WO2018103744A1 - 混合物、组合物及有机电子器件 - Google Patents

混合物、组合物及有机电子器件 Download PDF

Info

Publication number
WO2018103744A1
WO2018103744A1 PCT/CN2017/115308 CN2017115308W WO2018103744A1 WO 2018103744 A1 WO2018103744 A1 WO 2018103744A1 CN 2017115308 W CN2017115308 W CN 2017115308W WO 2018103744 A1 WO2018103744 A1 WO 2018103744A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
derivative
organic compounds
derivatives
Prior art date
Application number
PCT/CN2017/115308
Other languages
English (en)
French (fr)
Inventor
潘君友
谭甲辉
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to EP17879321.2A priority Critical patent/EP3553152B1/en
Priority to US16/467,413 priority patent/US10978642B2/en
Priority to CN201780059728.3A priority patent/CN109790461B/zh
Publication of WO2018103744A1 publication Critical patent/WO2018103744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings

Definitions

  • the present invention relates to the field of organic electronic devices, and more particularly to a mixture, a composition, and an organic electronic device.
  • the organic light-emitting diode which is a new-generation display technology
  • OLED organic light-emitting diode
  • FMM fine mask
  • the cost is high.
  • Low yield the organic light-emitting diode
  • QLEDs quantum dot light-emitting diodes
  • inkjet printing can produce functional material films in a large area and at low cost.
  • inkjet printing has low energy consumption, low water consumption, and environmental protection, and is a production technology with great advantages and potential. Therefore, to achieve print display, it is necessary to break through key issues such as printing ink and related processing techniques.
  • the performance of OLEDs based on small molecular materials is excellent, and devices prepared by vacuum evaporation have basically met the commercial requirements.
  • the existing small molecule OLED materials usually have a small molecular weight and a low glass transition temperature, and may have a relatively large rigidity due to a large molecular planar structure, a solubility improvement, a poor film formation property, and a subsequent heat treatment process. It is easy to crystallize, which leads to a significant decrease in the performance and lifetime of solution processing OLED or printed OLED. This problem has seriously hindered the development of printed OLED technology.
  • compositions and an organic electronic device are also provided.
  • any two organic compounds have a molecular weight difference of less than 160 Dalton, and in the mixture, the molar percentage of each organic compound is not less than 3% and not more than 90%, And the organic compounds each have at least one of the same or similar photovoltaic functions.
  • a composition comprising the above mixture and an organic solvent.
  • An organic electronic device comprising a functional layer, the material of which comprises one of the above mixtures and one of the above compositions.
  • FIG. 1 is a schematic structural view of an organic light emitting diode in an organic electronic device according to an embodiment
  • 101 is a substrate
  • 102 is an anode
  • 103 is a hole injection layer or a hole transport layer
  • 104 is a light-emitting layer
  • 105 is an electron injection layer or an electron transport layer
  • 106 is a cathode.
  • the present invention provides a mixture, a composition, and an organic electronic device.
  • the present invention will be further described in detail below in order to clarify and clarify the objects, aspects, and effects of the present invention. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the mixture of one embodiment is composed of three or more organic compounds, wherein the molecular weight difference of any two organic compounds is less than 160 Dalton, and the molar percentage of each organic compound in the mixture is not less than 3% and not higher than 90. %, and the organic compounds all have at least one of the same or similar photovoltaic functions.
  • the photoelectric function is selected from, but not limited to, one of a hole transport function, a hole blocking function, an electron transport function, an electron blocking function, an exciton blocking function, a fluorescent light emitting function, a phosphorescent light emitting function, a main body function, and a light absorption function. .
  • thermodynamic principle of the mixture is as follows:
  • Entropy is a state function that describes the degree of chaos in the thermodynamics of a material. According to Boltzmann's assumption about the relationship between entropy and system chaos, entropy is defined as the probability of a special state, that is, the number of microstates, that is, the way of atomic aggregation. quantity. When the state of the system is certain, the number of microscopic states is certain, that is, the degree of system confusion is certain; the larger the number of microscopic states, that is, the greater the degree of system confusion, the greater the entropy. In material thermodynamics, entropy can be divided into mixed entropy, configuration entropy and vibration entropy. Due to the small configuration entropy and vibration entropy, the atomic vibration configuration, electronic configuration, magnetic moment configuration, etc. can be neglected. The effect of entropy values.
  • n 0 atoms are the same type of elements
  • n 1 atoms are the same type of elements
  • n r atoms are the same type of elements
  • k is the Boltzmann constant
  • ⁇ S conf takes the maximum value.
  • the above mixture can provide a stable mixing system to solve the problem of film formation of small molecular materials in existing solution processing.
  • the difference in molecular weight of any two organic compounds in the mixture is less than 140 Dalton. Further, the difference in molecular weight of any two organic compounds in the mixture is less than 120 Dalton. Still further, the difference in molecular weight of any two organic compounds in the mixture is less than 100 Dalton. Still further, the difference in molecular weight of any two organic compounds in the mixture is less than 80 Dalton. Further, the difference in molecular weight of any two organic compounds in the mixture is less than 40 Dalton.
  • the molar percentage of each organic compound in the mixture is not less than 3% and not more than 80%. Further, the molar percentage of each organic compound in the mixture is not less than 5% and not more than 70%. Still further, the molar percentage of each organic compound in the mixture is not less than 5% and not more than 60%. Still further, the molar percentage of each organic compound in the mixture is not less than 10% and not more than 50%. Further, the molar percentage of each organic compound in the mixture is not less than 10% and not more than 40%.
  • the difference in mole percent of any two of the organic compounds in the mixture is no greater than 0.3. Further, the difference in the molar percentage of any two of the organic compounds in the mixture is not higher than 0.2. Still further, the difference in mole percentage of any two of the organic compounds in the mixture is not higher than 0.15. Further, the difference in the molar percentage of any two of the organic compounds in the mixture is not more than 0.1.
  • the organic compound in the mixture is selected from one of a fluorescent host material (single-state body), a phosphorescent host material (triplet body), a hole transporting material, and an electron transporting material. Further, the organic compound in the mixture is selected from one of a fluorescent host material and a phosphorescent host material.
  • the organic compounds in the mixture all have at least one similar or identical photovoltaic property, or both have at least one similar or identical physical property.
  • the organic compound in the mixture satisfies at least one of the following conditions, but (7) and (8) cannot be simultaneously established:
  • the singlet energy level difference of any two organic compounds is not higher than 0.2 eV. Further, the singlet energy level difference of any two organic compounds is not higher than 0.15 eV. Still further, the singlet energy level difference of any two organic compounds is not higher than 0.12 eV. Further, the singlet energy level difference of any two organic compounds is not higher than 0.10 eV;
  • the triplet energy level difference of any two organic compounds is not higher than 0.2 eV. Further, the triplet energy level difference of any two organic compounds is not higher than 0.15 eV. Further, the triplet energy level difference of any two organic compounds is not higher than 0.12 eV. Further, the triplet energy level difference of any two organic compounds is not higher than 0.10 eV;
  • the HOMO energy level difference of any two organic compounds is not higher than 0.2 eV. Further, the HOMO level difference of any two organic compounds is not higher than 0.15 eV. Still further, the HOMO level difference of any two organic compounds is not higher than 0.12 eV. Further, the HOMO energy level difference of any two organic compounds is not higher than 0.10 eV;
  • the LUMO energy level difference of any two organic compounds is not higher than 0.2 eV. Further, the LUMO energy level difference of any two organic compounds is not higher than 0.15 eV. Still further, the LUMO energy level difference of any two organic compounds is not higher than 0.12 eV. Further, the LUMO energy level difference of any two organic compounds is not higher than 0.10 eV;
  • the ⁇ HOMO of any one of the organic compounds is not less than 0.2 eV. Further, the ⁇ HOMO of any one of the organic compounds is not less than 0.3 eV. Still further, the ⁇ HOMO of any one of the organic compounds is not less than 0.4 eV. Further, the ⁇ HOMO of any one of the organic compounds is not lower than 0.45 eV;
  • the ⁇ LUMO of any one of the organic compounds is not less than 0.2 eV. Further, the ⁇ LUMO of any one of the organic compounds is not less than 0.3 eV. Still further, the ⁇ LUMO of any one of the organic compounds is not less than 0.4 eV. Further, the ⁇ LUMO of any one of the organic compounds is not lower than 0.45 eV;
  • the ⁇ (S1-T1) of any one of the organic compounds is not less than 0.8 eV. Further, ⁇ (S1-T1) of any one of the organic compounds is not less than 0.9 eV. Still further, ⁇ (S1-T1) of any one of the organic compounds is not less than 1.0 eV. Further, ⁇ (S1-T1) of any one of the organic compounds is not lower than 1.1 eV;
  • the ⁇ (S1-T1) of any one of the organic compounds is not higher than 0.3 eV. Further, ⁇ (S1-T1) of any one of the organic compounds is not higher than 0.25 eV. Still further, ⁇ (S1-T1) of any one of the organic compounds is not higher than 0.2 eV. Further, ⁇ (S1-T1) of any one of the organic compounds is not higher than 0.1 eV;
  • the sublimation temperature difference of any two organic compounds is not higher than 30 ° C; further, the sublimation temperature difference of any two organic compounds is not higher than 25 ° C. Still further, the sublimation temperature difference of any two organic compounds is not higher than 20 °C. Further, the sublimation temperature difference of any two organic compounds is not higher than 15 ° C;
  • the energy level structure of the organic compound in the mixture includes the triplet energy levels E T , HOMO and LUMO.
  • the energy level structure of organic compounds plays a key role in the performance of organic electronic devices.
  • the triplet energy level E T can be measured by low temperature time-resolved luminescence spectroscopy, and E T can also be calculated by quantum simulation. Further, E T is calculated by Time-dependent DFT. Specifically, the E T is calculated by a commercial software, Gaussian 03W (Gaussian Inc.), and can be specifically referred to the simulation calculation method in WO2011141110.
  • Gaussian 03W Gaussian Inc.
  • the HOMO and LUMO levels can be measured by photoelectric effect, for example, by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), cyclic voltammetry (CV) or quantum chemistry.
  • XPS X-ray photoelectron spectroscopy
  • UPS ultraviolet photoelectron spectroscopy
  • CV cyclic voltammetry
  • quantum chemical method is density functional theory (hereinafter referred to as DFT).
  • the absolute values of HOMO, LUMO, E T depend on the measurement method or calculation method used. Even for the same measurement method, different evaluation methods may result in different HOMO values, LUMO values or E T values, for example, the starting point and the peak point on the CV curve may give different HOMO/LUMO values. Therefore, reasonable and meaningful comparisons should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, and E T are based on Time-dependent DFT simulations, but do not affect the application of other measurement or calculation methods.
  • (HOMO-1) is the second highest occupied orbital energy level
  • (HOMO-2) is the third highest occupied orbital energy level
  • (LUMO+1) is the second lowest unoccupied orbital level
  • (LUMO+2) is the third lowest occupied orbital level, and so on.
  • all of the organic compounds in the mixture comprise the same core structure.
  • the core structure refers to a specific organic functional material.
  • the core structure determines the key properties or parameters of the entire organic compound corresponding to such functions, such as the triplet energy level of the phosphorescent host material, the singlet energy level of the fluorescent host material, and the electron transport.
  • the organic functional material consists of a core structural group and an auxiliary structural group.
  • all of the organic compounds in the mixture comprise the same number of identical core structural groups and the same number of identical or similar auxiliary structural groups, except that the various groups of the organic compound are attached differently.
  • the organic compounds in the mixture are all fluorescent host materials, and the organic compounds in the mixture each contain a mercapto group and the same number of naphthyl groups. Further, the organic compounds in the mixture each contain a mercapto group, the same number of naphthyl groups and the same number of phenyl groups.
  • organic compounds are each selected from one of the following formulae:
  • Ar 1 and Ar 2 are each independently selected from an aromatic group having 6 to 60 carbon atoms, an aromatic hetero group having 3 to 60 carbon atoms, and a fused ring having 6 to 60 carbon atoms.
  • Ar 9 and Ar 10 are each independently selected from H, D, F, -CN, -NO 2 , -CF 3 , alkenyl, alkynyl, amine, acyl, amide, cyano, isocyano, alkoxy a hydroxyl group, a carbonyl group, a sulfone group, an alkyl group having 1 to 60 carbon atoms, a cycloalkyl group having 3 to 60 carbon atoms, an aromatic group having 6 to 60 carbon atoms, and a carbon number And at least one of 3 to 60 heterocyclic aryl groups, 7 to 60 fused ring aromatic groups having 4 to 60 carbon atoms, and 4 to 60 fused heterocyclic aryl groups; a plurality of groups may form a monocyclic or polycyclic aliphatic or aromatic ring system with each other and/or a ring bonded to the group;
  • L 1 is selected from the group consisting of an aromatic group having 5 to 60 ring atoms and a aryl group having 5 to 60 ring atoms;
  • L 2 is a single bond, or L 2 is one selected from the group consisting of an aromatic group having 5 to 30 ring atoms and a aryl group having 5 to 30 ring atoms;
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are each independently selected from the group consisting of an aromatic group having 5 to 30 ring atoms and a aryl group having 5 to 30 ring atoms.
  • R 1 , R 2 and R are each independently selected from the group consisting of H, D, F, CN, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone, and having 1 carbon atom ⁇ 30 alkyl groups, a cycloalkyl group having 3 to 30 carbon atoms, an aromatic hydrocarbon group having 5 to 60 ring atoms, and an aromatic heterocyclic ring having 5 to 60 ring atoms One of the bases;
  • n is any integer from 1 to 4.
  • L 1 in the general formulae (5) and (6) is one selected from the group consisting of an aromatic group having 5 to 50 ring atoms and a aryl group having 5 to 50 ring atoms. Further, L 1 is one selected from the group consisting of an aromatic group having 5 to 40 ring atoms and a aryl group having 5 to 40 ring atoms. Further, L 1 is one selected from the group consisting of an aromatic group having 6 to 30 ring atoms and 6 to 30 aromatic groups.
  • L 2 is selected from an aromatic group having 5 to 25 ring atoms and a ring number of 5 to 25 One of the aromatic hetero groups. Further, L 2 is one selected from the group consisting of an aromatic group having 5 to 20 ring atoms and a aryl group having 5 to 20 ring atoms. Further, L 2 is one selected from the group consisting of an aromatic group having 5 to 15 ring atoms and a aryl group having 5 to 15 ring atoms.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are each selected from the group consisting of an aromatic group having 5 to 25 ring atoms and a ring atom number. One of 5 to 25 aromatic hetero groups. Further, Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are each selected from an aromatic group having 5 to 20 ring atoms and a aryl group having 5 to 20 ring atoms. One kind. Further, Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are each selected from an aromatic group having 5 to 15 ring atoms and a aryl group having 5 to 15 ring atoms. One of them.
  • -X 1 - in the general formulae (5) to (6) is a single bond, or X 1 is selected from one of N(R), C(R) 2 , O and S.
  • -X 2 -, -X 3 -, -X 4 -, -X 5 -, -X 6 -, -X 7 -, -X 8 - and -X in the general formulae (3) to (4) 9 - each is a single bond, or X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 and X 9 are respectively selected from N(R), C(R) 2 , O and S One kind.
  • n in the general formulae (5) to (6) is any integer of 1 to 3. Further, n is any integer of 1 to 2.
  • Ar 8 each include at least one of the following structural formulas:
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 and A 8 are each independently selected from one of CR 3 and N;
  • R 3 , R 4 and R 5 are each selected from the group consisting of H, D, a linear alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and having 1 to 20 carbon atoms.
  • Ar 1 , Ar 2 , Ar 9 and Ar 10 in the general formulae (1) to (2) and Ar 3 , Ar 4 , Ar 5 , Ar 6 and Ar in the general formulae (3) to (6) 7 and Ar 8 are each selected from one of the following structures:
  • H on the ring of the above group can be substituted.
  • the organic compounds in the mixture are fluorescent light host materials, and the organic compounds are each selected from one of the general formula (1) and the general formula (2).
  • organic compound represented by the formula (1) is selected from one of the following structural formulae:
  • L 1 , R 1 , R 2 and R have the same meanings as defined above; a is an integer of 1 to 3; and b 11 to b 13 are each selected from any integer of 0 to 6.
  • organic compound represented by the formula (1) is selected from one of the following structural formulae:
  • L 1 , R 1 , R 2 , R, a, b 11 and b 12 are as described above.
  • organic compounds in the mixture are each selected from one of the following structures:
  • the core structure of the organic compound is selected from the group consisting of a cyclic aromatic hydrocarbon group, an aromatic heterocyclic group, and a group having 2 to 10 ring structures.
  • the cyclic aromatic hydrocarbon group is selected from the group consisting of biphenyl, triphenyl, benzo, naphthalene, anthracene, anthracene, phenanthrene, anthracene, anthracene, fluorene, anthracene and anthracene
  • the aromatic heterocyclic group is selected from the group consisting of dibenzothiophene, Dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, carbazole, pyridinium, pyrrole dipyridine, pyrazole, imidazole, three Azole, isoxazole,
  • the core structure of the organic compound is selected from one of the following groups:
  • R 11 is independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl; and Ar 11 is selected from the group consisting of carbon atoms 6 to 60 aromatic groups, aryl groups having 3 to 60 carbon atoms, fused ring aromatic groups having 6 to 60 carbon atoms, and fused rings having 3 to 60 carbon atoms One of the arylhetero groups; n is any integer from 0 to 20; X 11 -X 18 are each selected from the group consisting of CH and N; and X 19 and X 10 are respectively selected from CR 1 R 2 and NR 1 One kind.
  • the organic compounds in the mixture are all phosphorescent host materials, and the organic compounds are each selected from one of the above formulas (3) to (6).
  • organic compounds represented by the general formula (3) are each selected from one of the following structural formulas:
  • Ar 3 , Ar 6 , X 2 , X 3 , X 4 , X 5 , R 1 and R 2 have the same meanings as described above.
  • R 1 , R 2 , L 1 , and L 2 have the same meanings as defined above; and L 3 is selected from the group consisting of an aromatic group having 5 to 60 ring atoms and a aryl group having 5 to 60 ring atoms.
  • L 3 is selected from the group consisting of an aromatic group having 5 to 60 ring atoms and a aryl group having 5 to 60 ring atoms.
  • organic compound represented by the general formula (3) is each selected from one of the following structures:
  • organic compounds represented by the general formula (4) are each selected from one of the following structural formulas:
  • Ar 4 , Ar 5 , Ar 7 , Ar 8 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , R 1 and R 2 have the same meanings as described above.
  • organic compound represented by the formula (4) is:
  • organic compounds represented by the general formula (4) are each selected from one of the following structures:
  • organic compounds represented by the formula (5) are each selected from one of the following structural formulae:
  • organic compound represented by the formula (5) is:
  • organic compound represented by the general formula (5) is each selected from one of the following structures:
  • organic compounds represented by the general formula (6) are each selected from one of the following structural formulae:
  • organic compound represented by the formula (6) is:
  • R 1 , R 2 , L 1 and n are as described above.
  • organic compound represented by the general formula (6) is each selected from one of the following structures:
  • the organic compound in the above mixture is a phosphorescent host material, and in this case, the core structure of the organic compound in the mixture is selected from a group containing a cyclic aromatic hydrocarbon group, a group containing an aromatic heterocyclic group, and containing 2 One of the bases of ⁇ 10 ring structures.
  • group containing a cyclic aromatic hydrocarbon group is selected from the group consisting of biphenyl, triphenyl, benzo and anthracene; and the group containing an aromatic heterocyclic group is selected from the group consisting of dibenzothiophene, dibenzofuran, and dibenzoxylene.
  • the core structure of the organic compound in the mixture is selected from one of the following structures:
  • R 11 to R 17 are each independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl; and Ar 11 is selected from carbon.
  • n is any integer from 0 to 20
  • X 11 to X 18 are each independently selected from one of CH and N
  • X 19 is selected from CR 1 R 2 and NR 1 One kind.
  • the organic compounds in the mixture are all phosphorescent host materials, the organic compounds are each selected from one of the following structures:
  • the organic compounds in the mixture are all hole transport materials.
  • the organic compounds in the mixture are all electron transport materials.
  • the mixture further includes an organic functional material selected from the group consisting of a hole injecting material (HIM), a hole transporting material (HTM), an electron transporting material (ETM), an electron injecting material (EIM), and an electron blocking material (EBM).
  • HIM hole injecting material
  • HTM hole transporting material
  • ETM electron transporting material
  • EIM electron injecting material
  • EBM electron blocking material
  • HBM hole blocking material
  • Emitter emitter
  • illuminant is selected from the group consisting of a fluorescent illuminant, a thermally activated delayed fluorescent illuminant or a phosphorescent illuminant.
  • the organic compounds in the mixture are fluorescent host materials and the organic functional material is a fluorescent emitter.
  • the fluorescent illuminant has a weight percentage of not more than 15%. Further, the fluorescent illuminant is not more than 12% by weight. Still further, the fluorescent illuminant is not more than 9% by weight. Still further, the fluorescent illuminant is not more than 8% by weight. Further, the fluorescent illuminant is not more than 7% by weight.
  • the fluorescent illuminant is selected from the group consisting of a derivative of an indeno-amine, a derivative of an indeno-diamine, a derivative of naphthalene, a derivative of tetraphenyl, a derivative of xanthene, a derivative of phenanthrene, a derivative of hydrazine, a derivative of anthraquinone, a derivative of phenylene, a derivative of bisindole, a derivative of decacycloolefin, a derivative of hexabenzobenzene, a derivative of hydrazine, a stilbene Derivatives, derivatives of aryl hydrazine, derivatives of arylene vinyl, derivatives of cyclopentadiene, derivatives of rubrene, derivatives of coumarin, derivatives of rhodamine, quinacrid a derivative of a ketone, a derivative of a pyran, a derivative of a
  • the organic functional material is a thermally excited delayed fluorescent illuminant (TADF).
  • TADF thermally excited delayed fluorescent illuminant
  • the organic compound is a phosphorescent host material and the organic functional material is a phosphorescent emitter.
  • the phosphorescent emitter has a weight percentage of not more than 30%. Further, the phosphorescent emitter has a weight percentage of not more than 25%. Further, the phosphorescent emitter has a weight percentage of not more than 20%.
  • HTM is also known as a p-type organic semiconductor material.
  • the HIM/HTM material is selected from the group consisting of compounds containing phthalocyanine, porphyrin, amine, aromatic amine, biphenyl triarylamine, thiophene, thiophene (such as dithienothiophene and thiophene), pyrrole, aniline, Carbazole, azide and azide, a derivative of phthalocyanine, a derivative of a porphyrin, a derivative of an amine, a derivative of an aromatic amine, a derivative of a biphenyl triarylamine, a derivative of thiophene, and a thiophene (such as Derivatives of dithienothiophene and thiophene), derivatives of pyrrole, derivatives of aniline, derivatives of carbazole, and derivatives of azeticonazole.
  • the HIM may also be selected from a fluorocarbon-containing polymer, a conductive doped polymer, a conductive polymer (PEDOT/PSS), a self-assembling monomer (eg, containing a phosphonic acid and a silane derivative).
  • a fluorocarbon-containing polymer e.g., a fluorocarbon-containing polymer, a conductive doped polymer, a conductive polymer (PEDOT/PSS), a self-assembling monomer (eg, containing a phosphonic acid and a silane derivative).
  • a compound e.g, a metal oxide (MoO x ), a metal complex, and a crosslinking compound.
  • the cyclic aromatic amine-derived compound useful as HIM or HTM is selected from, but not limited to, one of the following structures:
  • each of Ar 1 to Ar 9 is independently selected from the group consisting of a cyclic aromatic hydrocarbon group, an aromatic heterocyclic group, and a group having 2 to 10 ring structures.
  • the cyclic aromatic hydrocarbon group is selected from the group consisting of benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalkenylene, phenanthrene, anthracene, anthracene, fluorene, anthracene and anthracene; Benzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, oxazole, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, triazole, dioxin , thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, cycl
  • each of Ar 1 to Ar 9 may be independently substituted with one of hydrogen, an alkyl group, an alkoxy group, an amino group, an alkene group, an alkyne group, an aralkyl group, a heteroalkyl group, an aryl group and a heteroaryl group.
  • Ar 1 to Ar 9 each independently comprise at least one of the following groups:
  • n is any integer from 1 to 20; X 1 to X 8 are each selected from the group consisting of CH and N; and Ar 1 is as defined above.
  • the cyclic aromatic amine-derived compounds useful as HIM or HTM are the cyclic aromatic amine-derived compounds disclosed in U.S. Patent No. 3,567,450, U.S. Patent No. 4,724,432, U.S. Patent No. 5,061,569, U.S.
  • the metal complex that can be used as the HTM or HIM includes, but is not limited to, the following structure:
  • M is a metal, and the atomic weight of M is greater than 40; (Y 1 -Y 2 ) is a bidentate ligand, and Y 1 and Y 2 are each independently selected from one of C, N, O, P, and S; To be an auxiliary ligand; m is any integer from 1 to m+n, and m+n is the maximum coordination number of M.
  • (Y 1 -Y 2 ) is a 2-phenylpyridine derivative. In another embodiment, (Y 1 -Y 2 ) is a carbene ligand.
  • M is selected from the group consisting of Ir, Pt, Os, and Zn.
  • the metal complex of M has a HOMO greater than -5.5 eV (relative to the vacuum level).
  • organic compound which can be used as HTM is selected from one of the following structures:
  • the EIM/ETM material is not particularly limited, and any metal complex or organic compound may be used as the EIM/ETM as long as they can transport electrons.
  • the EIM/ETM material is selected from the group consisting of tris(8-hydroxyquinoline)aluminum (AlQ3), phenazine, phenanthroline, anthracene, phenanthrene, anthracene, diterpene, spirobifluorene, p-phenylacetylene, pyridazine, pyrazine , triazine, triazole, imidazole, quinoline, isoquinoline, quinoxaline, oxazole, isoxazole, oxadiazole, thiadiazole, pyridine, pyrazole, pyrrole, pyrimidine, acridine, anthracene, pyrene , ruthenium and hydrazine, cis-hydrazino, di
  • a hole blocking layer is typically used to block holes from adjacent functional layers, particularly the luminescent layer.
  • the presence of HBL typically results in an increase in luminous efficiency.
  • the hole blocking material (HBM) of the hole blocking layer (HBL) needs to have a lower HOMO than an adjacent functional layer such as a light emitting layer.
  • the HBM has a larger excited state level than the adjacent luminescent layer, such as a singlet or triplet, depending on the illuminant.
  • the HBM has an electronic transmission function. EIM/ETM materials that typically have deep HOMO levels can be used as HBM.
  • the organic compound useful as EIM/ETM/HBM comprises at least one of the following groups:
  • R 1 is selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkenyl, alkynyl, aralkyl, heteroalkyl, aryl and heteroaryl.
  • R 1 is an aryl group or a heteroaryl group, R 1 has the same meaning as Ar 1 and Ar 2 in the above HTM;
  • Ar 1 to Ar 5 are each independently selected from the group consisting of a cyclic aromatic hydrocarbon group, an aromatic heterocyclic group, and a group having 2 to 10 ring structures.
  • the cyclic aromatic hydrocarbon group is selected from the group consisting of benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalkenylene, phenanthrene, anthracene, anthracene, fluorene, anthracene and anthracene; Benzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, oxazole, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, triazole, dioxin , thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, ox
  • each of Ar 1 to Ar 5 may be independently substituted with one of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl; Any integer from 0 to 20; X1 to X8 are selected from one of CR1 and N.
  • the metal complex that can be used as the EIM/ETM includes, but is not limited to, one of the following structures:
  • (ON) and (NN) are respectively bidentate ligands, the metal is coordinated with O, N or with N, N; L is an ancillary ligand; m is from 1 to the maximum coordination number of the metal. An integer.
  • organic compound which can be used as ETM is selected from one of the following structures:
  • Phosphorescent materials are also called triplet emitters.
  • the phosphorescent material has the general formula: M(L) n , wherein M is a metal atom; L is an organic ligand, and L is bonded to the M via one or more positions n is any integer greater than 1, and further, n is selected from one of 1, 2, 3, 4, 5, and 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • M is selected from one of a transition metal element, a lanthanoid element, and a lanthanoid element.
  • M is one selected from the group consisting of Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy, Re, Cu, and Ag. More specifically, M is selected from one of Os, Ir, Ru, Rh, Re, Pd, and Pt.
  • the phosphorescent luminescent material comprises a chelating ligand, ie a ligand, and the chelating ligand is coordinated to the metal via at least two bonding sites. Further, the phosphorescent material comprises one of two to three bidentate ligands and two to three multidentate ligands. Among them, the chelating ligand is advantageous for improving the stability of the metal complex.
  • the organic ligand is selected from the group consisting of a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, and a 2-phenylquinoline derivative.
  • the organic ligand may be further substituted, for example, by containing a monofluoro or trifluoromethyl group.
  • the ancillary ligand is selected from one of acetic acid acetone and picric acid.
  • the metal complex that can be used as the triplet emitter has the following general formula:
  • M is selected from one of a transition metal element, a lanthanoid element, and a lanthanide element;
  • Ar 1 is a cyclic group, and Ar 1 contains at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, which is coordinated to the metal by a donor atom;
  • Ar 2 is a cyclic group, Ar 2 contains at least one carbon atom, and the cyclic group is bonded to the metal through a carbon atom; Ar 1 and Ar 2 are bonded together by a covalent bond, and Ar 1 and Ar 2 can each carry one or more a substituent, Ar 1 and Ar 2 can also be coupled together by a substituent;
  • L is an auxiliary ligand, further, L is a bidentate chelate ligand, specifically, L is a monoanionic bidentate chelate ligand;
  • n is selected from one of 1, 2 and 3, further, m is selected from one of 2 and 3, specifically, m is 3;
  • n is selected from one of 0, 1, and 2, and further, n is selected from one of 0 and 1, and specifically, n is 0.
  • the phosphorescent material is selected from the group consisting of WO 200070655, WO 200141512, WO 200202714, WO 200215645, EP 1191613, EP 1191612, EP 1191614, WO 2005033244, WO 2005019373, US 2005/0258742, WO 2009146770, WO 2010015307, WO 2010031485, WO 2010054731, WO 2010054728, WO 2010086089, WO 2010099852, WO 2010102709, US 20070087219 A1, US 20090061681 A1, US 20010053462 A1, Baldo, Thompson et al.
  • the phosphorescent material is selected from one of the following structures:
  • Fluorescent emitters single-state emitters
  • the fluorescent emitter is selected from the group consisting of monostyrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether, and aromatic amine.
  • the monostyrylamine comprises a styryl group and at least one amine. Further, the monostyrylamine contains a styryl group and an aromatic amine.
  • the binary styrylamine comprises two unsubstituted or substituted styryl groups and at least one amine. Further, the dibasic styrylamine contains two unsubstituted or substituted styryl groups and aromatic amines.
  • the ternary styrylamine contains three styryl groups and at least one amine. Further, the ternary styrylamine contains three styryl groups and an aromatic amine.
  • the quaternary styrylamine is comprised of four styryl groups and at least one amine. Further, the tetrabasinamine is composed of four styryl groups and an aromatic amine.
  • the styryl group may be a substituted styryl group or an unsubstituted styryl group.
  • styrene is stilbene, and styrene can be further substituted.
  • An aromatic amine refers to a compound comprising three aromatic ring or heterocyclic systems directly attached to nitrogen. At least one of the aromatic or heterocyclic systems is a fused ring system. Further, the aromatic ring or heterocyclic ring system contains at least 14 aromatic carbon atoms.
  • the aromatic amine is one selected from the group consisting of aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic thiamine, and aromatic quinone diamine.
  • a diaryl arylamine group in the aromatic guanamine is directly attached to the oxime, preferably at the position of 9.
  • the two diarylamine groups of the aromatic oxime diamine are attached directly to the oxime, preferably at the 9,10 position.
  • the diarylamine groups of the aromatic guanamine, the aromatic guanidine diamine, the aromatic thiamine and the aromatic quinone diamine are directly attached to the 1 or 1,6 position of the oxime.
  • the definitions of styrene phosphine and styrene ether are approximately the same as those of aromatic amines.
  • the vinylamine and arylamine-based fluorescent emitters are selected from the group consisting of WO2006/000388, WO2006/058737, WO2006/000389, WO2007/065549, WO2007/115610, US7250532B2, DE102005058557 A1, CN1583691 A, JP08053397A, US6251531 B1, US2006/ One of the fluorescent illuminants disclosed in 210830A, EP1957606A1, and US2008/0113101A1.
  • a fluorescent illuminant based on stilbene and a derivative thereof is a fluorescent illuminant disclosed in US Pat. No. 5,121,029.
  • the fluorescent illuminant is an indeno-amine disclosed in WO2006/122630, an indeno-diamine disclosed in WO2006/122630, a benzoindeno-amine disclosed in WO2008/006449, WO2008/006449
  • materials usable as fluorescent illuminants include polycyclic aromatic hydrocarbon compounds.
  • the polycyclic aromatic hydrocarbon compound is selected from the group consisting of a derivative of ruthenium [such as 9,10-bis(2-naphthoquinone)], a derivative of naphthalene, a derivative of tetraphenyl, a derivative of xanthene, and a derivative of phenanthrene.
  • a derivative of hydrazine such as 2,5,8,11-tetra-t-butylhydrazine, a derivative of indenoindole, a phenylene such as (4,4'-bis(9-ethyl-3-) a derivative of carbazole vinyl)-1,1'-biphenyl), a derivative of indenofluorene, a derivative of decacycloolefin, a derivative of hexacenebenzene, a derivative of hydrazine, a stilbene Derivatives, derivatives of aryl hydrazines (such as the aryl fluorene disclosed in US20060222886), derivatives of arylene vinyl (such as the arylene vinyl disclosed in US Pat.
  • aryl hydrazines such as the aryl fluorene disclosed in US20060222886
  • arylene vinyl such as the arylene vinyl disclosed in US Pat.
  • the material of the fluorescent illuminant is the fluorescent illuminant material disclosed in US20070252517A1, US4769292, US6020078, US2007/0252517A1 or US2007/0252517A1.
  • the fluorescent illuminant has the following general formula:
  • Ar 21 represents a C 6 -C 50 -containing aryl group or a C 6 -C 50 -containing styryl group
  • L1 represents a single bond, contains a C 6 - C 30 arylene group or contains a C 3 - C 30 impurity
  • Ar 22 and Ar 23 each independently represent hydrogen, deuterium, halogen, C 1 - C 30 -containing alkyl group, C 6 - C 30 -containing aryl group, C 3 - C 30 -containing heteroaryl group, and Adjacent substituents are bonded to form a C 3 -C 30 -containing aliphatic ring group or to an adjacent substituent to form a C 3 -C 30 -containing aromatic ring group, and the carbon atoms in Ar 22 and Ar 23 may be nitrogen, At least one hetero atom in oxygen and sulfur is replaced;
  • n 1 or 2
  • m 1 or 2
  • m 2
  • Ar 21 is selected from the group consisting of phenyl, fluorenyl, fluorenyl, fluorenyl, One of a group, a benzofluorenyl group, and a snail [ ⁇ -benzopyrene].
  • the fluorescent illuminant is selected from one of the following structures:
  • TADF Thermally activated delayed fluorescence luminescence
  • TADF Thermally activated delayed fluorescence luminescence
  • TADF materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be converted into singlet exciton luminescence by anti-intersystem crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation, and the quantum efficiency in the device can reach 100%.
  • TADF material structure is controllable, stable in nature, cheap in price, no need for precious metals, and has broad application prospects in the field of OLED.
  • the TADF material needs to have a small singlet-triplet energy level difference ( ⁇ Est), where ⁇ Est ⁇ 0.3 eV. Further, ⁇ Est ⁇ 0.2 eV. Further, ⁇ Est ⁇ 0.1 eV.
  • the TADF material has a relatively small ⁇ Est, and in another embodiment, the TADF has a better fluorescence quantum efficiency.
  • the TADF material is selected from the group consisting of CN103483332 (A), TW201309696 (A), TW201309778 (A), TW201343874 (A), TW201350558 (A), US20120217869 (A1), WO2013133359 (A1), WO2013154064 (A1) , Adachi, et.al. Adv. Mater., 21, 2009, 4802, Adachi, et.al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett., 101, 2012, 093306, Adachi, et. al. Chem.
  • the TADF luminescent material is selected from one of the following structures:
  • the above mixture can be applied to an organic electronic device selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), organic A light-emitting field effect transistor, an organic laser, an organic spintronic device, an organic sensor, and an organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OLED organic light emitting cell
  • OFET organic field effect transistor
  • organic A light-emitting field effect transistor organic laser
  • organic spintronic device an organic spintronic device
  • organic sensor an organic plasmon emitting diode
  • organic plasmon emitting diode Organic Plasmon Emitting Diode
  • composition of an embodiment comprising a mixture and an organic solvent.
  • the viscosity and surface tension of the composition are important parameters when the composition is used in a printing process.
  • the surface tension parameters of the composition match the particular substrate and the particular printing method.
  • the composition has a surface tension of from 19 dyne/cm to 50 dyne/cm at 25 °C. Further, the composition has a surface tension of 22 dyne/cm to 35 dyne/cm. Further, the surface tension of the composition is from 25 dyne/cm to 33 dyne/cm.
  • the viscosity of the composition is from 1 cps to 100 cps at 25 °C. Further, the viscosity of the composition is from 1 cps to 50 cps. Still further, the viscosity of the composition is from 1.5 cps to 20 cps. Further, the viscosity of the composition is from 4.0 cps to 20 cps. Compositions at this viscosity facilitate ink jet printing.
  • the organic solvent has a boiling point of 150 ° C or higher at 1 standard atmosphere. Further, the organic solvent has a boiling point of 180 ° C or higher. Still further, the organic solvent has a boiling point of 200 ° C or higher. Still further, the organic solvent has a boiling point of 250 ° C or higher. Further, the organic solvent has a boiling point of 300 ° C or higher. The boiling point of this organic solvent is beneficial for preventing nozzle clogging of the ink jet print head.
  • the organic solvent can be evaporated from the solvent system to form a film comprising the functional material.
  • the viscosity can be adjusted by different methods, such as selecting a different solvent or adjusting the concentration of the organic functional material in the composition. According to the mixture containing the metal organic complex or polymer as described above, it is convenient for the printing mixture to be adjusted in an appropriate range according to the printing method used.
  • the mixture in the composition has a mass percentage of from 0.01% to 20%. Further, the mass percentage of the mixture in the composition is from 0.1% to 15%. Still further, the mass percentage of the mixture in the composition is from 0.2% to 10%. Further, the mixture in the composition has a mass percentage of 0.25% to 5%.
  • the mass percentage of the organic functional material in the composition is from 0.3% to 30%. Further, the organic functional material in the composition has a mass percentage of 0.5% to 20%. Still further, the organic functional material in the composition has a mass percentage of from 0.5% to 15%. Still further, the organic functional material in the composition has a mass percentage of from 0.5% to 10%. Further, the organic functional material in the composition has a mass percentage of 1% to 5%.
  • the organic solvent includes a first solvent
  • the first solvent includes at least one of an aromatic solvent, a heteroaromatic solvent, a ketone solvent, an ether solvent, and an ester solvent.
  • the aromatic solvent is selected from one of an aliphatic chain-substituted aromatic solvent and a ring-substituted aromatic solvent.
  • the aromatic solvent or heteroaromatic solvent is selected from the group consisting of p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3-isopropylbiphenyl.
  • p-Methyl cumene dipentylbenzene, triphenylbenzene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2 , 3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, dihexylbenzene, dibutylbenzene, p-pair Isopropylbenzene, 1-methoxynaphthalene, cyclohexylbenzene, dimethylnaphthalene, 3-isopropylbiphenyl, p-methylisopropylbenzene, 1-methylnaphthalene, 1,2,4-trichloro Benzene
  • the ketone solvent is selected from the group consisting of 1-tetralone, 2-tetralone, 2-(phenyl epoxy)tetralone, 6-(methoxy)tetralone, acetophenone, Phenylacetone, benzophenone, 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone, 2-methyl Propiophenone, isophorone, 2,6,8-trimethyl-4-indanone, anthrone, 2-nonanone, 3-fluorenone, 5-nonanone, 2-nonanone, 2,5- One of adipone, phorone and di-n-pentyl ketone.
  • the ether solvent is selected from the group consisting of 3-phenoxytoluene, butoxybenzene, benzylbutylbenzene, p-anisaldehyde dimethyl acetal, tetrahydro-2-phenoxy-2H-pyran, 1 ,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxytoluene, 4-B Basic diethyl ether, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1,3-dimethoxybenzene, glycidyl phenyl ether, Dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methoxynaphthalene, diphenyl ether, 2-phenyl
  • the ester solvent is selected from the group consisting of alkyl octanoate, alkyl sebacate, alkyl stearate, alkyl benzoate, alkyl phenyl acetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, and alkane.
  • alkyl octanoate alkyl sebacate, alkyl stearate, alkyl benzoate, alkyl phenyl acetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, and alkane.
  • alkyl octanoate alkyl sebacate
  • alkyl stearate alkyl benzoate
  • alkyl phenyl acetate alkyl cinnamate
  • alkyl oxalate alkyl maleate
  • alkane alkane
  • the first solvent includes at least one of an aliphatic ketone and an aliphatic ether.
  • the aliphatic ketone is selected from the group consisting of 2-nonanone, 3-fluorenone, 5-fluorenone, 2-nonanone, 2,5-hexanedione, 2,6,8-trimethyl-4-indanone, At least one of phorone and di-n-pentyl ketone;
  • the aliphatic ether is selected from the group consisting of pentyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether At least one of diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, and tetraethylene glycol di
  • the organic solvent further includes a second solvent
  • the second solvent includes methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, and benzene.
  • Ether morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxy Toluene, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl At least one of sulfone, tetrahydronaphthalene, decalin and hydrazine.
  • the composition of one embodiment can be used as an ink and can be applied in an organic electronic device.
  • the composition may be a solution or a suspension.
  • the organic electronic device is selected from the group consisting of, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, an organic laser, and an organic self.
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OFET organic field effect transistor
  • the organic electronic device is an OLED. More specifically, the mixture is used for the luminescent layer of an OLED device.
  • the composition is applied to an organic electronic device by a printing or coating method.
  • the printing or coating method is selected from, but not limited to, inkjet printing, Nozzle Printing, letterpress printing, screen printing, dip coating, spin coating, blade coating, roller printing, torsion roller printing, Lithography, flexo printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, and the like.
  • Preferred is one of gravure, inkjet and inkjet printing.
  • the composition when the composition is applied to an organic electronic device, the composition further includes at least one of a surface active compound, a lubricant, a wetting agent, a dispersing agent, a hydrophobic agent, and a binder, for use in Adjust the viscosity of the mixture, film forming properties, and improve adhesion.
  • a surface active compound for use in Adjust the viscosity of the mixture, film forming properties, and improve adhesion.
  • An organic electronic device of an embodiment comprises one of the above mixtures and compositions.
  • the organic electronic device is selected from the group consisting of, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, an organic laser, and an organic self.
  • OLED organic light emitting diode
  • OLED organic photovoltaic cell
  • OLED organic light emitting cell
  • OFET organic field effect transistor
  • an organic light emitting field effect transistor an organic laser
  • an organic self One of a spintronic device, an organic sensor, and an organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • the organic electronic device is an organic electroluminescent device such as an OLED, an OLEEC, and an organic light-emitting field effect transistor.
  • the organic electronic device includes a functional layer including one of a mixture and a composition. Still further, the organic electronic device includes a cathode, an anode, and a functional layer between the cathode and the anode. Wherein the functional layer comprises at least one of a mixture and a composition.
  • the organic electronic device comprises a hole transport layer
  • the hole transport layer comprises the above mixture, wherein the organic compounds in the mixture are all hole transport materials.
  • the organic electronic device is an electroluminescent device, and the light emitting layer of the organic electronic device comprises the above mixture, or comprises the above mixture and phosphorescent emitter, or comprises the above mixture and fluorescent emitter, or comprises the above mixture, phosphorescence Luminescent and matrix materials.
  • the organic electronic device has an emission wavelength of 300 nm to 1000 nm. Further, the organic electronic device has an emission wavelength of 350 nm to 900 nm. Further, the organic electronic device has an emission wavelength of 400 nm to 800 nm.
  • the organic electronic device includes a substrate, an anode, a light emitting layer, and a cathode. Among them, the organic electronic device is an organic light emitting diode.
  • the substrate may be opaque or transparent.
  • Transparent substrates can be used to make transparent light-emitting components.
  • transparent luminescent components disclosed in Bulovic et al., Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass. Further, the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible and the substrate is a polymeric film or plastic.
  • the glass transition temperature (Tg) of the substrate is 150 ° C or higher, and further, the Tg of the substrate exceeds 200 ° C. Still further, the substrate has a Tg in excess of 250 °C. Further, the substrate has a Tg exceeding 300 °C.
  • the flexible substrate is poly(ethylene terephthalate) (PET) or polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode includes one of a conductive metal, a metal oxide, and a conductive polymer.
  • the anode can inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the work function of the anode and the absolute value of the difference between the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) It is less than 0.5 eV, preferably less than 0.3 eV, and more preferably less than 0.2 eV.
  • the anode material is selected from, but not limited to, one of Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, and aluminum-doped zinc oxide (AZO).
  • the anode material can be applied to physical vapor deposition, and the physical vapor deposition method includes RF magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned.
  • the patterned ITO conductive substrate can be used to prepare an organic electronic device. Patterned ITO conductive substrates are commercially available.
  • the cathode includes a conductive metal or a metal oxide.
  • the cathode is capable of injecting electrons into the EIL, ETL or luminescent layer.
  • the absolute value of the difference in the conduction band level is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in the conduction band level is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • the cathode material is selected from, but not limited to, one of Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF 2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, and ITO. .
  • the cathode material can be applied to physical vapor deposition, and the physical vapor deposition method includes RF magnetron sputtering, vacuum thermal evaporation, and electron beam (e-beam).
  • the OLED comprises a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • an organic light emitting diode includes a substrate 101 , an anode 102 , a hole injection layer or a hole transport layer 103 , a light emitting layer 104 , an electron injection layer or an electron transport layer 105 , and a cathode 106 .
  • An electronic device of an embodiment includes the above-described organic electronic device.
  • the electronic device is selected from one of a display device, a lighting device, a light source, and a sensor.
  • FH-18, FH-19, FH-21 and FH-29 were purchased from Jilin Ored Photoelectric Materials Co., Ltd.;
  • PH-8, PH-11, PH-12 are synthesized according to patent WO201034125A1;
  • PD-1 is synthesized by reference to patent CN102668152;
  • the energy levels of the above materials can be obtained by quantum calculation.
  • the results are shown in Table 1.
  • TD-DFT time-dependent density functional theory
  • Gaussian09W Gaussian Inc.
  • the specific simulation method can be found in the simulation method disclosed in WO2011141110: firstly using the semi-empirical method “Ground State/Semi-empirical/Default Spin/ AM1" (Charge 0/Spin Singlet) to optimize the molecular geometry, and then the energy structure of the organic molecule is calculated by TD-DFT (Time-dependent Density Functional Theory) method "TD-SCF/DFT/Default Spin/B3PW91" and the base set “6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S1 and T1 are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are direct calculation results of Gaussian 09W, the unit is Hartree, the specific simulation method can be found in the calculation method disclosed in WO2011141110; the high polymer HT-1 is simulated by trimer Got it.
  • ITO transparent electrode (anode) glass substrate cleaning ultrasonic treatment with 5% Decon90 cleaning solution for 30 minutes, then ultrasonic cleaning with deionized water several times, then ultrasonic cleaning with isopropanol, nitrogen drying; in oxygen plasma Under treatment for 5 minutes to clean the ITO surface and enhance the work function of the ITO electrode;
  • PEDOT:PSS solution was spin-coated on an oxygen plasma-treated glass substrate to obtain a film of 80 nm, which was annealed in air at 150 ° C for 20 minutes, and then in PEDOT:PSS.
  • the layer was spin-coated to obtain a 20 nm Poly-TFB film (CAS: 223569-31-1, available from Lumtec. Corp; 5 mg/mL toluene solution), followed by treatment on a hot plate at 180 ° C for 60 minutes;
  • the light-emitting device is packaged in a nitrogen glove box using an ultraviolet curing resin plus a glass cover.
  • the preparation method of the OLED device of Embodiment 2 is substantially the same as the preparation method of the OLED device of Embodiment 1, except that in the preparation of the light-emitting layer and the cathode, PH-8, PH-11, PH-12, PD- 1 dissolved in toluene according to the ratio of 30:30:30:10, the concentration of the solution is 24mg/mL, the solution is spin-coated in a nitrogen glove box to obtain a 60nm film, and then annealed at 120 ° C for 10 minutes, the spin coating is completed.
  • the device was placed in a vacuum evaporation chamber, and 2 nm ruthenium and 100 nm aluminum were sequentially evaporated to complete a light-emitting device.
  • the preparation method of the OLED device of Comparative Example 1 is substantially the same as the preparation method of the OLED device of Example 1, except that in the preparation of the light-emitting layer, FH-19:FD-1 is dissolved in toluene in a ratio of 94:6.
  • the concentration of the toluene solution was 18 mg/mL.
  • the preparation method of the OLED device of Comparative Example 2 is substantially the same as the preparation method of the OLED device of Example 2, except that in the preparation of the light-emitting layer, FH-8:FD-1 is dissolved in toluene in a ratio of 90:10. The concentration of the toluene solution was 20 mg/mL.
  • the current-voltage (IV) curve of the OLED device was recorded by a computer-controlled Keithley 2400 source measurement unit, and the brightness was measured by using a calibrated silicon photodiode (HAMAMATSU, S3204-08), and the electroluminescence spectrum was passed.
  • Optical fiber spectrometer (Ocean Optics USB2000+) measurement. Lifetime is the time it takes for the measured initial brightness (assumed to be 100%) to decrease to 80%.
  • the performance results of the OLED devices obtained in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 2.

Abstract

一种混合物,由三个以上的有机化合物组成,其中任意两个有机化合物的分子量差小于160Dalton,在混合物中,每个有机化合物的摩尔百分含量不低于3%且不高于90%,且有机化合物均具有至少一种相同或相似的光电功能。

Description

混合物、组合物及有机电子器件 技术领域:
本发明涉及有机电子器件领域,尤其涉及一种混合物、组合物及有机电子器件。
背景技术:
目前作为新一代显示技术的有机发光二极管(OLED)是用蒸镀方法制备的,其制备过程中涉及大量的真空制程,材料利用率低,同时需要精细掩模(FMM),成本较高,同时良率低。同时,作为另一新型显示技术的量子点发光二极管(QLED)无法采用蒸镀方法制备,必须以溶液加工的方法制备。为了解决上述问题,采用印刷工艺实现高分辨全彩色显示的技术越来越受到关注。例如,喷墨打印能够大面积低成本地制备功能材料薄膜,相比传统的半导体生产工艺,喷墨打印低能耗,耗水量少,绿色环保,是具有极大的优势和潜力的生产技术。因此,实现印刷显示,必须突破印刷油墨及相关加工工艺等关键问题。
基于小分子材料的OLED性能优异,通过真空蒸镀制备的器件已基本能满足商业化要求。但通常现有的小分子OLED材料分子量较小,具有较低的玻璃化转变温度,同时可能由于分子平面结构刚性较大,溶解性也有待改善,成膜性较差,同时在后续加热处理过程中容易结晶,导致溶液加工OLED或印刷OLED的性能和寿命出现明显降低,这一问题严重阻碍了印刷OLED技术的发展。
发明内容:
基于此,提供一种能够增加OLED性能和寿命的混合物。
此外,还提供了一种组合物和有机电子器件。
一种混合物,由三个以上的有机化合物组成,其中任意两个有机化合物的分子量差小于160Dalton,在混合物中,每个有机化合物的摩尔百分含量不低于3%且不高于90%,且有机化合物均具有至少一种相同或相似的光电功能。
一种组合物,包括上述的混合物和有机溶剂。
一种有机电子器件,包括功能层,功能层的材料包括上述的混合物及上述的组合物中的一种。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明:
图1为一实施方式的有机电子器件中有机发光二极管的结构示意图;
图1中101为基板,102为阳极,103为空穴注入层或空穴传输层,104为发光层,105为电子注入层或电子传输层,106为阴极。
具体实施方式
本发明提供一种混合物、组合物及有机电子器件,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一实施方式的混合物,由三个以上的有机化合物组成,其中任意两个有机化合物的分子量差小于160Dalton,在混合物中,每个有机化合物的摩尔百分含量不低于3%且不高于90%,且有机化合物均具有至少一种相同或相似的光电功能。
其中,光电功能选自但不限于空穴传输功能、空穴阻挡功能、电子传输功能、电子阻挡功能、激子阻挡功能、荧光发光功能、磷光发光功能、主体功能及光吸收功能中的一种。
混合物便于实现较好的溶解性,便于通过溶液加工实现较好的薄膜,并保持无定形的形貌。其中,混合物的热力学原理如下:
熵是材料热力学上描述体系混乱度的一个状态函数,按照玻尔兹曼关于熵与系统混乱度关系的假设,将熵定义为一种特殊状态的概率,即微观状态数,也就是原子聚集方式的数量。 当体系的状态一定,其微观状态数一定,即系统混乱度一定;微观状态数越大,也就是系统混乱度越大,熵就越大。在材料热力学中,熵可分为混合熵、组态熵和振动熵等,混合体系由于组态熵和振动熵较小,可忽略考虑原子振动组态、电子组态、磁矩组态等对熵值的影响。
假设混合体系中的原子总数为N,其中,n 0个原子为同一类元素,n 1个原子为同一类元素,…,n r个原子为同一类元素,k为玻尔兹曼常数,则该混合体系的混合熵为:
Figure PCTCN2017115308-appb-000001
当混合体系中各组元(元素)原子分数相同时,即n 0=n 1=…=n r=1rN,此时ΔS conf取最大值。对于1mol混合体系,其摩尔混合熵可表述为:
ΔS m conf=R ln(n)  (公式2)
其中,公式2中的R是气体摩尔常数,R=8.131(KJ·K -1·mol -1),m为单位摩尔。因此,当n=2时,ΔS conf=0.693R;当n=3时,ΔS conf=1.099R;当n=4时,ΔS conf=1.386R;当n=5时,ΔS conf=1.609R;当n=6时,ΔS conf=1.792R;……
根据吉布斯自由能公式:
G mix=H mix-TS mix  (公式3)
由此可见,混合体系中的主元数越大,则体系中的混合熵值越大,吉布斯自由能就越小,系统就越稳定。
上述混合物能够提供稳定的混合体系以解决现有溶液加工中小分子材料成膜性的问题。
在其中一个实施例中,混合物中任意两个有机化合物的分子量差小于140Dalton。进一步地,混合物中任意两个有机化合物的分子量差小于120Dalton。再进一步地,混合物中任意两个有机化合物的分子量差小于100Dalton。再进一步地,混合物中任意两个有机化合物的分子量差小于80Dalton。更进一步地,混合物中任意两个有机化合物的分子量差小于40Dalton。
在其中一个实施例中,混合物中每个有机化合物的摩尔百分含量不低于3%且不高于80%。进一步地,混合物中每个有机化合物的摩尔百分含量不低于5%且不高于70%。再进一步地,混合物中每个有机化合物的摩尔百分含量不低于5%且不高于60%。再进一步地,混合物中每个有机化合物的摩尔百分含量不低于10%且不高于50%。更进一步地,混合物中每个有机化合物的摩尔百分含量不低于10%且不高于40%。
在其中一个实施例中,混合物中任意两个所述有机化合物的摩尔百分含量之差不高于0.3。进一步地,混合物中任意两个所述有机化合物的摩尔百分含量之差不高于0.2。再进一步地,混合物中任意两个所述有机化合物的摩尔百分含量之差不高于0.15。更进一步地,混合物中任意两个所述有机化合物的摩尔百分含量之差不高于0.1。
在其中一个实施例中,混合物中的的有机化合物均选自荧光主体材料(单重态主体)、磷光主体材料(三重态主体)、空穴传输材料及电子传输材料中的一种。进一步地,混合物中的有机化合物均选自荧光主体材料和磷光主体材料中的一种。
在其中一个实施例中,混合物中的有机化合物都具有至少一种相似或相同的光电性能,或都具有至少一种相似或相同的物性性能。
具体的,混合物中的有机化合物满足如下条件中的至少一种,但(7)和(8)不能同时成立:
(1)任意两个有机化合物的单线态能级差不高于0.2eV。进一步地,任意两个有机化合物的单线态能级差不高于0.15eV。再进一步地,任意两个有机化合物的单线态能级差不高于0.12eV。更进一步地,任意两个有机化合物的单线态能级差不高于0.10eV;
(2)任意两个有机化合物的三线态能级差不高于0.2eV。进一步地,任意两个有机化合物的三线态能级差不高于0.15eV。再进一步地,任意两个有机化合物的三线态能级差不高于0.12eV。更进一步地,任意两个有机化合物的三线态能级差不高于0.10eV;
(3)任意两个有机化合物的HOMO能级差不高于0.2eV。进一步地,任意两个有机化 合物的HOMO能级差不高于0.15eV。再进一步地,任意两个有机化合物的HOMO能级差不高于0.12eV。更进一步地,任意两个有机化合物的HOMO能级差不高于0.10eV;
(4)任意两个有机化合物的LUMO能级差不高于0.2eV。进一步地,任意两个有机化合物的LUMO能级差不高于0.15eV。再进一步地,任意两个有机化合物的LUMO能级差不高于0.12eV。更进一步地,任意两个有机化合物的LUMO能级差不高于0.10eV;
(5)任意一个有机化合物的ΔHOMO不低于0.2eV。进一步地,任意一个有机化合物的ΔHOMO不低于0.3eV。再进一步地,任意一个有机化合物的ΔHOMO不低于0.4eV。更进一步地,任意一个有机化合物的ΔHOMO不低于0.45eV;
(6)任意一个有机化合物的ΔLUMO不低于0.2eV。进一步地,任意一个有机化合物的ΔLUMO不低于0.3eV。再进一步地,任意一个有机化合物的ΔLUMO不低于0.4eV。更进一步地,任意一个有机化合物的ΔLUMO不低于0.45eV;
(7)任意一个有机化合物的Δ(S1-T1)不低于0.8eV。进一步地,任意一个有机化合物的Δ(S1-T1)不低于0.9eV。再进一步地,任意一个有机化合物的Δ(S1-T1)不低于1.0eV。更进一步地,任意一个有机化合物的Δ(S1-T1)不低于1.1eV;
(8)任意一个有机化合物的Δ(S1-T1)不高于0.3eV。进一步地,任意一个有机化合物的Δ(S1-T1)不高于0.25eV。再进一步地,任意一个有机化合物的Δ(S1-T1)不高于0.2eV。更进一步地,任意一个有机化合物的Δ(S1-T1)不高于0.1eV;
(9)任意两个有机化合物的升华温度差不高于30℃;进一步地,任意两个有机化合物的升华温度差不高于25℃。再进一步地,任意两个有机化合物的升华温度差不高于20℃。更进一步地,任意两个有机化合物的升华温度差不高于15℃;
其中,Δ(S1-T1)=|S1-T1|,ΔHOMO=∣(HOMO-1)-HOMO∣,ΔLUMO=∣(LUMO+1)-LUMO∣。
其中,混合物中有机化合物的能级结构包括三线态能级E T、HOMO及LUMO。有机化合物的能级结构对有机电子器件性能起着关键的作用。
其中,三线态能级E T可通过低温时间分辨发光光谱来测量,E T还可以通过量子模拟计算得到。进一步地,E T通过Time-dependent DFT计算得到。具体地,E T通过商业软件Gaussian 03W(Gaussian Inc.)模拟计算得到,具体可参见WO2011141110中的模拟计算方法。
HOMO和LUMO能级可以通过光电效应进行测量,例如采用X射线光电子光谱法(XPS)、紫外光电子能谱(UPS)、循环伏安法(以下简称CV)或量子化学方法测量。具体地,量子化学方法为密度泛函理论(以下简称DFT)。
应该注意,HOMO、LUMO、E T的绝对值取决于所用的测量方法或计算方法。甚至对于相同测量的方法,不同评价的方法也可能得到不同的HOMO值、LUMO值或E T值,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。在本实施例中,HOMO、LUMO、E T的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
其中,(HOMO-1)为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
在其中一个实施例中,混合物中的所有有机化合物均包含相同的核心结构。核心结构是指对特定的有机功能材料,核心结构决定着整个有机化合物与此类功能对应的关键性能或参数,如磷光主体材料的三线态能级,荧光主体材料的单线态能级,电子传输材料的LUMO,及空穴传输材料的HOMO等。
一般地,有机功能材料由核心结构基团和辅助结构基团组成。在其中一个实施例中,混合物中的所有有机化合物均包含有相同个数的同一核心结构基团和相同个数的相同或相似的辅助结构基团,只是有机化合物中各基团的连接方式不同。例如,混合物中有机化合物均为荧光主体材料,混合物中的有机化合物均包含有一个蒽基和相同个数的萘基。进一步地,混合物中的有机化合物均包含有一个蒽基,相同个数的萘基和相同个数的苯基。
具体地,有机化合物均选自如下通式中的一种:
Figure PCTCN2017115308-appb-000002
Figure PCTCN2017115308-appb-000003
Figure PCTCN2017115308-appb-000004
其中,Ar 1和Ar 2分别独立选自碳原子数为6个~60个的芳香基、碳原子数为3个~60个的芳杂基、碳原子数为6个~60个的稠环芳香基及碳原子数为3个~60个的稠环芳杂基中的一种;
Ar 9和Ar 10分别独立选自H、D、F、-CN、-NO 2、-CF 3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、碳原子数1个~60个的烷基、碳原子数为3个~60个的环烷基、碳原子数为6个~60个的芳香基、碳原子数为3个~60个的杂环芳香基、碳原子数7个~60个的稠环芳香基、碳原子数为4个~60个的稠杂环芳香基中的至少一种;其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系;
L 1选自环原子数为5个~60个的芳香基和环原子数为5个~60个的芳杂基中的一种;
-L 2-为单键,或者,L 2选自环原子数为5个~30个的芳香基及环原子数为5个~30个的芳杂基中的一种;
Ar 3、Ar 4、Ar 5、Ar 6、Ar 7及Ar 8分别独立选自环原子数为5个~30个的芳香基和环原子数为5个~30个的芳杂基中的一种;
-X 1-是单键,或者,X 1选自N(R)、C(R) 2、Si(R) 2、O、C=N(R)、C=C(R) 2、P(R)、P(=O)R、S、S=O及SO 2中的一种;
-X 2-、-X 3-、-X 4-、-X 5-、-X 6-、-X 7-、-X 8-及-X 9-分别为单键,或者,X 2、X 3、X 4、X 5、X 6、X 7、X 8及X 9分别独立选自N(R)、C(R) 2、Si(R) 2、O、C=N(R)、C=C(R) 2、P(R)、P(=O)R、S、S=O及SO 2中的一种,其中,-X 2-和-X 3-不同时为单键,-X 4-和-X 5-不同时为单键,-X 6-和-X 7不同时为单键,-X 8-和-X 9-不同时为单键;
R 1、R 2及R分别独立选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数为1个~30个的烷基、碳原子数为3个~30个的环烷基、环原子数为5个~60个的芳香族烃基及环原子数为5个~60个的芳香族杂环基中的一种;
m为0~4的任一整数,o为0~4的任一整数,p为0~6的任一整数,n为1~4的任一整数。
其中,通式(5)和(6)中的L 1选自环原子数为5个~50个的芳香基和环原子数为5个~50个的芳杂基中的一种。进一步地,L 1选自环原子数为5个~40个的芳香基和环原子数为5个~40个的芳杂基中的一种。更进一步地,L 1选自环原子数为6个~30个的芳香基和6个~30个的芳杂基中的一种。
其中,通式(3)和(4)中的-L 2-为单键,或者,L 2选自环原子数为5个~25个的芳香基和环原子数为5个~25个的芳杂基中的一种。进一步地,L 2选自环原子数为5个~20个的芳香基和环原子数为5个~20个的芳杂基中的一种。更进一步地,L 2选自环原子数为5个~15个的芳香基和环原子数为5个~15个的芳杂基中的一种。
其中,通式(3)~(5)中的Ar 3、Ar 4、Ar 5、Ar 6、Ar 7及Ar 8分别选自环原子数为5个~25个的芳香基和环原子数为5个~25个的芳杂基中的一种。进一步地,Ar 3、Ar 4、Ar 5、Ar 6、Ar 7及Ar 8分别选自环原子数为5个~20个的芳香基和环原子数为5个~20个的芳杂基中的一 种。更进一步地,Ar 3、Ar 4、Ar 5、Ar 6、Ar 7及Ar 8分别选自环原子数为5个~15个的芳香基和环原子数为5个~15个的芳杂基中的一种。
其中,通式(5)~(6)中的-X 1-为单键,或者,X 1选自N(R)、C(R) 2、O及S中的一种。
其中,通式(3)~(4)中的-X 2-、-X 3-、-X 4-、-X 5-、-X 6-、-X 7-、-X 8-及-X 9-分别为单键,或者,X 2、X 3、X 4、X 5、X 6、X 7、X 8及X 9分别选自N(R)、C(R) 2、O及S中的一种。
其中,通式(5)~(6)中的n为1~3的任一整数。进一步地,n为1~2的任一整数。
其中,通式(1)~(2)中的Ar 1、Ar 2、Ar 9及Ar 10和通式(3)~(6)中的Ar 3、Ar 4、Ar 5、Ar 6、Ar 7及Ar 8均包含如下结构式中的至少一种:
Figure PCTCN2017115308-appb-000005
其中,
A 1、A 2、A 3、A 4、A 5、A 6、A 7及A 8分别独立选自CR 3和N中的一种;
Y 1选自CR 4R 5、SiR 4R 5、NR 3、C(=O)、S及O中的一种;
R 3、R 4、R 5分别选自H、D、具有1个~20个碳原子的直链烷基、具有1个~20个碳原子的烷氧基、具有1个~20个碳原子的硫代烷氧基,或者具有3个~20个碳原子的支链烷基、具有3个~20个碳原子的环状烷基、具有3个~20个碳原子的烷氧基、具有3个~20个碳原子的硫代烷氧基、具有3个~20个碳原子的甲硅烷基、具有1个~20个碳原子的被取代的酮基、具有2个~20个碳原子的烷氧基羰基基、具有7个~20个碳原子的芳氧基羰基基、氰基基(-CN)、氨基甲酰基基(-C(=O)NH 2)、卤甲酰基基(-C(=O)-X,其中X代表卤素原子)、甲酰基基(-C(=O)-H)、异氰基基、异氰酸酯基、硫氰酸酯基、异硫氰酸酯基、羟基基、硝基基、CF 3基、Cl、Br、F、可交联的基、具有5个~40个环原子的芳族环基、具有5个~40个环原子的杂芳族环基、具有5个~40个环原子的芳氧基及具有5个~40个环原子的杂芳氧基中的至少一种。其中,一个或多个基团R 3,R 4,R 5可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环。
具体地,通式(1)~(2)中的Ar 1、Ar 2、Ar 9及Ar 10和通式(3)~(6)中的Ar 3、Ar 4、Ar 5、Ar 6、Ar 7及Ar 8分别选自如下结构中的一种:
Figure PCTCN2017115308-appb-000006
其中,上述基团的环上的H能够被取代。
在其中一个实施例中,混合物中的有机化合物均为荧光光主体材料,有机化合物分别选自通式(1)和通式(2)中的一种。
进一步地,通式(1)所示的有机化合物选自如下结构式中的一种:
Figure PCTCN2017115308-appb-000007
其中,L 1、R 1、R 2及R的含义如上所述;a为1~3的任一整数;b 11~b 13分别选自0~6的任一整数。
更进一步地,通式(1)所示的有机化合物选自如下结构式中的一种:
Figure PCTCN2017115308-appb-000008
其中,L 1、R 1、R 2、R、a、b 11及b 12的含义如上所述。
具体地,混合物中的有机化合物均选自并不限于如下结构中的一种:
Figure PCTCN2017115308-appb-000009
Figure PCTCN2017115308-appb-000010
Figure PCTCN2017115308-appb-000011
当混合物中的有机化合物均为荧光主体材料时,有机化合物的核心结构均选自环芳香烃基、芳香杂环基及含有2个~10个环结构的基团中的一种。其中,环芳香烃基选自联苯、三苯基、苯并、萘、蒽、萉、菲、芴、芘、屈、苝及薁中的一种;芳香杂环基选自二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、噌啉、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩二吡啶、苯并硒吩吡啶及硒吩二吡啶中的一种;含有2个~10个环结构的基团选自环芳香烃基和芳香杂环基中的一种,并彼此直接或通过至少一个以下的基连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基。
进一步地,有机化合物的核心结构均选自如下基团中的一种:
Figure PCTCN2017115308-appb-000012
其中,R 11分别独立选自氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基及杂芳基中的一种;Ar 11选自碳原子数为6个~60个的芳香基、碳原子数为3个~60个的芳杂基、碳原子数为6个~60个的稠环芳香基及碳原子数为3个~60个的稠环芳杂基中的一种;n为0~20的任一整数;X 11–X 18分别选自CH和N中的一种;X 19和X 10分别选自CR 1R 2和NR 1中的一种。
在其中一个实施例中,混合物中的有机化合物均为磷光主体材料,有机化合物均选自上述通式(3)~(6)中的一种。
进一步地,通式(3)所示的有机化合物均选自如下结构式中的一种:
Figure PCTCN2017115308-appb-000013
Figure PCTCN2017115308-appb-000014
其中、Ar 3、Ar 6、X 2、X 3、X 4、X 5、R 1及R 2的含义如上所述。
更进一步地,通式(3)所示的有机化合物的结构式如下:
Figure PCTCN2017115308-appb-000015
其中,R 1、R 2、L 1、L 2的含义如上所述;L 3选自环原子数为5个~60个的芳香基和环原子数为5个~60个的芳杂基中的一种。
具体地,通式(3)所示的有机化合物分别选自如下结构中的一种:
Figure PCTCN2017115308-appb-000016
Figure PCTCN2017115308-appb-000017
Figure PCTCN2017115308-appb-000018
Figure PCTCN2017115308-appb-000019
Figure PCTCN2017115308-appb-000020
Figure PCTCN2017115308-appb-000021
Figure PCTCN2017115308-appb-000022
Figure PCTCN2017115308-appb-000023
进一步地,通式(4)所示的有机化合物均选自如下结构式中的一种:
Figure PCTCN2017115308-appb-000024
Figure PCTCN2017115308-appb-000025
Figure PCTCN2017115308-appb-000026
其中,Ar 4、Ar 5、Ar 7、Ar 8、X 2、X 3、X 4、X 5、X 6、X 7、X 8、X 9、R 1及R 2的含义如上所述。
更进一步地,通式(4)所示的有机化合物为:
Figure PCTCN2017115308-appb-000027
其中,Ar 4、Ar 7、X 4、X 5、X 8、X 9、R 1、R 2的含义如上所述。
具体地,通式(4)所示的有机化合物分别选自如下结构的一种:
Figure PCTCN2017115308-appb-000028
Figure PCTCN2017115308-appb-000029
进一步地,通式(5)所示的有机化合物均选自如下结构式中的一种:
Figure PCTCN2017115308-appb-000030
Figure PCTCN2017115308-appb-000031
Figure PCTCN2017115308-appb-000032
其中,Ar 3、Ar 5、X 1、X 2、X 3、R 1、R 2、L 1及n的含义如上所述。
更进一步地,通式(5)所示的有机化合物为:
Figure PCTCN2017115308-appb-000033
其中,X 2、X 3、R 1、R 2、L 1及n的含义如上所述。
具体地,通式(5)所示的有机化合物分别选自如下结构中的一种:
Figure PCTCN2017115308-appb-000034
Figure PCTCN2017115308-appb-000035
Figure PCTCN2017115308-appb-000036
Figure PCTCN2017115308-appb-000037
Figure PCTCN2017115308-appb-000038
进一步地,通式(6)所示的有机化合物均选自如下结构式中的一种:
Figure PCTCN2017115308-appb-000039
Figure PCTCN2017115308-appb-000040
其中,Ar 3、Ar 4、R 1、R 2、L 1及n的含义如上所述。
更进一步地,通式(6)所示的有机化合物为:
Figure PCTCN2017115308-appb-000041
其中,R 1、R 2、L 1及n的含义如上所述。
具体地,通式(6)所示的有机化合物分别选自如下结构中的一种:
Figure PCTCN2017115308-appb-000042
Figure PCTCN2017115308-appb-000043
Figure PCTCN2017115308-appb-000044
在其中一个实施例中,上述混合物中的有机化合物均为磷光主体材料,此时,混合物中的有机化合物的核心结构均选自含有环芳香烃基的基、含有芳香杂环基的基及含有2个~10个环结构的基中的一种。
进一步地,含有环芳香烃基的基选自联苯、三苯基、苯并及芴中的一种;含有芳香杂环基的基选自二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶及硒吩苯并二吡啶中的一种;含有2至10环结构的基为环芳香烃基或芳香杂环基,并彼此直接或通过至少一个以下的基连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基。
进一步地,混合物中的有机化合物的核心结构均选自以下结构中的一种:
Figure PCTCN2017115308-appb-000045
其中,R 11~R 17分别独立选自氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基及杂芳基中的一种;Ar 11选自碳原子数为6个~60个的芳香基、碳原子数为3个~60个的芳杂基、碳原子数为6个~60个的稠环芳香基及碳原子数为3个~60个的稠环芳杂基中的一种;n为0~20的任一整数;X 11~X 18分别独立选自CH和N中的一种;X 19选自CR 1R 2和NR 1中的一种。
具体地,当混合物中的有机化合物均为磷光主体材料时,有机化合物分别选自如下结构中的一种:
Figure PCTCN2017115308-appb-000046
Figure PCTCN2017115308-appb-000047
在另一个实施例中,混合物中的有机化合物均为空穴传输材料。
在另一个实施例中,混合物中的有机化合物均为电子传输材料。
进一步地,混合物还包括有机功能材料,有机功能材料选自空穴注入材料(HIM)、空穴传输材料(HTM)、电子传输材料(ETM)、电子注入材料(EIM)、电子阻挡材料(EBM)、空穴阻挡材料(HBM)、发光体(Emitter)及基质材料中的一种。其中,发光体选自荧光发光体,热激活延迟荧光发光体或磷光发光体。
在其中一个实施例中,混合物中的有机化合物均为荧光主体材料,有机功能材料为荧光发光体。其中,荧光发光体的重量百分含量不高于15%。进一步地,荧光发光体的重量百分含量不高于12%。再进一步地,荧光发光体的重量百分含量不高于9%。再进一步地,荧光发光体的重量百分含量不高于8%。更进一步地,荧光发光体的重量百分含量不高于7%。
其中,荧光发光体选自茚并芴-胺的衍生物、茚并芴-二胺蒽的衍生物、萘的衍生物、四苯的衍生物、氧杂蒽的衍生物、菲的衍生物、芘的衍生物、茚并芘的衍生物、苯撑的衍生物、二茚并芘的衍生物、十环烯的衍生物、六苯并苯的衍生物、芴的衍生物、螺二芴的衍生物、芳基芘的衍生物、亚芳香基乙烯的衍生物、环戊二烯的衍生物、红荧烯的衍生物、香豆素的衍生物、若丹明的衍生物、喹吖啶酮的衍生物、吡喃的衍生物、噻喃的衍生物、双(吖嗪基)亚胺硼的衍生物、双(吖嗪基)亚甲基的衍生物、喹诺酮的衍生物、噁嗪酮的衍生物、苯并恶唑的衍生物、苯并噻唑的衍生物、苯并咪唑的衍生物及吡咯并吡咯二酮的衍生物中的一种。
进一步地,有机功能材料为热激发延迟荧光发光体(TADF)。
在另一个实施例中,有机化合物均为磷光主体材料,有机功能材料为磷光发光体。其中,磷光发光体的重量百分含量不高于30%。进一步地,磷光发光体的重量百分含量不高于25%。更进一步地,磷光发光体的重量百分含量不高于20%。
下面对HIM、HTM、EIM、ETM、HBM、磷光发光材料、荧光发光体及TADF材料作一些较详细的说明。
1、HIM/HTM
HTM也称p型有机半导体材料。HIM/HTM材料选自包含有如下结构单元的化合物:酞菁、卟啉、胺、芳香胺、联苯类三芳胺、噻吩、并噻吩(如二噻吩并噻吩和并噻吩)、吡咯、苯胺、咔唑、氮茚并氮芴、酞菁的衍生物、卟啉的衍生物、胺的衍生物、芳香胺的衍生物、联苯类三芳胺的衍生物、噻吩的衍生物、并噻吩(如二噻吩并噻吩和并噻吩)的衍生物、吡咯的衍生物、苯胺的衍生物、咔唑的衍生物及氮茚并氮芴的衍生物。
在其中一个实施例中,HIM也可以选自含有氟烃的聚合物、含有导电掺杂的聚合物、导电聚合物(PEDOT/PSS)、自组装单体(如含有膦酸和硅烷衍生物的化合物)、金属氧化物(MoO x)、金属络合物和交联化合物中的一种。
在其中一个实施例中,可用作HIM或HTM的环芳香胺衍生化合物选自但不限于如下结 构中的一种:
Figure PCTCN2017115308-appb-000048
其中,每个Ar 1~Ar 9分别独立选自环芳香烃基、芳香杂环基及包含2个~10个环结构的基中的一种。其中,环芳香烃基选自苯、联苯、三苯基、苯并、萘、蒽、非那烯、菲、芴、芘、屈、苝及薁中的一种;芳香杂环基选自二苯并噻吩、二苯并呋喃、呋喃、噻吩、苯并呋喃、苯并噻吩、咔唑、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻唑、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚胺、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、二苯硒吩、苯硒吩、喹啉、吲哚咔唑、吡啶吲哚、二吡啶吡咯、二吡啶呋喃、苯基噻吩并吡啶、二吡啶噻吩、苯基吡啶硒及二吡啶基硒吩中的一种;包含2个~10个环结构的基团选自包含2个~10个环结构的环芳香烃基和包含2个~10个环结构的芳香杂环基中的一种,每个环结构通过氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元及脂肪环基中至少一种连接在一起。其中,每个Ar 1~Ar 9可分别独立地被氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基及杂芳基中的一种取代。
进一步地,Ar 1~Ar 9分别独立包含如下基团中的至少一种:
Figure PCTCN2017115308-appb-000049
其中,n为1~20的任一整数;X 1~X 8分别选自CH及N中的一种;Ar 1如以上所定义。
在另一个实施例中,可用作HIM或HTM的环芳香胺衍生化合物为US3567450、US4720432、US5061569、US3615404或US5061569中公开的环芳香胺衍生化合物。
在其中一个实施例中,可用作HTM或HIM的金属络合物包括但不限于如下的结构:
Figure PCTCN2017115308-appb-000050
其中,M为金属,M的原子量有大于40;(Y 1-Y 2)为两齿配体,Y 1和Y 2分别独立选自C、N、O、P及S中的一种;L为辅助配体;m为1~m+n的任一整数,m+n为M的最大配位数。
在其中一个实施例中,(Y 1-Y 2)为2-苯基吡啶衍生物。在另一个实施例中,(Y 1-Y 2)为卡宾配体。
在其中一个实施例中,M选自Ir、Pt、Os及Zn中的一种。其中,M的金属络合物的HOMO大于-5.5eV(相对于真空能级)。
具体地,可作为HTM的有机化合物选自如下结构中的一种:
Figure PCTCN2017115308-appb-000051
Figure PCTCN2017115308-appb-000052
Figure PCTCN2017115308-appb-000053
2、EIM/ETM/HBM:
EIM/ETM材料并不受特别的限制,任何金属络合物或有机化合物均可能被用作为EIM/ETM,只要它们可以传输电子即可。其中,EIM/ETM材料选自三(8-羟基喹啉)铝(AlQ3)、吩嗪、菲罗啉、蒽、菲、芴、二芴、螺二芴、对苯乙炔、哒嗪、吡嗪、三嗪、三唑、咪唑、喹啉、异喹啉、喹噁啉、噁唑、异噁唑、噁二唑、噻二唑、吡啶、吡唑、吡咯、嘧啶、吖啶、芘、苝、反茚并芴、顺茚并、二苯并-茚并芴、茚并萘、苯并蒽、氮磷杂环戊二烯、氮硼杂环戊二烯、芳香酮类、内酰胺、三(8-羟基喹啉)铝(AlQ3)的衍生物、吩嗪的衍生物、菲罗啉的衍生物、蒽的衍生物、菲的衍生物、芴的衍生物、二芴的衍生物、螺二芴的衍生物、对苯乙炔的衍生物、哒嗪的衍生物、吡嗪的衍生物、三嗪的衍生物、三唑的衍生物、咪唑的衍生物、喹啉的衍生物、异喹啉的衍生物、喹噁啉的衍生物、噁唑的衍生物、异噁唑的衍生物、噁二唑的衍生物、噻二唑的衍生物、吡啶的衍生物、吡唑的衍生物、吡咯的衍生物、嘧啶的衍生物、吖啶的衍生物、芘的衍生物、苝的衍生物、反茚并芴的衍生物、顺茚并的衍生物、二苯并-茚并芴的衍生物、茚并萘的衍生物、苯并蒽的衍生物、氮磷杂环戊二烯的衍生物、氮硼杂环戊二烯的衍生物、芳香酮类的衍生物、内酰胺的衍生物中的一种。
空穴阻挡层(HBL)通常用来阻挡来自相邻功能层,特别是发光层的空穴。对比一个没有阻挡层的发光器件,HBL的存在通常会导致发光效率的提高。空穴阻挡层(HBL)的空穴阻挡材料(HBM)需要有比相邻功能层,如发光层更低的HOMO。在一个优先的实施方案中,HBM有比相邻发光层更大的激发态能级,如单重态或三重态,取决于发光体。在另一个优先的实施方案中,HBM有电子传输功能。通常具有深的HOMO能级的EIM/ETM材料可以做为HBM。
在其中一个实施例中,可用作EIM/ETM/HBM的有机化合物包含以下基团中的至少一种:
Figure PCTCN2017115308-appb-000054
其中,R 1选自氢基、烷基、烷氧基、氨基、烯基、炔基、芳烷基、杂烷基、芳基及杂芳基中的一种。当R 1为芳基或杂芳基时,R 1与上述HTM中的Ar 1和Ar 2含义相同;
Ar 1~Ar 5分别独立选自环芳香烃基、芳香杂环基及包含2个~10个环结构的基中的一种。其中,环芳香烃基选自苯、联苯、三苯基、苯并、萘、蒽、非那烯、菲、芴、芘、屈、苝及薁中的一种;芳香杂环基选自二苯并噻吩、二苯并呋喃、呋喃、噻吩、苯并呋喃、苯并噻吩、咔唑、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻唑、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚胺、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、二苯硒吩、苯硒吩、喹啉、吲哚咔唑、吡啶吲哚、二吡啶吡咯、二吡啶呋喃、苯基噻吩并吡啶、二吡啶噻吩、苯基吡啶硒及二吡啶基硒吩中的一种;包含2个~10个环结构的基团选自包含2个~10个环结构的环芳香烃基和包含2个~10个环结构的芳香杂环基中的一种,每个环结构通过氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元及脂肪环基中至少一种连接在一起。其中,每个Ar 1~Ar 5可分别独立地被氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基及杂芳基中的一种取代;n为0~20的任一整数;X1~X8选自CR1和N中的一种。
在其中一个实施例中,可用作EIM/ETM的金属络合物包括但不限于如下结构中的一种:
Figure PCTCN2017115308-appb-000055
其中,(O-N)和(N-N)分别为两齿配体,金属与O,N配位或与N,N配位;L为辅助配体;m为1到金属的最大配位数中的任一整数。
具体地,可作ETM的有机化合物选自如下结构中的一种:
Figure PCTCN2017115308-appb-000056
Figure PCTCN2017115308-appb-000057
Figure PCTCN2017115308-appb-000058
3、磷光发光材料
磷光发光材料也称三重态发光体。在其中一个实施例中,磷光发光材料的通式为:M(L) n,其中,M为金属原子;L为有机配体,L通过一个或多个位置键接或配位连接到M上;n为大于1的任一整数,进一步地,n选自1、2、3、4、5及6中的一种。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
进一步地,M选自过渡金属元素、镧系元素及锕系元素中的一种。具体地,M选自Ir、Pt、Pd、Au、Rh、Ru、Os、Sm、Eu、Gd、Tb、Dy、Re、Cu及Ag中的一种。更具体地,M选自Os、Ir、Ru、Rh、Re、Pd及Pt中的一种。
其中,磷光发光材料包含螯合配体,即配体,螯合配体通过至少两个结合点与金属配位。进一步地,磷光发光材料包含2个~3个双齿配体和2个~3个多齿配体中的一种。其中,螯合配体有利于提高金属络合物的稳定性。
有机配体选自苯基吡啶衍生物、7,8-苯并喹啉衍生物、2(2-噻吩基)吡啶衍生物、2(1-萘基)吡啶衍生物及2苯基喹啉衍生物中的一种。其中,有机配体可被进一步取代,例如被含单氟或三氟甲基取代。
辅助配体选自乙酸丙酮和苦味酸中的一种。
在其中一个实施例中,可用作三重态发光体的金属络合物具有如下通式:
Figure PCTCN2017115308-appb-000059
其中,
M选自过渡金属元素、镧系元素及锕系元素中的一种;
Ar 1为环状基,Ar 1至少包含一个施主原子,即有一孤对电子的原子,如氮或磷,通过施主原子使环状基与金属配位连接;
Ar 2为环状基,Ar 2至少包含一个碳原子,通过碳原子使环状基与金属连接;Ar 1和Ar 2由共价键连接在一起,Ar 1和Ar 2能够各自携带一个或多个取代基,Ar 1和Ar 2也能够再通过取代基联接在一起;
L为辅助配体,进一步地,L为双齿螯合配体,具体地,L为单阴离子双齿螯合配体;
m选自1、2及3中的一种,进一步地,m选自2和3中的一种,具体地,m为3;
n选自0、1及2中的一种,进一步地,n选自0和1中的一种,具体地,n为0。
在另一个实施例中,磷光发光材料选自WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A或WO 2009118087A1中公开的磷光发光材料中的一种。
具体地,磷光发光材料选自如下结构中的一种:
Figure PCTCN2017115308-appb-000060
Figure PCTCN2017115308-appb-000061
Figure PCTCN2017115308-appb-000062
Figure PCTCN2017115308-appb-000063
4、荧光发光体(单重态发光体)
荧光发光体选自一元苯乙烯胺、二元苯乙烯胺、三元苯乙烯胺、四元苯乙烯胺、苯乙烯膦、苯乙烯醚及芳香胺中的一种。
其中,一元苯乙烯胺包含一个苯乙烯基和至少一个胺。进一步地,一元苯乙烯胺包含一个苯乙烯基和芳香胺。二元苯乙烯胺包含二个无取代或取代的苯乙烯基和至少一个胺。进一 步地,二元苯乙烯胺包含二个无取代或取代的苯乙烯基和芳香胺。三元苯乙烯胺包含三个苯乙烯基和至少一个胺。进一步地,三元苯乙烯胺包含三个苯乙烯基和芳香胺。四元苯乙烯胺是包含四个苯乙烯基和至少一个胺。进一步地,四元苯乙烯胺是包含四个苯乙烯基和芳香胺。苯乙烯基可以是取代的苯乙烯基或未取代的苯乙烯基。进一步地,苯乙烯为二苯乙烯,苯乙烯能够进一步被取代。芳香胺是指一种化合物,包含三个直接连接氮的芳香环或杂环系统。芳香环或杂环系统中至少有一个为稠环系统。进一步地,芳香环或杂环系统含有至少14个芳香碳原子。具体地,芳香胺选自芳香蒽胺、芳香蒽二胺、芳香芘胺、芳香芘二胺、芳香屈胺及芳香屈二胺中的一种。其中,芳香蒽胺中一个二元芳基胺基直接连到蒽上,最好是在9的位置上。芳香蒽二胺中二个二元芳基胺基直接连到蒽上,最好是在9,10的位置上。芳香芘胺、芳香芘二胺、芳香屈胺及芳香屈二胺中的二元芳基胺基直接连到芘的1或1,6位置上。苯乙烯膦和苯乙烯醚的定义与芳香胺大致相同相似。
具体地,基于乙烯胺及芳胺的荧光发光体选自WO2006/000388、WO2006/058737、WO2006/000389、WO2007/065549、WO2007/115610、US7250532B2、DE102005058557 A1、CN1583691 A、JP08053397A、US6251531 B1、US2006/210830A、EP1957606A1及US2008/0113101A1中公开的荧光发光体的一种。
具体地,基于二苯乙烯及其衍生物的荧光发光体为US5121029中公开的荧光发光体。
进一步地,荧光发光体为WO2006/122630中公开的茚并芴-胺、WO2006/122630中公开的茚并芴-二胺,WO2008/006449中公开的苯并茚并芴-胺、WO2008/006449中公开的苯并茚并芴-二胺、WO2007/140847中公开的二苯并茚并芴-胺或WO2007/140847中公开的二苯并茚并芴-二胺。
其中,可用作荧光发光体的材料包括多环芳烃化合物。进一步地,多环芳烃化合物选自蒽[如9,10-二(2-萘并蒽)]的衍生物、萘的衍生物、四苯的衍生物、氧杂蒽的衍生物、菲的衍生物、芘(如2,5,8,11-四-t-丁基苝)的衍生物、茚并芘的衍生物、苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯)的衍生物、二茚并芘的衍生物、十环烯的衍生物、六苯并苯的衍生物、芴的衍生物、螺二芴的衍生物、芳基芘(如US20060222886中公开的芳基芘)的衍生物、亚芳香基乙烯(如US5121029和US5130603公开的亚芳香基乙烯)的衍生物、环戊二烯(如四苯基环戊二烯)的衍生物、红荧烯的衍生物、香豆素的衍生物、若丹明的衍生物、喹吖啶酮的衍生物、吡喃[如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM)]的衍生物、噻喃的衍生物、双(吖嗪基)亚胺硼化合物(如US2007/0092753A1公开的双(吖嗪基)亚胺硼化合物)的衍生物、双(吖嗪基)亚甲基化合物的衍生物、carbostyryl化合物的衍生物、噁嗪酮的衍生物、苯并恶唑的衍生物、苯并噻唑的衍生物、苯并咪唑的衍生物及吡咯并吡咯二酮的衍生物中的一种。在其中一个实施例中,荧光发光体的材料为US20070252517A1、US4769292、US6020078、US2007/0252517A1或US2007/0252517A1中公开的荧光发光体材料。
进一步地,荧光发光体具有如下通式:
Figure PCTCN2017115308-appb-000064
其中,Ar 21表示含有C 6~C 50的芳基或含有C 6~C 50的苯乙烯基;L1表示单键、含有C 6~C 30的亚芳基或含有C 3~C 30的杂亚芳基;Ar 22和Ar 23分别独立表示氢、氘、卤素、含有C 1~C 30的烷基、含有C 6~C 30的芳基、含有C 3~C 30的杂芳基、与相邻取代基连接形成含有C 3-C 30的脂族环基或与相邻取代基连接形成含有C 3-C 30的芳香族环基,Ar 22和Ar 23中的碳原子可以被氮、氧及硫中的至少一个杂原子置换;
m为1或2,当m为2时,
Figure PCTCN2017115308-appb-000065
可以是相同或是不同的。
进一步地,Ar 21选自苯基、芴基、蒽基、芘基、
Figure PCTCN2017115308-appb-000066
基、苯并芴基及螺[芴-苯并芴]中的一种。
具体地,荧光发光体选自但不限于如下结构中的一种:
Figure PCTCN2017115308-appb-000067
5、热激活延迟荧光发光(TADF)材料
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光(TADF)材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。TADF材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子,器件内量子效率可达到100%。同时TADF材料结构可控,性质稳定,价格便宜,无需贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差(ΔEst),其中,ΔEst<0.3eV。进一步地,ΔEst<0.2eV。再进一步地,ΔEst<0.1eV。
在其中一个实施例中,TADF材料有比较小的ΔEst,在另一个实施例中,TADF有较好的荧光量子效率。
在其中一个实施例中,TADF材料选自CN103483332(A)、TW201309696(A)、TW201309778(A)、TW201343874(A)、TW201350558(A)、US20120217869(A1)、WO2013133359(A1)、WO2013154064(A1)、Adachi,et.al.Adv.Mater.,21,2009,4802、Adachi, et.al.Appl.Phys.Lett.,98,2011,083302、Adachi,et.al.Appl.Phys.Lett.,101,2012,093306、Adachi,et.al.Chem.Commun.,48,2012,11392、Adachi,et.al.Nature Photonics,6,2012,253、Adachi,et.al.Nature,492,2012,234、Adachi,et.al.J.Am.Chem.Soc,134,2012,14706、Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311、Adachi,et.al.Chem.Commun.,48,2012,9580、Adachi,et.al.Chem.Commun.,48,2013,10385、Adachi,et.al.Adv.Mater.,25,2013,3319、Adachi,et.al.Adv.Mater.,25,2013,3707、Adachi,et.al.Chem.Mater.,25,2013,3038、Adachi,et.al.Chem.Mater.,25,2013,3766、Adachi,et.al.J.Mater.Chem.C.,1,2013,4599、Adachi,et.al.J.Phys.Chem.A.,117,2013,5607中公开的TADF材料中的一种。
具体地,TADF发光材料选自如下结构中的一种:
Figure PCTCN2017115308-appb-000068
Figure PCTCN2017115308-appb-000069
Figure PCTCN2017115308-appb-000070
Figure PCTCN2017115308-appb-000071
Figure PCTCN2017115308-appb-000072
上述混合物能够应用于有机电子器件中,其中,有机电子器件选自但不限于有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)中的一种。
一实施方式的组合物,包括混合物和有机溶剂。
当组合物用于印刷工艺时,组合物的粘度和表面张力是重要的参数。组合物的表面张力参数与特定的基板和特定的印刷方法相匹配。
在其中一个实施例中,在25℃下,组合物的表面张力为19dyne/cm~50dyne/cm。进一步地,组合物的表面张力为22dyne/cm~35dyne/cm。更进一步地,组合物的表面张力为25dyne/cm~33dyne/cm。
在其中一个实施例中,在25℃下,组合物的粘度为1cps~100cps。进一步地,组合物的粘度为1cps~50cps。再进一步地,组合物的粘度为1.5cps~20cps。更进一步地,组合物的粘度为4.0cps~20cps。此粘度下的组合物便于喷墨印刷。
在其中一个实施例中,在1个标准大气压下,有机溶剂的沸点为150℃以上。进一步地,有机溶剂的沸点为180℃以上。再进一步地,有机溶剂的沸点为200℃以上。再进一步地,有机溶剂的沸点为250℃以上。更进一步地,有机溶剂的沸点为300℃以上。此有机溶剂的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
粘度能够通过不同的方法调节,例如选取不同的溶剂或调节组合物中有机功能材料的浓度。按照包含有所述地金属有机配合物或高聚物的混合物可方便人们将印刷混合物按照所用的印刷方法在适当的范围调节。
在其中一个实施例中,组合物中的混合物的质量百分含量为0.01%~20%。进一步地,组合物中的混合物的质量百分含量为0.1%~15%。再进一步地,组合物中的混合物的质量百分含量为0.2%~10%。更进一步地,组合物中的混合物的质量百分含量为0.25%~5%。
在其中一个实施例中,当混合物中包括有机功能材料时,组合物中的有机功能材料的质量百分含量为0.3%~30%。进一步地,组合物中的有机功能材料的质量百分含量为0.5%~20%。再进一步地,组合物中的有机功能材料的质量百分含量为0.5%~15%。再进一步地,组合物中的有机功能材料的质量百分含量为0.5%~10%。更进一步地,组合物中的有机功能材料的质量百分含量为1%~5%。
其中,有机溶剂包括第一溶剂,第一溶剂包括芳族溶剂、杂芳族溶剂、酮溶剂、醚溶剂及酯溶剂中的至少一种。进一步地,芳族溶剂选自脂肪族链取代的芳族溶剂和环取代的芳族溶剂中的一种。
具体地,芳族溶剂或杂芳族溶剂选自对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘及二苄醚中的一种。
具体地,酮溶剂选自1-四氢萘酮、2-四氢萘酮、2-(苯基环氧)四氢萘酮、6-(甲氧基)四氢 萘酮、苯乙酮、苯丙酮、二苯甲酮、4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮、异佛尔酮、2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮及二正戊基酮中的一种。
具体地,醚溶剂选自3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚c己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚及四乙二醇二甲醚中的一种。
具体地,酯溶剂选自辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯及油酸烷酯中的一种。
进一步地,第一溶剂包括脂肪族酮和脂肪族醚中的至少一种。其中,脂肪族酮选自2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮及二正戊基酮中的至少一种;脂肪族醚选自戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚及四乙二醇二甲醚中的至少一种。
在另一个实施例中,有机溶剂还包括第二溶剂,第二溶剂包括甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷及茚中的至少一种。
一实施方式的组合物能够作为油墨,并且能够应用在有机电子器件中。该组合物可以为溶液,也可以为悬浮液。其中,有机电子器件选自但不限于有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)中的一种。具体地,有机电子器件为OLED。更具体地,将混合物用于OLED器件的发光层。
进一步地,组合物通过通过打印或涂布方法应用于有机电子器件。其中,打印或涂布的方法选自但不限于喷墨打印、喷印(Nozzle Printing)、活版印刷、丝网印刷、浸涂、旋转涂布、刮刀涂布、辊筒印花、扭转辊印刷、平版印刷、柔版印刷、轮转印刷、喷涂、刷涂或移印、狭缝型挤压式涂布等。首选的是凹版印刷、喷印及喷墨印刷中的一种。
在其中一个实施例中,当组合物应用于有机电子器件时,组合物还包括表面活性化合物、润滑剂、润湿剂、分散剂、疏水剂及粘接剂中的至少一种,以用于调节混合物的粘度、成膜性能及提高附着性等。具体地,打印或涂布的方法及调节混合物的粘度、成膜性能及提高附着性可参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1中公开的方法。
一实施方式的有机电子器件包括上述混合物及组合物中的一种。其中,有机电子器件选自但不限于有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)中的一种。具体地,有机电子器件为有机电致发光器件,例如OLED、OLEEC及有机发光场效应管。
进一步地,有机电子器件包括功能层,功能层包括混合物及组合物中的一种。更进一步地,有机电子器件包括包括阴极、阳极及位于阴极和阳极之间的功能层。其中,功能层包括混合物及组合物中的至少一种。
在其中一个实施例中,有机电子器件包含空穴传输层,空穴传输层包含上述混合物,其中,混合物中的有机化合物均为空穴传输材料。
在其中一个实施例中,有机电子器件为电致发光器件,有机电子器件的发光层包含上述混合物,或包含上述混合物和磷光发光体,或包含上述混合物和荧光发光体,或包含上述混合物、磷光发光体和基质材料。其中,有机电子器件的发光波长为300nm~1000nm。进一步地,有机电子器件的发光波长为350nm~900nm。更进一步地,有机电子器件的发光波长为400nm~800nm。
在其中一个实施例中,有机电子器件包括基片、阳极、发光层及阴极。其中,有机电子器件为有机发光二极管。
其中,基片可以是不透明或透明。透明的基片可以用来制造透明的发光元器件。例如,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606中公开的透明的发光元器件。基片可以是刚性的或弹性的。基片可以是塑料、金属、半导体晶片或玻璃。进一步地,基片有一个平滑的表面。无表面缺陷的基片是特别理想的选择。
在其中一个实施例中,基片是柔性的,基片为聚合物薄膜或塑料。基片的玻璃化温度(Tg)为150℃以上,进一步地,基片的Tg超过200℃。再进一步地,基片的Tg超过250℃。更进一步地,基片的Tg超过300℃。具体地,柔性基片为聚(对苯二甲酸乙二醇酯)(PET)或聚乙二醇(2,6-萘)(PEN)。
阳极包括导电金属、金属氧化物及导电聚合物中的一种。阳极能够注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。
在其中一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料选自但不限于Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO及铝掺杂氧化锌(AZO)中的一种。阳极材料能够应用于物理气相沉积法,物理气相沉积法包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在其中一个实施例中,阳极是图案结构化的。其中,图案化的ITO导电基片能够用于制备有机电子器件。图案化的ITO导电基片能够在市场上购买。
阴极包括导电金属或金属氧化物。阴极能够注入电子到EIL、ETL或发光层中。在其中一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料均可能作为本发明器件的阴极材料。
阴极材料选自但不限于Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF 2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt及ITO中的一种。阴极材料能够应用于物理气相沉积法,物理气相沉积法包括射频磁控溅射、真空热蒸发及电子束(e-beam)等。
在其中一个实施例中,OLED包含空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)及空穴阻挡层(HBL)种的一种。具体地,OLED包含WO2010135519A1、US20090134784A1及WO20111100277A1中公开的空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)及空穴阻挡层(HBL)种的一种。
具体地,请参阅图1,一实施方式的有机发光二极管包括基板101、阳极102、空穴注入层或空穴传输层103、发光层104、电子注入层或电子传输层105及阴极106。
一实施方式的电子设备包括上述有机电子器件。其中,电子设备选自显示设备、照明设备、光源及传感器中的一种。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,均将被本发明的权利要求书的精神和范围所覆盖。
以下为具体实施例部分:
实施例1
1、材料和能级结构
Figure PCTCN2017115308-appb-000073
FH-18、FH-19、FH-21、FH-29均购自吉林奥来德光电材料股份有限公司;
PH-8、PH-11、PH-12参照专利WO201034125A1合成;
FD-1参照专利WO2008006449合成;
PD-1参照专利CN102668152合成;
上述材料的能级可通过量子计算得到,结果见表1。比如利用TD-DFT(含时密度泛函理论)通过Gaussian09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110中公开的模拟方法:首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中,HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree,具体的模拟方法可参见WO2011141110中公开的计算方法;高聚物HT-1是通过对三聚体模拟而得。
表1
材料 HOMO[eV] HOMO-1[eV] LUMO[eV] LUMO+1[eV] T1[eV] S1[eV]
FH-18 -5.57 -6.08 -2.70 -2.31 1.71 3.17
FH-19 -5.54 -6.11 -2.70 -2.37 1.71 3.15
FH-21 -5.53 -6.07 -2.71 -2.31 1.70 3.12
FH-29 -5.53 -6.11 -2.70 -2.30 1.70 3.12
PH-8 -5.44 -5.86 -2.22 -2.17 2.92 3.12
PH-12 -5.36 -5.75 -2.18 -1.99 3.01 3.20
PH-13 -5.47 -5.90 -2.37 -2.16 2.91 3.13
2、OLED器件的制备
1)ITO透明电极(阳极)玻璃衬底的清洗:使用5%Decon90清洗液的水溶液超声处理30分钟,之后去离子水超声清洗数次,然后异丙醇超声清洗,氮气吹干;在氧气等离子下处理5分钟,以清洁ITO表面并提升ITO电极的功函;
2)空穴传输层制备:在经过氧气等离子体处理过的玻璃衬底上旋涂PEDOT:PSS溶液,得到80nm的薄膜,旋涂完成后在空气中150℃退火20分钟,然后在PEDOT:PSS层上旋涂得到20nm的Poly-TFB薄膜(CAS:223569-31-1,购自Lumtec.Corp;5mg/mL甲苯溶液),随后在180℃的热板上处理60分钟;
3)发光层制备:先将FH-18、FH-19、FH-21、FH-28、FD-1按照25:25:22:22:6的比例溶于甲苯中,溶液的浓度为18mg/mL,将此溶液在氮气手套箱中旋涂得到60nm薄膜,然后在120℃退火10分钟。
4)阴极制备:将旋涂完成的器件放入真空蒸镀腔体,依次蒸镀2nm钡和100nm铝,完成发光器件。
5)将发光器件在氮气手套箱中采用紫外固化树脂加玻璃盖板封装。
实施例2
实施例2的OLED器件的制备方法与与实施例1的OLED器件的制备方法大致相同,其区别在于,发光层和阴极的制备中,将PH-8、PH-11、PH-12、PD-1按照30:30:30:10的比例溶于甲苯中,溶液的浓度为24mg/mL将此溶液在氮气手套箱中旋涂得到60nm薄膜,然后在120℃退火10分钟,将旋涂完成的器件放入真空蒸镀腔体,依次蒸镀2nm钡和100nm铝,完成发光器件。
对比例1
对比例1的OLED器件的制备方法与与实施例1的OLED器件的制备方法大致相同,其区别在于,发光层的制备中,将FH-19:FD-1按照94:6的比例溶于甲苯中,得到甲苯溶液的浓度为18mg/mL。
对比例2
对比例2的OLED器件的制备方法与与实施例2的OLED器件的制备方法大致相同,其区别在于,发光层的制备中,将FH-8:FD-1按照90:10的比例溶于甲苯中,得到甲苯溶液的浓度为20mg/mL。
测试:
OLED器件的电流电压(I-V)曲线通过计算机控制的吉时利源表(Keithley 2400 source measurement unit)记录,亮度通过使用校正过的硅光二极管(HAMAMATSU,S3204-08)测量,电致发光光谱通过光纤光谱仪(Ocean Optics USB2000+)测量。寿命是所测量的初始亮度(假设为100%)降低至80%所用的时间。实施例1和2及对比例1和2得到的OLED器件的性能结果如表2所示。
表2
  驱动电压(V) 电流效率(cd/A) T80(hr@10mA/cm 2)
实施例1 6.2 5.6 85
实施例2 5.9 50 170
对比例1 6.1 4.8 49
对比例2 6.0 37 101
从表2可以看出,采用多组分的混合物作为磷光以及荧光体系的主体材料,器件性能有明显的提升。说明采用多组分主体体系,抑制了单一材料的结晶,改善了成膜质量。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换均应属于本发明所附权利要求的保护范围。

Claims (16)

  1. 一种混合物,由三个以上的有机化合物组成,其中任意两个所述有机化合物的分子量差小于160Dalton,在所述混合物中,每个所述有机化合物的摩尔百分含量不低于3%且不高于90%,且所述有机化合物均具有至少一种相同或相似的光电功能。
  2. 根据权利要求1所述的混合物,其特征在于,其中任意两个所述有机化合物的摩尔百分含量之差不高于0.3%。
  3. 根据权利要求1~2任意一项所述的混合物,其特征在于,所述混合物中的所有的所述有机化合物均选自荧光主体材料、磷光主体材料、空穴传输材料及电子传输材料中的一种。
  4. 根据权利要求1所述的混合物,其特征在于,所述有机化合物均满足如下条件中的至少一种:其中任意两个所述有机化合物的单线态能级差不高于0.2eV、其中任意两个所述有机化合物的三线态能级差不高于0.2eV、其中任意两个所述有机化合物的HOMO能级差不高于0.2eV、其中任意两个所述有机化合物的LUMO能级差不高于0.2eV、其中任意一个所述有机化合物的ΔHOMO不低于0.2eV、任意一个所述有机化合物的ΔLUMO不低于0.2eV、其中任意一个所述有机化合物的Δ(S1-T1)不低于0.8eV、其中任意一个所述有机化合物的Δ(S1-T1)不高于0.25eV及其中任意两个所述有机化合物的升华温度相差不高于30℃。
  5. 根据权利要求1~2任意一项所述的混合物,其特征在于,所述有机化合物均选自如下通式中的一种:
    Figure PCTCN2017115308-appb-100001
    Figure PCTCN2017115308-appb-100002
    Figure PCTCN2017115308-appb-100003
    其中,Ar 1和Ar 2分别独立选自碳原子数为6个~60个的芳香基、或碳原子数为3个~60个的芳杂基、或碳原子数为6个~60个的稠环芳香基或碳原子数为3个~60个的稠环芳杂基;
    Ar 9和Ar 10分别独立选自H、D、F、CN、NO 2、CF 3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、碳原子数1个~60个的烷基、碳原子数为3个~60个的环烷基、碳原子数为6个~60个的芳香基、碳原子数为3个~60个的杂环芳香基、碳原子数7个~60个的稠环芳香基、碳原子数为4个~60个的稠杂环芳香基中的至少一种;
    L 1选自环原子数为5个~60个的芳香基和环原子数为5个~60个的芳杂基中的一种;
    -L 2-为单键,或者,L 2选自环原子数为5个~30个的芳香基及环原子数为5个~30个的芳杂基中的一种;
    Ar 3、Ar 4、Ar 5、Ar 6、Ar 7及Ar 8分别独立选自环原子数为5个~30个的芳香基和环原 子数为5个~30个的芳杂基中的一种;
    -X 1-是单键,或者,X 1选自N(R)、C(R) 2、Si(R) 2、O、C=N(R)、C=C(R) 2、P(R)、P(=O)R、S、S=O及SO 2中的一种;
    -X 2-、-X 3-、-X 4-、-X 5-、-X 6-、-X 7-、-X 8-及-X 9-分别为单键,或者,X 2、X 3、X 4、X 5、X 6、X 7、X 8及X 9分别独立选自N(R)、C(R) 2、Si(R) 2、O、C=N(R)、C=C(R) 2、P(R)、P(=O)R、S、S=O及SO 2中的一种,其中,-X 2-和-X 3-不同时为单键,-X 4-和-X 5-不同时为单键,-X 6-和-X 7-不同时为单键,-X 8-和-X 9-不同时为单键;
    R 1、R 2及R分别独立选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数为1个~30个的烷基、碳原子数为3个~30个的环烷基、环原子数为5个~60个的芳香族烃基及环原子数为5个~60个的芳香族杂环基中的一种;
    m为0~4的任一整数,o为0~4的任一整数,p为0~6的任一整数,n为1~4的任一整数。
  6. 根据权利要求1~2任意一项所述的混合物,其特征在于,还包括有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体及主体材料中的一种。
  7. 根据权利要求6所述的混合物,其特征在于,所述发光体选自荧光发光体、热激活延迟荧光发光体及磷光发光体中的一种。
  8. 根据权利要求7所述的混合物,其特征在于,所述有机化合物均为所述荧光主体材料,所述有机功能材料为所述荧光发光体。
  9. 根据权利要求7~8任意一项所述的混合物,其特征在于,所述荧光发光体选自茚并芴-胺的衍生物、茚并芴-二胺蒽的衍生物、萘的衍生物、四苯的衍生物、氧杂蒽的衍生物、菲的衍生物、芘的衍生物、茚并芘的衍生物、苯撑的衍生物、二茚并芘的衍生物、十环烯的衍生物、六苯并苯的衍生物、芴的衍生物、螺二芴的衍生物、芳基芘的衍生物、亚芳香基乙烯的衍生物、环戊二烯的衍生物、红荧烯的衍生物、香豆素的衍生物、若丹明的衍生物、喹吖啶酮的衍生物、吡喃的衍生物、噻喃的衍生物、双(吖嗪基)亚胺硼的衍生物、双(吖嗪基)亚甲基的衍生物、喹诺酮的衍生物、噁嗪酮的衍生物、苯并恶唑的衍生物、苯并噻唑的衍生物、苯并咪唑的衍生物及吡咯并吡咯二酮的衍生物中的一种。
  10. 根据权利要求7所述混合物,其特征在于,所述有机化合物均为磷光主体材料,所述有机功能材料为所述磷光发光体。
  11. 一种组合物,包括权利要求1~10任意一项所述的混合物和有机溶剂。
  12. 根据权利要求11所述的组合物,其特征在于,在25℃下,所述组合物的粘度为1cPs~100cPs。
  13. 根据权利要求11所述的组合物,其特征在于,在25℃下,所述组合物的表面张力为19dyne/cm~50dyne/cm。
  14. 根据权利要求11所述的组合物,其特征在于,在1个标准大气压下,所述有机溶剂的沸点为150℃以上。
  15. 一种有机电子器件,包括功能层,所述功能层的材料包括权利要求1~10任意一项所述的混合物及权利要求11~14任意一项所述的组合物中的一种。
  16. 根据权利要求15所述的有机电子器件,其特征在于,所述有机电子器件选自有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管中的一种。
PCT/CN2017/115308 2016-12-08 2017-12-08 混合物、组合物及有机电子器件 WO2018103744A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17879321.2A EP3553152B1 (en) 2016-12-08 2017-12-08 Mixture, composition and organic electronic device
US16/467,413 US10978642B2 (en) 2016-12-08 2017-12-08 Mixture, composition and organic electronic device
CN201780059728.3A CN109790461B (zh) 2016-12-08 2017-12-08 混合物、组合物及有机电子器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611123275 2016-12-08
CN201611123275.X 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018103744A1 true WO2018103744A1 (zh) 2018-06-14

Family

ID=62492240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115308 WO2018103744A1 (zh) 2016-12-08 2017-12-08 混合物、组合物及有机电子器件

Country Status (4)

Country Link
US (1) US10978642B2 (zh)
EP (1) EP3553152B1 (zh)
CN (1) CN109790461B (zh)
WO (1) WO2018103744A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276620A (zh) * 2018-12-05 2020-06-12 乐金显示有限公司 有机发光二极管和具有其的有机发光装置
US11611047B2 (en) * 2019-06-29 2023-03-21 Wuhan Tianma Micro-Electronics Co., Ltd. Thermally activated delayed fluorescent material and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216820A1 (en) * 2017-05-23 2018-11-29 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
CN112679413B (zh) * 2019-10-18 2023-02-07 广州华睿光电材料有限公司 磷光主体材料及其应用

Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JPH0853397A (ja) 1994-08-12 1996-02-27 Toyo Ink Mfg Co Ltd ジアリールアミン誘導体、その製造方法及び用途
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
US6251531B1 (en) 1995-02-25 2001-06-26 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
US20010053462A1 (en) 2000-05-02 2001-12-20 Masayuki Mishima Light-emitting device
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191613A2 (en) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
EP1191612A2 (en) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
EP1191614A2 (en) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Luminescence device and metal coordination compound therefor
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
CN1583691A (zh) 2004-06-04 2005-02-23 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
US20050258742A1 (en) 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
WO2006000388A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2006000389A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US7029766B2 (en) 2003-12-05 2006-04-18 Eastman Kodak Company Organic element for electroluminescent devices
WO2006058737A1 (de) 2004-12-01 2006-06-08 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US20060210830A1 (en) 2005-03-15 2006-09-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US20070087219A1 (en) 2005-10-19 2007-04-19 Eastman Kodak Company Electroluminescent device
US20070092753A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
WO2007065549A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
US7250532B2 (en) 2001-03-16 2007-07-31 Idemitsu Kosan Co., Ltd. Method for producing aromatic amino compound
WO2007095118A2 (en) 2006-02-10 2007-08-23 Universal Display Corporation METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF
WO2007115610A1 (de) 2006-04-01 2007-10-18 Merck Patent Gmbh Materialen für organische elektrolumineszenzvorrichtungen
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
US20080027220A1 (en) 2004-07-16 2008-01-31 Merck Patent Gmbh Metal Complexes
US20080113101A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic-electroluminescence-material-containing solution, method for forming thin film of organic electroluminescence material, thin film of organic electroluminescence material and organic electroluminescence device
US20090061681A1 (en) 2007-09-05 2009-03-05 Mcmunigal Tom Electrical receptacle assembly
US20090134784A1 (en) 2004-10-21 2009-05-28 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
WO2009118087A1 (de) 2008-03-25 2009-10-01 Merck Patent Gmbh Metallkomplexe
WO2009146770A2 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2010015307A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
WO2010031485A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010034125A1 (en) 2008-09-29 2010-04-01 Toronto Rehabilitation Institute Hand hygiene compliance system
WO2010054728A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054731A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
WO2010099852A1 (de) 2009-03-02 2010-09-10 Merck Patent Gmbh Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
WO2010102709A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010135519A1 (en) 2009-05-20 2010-11-25 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands for use in organic light emitting devices
WO2011100277A1 (en) 2010-02-10 2011-08-18 3M Innovative Properties Company Illumination device having viscoelastic layer
WO2011141110A2 (de) 2010-05-12 2011-11-17 Merck Patent Gmbh Photostabilisatoren
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2012007086A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012007087A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012007088A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
US20120217869A1 (en) 2011-02-28 2012-08-30 Kyushu University National University Corporation Delayed fluorescence material and organic electroluminescence device
CN102668152A (zh) 2009-12-23 2012-09-12 默克专利有限公司 包括聚合粘结剂的组合物
TW201309778A (zh) 2011-07-15 2013-03-01 Univ Kyushu Nat Univ Corp 有機電致發光元件及使用於其之化合物
TW201309696A (zh) 2011-07-15 2013-03-01 Univ Kyushu Nat Univ Corp 延遲螢光材料及使用其之有機電致發光元件
CN103026525A (zh) * 2010-07-26 2013-04-03 默克专利有限公司 在器件中的纳米晶体
WO2013113349A1 (en) * 2012-01-30 2013-08-08 Merck Patent Gmbh Nanocrystals on fibers
WO2013133359A1 (ja) 2012-03-09 2013-09-12 国立大学法人九州大学 発光材料および有機発光素子
WO2013154064A1 (ja) 2012-04-09 2013-10-17 国立大学法人九州大学 有機発光素子ならびにそれに用いる発光材料および化合物
TW201343874A (zh) 2012-04-25 2013-11-01 Univ Kyushu Nat Univ Corp 發光材料及有機發光元件
TW201350558A (zh) 2012-05-17 2013-12-16 Univ Kyushu Nat Univ Corp 化合物、發光材料及有機發光元件
CN103483332A (zh) 2013-09-11 2014-01-01 中山大学 具有热激活延迟荧光和聚集诱导发光性能的新型压致发光材料及其合成方法和应用
CN103563117A (zh) * 2011-05-27 2014-02-05 环球展览公司 具有多组分发光层的有机发光装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053397A (ja) 2006-08-24 2008-03-06 Ricoh Co Ltd 半導体装置及びその製造方法
US20090053557A1 (en) * 2007-08-23 2009-02-26 Spindler Jeffrey P Stabilized white-emitting oled device
DE102010010481A1 (de) * 2010-03-06 2011-09-08 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
KR20130020883A (ko) 2010-03-11 2013-03-04 메르크 파텐트 게엠베하 요법 및 미용에서의 섬유
CN104640958B (zh) * 2012-09-18 2017-04-05 默克专利有限公司 用于电子器件的材料
CN103985822B (zh) * 2014-05-30 2017-05-10 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
WO2016036171A1 (en) * 2014-09-04 2016-03-10 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent devices comprising the same
US10749113B2 (en) * 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
KR101919438B1 (ko) * 2015-06-26 2018-11-16 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR101948709B1 (ko) * 2015-09-25 2019-02-15 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR101977163B1 (ko) * 2015-09-25 2019-05-10 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
US10608186B2 (en) * 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US20200098996A1 (en) * 2016-12-22 2020-03-26 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
KR102448566B1 (ko) * 2018-12-04 2022-09-27 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치

Patent Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH0853397A (ja) 1994-08-12 1996-02-27 Toyo Ink Mfg Co Ltd ジアリールアミン誘導体、その製造方法及び用途
US6251531B1 (en) 1995-02-25 2001-06-26 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
WO2000070655A2 (en) 1999-05-13 2000-11-23 The Trustees Of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
WO2001041512A1 (en) 1999-12-01 2001-06-07 The Trustees Of Princeton University Complexes of form l2mx as phosphorescent dopants for organic leds
US20010053462A1 (en) 2000-05-02 2001-12-20 Masayuki Mishima Light-emitting device
WO2002002714A2 (en) 2000-06-30 2002-01-10 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
EP1191613A2 (en) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
EP1191612A2 (en) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
EP1191614A2 (en) 2000-09-26 2002-03-27 Canon Kabushiki Kaisha Luminescence device and metal coordination compound therefor
US7250532B2 (en) 2001-03-16 2007-07-31 Idemitsu Kosan Co., Ltd. Method for producing aromatic amino compound
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005033244A1 (de) 2003-09-29 2005-04-14 Covion Organic Semiconductors Gmbh Metallkomplexe
US7029766B2 (en) 2003-12-05 2006-04-18 Eastman Kodak Company Organic element for electroluminescent devices
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
US20050258742A1 (en) 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
CN1583691A (zh) 2004-06-04 2005-02-23 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
WO2006000389A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006000388A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
US20080027220A1 (en) 2004-07-16 2008-01-31 Merck Patent Gmbh Metal Complexes
US20090134784A1 (en) 2004-10-21 2009-05-28 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
WO2006058737A1 (de) 2004-12-01 2006-06-08 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US20060210830A1 (en) 2005-03-15 2006-09-21 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
WO2006122630A1 (de) 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US20070087219A1 (en) 2005-10-19 2007-04-19 Eastman Kodak Company Electroluminescent device
US20070092753A1 (en) 2005-10-26 2007-04-26 Eastman Kodak Company Organic element for low voltage electroluminescent devices
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
EP1957606A1 (de) 2005-12-08 2008-08-20 Merck Patent GmbH Neue materialien für organische elektroluminieszenzvorrichtungen
WO2007065549A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2007095118A2 (en) 2006-02-10 2007-08-23 Universal Display Corporation METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF
WO2007115610A1 (de) 2006-04-01 2007-10-18 Merck Patent Gmbh Materialen für organische elektrolumineszenzvorrichtungen
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
WO2007140847A1 (de) 2006-06-02 2007-12-13 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2008006449A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue materialien für organische elektrolumineszenzvorrichtungen
CN101490207A (zh) * 2006-07-11 2009-07-22 默克专利有限公司 用于有机电致发光器件的新材料
US20080113101A1 (en) 2006-11-09 2008-05-15 Idemitsu Kosan Co., Ltd. Organic-electroluminescence-material-containing solution, method for forming thin film of organic electroluminescence material, thin film of organic electroluminescence material and organic electroluminescence device
US20090061681A1 (en) 2007-09-05 2009-03-05 Mcmunigal Tom Electrical receptacle assembly
WO2009118087A1 (de) 2008-03-25 2009-10-01 Merck Patent Gmbh Metallkomplexe
WO2009146770A2 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe
WO2010015307A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische vorrichtung enthaltend metallkomplexe mit isonitrilliganden
WO2010031485A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010034125A1 (en) 2008-09-29 2010-04-01 Toronto Rehabilitation Institute Hand hygiene compliance system
WO2010054731A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010054728A1 (de) 2008-11-13 2010-05-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010086089A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
CN102282150A (zh) 2009-02-02 2011-12-14 默克专利有限公司 金属络合物
WO2010099852A1 (de) 2009-03-02 2010-09-10 Merck Patent Gmbh Metallkomplexe mit azaborol-liganden und elektronische vorrichtung damit
US20120004407A1 (en) 2009-03-02 2012-01-05 Merck Patent Gmbh Metal complexes having azaborol ligands and electronic device having the same
WO2010102709A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2010135519A1 (en) 2009-05-20 2010-11-25 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands for use in organic light emitting devices
CN102668152A (zh) 2009-12-23 2012-09-12 默克专利有限公司 包括聚合粘结剂的组合物
WO2011100277A1 (en) 2010-02-10 2011-08-18 3M Innovative Properties Company Illumination device having viscoelastic layer
WO2011141110A2 (de) 2010-05-12 2011-11-17 Merck Patent Gmbh Photostabilisatoren
WO2011157339A1 (de) 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2012007086A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012007088A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
WO2012007087A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
CN103026525A (zh) * 2010-07-26 2013-04-03 默克专利有限公司 在器件中的纳米晶体
US20120217869A1 (en) 2011-02-28 2012-08-30 Kyushu University National University Corporation Delayed fluorescence material and organic electroluminescence device
CN103563117A (zh) * 2011-05-27 2014-02-05 环球展览公司 具有多组分发光层的有机发光装置
TW201309778A (zh) 2011-07-15 2013-03-01 Univ Kyushu Nat Univ Corp 有機電致發光元件及使用於其之化合物
TW201309696A (zh) 2011-07-15 2013-03-01 Univ Kyushu Nat Univ Corp 延遲螢光材料及使用其之有機電致發光元件
WO2013113349A1 (en) * 2012-01-30 2013-08-08 Merck Patent Gmbh Nanocrystals on fibers
CN104081553A (zh) * 2012-01-30 2014-10-01 默克专利有限公司 在纤维上的纳米晶体
WO2013133359A1 (ja) 2012-03-09 2013-09-12 国立大学法人九州大学 発光材料および有機発光素子
WO2013154064A1 (ja) 2012-04-09 2013-10-17 国立大学法人九州大学 有機発光素子ならびにそれに用いる発光材料および化合物
TW201343874A (zh) 2012-04-25 2013-11-01 Univ Kyushu Nat Univ Corp 發光材料及有機發光元件
TW201350558A (zh) 2012-05-17 2013-12-16 Univ Kyushu Nat Univ Corp 化合物、發光材料及有機發光元件
CN103483332A (zh) 2013-09-11 2014-01-01 中山大学 具有热激活延迟荧光和聚集诱导发光性能的新型压致发光材料及其合成方法和应用

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
ADACHI ET AL., APPL. PHYS. LETT., vol. 78, 2001, pages 1622 - 1624
ADACHI, ADV. MATER., vol. 21, 2009, pages 4802
ADACHI, ADV. MATER., vol. 25, 2013, pages 3707
ADACHI, ANGEW. CHEM. INT. ED, vol. 51, 2012, pages 11311
ADACHI, APPL. PHYS. LETT., vol. 101, 2012, pages 093306
ADACHI, CHEM. COMMUN., vol. 48, 2012, pages 11392
ADACHI, CHEM. COMMUN., vol. 48, 2013, pages 10385
ADACHI, CHEM. MATER., vol. 25, 2013, pages 3766
ADACHI, J. AM. CHEM. SOC, vol. 134, 2012, pages 14706
ADACHI, J. MATER. CHEM. C., vol. 1, 2013, pages 4599
ADACHI, J. PHYS. CHEM. A., vol. 117, 2013, pages 5607
ADACHI, NATURE PHOTONICS, vol. 6, 2012, pages 253
ADACHI, NATURE, vol. 492, 2012, pages 234
ADACHI, PHYS. LETT., vol. 98, 2011, pages 083302
BALDOTHOMPSON ET AL., NATURE, vol. 403, 2000, pages 750 - 753
BULOVIC ET AL., NATURE, vol. 380, 1996, pages 29
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 223569-31-1
GU ET AL., APPL. PHYS. LETT., vol. 68, 1996, pages 2606
J. KIDO ET AL., APPL. PHYS. LETT., vol. 65, 1994, pages 2124
JOHNSON ET AL., JACS, vol. 105, 1983, pages 1795
KIDO ET AL., CHEM. LETT., vol. 657, 1990
MA ET AL., SYNTH. METALS, vol. 94, 1998, pages 245
See also references of EP3553152A4
WRIGHTON, JACS, vol. 96, 1974, pages 998

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276620A (zh) * 2018-12-05 2020-06-12 乐金显示有限公司 有机发光二极管和具有其的有机发光装置
US11515485B2 (en) * 2018-12-05 2022-11-29 Lg Display Co., Ltd. Organic light emitting diode and organic light emitting device having the same
CN111276620B (zh) * 2018-12-05 2023-02-07 乐金显示有限公司 有机发光二极管和具有其的有机发光装置
US11611047B2 (en) * 2019-06-29 2023-03-21 Wuhan Tianma Micro-Electronics Co., Ltd. Thermally activated delayed fluorescent material and application thereof

Also Published As

Publication number Publication date
CN109790461A (zh) 2019-05-21
US10978642B2 (en) 2021-04-13
EP3553152A4 (en) 2019-12-18
US20200098992A1 (en) 2020-03-26
EP3553152A1 (en) 2019-10-16
EP3553152B1 (en) 2021-02-17
CN109790461B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN109803957B (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
WO2017092508A1 (zh) D-a型化合物及其应用
WO2019120099A1 (zh) 有机混合物及其在有机电子器件中的应用
WO2019128633A1 (zh) 含硼杂环化合物、高聚物、混合物、组合物及其用途
WO2018095394A1 (zh) 有机混合物、组合物及有机电子器件和应用
CN109790457B (zh) 芳香胺衍生物及其制备方法和用途
WO2016086887A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2016112762A1 (zh) 化合物、包含其的混合物、组合物和有机电子器件
WO2016086885A1 (zh) 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件
WO2018095390A1 (zh) 有机化合物及其应用、有机混合物、有机电子器件
CN110746405B (zh) 一种含吡咯基团的化合物及其在有机电子器件中的应用
WO2018103744A1 (zh) 混合物、组合物及有机电子器件
WO2018095392A1 (zh) 有机混合物、组合物以及有机电子器件
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
WO2017118237A1 (zh) 并吡咯衍生物及其在有机电子器件的应用
WO2018103745A1 (zh) 咔唑类化合物及其应用
WO2019120125A1 (zh) 用于制备有机电子器件的组合物、有机电子器件及应用
WO2019105326A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2019128762A1 (zh) 含酰胺键基团的聚合物、混合物、组合物及其应用
CN109790087B (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
CN110759835B (zh) 苝醌类有机化合物及其应用
WO2019120085A1 (zh) 包含有热激发延迟荧光材料的印刷油墨及其应用
CN111279508A (zh) 用于制备有机电子器件的组合物、有机电子器件及应用
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017879321

Country of ref document: EP

Effective date: 20190708