される化合物。
    Figure JPOXMLDOC01-appb-C000007
    [一般式(1’)において、R1’、R2’、R3’、R4’、R5’、R6’、R7’、R8’およびR17’は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’は、各々独立に水素原子またはシアノ基を表す。Z’は、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。Z’が単結合、>C=Oまたは>C=Sであるとき、R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’の少なくとも1つはシアノ基である。]
  15.  一般式(1’)のZ’が単結合であることを特徴とする請求項14に記載の化合物。
  16.  一般式(1’)のZ’がカルボニル基であることを特徴とする請求項14に記載の化合物。
  17.  一般式(1’)のZ’が>C=C(CN)であることを特徴とする請求項14に記載の化合物。
  18.  一般式(1’)のR17’がアリール基であることを特徴とする請求項14~17のいずれか一項に記載の化合物。
  19.  一般式(1’)のR1’、R2’、R3’、R4’、R5’、R6’、R7’およびR8’の少なくとも1つが、電子供与基で置換されたアリール基であることを特徴とする請求項14~17のいずれか一項に記載の化合物。
  20.  一般式(1’)のR1’、R2’、R3’、R4’、R5’、R6’、R7’およびR8’の少なくとも1つが、下記一般式(2)で表される構造を有することを特徴とする請求項14~17のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000008
    [一般式(2)において、R21、R22、R23、R24およびR25は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。]
  21.  一般式(1’)のR1’、R2’、R3’、R4’、R5’、R6’、R7’およびR8’の少なくとも1つが、下記一般式(3)~(5)のいずれかで表される構造を有することを特徴とする請求項14~17のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    [上式において、R31およびR32は、各々独立に置換もしくは無置換のアリール基を表し、R31が表すアリール基とR32が表すアリール基は連結していてもよい。R41、R42およびR43は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R41およびR42は一緒になって環構造を形成していてもよく、R42およびR43は一緒になって環構造を形成していてもよい。R51、R52およびR53は、各々独立に水素原子、置換もしくは無置換のアルキル基、または置換もしくは無置換のアリール基を表し、R51およびR52は一緒になって環構造を形成していてもよく、R52およびR53は一緒になって環構造を形成していてもよい。]
  22.  一般式(1’)のR1’、R2’、R3’、R4’、R5’、R6’、R7’およびR8’の少なくとも1つが、下記のいずれかの構造を有することを特徴とする請求項14~17のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000010
  23.  下記一般式(1)で表される化合物からなる遅延蛍光材料。
    Figure JPOXMLDOC01-appb-C000011
    [一般式(1)において、R、R、R、R、R、R、R、RおよびR17は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R、R10、R11、R12、R13、R14、R15およびR16は、各々独立に水素原子またはα位に非共有電子対を持たない電子吸引基であるZは、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。ただし、Zが単結合であるとき、R、R10、R11、R12、R13、R14、R15およびR16の少なくとも1つはα位に非共有電子対を持たない電子吸引基である。]
  24.  下記一般式(1’)で表される化合物からなる遅延蛍光材料。
    Figure JPOXMLDOC01-appb-C000012
    [一般式(1’)において、R1’、R2’、R3’、R4’、R5’、R6’、R7’、R8’およびR17’は、各々独立に水素原子または電子供与基であって、少なくとも1つは電子供与基を表す。R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’は、各々独立に水素原子またはシアノ基を表す。Z’は、単結合または>C=Yを表し、Yは、O、S、C(CN)またはC(COOH)を表す。Z’が単結合、>C=Oまたは>C=Sであるとき、R9’、R10’、R11’、R12’、R13’、R14’、R15’およびR16’の少なくとも1つはシアノ基である。]
PCT/JP2012/067969 2011-07-15 2012-07-13 有機エレクトロルミネッセンス素子およびそれに用いる化合物 WO2013011954A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147002067A KR102006506B1 (ko) 2011-07-15 2012-07-13 유기 일렉트로 루미네선스 소자 및 그것에 사용하는 화합물
EP12815130.5A EP2733762B1 (en) 2011-07-15 2012-07-13 Organic electroluminescence element and compound used therein
JP2013524706A JP5565742B2 (ja) 2011-07-15 2012-07-13 有機エレクトロルミネッセンス素子およびそれに用いる化合物
CN201280035225.XA CN103650195B (zh) 2011-07-15 2012-07-13 有机电致发光元件及其所使用的化合物
US14/233,029 US9660198B2 (en) 2011-07-15 2012-07-13 Organic electroluminescence element and compound used therein

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-157029 2011-07-15
JP2011157029 2011-07-15
JP2012-016313 2012-01-30
JP2012016313 2012-01-30
JP2012092585 2012-04-16
JP2012-092585 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013011954A1 true WO2013011954A1 (ja) 2013-01-24

Family

ID=47558132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067969 WO2013011954A1 (ja) 2011-07-15 2012-07-13 有機エレクトロルミネッセンス素子およびそれに用いる化合物

Country Status (7)

Country Link
US (1) US9660198B2 (ja)
EP (1) EP2733762B1 (ja)
JP (1) JP5565742B2 (ja)
KR (1) KR102006506B1 (ja)
CN (1) CN103650195B (ja)
TW (1) TWI585187B (ja)
WO (1) WO2013011954A1 (ja)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073240A (zh) * 2013-03-26 2014-10-01 海洋王照明科技股份有限公司 有机电致磷光材料及其制备方法与有机电致发光器件
WO2014157619A1 (ja) 2013-03-29 2014-10-02 国立大学法人九州大学 有機エレクトロルミネッセンス素子
WO2015022974A1 (ja) 2013-08-14 2015-02-19 国立大学法人九州大学 有機エレクトロルミネッセンス素子
JP2015505819A (ja) * 2011-11-17 2015-02-26 メルク パテント ゲーエムベーハー スピロジヒドロアクリジンおよび有機エレクトロルミネッセンス素子のための材料としてのそれの使用
WO2015029964A1 (ja) * 2013-08-30 2015-03-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
WO2015135625A1 (de) 2014-03-13 2015-09-17 Merck Patent Gmbh Formulierungen lumineszierender verbindungen
WO2015139808A1 (de) 2014-03-18 2015-09-24 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
JP2015532640A (ja) * 2013-04-22 2015-11-12 エルジー・ケム・リミテッド 含窒素複素環式化合物およびそれを含む有機電子素子
CN105102581A (zh) * 2013-04-08 2015-11-25 默克专利有限公司 有机电致发光器件
WO2016027760A1 (ja) * 2014-08-22 2016-02-25 シャープ株式会社 有機エレクトロルミネッセンス素子およびその製造方法並びに発光方法
JP2016522579A (ja) * 2013-06-06 2016-07-28 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子
CN106243119A (zh) * 2016-07-29 2016-12-21 东北林业大学 一种螺并环材料及其制备方法
US9818948B2 (en) 2011-09-21 2017-11-14 Merck Patent Gmbh Carbazole derivatives for organic electroluminescence devices
WO2017194435A1 (de) 2016-05-11 2017-11-16 Merck Patent Gmbh Zusammensetzungen für elektrochemische zellen
JP2018501354A (ja) * 2014-12-12 2018-01-18 メルク パテント ゲーエムベーハー 溶解性基を有する有機化合物
JP2018507533A (ja) * 2014-12-09 2018-03-15 メルク パテント ゲーエムベーハー 電子素子
US10497883B2 (en) 2014-03-11 2019-12-03 Kyulux, Inc. Organic light-emitting device, host material, light-emitting material, and compound
US10559757B2 (en) 2014-09-03 2020-02-11 Kyulux, Inc. Host material for delayed fluorescent materials, organic light-emitting device and compound
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
US10892423B2 (en) 2016-12-07 2021-01-12 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2022269257A1 (en) 2021-06-24 2022-12-29 University Court Of The University Of St Andrews Spiro-(fluorene-9,9'-(thio)xanthenes)
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023036976A1 (en) 2021-09-13 2023-03-16 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10825992B2 (en) 2011-09-28 2020-11-03 Sumitomo Chemical Co., Ltd Spirobifluorene compounds for light emitting devices
CN105209434B (zh) 2013-06-26 2018-09-25 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件、和电子设备
CN103985822B (zh) * 2014-05-30 2017-05-10 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
EP3038181A1 (en) 2014-12-22 2016-06-29 Solvay SA Organic electronic devices comprising acridine derivatives in an emissive layer free of heavy atom compounds
CN107278335B (zh) 2014-12-29 2020-06-30 圣安德鲁斯大学董事会 发光电化学电池和化合物
EP3240856B1 (en) * 2014-12-30 2018-12-12 Dow Global Technologies LLC Fluorene derivatives as light emitting elements for electroluminescent devices
CN104892578B (zh) * 2015-05-19 2018-01-05 苏州大学 芴螺三苯胺衍生物及其用途
WO2017080326A1 (zh) 2015-11-12 2017-05-18 广州华睿光电材料有限公司 印刷组合物、包含其的电子器件及功能材料薄膜的制备方法
US10968243B2 (en) 2015-12-04 2021-04-06 Guangzhou Chinaray Optoelectronic Materials Ltd. Organometallic complex and application thereof in electronic devices
JP6808329B2 (ja) * 2016-02-25 2021-01-06 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置用材料及び有機エレクトロルミネッセンス表示装置
CN107056758B (zh) * 2016-04-25 2020-06-09 中节能万润股份有限公司 一种以吖啶螺蒽酮为核心的化合物及其在有机电致发光器件上的应用
CN107068911B (zh) * 2016-04-25 2019-05-14 中节能万润股份有限公司 一种含有蒽酮类化合物的有机电致发光器件及其应用
CN107093676B (zh) * 2016-04-25 2019-06-14 中节能万润股份有限公司 一种含有吖啶螺蒽酮类化合物的有机电致发光器件及其应用
CN105884830B (zh) * 2016-05-11 2018-06-19 中节能万润股份有限公司 一种双极性oled磷光主体材料以及包含该材料的发光器件
CN106008264B (zh) * 2016-05-20 2017-11-10 中节能万润股份有限公司 一种有机电致发光材料、应用及其器件
CN106467524B (zh) * 2016-07-29 2019-04-19 江苏三月光电科技有限公司 一种有机芳香化合物及其在有机电致发光器件上的应用
CN106467523B (zh) * 2016-07-29 2019-04-09 江苏三月光电科技有限公司 一种有机芳香化合物及其应用
KR102625862B1 (ko) 2016-10-11 2024-01-17 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
CN106566533A (zh) * 2016-10-26 2017-04-19 华南理工大学 基于稠环氧化噻吩有机发光材料及其制备方法和应用
WO2018095381A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 印刷油墨组合物及其制备方法和用途
WO2018095388A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 有机化合物
WO2018095397A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 含硼有机化合物及应用、有机混合物、有机电子器件
US11634444B2 (en) 2016-11-23 2023-04-25 Guangzhou Chinaray Optoelectronic Materials Ltd. Metal organic complex, high polymer, composition, and organic electronic component
US11512039B2 (en) 2016-11-23 2022-11-29 Guangzhou Chinaray Optoelectronic Materials Ltd. Aromatic amine derivatives, preparation methods therefor, and uses thereof
WO2018095389A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 含氮稠杂环的化合物及其应用
EP3547384B1 (en) 2016-11-23 2022-10-05 Guangzhou Chinaray Optoelectronic Materials Ltd. High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization
US20190378991A1 (en) 2016-11-23 2019-12-12 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture, composition, and organic electronic component
WO2018095385A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 稠环化合物、高聚物、混合物、组合物以及有机电子器件
CN109790129B (zh) 2016-12-08 2022-08-12 广州华睿光电材料有限公司 芘三嗪类衍生物及其在有机电子器件中的应用
WO2018103744A1 (zh) 2016-12-08 2018-06-14 广州华睿光电材料有限公司 混合物、组合物及有机电子器件
KR20180068375A (ko) 2016-12-13 2018-06-22 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
US11161933B2 (en) 2016-12-13 2021-11-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Conjugated polymer and use thereof in organic electronic device
WO2018113786A1 (zh) 2016-12-22 2018-06-28 广州华睿光电材料有限公司 基于狄尔斯–阿尔德反应的可交联聚合物及其在有机电子器件中的应用
US11289654B2 (en) 2016-12-22 2022-03-29 Guangzhou Chinaray Optoelectronic Materials Ltd. Polymers containing furanyl crosslinkable groups and uses thereof
CN108250130B (zh) * 2016-12-28 2021-01-22 昆山国显光电有限公司 有机发光层主体材料及有机发光层及有机发光器件
EP3367456A1 (en) * 2017-02-28 2018-08-29 Samsung Electronics Co., Ltd. Organic light-emitting device
CN107325076B (zh) * 2017-06-29 2019-09-27 上海天马有机发光显示技术有限公司 一种化合物及其发光器件和显示装置
KR102064646B1 (ko) * 2017-06-30 2020-01-09 주식회사 엘지화학 유기 발광 소자
CN107325108B (zh) * 2017-07-05 2020-05-05 中节能万润股份有限公司 一种氧杂蒽螺氮杂蒽酮类有机电致发光材料、其制备方法及应用
WO2019114764A1 (zh) 2017-12-14 2019-06-20 广州华睿光电材料有限公司 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用
US11674080B2 (en) 2017-12-14 2023-06-13 Guangzhou Chinaray Optoelectronic Materials Ltd. Transition metal complex, polymer, mixture, formulation and use thereof
WO2019114668A1 (zh) 2017-12-14 2019-06-20 广州华睿光电材料有限公司 一种过渡金属配合物材料及其在电子器件的应用
WO2019120263A1 (zh) 2017-12-21 2019-06-27 广州华睿光电材料有限公司 有机混合物及其在有机电子器件中的应用
CN108117539A (zh) * 2017-12-26 2018-06-05 南京高光半导体材料有限公司 一种有机电致发光化合物、有机电致发光器件及其应用
KR102216402B1 (ko) * 2018-03-23 2021-02-17 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102545346B1 (ko) 2018-04-11 2023-06-20 가부시키가이샤 큐럭스 양자점 및 열 활성화 지연 형광 분자를 갖는 전면 발광 인쇄 디스플레이
JP2021521584A (ja) 2018-04-11 2021-08-26 ナノコ テクノロジーズ リミテッド 蛍光ドナーにアシストされたoledデバイスに用いられる量子ドットアーキテクチャ
KR20190119701A (ko) 2018-04-12 2019-10-23 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
CN109134446B (zh) * 2018-09-30 2021-03-05 上海天马有机发光显示技术有限公司 一种热激活延迟荧光材料及包含其的有机发光显示装置
WO2020099826A1 (en) 2018-11-16 2020-05-22 Nanoco Technologies Ltd Electroluminescent display devices and methods of making the same
KR20210056497A (ko) 2019-11-08 2021-05-20 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
CN111718322B (zh) * 2020-06-24 2021-11-09 武汉天马微电子有限公司 化合物、显示面板及显示装置
KR20230068397A (ko) 2020-09-18 2023-05-17 삼성디스플레이 주식회사 유기 전계 발광 소자

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219386A1 (en) 2003-04-29 2004-11-04 Canon Kabushiki Kaisha Heterogeneous spiro compounds in organic light emitting device elements
WO2006033564A1 (en) 2004-09-24 2006-03-30 Lg Chem. Ltd. New compound and organic light emitting device using the same(10)
WO2006080643A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same(4)
WO2007105906A1 (en) 2006-03-14 2007-09-20 Lg Chem, Ltd. Organic light emitting diode having high efficiency and process for fabricating the same
US20100019658A1 (en) 2008-07-22 2010-01-28 Industrial Technology Research Institute Organic compound and organic electroluminescence device employing the same
CN101659638A (zh) 2008-08-26 2010-03-03 财团法人工业技术研究院 有机化合物及包含其的有机电致发光装置
US20110198571A1 (en) * 2010-02-12 2011-08-18 Industrial Technology Research Institute Organic compound and organic electroluminescence device employing the same
CN102229565A (zh) * 2011-05-10 2011-11-02 南京邮电大学 螺芴二苯并吖啶类有机半导体材料及其制备和应用方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1261717A (en) 1982-12-23 1989-09-26 John R. Bacon Method and apparatus for oxygen determination
US5030420A (en) 1982-12-23 1991-07-09 University Of Virginia Alumni Patents Foundation Apparatus for oxygen determination
EP0676461B1 (de) 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
US5830138A (en) 1996-12-16 1998-11-03 Trustees Of The University Of Pennsylvania Intravascular catheter probe for clinical oxygen, pH and CO2 measurement
WO2002043449A1 (fr) * 2000-11-24 2002-05-30 Toray Industries, Inc. Materiau luminescent et element luminescent contenant celui-ci
JP3835600B2 (ja) 2001-11-14 2006-10-18 富士電機ホールディングス株式会社 酸素濃度計測素子とその製造方法
JP2006033564A (ja) 2004-07-20 2006-02-02 Matsushita Electric Ind Co Ltd 無線通信システム
JP2006080637A (ja) 2004-09-07 2006-03-23 Canon Inc 画像記録再生装置、音声再生方法、及びプログラム
JP4355942B2 (ja) 2004-09-07 2009-11-04 日本電気株式会社 セルラー移動通信網局設定集中管理モデル化システム及び方法
JP4513467B2 (ja) 2004-09-07 2010-07-28 住友電気工業株式会社 スペクトラム拡散通信装置
JP4459762B2 (ja) 2004-09-07 2010-04-28 株式会社日立国際電気 統合同報通信システム
JP2006080644A (ja) 2004-09-07 2006-03-23 Toshiba Tec Corp カメラ
JP4012898B2 (ja) 2004-09-07 2007-11-21 日本電信電話株式会社 電界通信システム、電界通信用トランシーバ
JP4339764B2 (ja) 2004-09-07 2009-10-07 パナソニック株式会社 ファクシミリ装置
JP2006080642A (ja) 2004-09-07 2006-03-23 Sony Corp 情報処理装置および方法、プログラム並びに記録媒体
JP4431968B2 (ja) 2004-09-07 2010-03-17 ソニー株式会社 信号処理装置及び映像表示装置
JP4882460B2 (ja) 2006-04-03 2012-02-22 パナソニック株式会社 画像モニター用加湿装置
US20070254226A1 (en) 2006-04-26 2007-11-01 Xerox Corporation Imaging member
JP2008096360A (ja) 2006-10-13 2008-04-24 Osaka Univ 酸素分子検出方法、酸素分子検出プローブおよびバイオイメージング方法
JP4930943B2 (ja) 2007-05-11 2012-05-16 国立大学法人群馬大学 酸素濃度測定試薬および酸素濃度測定方法
JP5255296B2 (ja) 2008-02-27 2013-08-07 東洋インキScホールディングス株式会社 有機エレクトロルミネッセンス素子用材料および化合物
US8632893B2 (en) 2008-07-22 2014-01-21 Industrial Technology Research Institute Organic compound and organic electroluminescence device employing the same
SE533992C2 (sv) 2008-12-23 2011-03-22 Silex Microsystems Ab Elektrisk anslutning i en struktur med isolerande och ledande lager
JP5828518B2 (ja) 2011-07-15 2015-12-09 国立大学法人九州大学 遅延蛍光材料、それを用いた有機エレクトロルミネッセンス素子および化合物

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040219386A1 (en) 2003-04-29 2004-11-04 Canon Kabushiki Kaisha Heterogeneous spiro compounds in organic light emitting device elements
WO2006033564A1 (en) 2004-09-24 2006-03-30 Lg Chem. Ltd. New compound and organic light emitting device using the same(10)
WO2006080646A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same(8)
WO2006080638A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same (7)
WO2006080643A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same(4)
WO2006080641A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same(2)
WO2006080642A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same(3)
WO2006080644A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same(5)
WO2006080640A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same(1)
WO2006080645A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same(9)
WO2006080637A1 (en) 2004-09-24 2006-08-03 Lg Chem. Ltd. New compound and organic light emitting device using the same(6)
WO2007105906A1 (en) 2006-03-14 2007-09-20 Lg Chem, Ltd. Organic light emitting diode having high efficiency and process for fabricating the same
US20100019658A1 (en) 2008-07-22 2010-01-28 Industrial Technology Research Institute Organic compound and organic electroluminescence device employing the same
CN101659638A (zh) 2008-08-26 2010-03-03 财团法人工业技术研究院 有机化合物及包含其的有机电致发光装置
US20110198571A1 (en) * 2010-02-12 2011-08-18 Industrial Technology Research Institute Organic compound and organic electroluminescence device employing the same
CN102229565A (zh) * 2011-05-10 2011-11-02 南京邮电大学 螺芴二苯并吖啶类有机半导体材料及其制备和应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2733762A4

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9818948B2 (en) 2011-09-21 2017-11-14 Merck Patent Gmbh Carbazole derivatives for organic electroluminescence devices
JP2015505819A (ja) * 2011-11-17 2015-02-26 メルク パテント ゲーエムベーハー スピロジヒドロアクリジンおよび有機エレクトロルミネッセンス素子のための材料としてのそれの使用
US10305040B2 (en) 2011-11-17 2019-05-28 Merck Patent Gmbh Spiro dihydroacridine derivatives and the use thereof as materials for organic electroluminescence devices
CN104073240A (zh) * 2013-03-26 2014-10-01 海洋王照明科技股份有限公司 有机电致磷光材料及其制备方法与有机电致发光器件
WO2014157619A1 (ja) 2013-03-29 2014-10-02 国立大学法人九州大学 有機エレクトロルミネッセンス素子
US10600983B2 (en) 2013-03-29 2020-03-24 Kyulux, Inc. Organic electroluminescent device comprising delayed fluorescent materials
CN111430557A (zh) * 2013-04-08 2020-07-17 默克专利有限公司 有机电致发光器件
CN105102581A (zh) * 2013-04-08 2015-11-25 默克专利有限公司 有机电致发光器件
EP2984152B1 (de) * 2013-04-08 2018-04-25 Merck Patent GmbH Organische elektrolumineszenzvorrichtung
US9540374B2 (en) 2013-04-22 2017-01-10 Lg Chem, Ltd. Nitrogen-containing heterocyclic compounds and organic electronic device comprising the same
JP2015532640A (ja) * 2013-04-22 2015-11-12 エルジー・ケム・リミテッド 含窒素複素環式化合物およびそれを含む有機電子素子
JP2016522579A (ja) * 2013-06-06 2016-07-28 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセント素子
US11944010B2 (en) 2013-08-14 2024-03-26 Kyulux, Inc. Organic electroluminescent device
WO2015022974A1 (ja) 2013-08-14 2015-02-19 国立大学法人九州大学 有機エレクトロルミネッセンス素子
US10862047B2 (en) 2013-08-14 2020-12-08 Kyushu University, National University Corporation Organic electroluminescent device
US11450817B2 (en) 2013-08-14 2022-09-20 Kyulux, Inc. Organic electroluminescent device
EP4152910A1 (en) 2013-08-14 2023-03-22 Kyulux, Inc. Organic electroluminescent device
EP3706182A1 (en) 2013-08-14 2020-09-09 Kyushu University National University Corporation Organic electroluminescent device
WO2015029964A1 (ja) * 2013-08-30 2015-03-05 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、発光材料、発光性薄膜、表示装置及び照明装置
US10497883B2 (en) 2014-03-11 2019-12-03 Kyulux, Inc. Organic light-emitting device, host material, light-emitting material, and compound
WO2015135625A1 (de) 2014-03-13 2015-09-17 Merck Patent Gmbh Formulierungen lumineszierender verbindungen
WO2015139808A1 (de) 2014-03-18 2015-09-24 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
JPWO2016027760A1 (ja) * 2014-08-22 2017-04-27 シャープ株式会社 有機エレクトロルミネッセンス素子およびその製造方法並びに発光方法
WO2016027760A1 (ja) * 2014-08-22 2016-02-25 シャープ株式会社 有機エレクトロルミネッセンス素子およびその製造方法並びに発光方法
US10559757B2 (en) 2014-09-03 2020-02-11 Kyulux, Inc. Host material for delayed fluorescent materials, organic light-emitting device and compound
JP2018507533A (ja) * 2014-12-09 2018-03-15 メルク パテント ゲーエムベーハー 電子素子
US10683453B2 (en) 2014-12-12 2020-06-16 Merck Patent Gmbh Organic compounds with soluble groups
JP2018501354A (ja) * 2014-12-12 2018-01-18 メルク パテント ゲーエムベーハー 溶解性基を有する有機化合物
US11101440B2 (en) 2015-07-01 2021-08-24 Kyushu University, National University Corporation Organic electroluminescent device
WO2017194435A1 (de) 2016-05-11 2017-11-16 Merck Patent Gmbh Zusammensetzungen für elektrochemische zellen
CN106243119B (zh) * 2016-07-29 2018-06-29 东北林业大学 一种螺并环材料及其制备方法
CN106243119A (zh) * 2016-07-29 2016-12-21 东北林业大学 一种螺并环材料及其制备方法
US11335872B2 (en) 2016-09-06 2022-05-17 Kyulux, Inc. Organic light-emitting device
US10892423B2 (en) 2016-12-07 2021-01-12 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US11482679B2 (en) 2017-05-23 2022-10-25 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
US11930654B2 (en) 2017-07-06 2024-03-12 Kyulux, Inc. Organic light-emitting element
US11476435B2 (en) 2017-08-24 2022-10-18 Kyushu University, National University Corporation Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material
WO2020076796A1 (en) 2018-10-09 2020-04-16 Kyulux, Inc. Novel composition of matter for use in organic light-emitting diodes
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021157593A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux 組成物、膜、有機発光素子、発光組成物を提供する方法およびプログラム
WO2021157642A1 (ja) 2020-02-04 2021-08-12 株式会社Kyulux ホスト材料、組成物および有機発光素子
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021235549A1 (ja) 2020-05-22 2021-11-25 株式会社Kyulux 化合物、発光材料および発光素子
WO2022025248A1 (ja) 2020-07-31 2022-02-03 株式会社Kyulux 化合物、発光材料および発光素子
WO2022168956A1 (ja) 2021-02-04 2022-08-11 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022244503A1 (ja) 2021-05-20 2022-11-24 株式会社Kyulux 有機発光素子
WO2022270354A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2022270602A1 (ja) 2021-06-23 2022-12-29 株式会社Kyulux 有機発光素子および膜
WO2022269257A1 (en) 2021-06-24 2022-12-29 University Court Of The University Of St Andrews Spiro-(fluorene-9,9'-(thio)xanthenes)
WO2023282224A1 (ja) 2021-07-06 2023-01-12 株式会社Kyulux 有機発光素子およびその設計方法
WO2023036976A1 (en) 2021-09-13 2023-03-16 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023053835A1 (ja) 2021-09-28 2023-04-06 株式会社Kyulux 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices

Also Published As

Publication number Publication date
US20140138670A1 (en) 2014-05-22
US9660198B2 (en) 2017-05-23
EP2733762A1 (en) 2014-05-21
CN103650195A (zh) 2014-03-19
JP5565742B2 (ja) 2014-08-06
TW201309778A (zh) 2013-03-01
EP2733762B1 (en) 2018-11-28
KR102006506B1 (ko) 2019-08-01
KR20140061365A (ko) 2014-05-21
JPWO2013011954A1 (ja) 2015-02-23
EP2733762A4 (en) 2015-04-15
CN103650195B (zh) 2016-12-07
TWI585187B (zh) 2017-06-01

Similar Documents

Publication Publication Date Title
JP5565742B2 (ja) 有機エレクトロルミネッセンス素子およびそれに用いる化合物
JP5875011B2 (ja) 遅延蛍光材料およびそれを用いた有機エレクトロルミネッセンス素子
JP5828518B2 (ja) 遅延蛍光材料、それを用いた有機エレクトロルミネッセンス素子および化合物
JP5667042B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5565743B2 (ja) 有機エレクトロルミネッセンス素子およびそれに用いる化合物
JP4002040B2 (ja) 有機エレクトロルミネッセンス素子
JP3924943B2 (ja) 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JPH11111458A (ja) 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2005082702A (ja) 有機エレクトロルミネッセンス用素子材料およびそれを用いた有機エレクトロルミネッセンス素子
JP4306379B2 (ja) 有機エレクトロルミネッセンス用素子材料およびそれを用いた有機エレクトロルミネッセンス素子
JP4380277B2 (ja) 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2000290645A (ja) 有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子
JP3945032B2 (ja) 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2001207167A (ja) 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP4682503B2 (ja) 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
JP2001288462A (ja) 有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子
JP4355352B2 (ja) 有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2013098419A (ja) 有機エレクトロルミネッセンス素子、並びにそれに用いる銅錯体および発光材料
JP2007306020A (ja) 有機エレクトロルミネッセンス素子
JP2007306019A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524706

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14233029

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147002067

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012815130

Country of ref document: EP