WO2019120125A1 - 用于制备有机电子器件的组合物、有机电子器件及应用 - Google Patents

用于制备有机电子器件的组合物、有机电子器件及应用 Download PDF

Info

Publication number
WO2019120125A1
WO2019120125A1 PCT/CN2018/120701 CN2018120701W WO2019120125A1 WO 2019120125 A1 WO2019120125 A1 WO 2019120125A1 CN 2018120701 W CN2018120701 W CN 2018120701W WO 2019120125 A1 WO2019120125 A1 WO 2019120125A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
aromatic
composition
composition according
Prior art date
Application number
PCT/CN2018/120701
Other languages
English (en)
French (fr)
Inventor
潘君友
谭甲辉
杨曦
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201880069418.4A priority Critical patent/CN111868050B/zh
Publication of WO2019120125A1 publication Critical patent/WO2019120125A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of organic electronic devices, and more particularly to a composition for preparing an organic electronic device.
  • the invention further relates to the use of a composition according to the invention in an organic electronic device, in particular an organic electroluminescent diode, and its use in display and illumination technology.
  • OLEDs Organic light-emitting diodes
  • OLEDs are regarded as the most promising next-generation display technology by the industry because of their light weight, active illumination, wide viewing angle, high contrast ratio, high luminous efficiency, low energy consumption, easy preparation of flexible and large-sized panels. .
  • OLEDs Organic light-emitting diodes
  • the host material is the key.
  • OLED light-emitting devices are generally prepared by using a single-host material with a illuminant, but a single-host material causes a different carrier transport rate, causing device efficiency to be significantly rolled-off at high brightness, resulting in shortened device life.
  • the use of a double-body material can alleviate some of the problems caused by a single body, especially through a suitable material combination, the selected dual-body material can effectively form a composite exciplex, greatly improving the luminous efficiency and lifetime of the device.
  • One technique discloses the realization of low-roll-off, high-efficiency OLEDs by utilizing a co-host capable of forming a composite exciplex and a metal complex as a phosphorescent emitter.
  • a technique discloses that in an evaporation device, by pre-forming a double body material into a blend or an organic alloy, the evaporation process can be greatly simplified and the device life can be significantly improved.
  • the vacuum evaporation process is expensive and requires a high degree of processing, such as a shadow mask that is generally required to be extremely limited, thereby limiting the application of the organic light emitting diode as a large-area, low-cost display device and a lighting device.
  • solution processing processes such as inkjet printing and roll-to-roll have advantages such as precision shadow masks, greenhouse processes, high material utilization, and good scalability.
  • Another object of the present invention is to provide a composition for preparing an organic electronic device, and a corresponding organic functional compound. Another object of the present invention is to provide an application of the composition according to the invention in an organic electronic device, in particular an electroluminescent diode, and its use in display and illumination technology.
  • the present invention is directed to providing a novel composition host material that improves device performance.
  • a composition comprising at least two organic functional materials H1 and H2, and at least one organic solvent, 1) H1 and H2 form a type I semiconductor heterojunction structure, 2) S1(H2)-T1(H2) ⁇ 0.3eV; wherein S1(H2), T1(H2) are the singlet level and triplet level of H2, respectively; 3) the viscosity of the composition at 25 ° C, in the range of 1 cPs to 100 cPs, and/or The composition has a surface tension at 25 ° C in the range of 19 dyne/cm to 50 dyne/cm.
  • the solubility of the organic functional material H1 and the organic functional material H2 in the organic solvent is 0.5% by weight or more, and the solubility difference between H1 and H2 in the organic solvent is less than or equal to 0.2 wt%.
  • An organic electronic device comprising a functional layer prepared from a composition as described above.
  • An organic electronic device selectable from an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, or an organic Laser, organic spintronics, organic sensor or organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OLED organic light emitting cell
  • OFET organic field effect transistor
  • organic light emitting field effect transistor or an organic Laser, organic spintronics, organic sensor or organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • organic electronic device as described above, the organic electronic device being an organic electroluminescent device, the functional layer of the organic electroluminescent device comprising a light-emitting layer, the light-emitting layer being prepared from the composition as described above.
  • a method for preparing an organic electronic device comprising the steps of: coating a composition as described above on a substrate by printing or coating to form a functional layer, wherein the printing or coating method is optional (but not limited to) ) Inkjet Printing, Nozzle Printing, Typography, Screen Printing, Dip Coating, Spin Coating, Blade Coating, Roller Printing, Twist Roll Printing, Lithography, Flexo Printing, Rotary Printing, Spraying, Brush or pad printing, slit type extrusion coating, etc.
  • the composition of the present invention comprises at least two organic functional materials and at least one organic solvent, and has good printing performance and film forming property when used for a host material, and is convenient for processing by a solution, particularly a printing process. Achieving high performance organic electronic devices, particularly organic electroluminescent devices, provides a cost effective, high efficiency manufacturing solution.
  • FIG. 1 is a diagram of a semiconductor heterojunction structure showing that when two organic semiconductor materials H1 and H2 are in contact, the relative positions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) may be Two types, wherein the type I semiconductor heterojunction structure is the energy level structure of the composition according to the invention.
  • HOMO highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • Embodiments of the present invention provide a composition for preparing an organic electronic device, and a corresponding organic functional compound.
  • a composition for preparing an organic electronic device and a corresponding organic functional compound.
  • the host material, the matrix material, the Host material, and the Matrix material have the same meaning and are interchangeable.
  • the singlet states and the singlet states have the same meaning and are interchangeable.
  • the triplet state and the triplet state have the same meaning and are interchangeable.
  • composition and the printing ink, or ink have the same meaning and are interchangeable.
  • the complex excited state, exciplex, and Exciplex have the same meaning and are interchangeable.
  • small molecule refers to a molecule that is not a polymer, oligomer, dendrimer, or blend. In particular, there are no repeating structures in small molecules.
  • the molecular weight of the small molecule is ⁇ 3000 g/mol, preferably ⁇ 2000 g/mol, preferably ⁇ 1500 g/mol.
  • an aromatic ring system or an aromatic group means a hydrocarbon group containing at least one aromatic ring, and includes a monocyclic group and a polycyclic ring system.
  • a heteroaromatic or heteroaromatic group refers to a hydrocarbyl group (containing heteroatoms) comprising at least one heteroaromatic ring, including monocyclic groups and polycyclic ring systems.
  • These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring. At least one of these rings of the polycyclic ring is aromatic or heteroaromatic.
  • aromatic or heteroaromatic ring systems include not only aromatic or heteroaromatic systems, but also multiple aryl or heteroaryl groups may also be interrupted by short non-aromatic units ( ⁇ 10%).
  • Non-H atoms preferably less than 5% of non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be aromatic ring systems for the purposes of the present invention.
  • the energy level structure of the organic material the triplet energy levels E T , HOMO, and LUMO play a key role.
  • the following is an introduction to the determination of these energy levels.
  • the HOMO and LUMO levels can be measured by photoelectric effect, such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • photoelectric effect such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • quantum chemical methods such as density functional theory (hereinafter referred to as DFT) have also become effective methods for calculating molecular orbital energy levels.
  • the triplet energy level E T of organic materials can be measured by low temperature time-resolved luminescence spectroscopy, or by quantum simulation calculations (eg by Time-dependent DFT), as by commercial software Gaussian 03W (Gaussian Inc.), specific simulation methods. See WO2011141110 or as described below in the examples.
  • the absolute values of HOMO, LUMO, E T depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as starting point and peak point on the CV curve, can give different HOMO/ LUMO value. Therefore, reasonable and meaningful comparisons should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, and E T are simulations based on Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • (HOMO-1) is defined as the second highest occupied orbital level
  • (HOMO-2) is the third highest occupied orbital level
  • (LUMO+1) is defined as the second lowest unoccupied orbital level
  • (LUMO+2) is the third lowest occupied orbital level, and so on.
  • the present invention relates to a composition
  • a composition comprising at least two organic functional materials H1 and H2, and at least one organic solvent, 1) H1 and H2 form a type I semiconductor heterojunction structure, 2) S1(H2)-T1 ( H2) ⁇ 0.3eV; wherein S1(H2), T1(H2) are the singlet level and triplet level of H2, respectively; 3) the viscosity of the composition at 25 ° C, in the range of 1 cPs to 100 cPs, and / or the composition has a surface tension at 25 ° C in the range of 19 dyne / cm to 50 dyne / cm.
  • composition S1(H2)-T1(H2) ⁇ 0.25 eV;
  • composition S1(H2)-T1(H2) ⁇ 0.20eV;
  • composition S1(H2)-T1(H2) ⁇ 0.15 eV;
  • composition S1(H2)-T1(H2) ⁇ 0.1 eV;
  • composition S1(H2)-T1(H2) ⁇ 0.08 eV;
  • compositions according to the invention wherein the difference in molecular weight of H1 and H2 is ⁇ 50 g/mol.
  • the composition according to the invention wherein the difference in molecular weight of H1 and H2 is ⁇ 50 g/mol, preferably ⁇ 70 g/mol, more preferably ⁇ 90 g/mol, most preferably ⁇ 100 g /mol.
  • compositions according to the invention wherein the difference in sublimation temperatures of H1 and H2 is ⁇ 30K.
  • the composition according to the invention wherein the sublimation temperature of H1 and H2 differs by ⁇ 30K, preferably ⁇ 40K, more preferably ⁇ 50K, and most preferably ⁇ 60K.
  • the two host materials have similar chemical properties or physical properties such as molecular weight and sublimation temperature.
  • the present inventors have found that in solution-processed OLEDs, two host materials having different properties may improve film formation properties, thereby improving device performance.
  • the properties mentioned may be other than molecular weight, sublimation temperature, such as glass transition temperature, different molecular volume, and the like. Therefore, the following conditions can be substituted for the above condition 2):
  • the difference in glass transition temperature between H1 and H2 is ⁇ 20K, preferably ⁇ 30K, more preferably ⁇ 40K, and most preferably ⁇ 45K.
  • the difference in molecular volume between H1 and H2 is ⁇ 20%, preferably ⁇ 30%, more preferably ⁇ 40%, and most preferably ⁇ 45%.
  • the organic solvent has a viscosity at 25 ° C in the range of 1 cPs to 80 cPs; preferably in the range of 1 cPs to 50 cps; more preferably in the range of 1 cPs to 40 cps. More excellent 1cPs to 30cps range; optimal range of 1.5cps to 20cps.
  • the viscosity herein refers to the viscosity at the ambient temperature at the time of printing, and is usually 15 to 30 ° C, preferably 18 to 28 ° C, more preferably 20 to 25 ° C, and most preferably 23 to 25 ° C.
  • Compositions so formulated will be particularly suitable for ink jet printing.
  • the solubility of the organic functional material H1 and the organic functional material H2 in an organic solvent is 0.5% by weight or more, and H1 and H2 are The difference in solubility in the organic solvent is 0.2% by weight or less.
  • the solubility of the organic functional material H1 and the organic functional material H2 in an organic solvent is 0.5% by weight or more; more preferably at least The solubility of an organic functional material in an organic solvent is 1% by weight or more; more preferably, the solubility of at least one organic functional material in an organic solvent is 1.5% by weight or more; more preferably, at least one organic functional material is in an organic solvent.
  • the solubility is greater than or equal to 2% by weight; most preferably, the solubility of at least one of the organic functional materials in the organic solvent is greater than or equal to 3% by weight.
  • the difference in solubility between the organic functional material H1 and the organic functional material H2 in an organic solvent is 0.2% by weight or less; more preferably less than or equal to 0.15 wt%; more preferably 0.1 wt% or less; most preferably 0.05 wt% or less.
  • the organic functional material H1 and the organic functional material H2 have a molecular weight of at least one of 600 g/mol or more; more preferably at least one greater than It is equal to 800 g/mol; more preferably at least one is greater than or equal to 900 g/mol; very preferably at least one is greater than or equal to 1000 g/mol; most preferably at least one is greater than or equal to 1100 g/mol.
  • the organic functional material H1 and the organic functional material H2 have a molecular weight of 600 g/mol or more; more preferably 800 g/mol or more. More preferably, it is 900 g/mol or more; most preferably, it is 1000 g/mol or more.
  • a composition according to the present invention comprises a functional material in a weight ratio of the composition of from 0.3% to 30% by weight, preferably from 0.5% to 20% by weight, more preferably. It is in the range of 0.5% to 15% by weight, more preferably in the range of 0.5% to 10% by weight, most preferably in the range of 1% to 5% by weight.
  • the organic functional material H1 and the organic functional material H2 have a glass transition temperature of at least one of 100 ° C or more; more preferably at least One is greater than or equal to 120 ° C; more preferably at least one is greater than or equal to 140 ° C; and particularly preferably at least one is greater than or equal to 160 ° C.
  • the organic functional material H1 and the organic functional material H2 have a glass transition temperature of 100 ° C or more; more preferably, the ratio is greater than or equal to 120 ° C; more preferably 140 ° C or more; particularly preferably 160 ° C or more.
  • the molar ratio of said organic functional material H1 to said organic functional material H2 ranges from 1:9 to 9:1; more preferably 2: 8-8:2; more preferably 3:7-7:3; still more preferably 4:6-6:4; most preferably 5:5.
  • the organic functional material H1 has an energy gap greater than H2.
  • the organic functional material H1 has electron transport properties, or hole transport properties.
  • At least one of the H1 and H2 organic functional materials ⁇ 0.2 eV, preferably ⁇ 0.25 eV More preferably, it is ⁇ 0.3 eV, more preferably ⁇ 0.35 eV, very preferably ⁇ 0.4 eV, preferably ⁇ 0.45 eV.
  • each of the organic functional materials of H1 and H2 ⁇ 0.2 eV, preferably H2 ( HOMO-(HOMO-1)) ⁇ 0.25 eV, more preferably ⁇ 0.3 eV, more preferably ⁇ 0.35 eV, very preferably ⁇ 0.4 eV, preferably ⁇ 0.45 eV.
  • At least one of the organic functional materials of H1 and H2 has ((LUMO+1)-LUMO) ⁇ 0.15 eV, preferably ⁇ 0.20.
  • the eV is more preferably ⁇ 0.25 eV, more preferably ⁇ 0.30 eV, very preferably ⁇ 0.35 eV, and most preferably ⁇ 0.40 eV.
  • composition of the invention ((LUMO+1)-LUMO) ⁇ 0.15 eV, preferably H1, of each of the organic functional materials in H1 and H2 ((LUMO+1)-LUMO) ⁇ 0.20 eV, more preferably ⁇ 0.25 eV, still more preferably ⁇ 0.30 eV, very preferably ⁇ 0.35 eV, preferably ⁇ 0.40 eV.
  • composition according to the invention wherein said H1 has the structure of formula (I-1) or (I-2):
  • Z 4 , Z 5 , and Z 6 are independently selected from N or CR 2 .
  • Ar 1 to Ar 3 are each independently selected from the group consisting of an aromatic or heteroaromatic ring system having 5 to 40 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 40 ring atoms. a group, or a non-aromatic group having 5 to 40 ring atoms, or a combination of these systems, wherein one or more groups may be further substituted by R 2 or R 2 may further form with a substituted group Ring system.
  • Ar 1 to Ar 3 are each independently selected from the group consisting of an aromatic or heteroaromatic ring system having 5 to 20 ring atoms, or an aryloxy group or a heterocyclic group having 5 to 20 ring atoms.
  • the group forms a ring system.
  • Ar 1 to Ar 3 are each independently selected from the group consisting of a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 15 ring atoms, or having 5 to 15 ring atoms.
  • L 11 is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 5 to 30 ring atoms or an aromatic heterocyclic group, and the linking position of L 11 may be any one of carbon atoms on the benzene ring;
  • L 11 represented by the formula (I-2) is independently represented by a single bond, a substituted or unsubstituted aromatic hydrocarbon group or an aromatic hetero group having 5 to 25 ring atoms; more preferred implementation
  • L 11 is independently represented by a single bond, a substituted or unsubstituted aromatic group or an aromatic hetero group having 5 to 20 ring atoms; in a most preferred embodiment, L 11 is independently represented as a single bond.
  • L 11 shown in formula (I-2) may be a single bond, or L 11 may be selected from one of the following groups, which groups may be further substituted:
  • L 11 shown in formula (I-2), when multiple occurrences, may independently comprise the following structural units or a combination thereof:
  • p is independently 1 or 2 or 3 or 4.
  • R, R 11 and R 12 each independently represent D, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, a substituted or unsubstituted ring atom.
  • the number is 5 to 60 aromatic hydrocarbon groups or aromatic heterocyclic groups, and further, R 11 and R 12 may be bonded to form a saturated or unsaturated ring structure.
  • n, m1, m2 are independently 1 or 2 or 3. Preferably it is 1.
  • a composition according to the invention is characterized in that, in the case of multiple occurrences, Ar 1 -Ar 3 in the formula (I-1) are independently selected from the following structural groups One of the regiments or a combination of them:
  • n1 is 1 or 2 or 3 or 4.
  • H1 is not a derivative of triphenylene.
  • composition according to the invention wherein H2 has thermal excitation delayed fluorescence (TADF) characteristics.
  • TADF thermal excitation delayed fluorescence
  • TADF material According to the principle of thermally excited delayed fluorescent TADF material (see Adachi et al., Nature Vol 492, 234, (2012)), when the organic compound (S1-T1) is sufficiently small, the triplet excitons of the organic compound can pass through the reverse internal Convert to singlet excitons for efficient illumination.
  • TADF materials are obtained by electron donating (Donor) with electron-deficient or acceptor groups directly or through other groups, i.e., having a distinct D-A structure.
  • the above H2 has a smaller (S1-T1), and generally (S1-T1) ⁇ 0.30 eV, preferably ⁇ 0.25 eV, more preferably ⁇ 0.20 eV, still more preferably ⁇ 0.15.
  • eV is preferably ⁇ 0.10 eV.
  • the above H2 comprises at least an electron donating group, and/or at least comprises an electron withdrawing group.
  • Further electron donating groups may be selected from structures containing groups having the following groups:
  • Further electron withdrawing groups may be selected from the group consisting of F, cyano or a structure comprising the following groups:
  • n is an integer from 1 to 3;
  • X 2 -X 9 are independently selected from CR or N, and at least one is N;
  • R is selected from one of the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl.
  • composition according to the invention wherein said H2 is a compound of one of the following formulae (II)-(V):
  • L 1 represents an aromatic group or an aromatic hetero group having a ring number of from 5 to 60.
  • L 2 represents a single bond or an aromatic group or an aromatic hetero group having a ring number of 5 to 30.
  • Ar 4 -Ar 9 independently represent an aromatic or heteroaromatic ring system having 5 to 40 ring atoms.
  • R 3 , R 4 and R 5 each independently represent H, D, F, CN, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone group, carbon number 1 to The alkyl group of 30, the cycloalkyl group having 3 to 30 carbon atoms, the number of ring atoms is 5 to 60 aromatic hydrocarbon groups or the aromatic heterocyclic group, and the linking position of R 4 and R 5 may be any one of fused rings. There may be any number of carbon atoms on the carbon atom and substituted by R 4 and R 5 .
  • N2 represents an integer from 1 to 4. The best is 2. The optimal is 1.
  • At least one of R 3 , R 4 , R 5 or L 1 , L 2 comprises an electron withdrawing group as described above.
  • composition according to the invention wherein said H2 is a compound of one of the following formulae (II-a) to (V-a):
  • L3 L1
  • A1 and A2 each independently represent an aromatic group or an aromatic hetero group having a ring number of 5 to 30;
  • Y 1 to Y 17 each independently represent N and C (R 2 ), and adjacent Y 1 -Y 17 are not N at the same time. ;
  • the organic functional material H1 is preferably, but not limited to, the following structure:
  • the composition further comprises a third organic functional material, and the third organic functional material is selected from a hole (also called electricity).
  • Hole) injection or transport material HIM/HTM
  • hole blocking material HBM
  • electron injecting or transporting material EIM/ETM
  • electron blocking material EBM
  • organic matrix material Host
  • singlet illuminant Fluorescent illuminant
  • triplet illuminant phosphorescent illuminant
  • thermally excited delayed fluorescent material TADF
  • organic dye are described in detail in, for example, O2010135519A1, US20090134784A1, and WO2011110277A1, the entire contents of each of which are hereby incorporated by reference.
  • the composition comprises a third organic functional material selected from the group consisting of singlet emitters (fluorescent emitters) and triplet emitters ( Phosphorescent emitters) or TADF emitters.
  • the singlet illuminator and the triplet illuminator are described in some detail below (but are not limited thereto).
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1, indenoindoles and derivatives thereof disclosed in WO 2008/006449 and WO 2007/140847, and disclosed in US Pat. No. 7,233,019, KR2006-0006760 A quinone triarylamine derivative.
  • the singlet emitter can be selected from the group consisting of monostyrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether and aromatic amine.
  • a monostyrylamine refers to a compound comprising an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound comprising two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a ternary styrylamine refers to a compound comprising three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound comprising four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or substituted aromatic ring or heterocyclic systems directly bonded to a nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably selected from the fused ring system and preferably has at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine.
  • An aromatic amide refers to a compound in which a diaryl arylamine group is attached directly to the oxime, preferably at the position of 9.
  • An aromatic quinone diamine refers to a compound in which two diaryl arylamine groups are attached directly to the oxime, preferably at the 9,10 position.
  • the definitions of aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine are similar, wherein the diaryl aryl group is preferably bonded to the 1 or 1,6 position of hydrazine.
  • Examples of singlet emitters based on vinylamines and arylamines are also preferred examples and can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007 /115610, US 7250532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1, the entire contents of which are hereby incorporated by reference. This article is incorporated herein by reference.
  • Further preferred singlet emitters can be selected from indenoindole-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzoindoloindole-amines and benzoindenoindole-diamines , as disclosed in WO 2008/006449, dibenzoindolo-amine and dibenzoindeno-diamine, as disclosed in WO 2007/140847.
  • Further preferred singlet emitters are selected from the group consisting of ruthenium-based fused ring systems as disclosed in US2015333277A1, US2016099411A1, US2016204355A1.
  • More preferred singlet emitters may be selected from the derivatives of hydrazine, such as those disclosed in US2013175509A1; triarylamine derivatives of hydrazine, such as triarylamine derivatives of hydrazine containing dibenzofuran units disclosed in CN102232068B; A triarylamine derivative of hydrazine having a specific structure, as disclosed in CN105085334A, CN105037173A.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-bis(2-naphthoquinone), naphthalene, tetraphenyl, xanthene, phenanthrene , ⁇ (such as 2,5,8,11-tetra-t-butyl fluorene), anthracene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolevinyl)-1 , 1 '-biphenyl), indenyl hydrazine, decacycloolefin, hexacene benzene, anthracene, spirobifluorene, aryl hydrazine (such as US20060222886), arylene vinyl (such as US5121029, US5130603), cyclopentane Alkene such as tetraphenylcyclopentadiene, rub
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy Re, Cu or Ag, with Os, Ir, Ru, Rh, Re, Pd, Au or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2 benzene.
  • a quinolinol derivative All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from a transition metal element or a lanthanide or a lanthanide element, with Ir, Pt, Au being particularly preferred;
  • Each occurrence of Ar 1 may independently be a cyclic group, the cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated with a metal
  • Each of the Ar 2 is independently a cyclic group, the cyclic group comprising at least one C atom through which a cyclic group is attached to the metal; and Ar 1 and Ar 2 are linked by a covalent bond Together, each may carry one or more substituent groups, which may also be joined together by a substituent group;
  • each occurrence of L' may independently be a bidentate chelate auxiliary ligand, preferably a single An anionic bidentate chelate ligand;
  • x can be 0, 1, 2 or 3, preferably 2 or 3;
  • y can be 0, 1, 2 or 3, preferably 1 or 0.
  • triplet emitters Some examples of suitable triplet emitters are listed in the table below:
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic, ester, aromatic ketone or aromatic ether, aliphatic ketone or aliphatic An ether, an alicyclic or olefinic compound, or a borate or phosphate compound, or a mixture of two or more solvents.
  • a composition according to the invention is characterized in that said organic solvent has a surface tension at 25 ° C in the range from 20 dyne/cm to 45 dyne/cm; more preferably in 22 dyne/ Cm to the range of 35 dyne/cm; preferably in the range of 25 dyne/cm to 33 dyne/cm.
  • a composition according to the invention is characterized in that said at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic based solvents.
  • aromatic or heteroaromatic solvents suitable for the present invention are, but are not limited to, p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene.
  • aromatic ketone solvents suitable for the present invention are, but are not limited to, 1-tetralone, 2-tetralone, 2-(phenyl epoxy) tetralone, 6-(methoxy Tetrendanone, acetophenone, propiophenone, benzophenone, and derivatives thereof, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone, 2-methylpropiophenone, etc.;
  • aromatic ether-based solvents suitable for the present invention are, but are not limited to, 3-phenoxytoluene, butoxybenzene, p-anisaldehyde dimethyl acetal, tetrahydro-2-phenoxy-2H -pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxy Toluene, 4-ethyl ether, 1,3-dipropoxybenzene, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1, 3-dimethoxybenzene, glycidyl phenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methyl Oxynaphthalene, diphenyl ether
  • the at least one solvent may be selected from the group consisting of: an aliphatic ketone, for example, 2-fluorenone, 3-fluorenone, 5-fluorenone, 2 - anthrone, 2,5-hexanedione, 2,6,8-trimethyl-4-indanone, anthrone, phorone, isophorone, di-n-pentyl ketone, etc.; or an aliphatic ether
  • the at least one solvent may be selected from ester-based solvents: alkyl octanoate, alkyl sebacate, alkyl stearate, benzene. Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkanolide, alkyl oleate, and the like. Particularly preferred are octyl octanoate, diethyl sebacate, diallyl phthalate, isodecyl isononanoate.
  • the solvent may be used singly or as a mixture of two or more organic solvents.
  • a composition according to the present invention comprises an organic functional compound as described above and at least one organic solvent, and may further comprise another organic solvent, and another organic solvent.
  • organic functional compound as described above and at least one organic solvent, and may further comprise another organic solvent, and another organic solvent.
  • examples include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-di Toluene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1,1-three Ethyl chloride, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylace
  • the solvent particularly suitable for the present invention is a solvent having Hansen solubility parameters in the following ranges:
  • ⁇ d (dispersion force) is in the range of 17.0 to 23.2 MPa 1/2 , especially in the range of 18.5 to 21.0 MPa 1/2 ;
  • ⁇ p polar forces in the range of 0.2 ⁇ 12.5MPa 1/2, especially in the 2.0 ⁇ 6.0MPa 1/2;
  • the organic solvent is selected in consideration of its boiling point parameter.
  • the organic solvent has a boiling point of ⁇ 150 ° C; preferably ⁇ 180 ° C; more preferably ⁇ 200 ° C; more preferably ⁇ 250 ° C; optimally ⁇ 275 ° C or ⁇ 300 ° C.
  • the boiling points within these ranges are beneficial for preventing nozzle clogging of the inkjet printhead.
  • the organic solvent can be evaporated from the solvent system to form a film comprising the functional material.
  • the invention further relates to the use of a composition as a printing ink for the preparation of organic electronic devices, particular preference being given to a preparation process by printing or coating.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, twist roll printing, lithography, flexography Printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, etc.
  • Preferred are gravure, screen printing and inkjet printing. Gravure printing, ink jet printing will be applied in embodiments of the invention.
  • the solution or suspension may additionally comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the composition may form a functional layer having a thickness of from 5 nm to 1000 nm.
  • the invention further relates to an organic electronic device comprising at least a functional layer formed by printing a composition as described above.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), etc., particularly preferred are organic electroluminescent devices such as OLED, OLEEC, organic light-emitting field effect transistors.
  • the organic electroluminescent device comprises at least one emissive layer, and the emissive layer is prepared from the composition as described above.
  • a substrate an anode, at least one light-emitting layer and a cathode are included.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in the form of a polymer film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-na
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF 2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting device has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the invention further relates to the use of an electroluminescent device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • the energy level of the organic compound material can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 09W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 09W Gaussian Inc.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet) is used to optimize the molecular geometry, and then the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91 and the base group "6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S1, T1 and the resonance factor f(S1) are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO (G) and LUMO (G) are direct calculation results of Gaussian 09W, the unit is Hartree.
  • the results are shown in Table 1:
  • Compound H1-1 and compound H1-2 are used for organic functional material H1;
  • H1-1 (Org. Lett. 2009, 11, 2607-2610); H1-2 (WO2009124627); H2-1 (Nature mater. 2015, 14, 330-336); H2-2 (Adv. Mater. 2015, 27, The synthesis methods of 2515-2520) refer to relevant literature and patents, respectively.
  • the third organic functional material contained in the preparation composition is a metal complex E1 represented by the following formula, which is a phosphorescent guest, and its synthesis is referred to the patent CN102668152.
  • composition was prepared in the following manner, and the molar ratio of the organic functional material H1 to the organic functional material H2 was 1:1.
  • Example 1 Compound H1-1+ Compound H2-1 (E g (H1-1)>E g (H2-1); S1 (H2-1)-T1 (H2-1) ⁇ 0.3 eV)
  • Example 2 Compound H1-1+ compound H2-2 (E g (H1-1)>E g (H2-2); S1(H2-2)-T1(H2-2) ⁇ 0.3eV)
  • Example 3 Compound H1-2+ Compound H2-1 (E g (H1-2) > E g (H2-1); S1 (H2-1)-T1 (H2-1) ⁇ 0.3 eV)
  • Example 4 Compound H1-2+ Compound H2-2 (E g (H1-2)>E g (H2-2); S1(H2-2)-T1(H2-2) ⁇ 0.3eV)
  • composition is prepared as follows:
  • the viscosity of the organic composition was tested by a DV-I Prime Brookfield rheometer; the surface tension of the organic composition was tested by a SITA bubble pressure tomometer.
  • the viscosity of the four organic compositions obtained was in the range of 5.7 ⁇ 0.5 cPs - 6.4 ⁇ 0.5 cPs, and the surface tension was in the range of 32.3 ⁇ 0.5 dyne / cm - 34.1 ⁇ 0.5 dyne / cm.
  • composition was prepared in the same manner as in Example 1 above, the only difference being that the compound H2-1 was substituted for the combination of the compound H1-1 + the compound H2-1.
  • composition was prepared in the same manner as in Example 2 above, the only difference being that the compound H2-2 was substituted for the combination of the compound H1-1 + the compound H2-2.
  • composition was prepared in the same manner as in the above Example 1, except that the combination of the compound H2-1 + the compound Host1 was substituted for the combination of the compound H1-1 + the compound H2-1.
  • composition was prepared in the same manner as in the above Example 1, except that the combination of the compound H2-1 + the compound Host2 was substituted for the combination of the compound H1-1 + the compound H2-1.
  • ITO transparent electrode (anode) glass substrate cleaning ultrasonic treatment with 5% Decon90 cleaning solution for 30 minutes, then ultrasonic cleaning with deionized water several times, then ultrasonic cleaning with isopropanol, nitrogen drying; in oxygen plasma Under treatment for 5 minutes to clean the ITO surface and enhance the work function of the ITO electrode;
  • Emissive layer preparation The above composition was spin-coated in a nitrogen glove box to obtain an 80 nm film, which was then annealed at 120 ° C for 10 minutes.
  • All devices are packaged in a UV glove box with UV curable resin and glass cover.
  • Example 1 - Example 4 were significantly improved as compared with Comparative Example 1.
  • the combination of H2-1+ compound Host in Comparative Example 3, 4 could form an exciplex, and the luminous efficiency and lifetime of Example 1-2 were significantly improved. It can be seen that the OLED device prepared by using the organic mixture of the invention has greatly improved luminous efficiency and lifetime.

Abstract

本发明涉及一种用于制备有机电子器件的组合物,该组合物包含至少两种有机功能材料H1和H2,及至少一种有机溶剂,其中1)所述H1和H2形成I型的半导体异质结结构,2)S1(H2)‐T1(H2)≤0.3eV;其中S1(H2),T1(H2)分别是H2的单线态能级和三线态能级;3)所述的组合物在25℃的粘度,在1cPs到100cPs范围,和/或所述组合物在25℃的表面张力,在19dyne/cm到50dyne/cm范围。本发明的组合物具有较好的印刷性能和成膜性能,便于通过溶液加工,特别是印刷工艺,实现高性能有机电子器件,特别是有机电致发光器件,提供了一种成本低、高效率的制造技术方案。

Description

用于制备有机电子器件的组合物、有机电子器件及应用
本申请要求于2017年12月21日提交中国专利局、申请号为201711397209.6发明名称为“一种包含有TADF材料的组合物”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及有机电子器件领域,尤其涉及一种用于制备有机电子器件的组合物。本发明还涉及一种按照本发明的组合物在有机电子器件中的应用,特别是有机电致发光二极管,及其在显示及照明技术中的应用。
背景技术
有机发光二极管(OLED)具有质轻、主动发光、视角广、对比度高、发光效率高、能耗低、易制备柔性和大尺寸面板等优异性能,被业界视为最有希望的下一代显示技术。为了提高有机发光二极管的发光效率,推进有机发光二极管大范围产业化进程,目前急需解决有机发光二极管的关键问题为发光性能和寿命。
要获得高性能的有机发光二极管,主体材料是关键。目前的OLED发光器件,一般采用单主体材料搭配发光体制备,但单主体材料会引起载流子传输速率不同,引起器件效率在高亮度下滚降(Roll-off)严重,从而导致器件寿命缩短。用双主体材料可以减弱单主体所带来的一些问题,尤其是通过合适的材料搭配,所选用的双主体材料能有效形成复合受激态(exciplex),大幅提高器件的发光效率及寿命。一种技术公开了通过利用能形成复合受激态(exciplex)的共主体(Co-host),另加一金属配合物作为磷光发光体,实现了低Roll-off、高效率的OLEDs。
进一步的,一种技术公开了在蒸镀器件中,通过将双主体材料预先形成共混物或有机合金,可以大大简化蒸镀工艺,并且显著提升器件寿命。然而,真空蒸镀工艺造价高,加工过程要求很高,如一般需要极精密的荫罩等,从而限制了有机发光二极管作为大面积、低成本显示器件和照明器件的应用。相比之下,喷墨打印(inkjet printing)和卷对卷(roll-to-roll)等溶液加工制程,由于无需精密荫罩、温室工艺、材料利用率高及可扩展性好等突出优点,成为制备有机光电器件,特别是有机发光二极管显示器的非常有希望的技术。为了实现制程,合适的印刷油墨及材料是关键。一种技术提供了一种有效的制备适合于溶液加工的有机小分子功能材料的方法。然而,针对喷墨打印工艺,高效的共主体材料体系、薄膜干燥过程、墨水的可打印性等问题仍然未能提出有效的解决方案。
因此,新的适合于印刷工艺的新材料特别是主体材料体系有待于开发。
发明内容
鉴于上述现有技术的不足,本发明的一个主要目的在于提供一种用于制备有机电子器件的组合物,及相应的有机功能化合物。本发明另一个目的在于提供一种按照本发明的组合物在有机电子器件中的应用,特别是电致发光二极管,及其在显示及照明技术中的应用。本发明旨在提供一种新的组合物主体材料,提高器件性能。
本发明的技术方案如下:
一种组合物,包含至少两种有机功能材料H1和H2,及至少一种有机溶剂,1)H1和H2形成I型的半导体异质结结构,2)S1(H2)-T1(H2)≤0.3eV;其中S1(H2),T1(H2)分别是H2的单线态能级和三线态能级;3)所述的组合物在25℃的粘度,在1cPs到100cPs范围,和/或所述的组合物在25℃的表面张力,在19dyne/cm到50dyne/cm范围。
如上所述的一种组合物,其中H1和H2的分子量的差>50g/mol或H1和H2的升华 温度的差>30K。
如上所述的一种组合物,所述的有机功能材料H1与有机功能材料H2在所述的有机溶剂中的溶解度均大于等于0.5wt%,且H1与H2在有机溶剂中的溶解度差小于等于0.2wt%。
如上所述的一种组合物,所述的组合物进一步包含第三种有机功能材料,所述的第三种的有机功能材料可选于空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),三重态发光体(磷光发光体)、热激发延迟荧光材料(TADF材料)及有机染料。优选磷光发光体或TADF材料。
如上所述的组合物在制备有机电子器件中的应用。
一种有机电子器件,包括功能层,所述功能层由如上所述的组合物制备而成。
一种有机电子器件,所述有机电子器件可选于有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器,有机自旋电子器件,有机传感器或有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
一种如上所述的有机电子器件,该有机电子器件为有机电致发光器件,该有机电致发光器件的功能层包括发光层,所述的发光层由如上所述的组合物制备而成。
一种有机电子器件的制备方法,包括如下步骤:将如上所述的组合物用印刷或涂布的方法涂布于基板上形成功能层,其中印刷或涂布的方法可选于(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。
有益效果:本发明的组合物至少包含两种有机功能材料及至少一种有机溶剂,在用于主体材料时,具有较好的印刷性能和成膜性能,便于通过溶液加工,特别是印刷工艺,实现高性能有机电子器件,特别是有机电致发光器件,从而提供了一种成本低、高效率的制造技术方案。
附图说明
图1为半导体异质结结构的图示,显示当两种有机半导体材料H1和H2接触时,按照最高被占据分子轨道(HOMO)和最低未被占据分子轨道(LUMO)的能级相对位置可能的两种类型,其中I型的半导体异质结结构是按照本发明的组合物的能级结构。
具体实施方式
本发明实施例提供一种用于制备有机电子器件的组合物,及相应的有机功能化合物。为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
在本发明实施例中,单线态,单重态具有相同的含义,可以互换。
在本发明实施例中,三线态,三重态具有相同的含义,可以互换。
在本发明中,组合物和印刷油墨,或油墨具有相同的含义,可以互换。
在本发明中,复合受激态,激基络合物,Exciplex具有相同的含义,可以互换。
本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000克/摩尔,较好是≤2000克/摩尔,最好是≤1500克/摩尔。
在本发明中,芳香环系或芳族基团指至少包含一个芳环的烃基,包括单环基团和多环 的环系统。杂芳香环系或杂芳族基团指包含至少一个杂芳环的烃基(含有杂原子),包括单环基团和多环的环系统。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香族或杂芳香族环系不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳基也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族环系。
在本发明实施例中,有机材料的能级结构,三线态能级E T、HOMO、LUMO起着关键的作用。以下对这些能级的确定做一介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的三线态能级E T可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。
应该注意,HOMO、LUMO、E T的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、E T的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
在发明中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
本发明涉及一种组合物,包含至少两种有机功能材料H1和H2,及至少一种有机溶剂,1)H1和H2形成I型的半导体异质结结构,2)S1(H2)-T1(H2)≤0.3eV;其中S1(H2),T1(H2)分别是H2的单线态能级和三线态能级;3)所述的组合物在25℃的粘度,在1cPs到100cPs范围,和/或所述组合物在25℃的表面张力,在19dyne/cm到50dyne/cm范围。
在一个优先的实施例中,所述的一种组合物,S1(H2)-T1(H2)≤0.25eV;
在一个较为优先的实施例中,所述的一种组合物,S1(H2)-T1(H2)≤0.20eV;
在一个更为优先的实施例中,所述的一种组合物,S1(H2)-T1(H2)≤0.15eV;
在另一个非常优先的实施例中,所述的一种组合物,S1(H2)-T1(H2)≤0.1eV;
在另一个最为优先的实施例中,所述的一种组合物,S1(H2)-T1(H2)≤0.08eV;
在某些实施例中,按照本发明的组合物,其中H1和H2的分子量的差<50g/mol。
在一些较为优先的实施例中,按照本发明的组合物,其中H1和H2的分子量的差≥50g/mol,较好为≥70g/mol,更好为≥90g/mol,最好为≥100g/mol。
在某些实施例中,按照本发明的组合物,其中H1和H2的升华温度的差<30K。
在某些优先的实施例中,按照本发明的组合物,其中H1和H2的升华温度的差≥30K,较好为≥40K,更好为≥50K,最好为≥60K。
蒸镀型OLED中的共主体中,优先要求两个主体材料具有类似的化学性质或物性,如分子量,升华温度。本发明发现,在溶液加工OLED中,两个具有不同性质的主体材料可能会提高成膜性能,从而提高器件的性能。所述的性质,除了分子量,升华温度外,还可以是其他的,如玻璃化温度,不同的分子体积等。从而如下的条件可以代替上述的条件2):
a)H1和H2的玻璃化温度的差≥20K,较好为≥30K,更好为≥40K,最好为≥45K。
b)H1和H2的分子体积的差≥20%,较好为≥30%,更好为≥40%,最好为≥45%。
在另一个优先的实施例中,按照本发明的一种组合物,所述的有机溶剂在25℃的粘 度在1cPs到80cPs范围;较优是1cPs到50cps范围;更优的为1cPs到40cps范围;更更优的1cPs到30cps范围;最优的为1.5cps到20cps范围。这里的粘度是指在印刷时的环境温度下的粘度,一般在15~30℃,较好的是18~28℃,更好是20~25℃,最好是23~25℃。如此配制的组合物将特别适合于喷墨印刷。
在一个优先的实施例中,按照本发明的一种组合物,所述的有机功能材料H1与所述的有机功能材料H2在有机溶剂中的溶解度均大于等于0.5wt%,且H1与H2在有机溶剂中的溶解度差小于等于0.2wt%。
在一个优先的实施例中,按照本发明的一种组合物,所述的有机功能材料H1与所述的有机功能材料H2在有机溶剂中的溶解度均大于等于0.5wt%;较优选为至少有一个有机功能材料在有机溶剂中的溶解度大于等于1wt%;更优选为至少有一个有机功能材料在有机溶剂中的溶解度大于等于1.5wt%;更更优选为至少有一个有机功能材料在有机溶剂中的溶解度大于等于2wt%;最优选为至少有一个有机功能材料在有机溶剂中的溶解度大于等于3wt%。
在一个优先的实施例中,按照本发明的一种组合物,所述的有机功能材料H1与所述的有机功能材料H2在有机溶剂中的溶解度差小于等于0.2wt%;较优选为小于等于0.15wt%;更优选为小于等于0.1wt%;最优选为小于等于0.05wt%。
在一个优先的实施例中,按照本发明的一种组合物,所述的有机功能材料H1与所述的有机功能材料H2的分子量至少有一个大于等于600g/mol;较优选为至少有一个大于等于800g/mol;更优选为至少有一个大于等于900g/mol;非常优选为至少有一个大于等于1000g/mol;最优选为至少有一个大于等于1100g/mol。
在一个优先的实施例中,按照本发明的一种组合物,所述的有机功能材料H1与所述的有机功能材料H2的分子量均大于等于600g/mol;较优选为均大于等于800g/mol;更优选均大于等于900g/mol;最优选均大于等于1000g/mol。
在一个优先的实施例中,按照本发明的一种组合物,其包含的功能材料占组合物的重量比为0.3%~30wt%范围,较好的为0.5%~20wt%范围,更好的为0.5%~15wt%范围,更更好的为0.5%~10wt%范围,最好的为1%~5wt%范围。
在一个优先的实施例中,按照本发明的一种组合物,所述的有机功能材料H1与所述的有机功能材料H2的玻璃化转变温度至少有一个大于等于100℃;较为优选的是至少有一个大于等于120℃;更加优选的是至少有一个大于等于140℃;特别优选的是至少有一个大于等于160℃。
在一个优先的实施例中,按照本发明的一种组合物,所述的有机功能材料H1与所述的有机功能材料H2的玻璃化转变温度均大于等于100℃;较为优选的是均大于等于120℃;更加优选的是均大于等于140℃;特别优选的是均大于等于160℃。
在一个优先的实施例中,按照本发明的一种组合物,所述的有机功能材料H1与所述的有机功能材料H2的摩尔比范围为1:9-9:1;较优选为2:8-8:2;更优选为3:7-7:3;更更优选为4:6-6:4;最优选为5:5。
在某些优先的实施例中,所述的有机功能材料H1的能隙大于H2。
在一个优先的实施例中,按照本发明的一种组合物,所述的有机功能材料H1具有电子传输特性,或空穴传输特性。
在一个优选的实施例中,按照本发明的一种组合物,所述的H1和H2中至少有一个有机功能材料的(HOMO-(HOMO-1))≥0.2eV,较好是≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在一个特别优选的实施例中,按照本发明的一种组合物,所述的H1和H2中每种有机功能材料的(HOMO-(HOMO-1))≥0.2eV,较好是H2的(HOMO-(HOMO-1))≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在另一个优选的实施例中,按照本发明的一种组合物,所述的H1和H2中至少有一种有机功能材料的((LUMO+1)-LUMO)≥0.15eV,较好是≥0.20eV,更好是≥0.25eV,更更好是≥0.30eV,非常好是≥0.35eV,最好是≥0.40eV。
在另一个特别优选的实施例中,按照本发明的一种组合物,所述的H1和H2中每种有机功能材料的((LUMO+1)-LUMO)≥0.15eV,较好是H1的((LUMO+1)-LUMO)≥0.20eV,更好是≥0.25eV,更更好是≥0.30eV,非常好是≥0.35eV,最好是≥0.40eV。
在一个优先的实施例中,按照本发明的一种组合物,其中所述的H1具有通式(I-1)或(I-2)所示的结构:
Figure PCTCN2018120701-appb-000001
其中,
Z 4,Z 5,Z 6分别独立的选于N或CR 2
Ar 1~Ar 3分别独立的选自以下基团:具有5至40个环原子的芳族或杂芳族环系,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或是具有5至40个环原子的非芳香族基团,或这些体系的组合,其中一个或多个基团可进一步被R 2取代,或R 2可以进一步与所取代的基团形成环系。
较优地,Ar 1~Ar 3分别独立的选自以下基团:具有5至20个环原子的芳族或杂芳族环系,或是具有5至20个环原子的芳氧基或杂芳氧基基团,或是具有5至20个环原子的非芳香族基团,或这些体系的组合,其中一个或多个基团可进一步被R 2取代,或R 2可以进一步与所取代的基团形成环系。
更优地,Ar 1~Ar 3分别独立的选自以下基团:具有5至15个环原子的取代或未取代的芳族或杂芳族环系,或是具有5至15个环原子的芳氧基或杂芳氧基基团,或是具有5至15个环原子的非芳香族基团,或这些体系的组合。
R 1、R 2在每一次出现时,分别独立的选自以下基团:H、D、具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合。
较为优选地,R 1、R 2在每一次出现时,分别独立的选自以下基团:H、D、具有1至10个C原子的直链烷基、烷氧基或硫代烷氧基基团,具有3至10个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至10个C原子的取代的酮基基团,或具有2至10个C原子的烷氧基羰基基团,或具有7至10个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至20个环原子的取代或未取代的芳族或杂芳族环系,或具有5至20个环原子的芳 氧基或杂芳氧基基团,或这些体系的组合。
L 11为单键、取代或未取代的环原子数为5~30的芳香族烃基或芳香族杂环基,L 11的连接位置可以是苯环上任意一碳原子上;在某些优选的实施例中,化学式(I-2)中所示的L 11分别独立表示为单键、取代或未取代的环原子数为5~25的芳香族烃基或芳杂基团;在更加优选的实施例中,L 11分别独立表示为单键、取代或未取代的环原子数为5~20的芳香基团或芳杂基团;在最为优选的实施例中,L 11分别独立表示为单键、取代或未取代的环原子数为5~15的芳香基团或芳杂基团。
在一些优选的实施例中,化学式(I-2)中所示的L 11可为单键,或L 11可选自如下基团中的一种,这些基团可以进一步被取代:
Figure PCTCN2018120701-appb-000002
其中,X 12、X 13、X 14分别独立表示N(R)、C(R 11R 12)、Si(R 11R 12)、O、C=N(R)、C=C(R 11R 12)、P(R)、P(=O)R、S、S=O或SO2;,X 13、X 14中可以有一个是单键或均不是单键。
在某些实施例中,化学式(I-2)中所示的L 11在多次出现时,可分别独立包含以下结构单元或它们中的组合:
Figure PCTCN2018120701-appb-000003
Figure PCTCN2018120701-appb-000004
其中p独立地1或2或3或4。
X 1表示单键、N(R)、C(R 11R 12)、Si(R 11R 12)、O、C=N(R)、C=C(R 11R 12)、P(R)、P(=O)R、S、S=O或SO2;在某些优选的实施例中,X 1表示单键、N(R)、C(R 11R 12)、Si(R 11R 12)、O、S或SO2;在更加优选的实施例中,X 1表示单键;
X 2表示N(R)、C(R 11R 12)、Si(R 11R 12)、O、C=N(R)、C=C(R 11R 12)、P(R)、P(=O)R、S、S=O或SO2;在某些优选的实施例中,X 2分别独立表示N(R)、C(R 11R 12)、Si(R 11R 12)、O、C=N(R)、O、S或SO 2;在更加优选的实施例中,X 2分别独立表示为N(R)、C(R 11R 12)、O或S;在最为优选的实施例中,X 2分别独立表示为N(R)、C(R 11R 12)。
R、R 11、R 12分别独立表示D、取代或未取代的碳原子数1~30的烷基、取代或未取代的碳原子数3~30的环烷基、取代或未取代的环原子数为5~60芳香族烃基或芳香族杂环基,此外,R 11和R 12可以键合形成饱和或不饱和的环结构。
m、m1、m2独立地为1或2或3。优选为1。
在一个较为优先的实施例中,按照本发明的一种组合物,其特征在于,通式(I-1)中的Ar 1-Ar 3在多次出现时,分别独立地选自如下结构基团中的一种或它们的组合:
Figure PCTCN2018120701-appb-000005
其中n1为1或2或3或4。
有一个较为优先的实施例中,H1不是三亚苯的衍生物。
在一个优选的实施方案中,按照本发明的组合物,其中H2具有热激发延迟荧光(TADF)特性。
按照热激发延迟荧光TADF材料(参见Adachi et al.,Nature Vol 492,234,(2012))的原理,当有机化合物的(S1-T1)足够小时,该有机化合物的三线态激子可以通过反向内部转换到单线态激子,从而实现高效发光。一般来说,TADF材料通过供电子(Donor)与缺电子或 吸电子(Acceptor)基团直接或通过其他基团相连而得,即具有明显的D-A结构。
按照本发明的组合物,上述H2具有较小的(S1-T1),一般的(S1-T1)≤0.30eV,较好是≤0.25eV,更好是≤0.20eV,更更好是≤0.15eV,最好是≤0.10eV。
在某些实施例中,按照本发明的组合物,上述H2至少包含供电子基,和/或至少包含吸电子基。
合适的具有吸电子特性的基团的例子如下所示,但不限于,其可以被进一步任意取代:
Figure PCTCN2018120701-appb-000006
合适的具有供电子特性的基团的例子如下所示,但不限于,其可以被进一步任意取代:
Figure PCTCN2018120701-appb-000007
进一步的供电子基可选自包含有如下基团的结构:
Figure PCTCN2018120701-appb-000008
进一步的的吸电子基可选自F,氰基或包含有如下基团的结构:
Figure PCTCN2018120701-appb-000009
其中n是1到3的整数;X 2-X 9分别独立的选于CR或N,并且至少有一个是N;Z 1、Z 2、Z3分别独立表示N(R)、C(R) 2、Si(R) 2、O、C=N(R)、C=C(R) 2、P(R)、P(=O)R、S、S=O、SO 2或单键,但至少有一个不是无;其中R可选于如下基团中的一种:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
进一步合适的TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
在一个优先的实施例中,按照本发明的一种组合物,其中所述的H2为如下通式(II)-(V)之一所示的化合物:
Figure PCTCN2018120701-appb-000010
其中,
L 1表示环原子数为5-60的芳香基团或芳杂基团。
L 2表示单键、环原子数为5-30的芳香基团或芳杂基团。
Ar 4-Ar 9分别独立表示具有5至40个环原子的芳族或杂芳族环系。
X表示单键、N(R 3)、C(R 3) 2、Si(R 3) 2、O、C=N(R 3)、C=C(R 3) 2、P(R 3)、P(=O)R 3、S、S=O或SO 2
X 2-X 9分别独立表示单键、N(R 3)、C(R 3) 2、Si(R 3) 2、O、C=N(R 3)、C=C(R 3) 2、P(R 3)、P(=O)R 3、S、S=O或SO 2,但X 2和X 3不同时为单键,X 4和X 5不同时为单键,X 6和X 7不同时为单键,X 8和X 9不同时为单键;
R 3、R 4、R 5分别独立表示H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、环原子数为5~60芳香族烃基或芳香族杂环基,其中,R 4、R 5的连接位置可以是稠环上任意一碳原子上,而且被R 4、R 5取代的碳原子可以有任意多个。
n2表示1-4的整数。较优为2。最优为1。
优选的,R 3、R 4、R 5或L 1,L 2中至少有一个包含如上所述的吸电子基团。
在一个更优先的实施例中,按照本发明的一种组合物,其中所述的H2为如下通式(II-a)-(V-a)之一所示的化合物:
Figure PCTCN2018120701-appb-000011
Figure PCTCN2018120701-appb-000012
其中,
L1、X 3、X 4、、R 2、R 3、R 4的含义如前所述。
L3的含义如L1;
A1、A2分别独立表示环原子数为5~30的芳香基团或芳杂基团;
Y 1~Y 17分别独立表示N、C(R 2),相邻Y 1-Y 17之间不同时为N。;
以下列出可以用作H2的具体例子,但不限于,
Figure PCTCN2018120701-appb-000013
Figure PCTCN2018120701-appb-000014
Figure PCTCN2018120701-appb-000015
在一个优选的实施例中,按照本发明的组合物,所述的有机功能材料H1优选自但不限于如下结构:
Figure PCTCN2018120701-appb-000016
Figure PCTCN2018120701-appb-000017
Figure PCTCN2018120701-appb-000018
在一个优选的实施例中,按照本发明的一种组合物,所述的组合物进一步包含第三种有机功能材料,所述的第三种的有机功能材料可选于空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),三重态发光体(磷光发光体),热激发延迟荧光材料(TADF)及有机染料。例如O2010135519A1,US20090134784A1和WO2011110277A1中对各种有机功能材料有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
在最为优选的实施例中,所述的组合物,包含第三种有机功能材料,所述的第三种的有机功能材料选自单重态发光体(荧光发光体),三重态发光体(磷光发光体)或TADF发光体。
下面对单重态发光体,三重态发光体作一些较详细的描述(但不限于此)。
1.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物及在US7233019、KR2006-0006760中公开的芘的三芳胺衍生物。
在一个优先的实施方案中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代 或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优先选于稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上.
基于乙烯胺及芳胺的单重态发光体的例子,也是优选的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的单重态发光体的例子有US 5121029。
进一步的优选的单重态发光体可选于茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO 2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
进一步优选的单重态发光体可选于基于芴的稠环体系,如US2015333277A1、US2016099411A1、US2016204355A1所公开的。
更加优选的单重态发光体可选于芘的衍生物,如US2013175509A1所公开的结构;芘的三芳胺衍生物,如CN102232068B所公开的含有二苯并呋喃单元的芘的三芳胺衍生物;其它具有特定结构的芘的三芳胺衍生物,如CN105085334A、CN105037173A所公开的。其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753 A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的单重态发光体的例子:
Figure PCTCN2018120701-appb-000019
Figure PCTCN2018120701-appb-000020
2.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd,Au或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2018120701-appb-000021
其中M是金属,选于过渡金属元素或镧系或锕系元素,特别优先的是Ir,Pt,Au;
Ar 1每次出现时可分别独立地为环状基团,该环状基团至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar 2每次出现时分别独立地为环状基团,该环状基团至少包含有一个C原子,通过它环状基团与金属连接;Ar 1和Ar 2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L’每次出现时可分别独立地为双齿螯合的辅助配体,最好是单阴离子双齿螯合配体;x可以是0,1,2或3,优先地是2或3;y可以是0,1,2或3,优先地是1或0。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1,WO 2013107487A1,WO 2013094620A1,WO 2013174471A1,WO 2014031977A1,WO 2014112450A1,WO 2014007565A1,WO 2014038456A1,WO 2014024131A1,WO 2014008982A1,WO2014023377A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面的表中列出一些合适的三重态发光体的例子:
Figure PCTCN2018120701-appb-000022
Figure PCTCN2018120701-appb-000023
在一个优先的实施例中,按照本发明的一种组合物,所述的至少一种有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯类化合物,或两种及两种以上溶剂的混合物。
在另一个优先的实施例中,按照本发明的一种组合物,其特征在于,所述的有机溶剂在25℃下的表面张力在20dyne/cm到45dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
在一个优选的实施例中,按照本发明的一种组合物,其特征在于,所述的至少一种有 机溶剂选自基于芳族或杂芳族的溶剂。
适合本发明的基于芳族或杂芳族溶剂的例子有,但不限制于:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、环己基苯、苄基丁基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、a,a-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、喹啉、异喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等;
适合本发明的基于芳族酮溶剂的例子有,但不限制于:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮等;
适合本发明的基于芳族醚溶剂的例子有,但不限制于:3-苯氧基甲苯、丁氧基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,3-二丙氧基苯、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚;
在一些优选的实施例中,按照本发明的组合物,所述的至少一种的有溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、葑酮、佛尔酮、异佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些优选的实施例中,按照本发明的组合物,所述的至少一种的有溶剂可选自基于酯的溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。特别优选辛酸辛酯、癸二酸二乙酯、邻苯二甲酸二烯丙酯、异壬酸异壬酯。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些优选的实施例中,按照本发明的一种组合物,包含有一种如上所述的有机功能化合物及至少一种有机溶剂,还可进一步包含另一种有机溶剂,另一种有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δ d(色散力)在17.0~23.2MPa 1/2的范围,尤其是在18.5~21.0MPa 1/2的范围;
δ p(极性力)在0.2~12.5MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围;
δ h(氢键力)在0.9~14.2MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其沸点参数。本发明中,所述的有机溶剂的沸点≥150℃;优选为≥180℃;较优选为≥200℃;更优为≥250℃;最优为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
本发明还涉及所述的一种组合物作为印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,丝网印刷及喷墨印刷。凹版印刷,喷墨印刷将在本发明的实施例中应用。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
如上所述的制备方法,所述组合物可形成功能层,所述功能层的厚度在5nm-1000nm。
本发明进一步涉及一种有机电子器件,至少包含功能层,所述功能层是通过打印一种如上所述的组合物而形成的。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。
在某些特别优先的实施例中,所述的有机电致发光器件,其中至少包含有一发光层,所述的发光层由如上所述的组合物制备而成。
在以上所述的发光器件,特别是OLED中,包括基片,阳极,至少一发光层和阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF 2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层 (EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的电致发光器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
Figure PCTCN2018120701-appb-000024
有机化合物材料的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1,T1和谐振因子f(S1)直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree。结果如表一所示:
表一
Figure PCTCN2018120701-appb-000025
Figure PCTCN2018120701-appb-000026
其中,
化合物H1-1和化合物H1-2用于有机功能材料H1;
化合物H2-1和化合物H2-2用于有机功能材料H2。
H1-1(Org.Lett.2009,11,2607–2610);H1-2(WO2009124627);H2-1(Nature mater.2015,14,330-336);H2-2(Adv.Mater.2015,27,2515-2520)的合成方法分别参考相关文献及专利。
组合物的制备:
实施例制备组合物中所含的第三种有机功能材料是如下式所示的金属配合物E1,作为磷光客体,其合成参照专利CN102668152。
Figure PCTCN2018120701-appb-000027
按以下搭配方式制备组合物,且有机功能材料H1与有机功能材料H2的摩尔比为1:1。
实施例1:化合物H1-1+化合物H2-1(E g(H1-1)>E g(H2-1);S1(H2-1)-T1(H2-1)≤0.3eV)
实施例2:化合物H1-1+化合物H2-2(E g(H1-1)>E g(H2-2);S1(H2-2)-T1(H2-2)≤0.3eV)
实施例3:化合物H1-2+化合物H2-1(E g(H1-2)>E g(H2-1);S1(H2-1)-T1(H2-1)≤0.3eV)
实施例4:化合物H1-2+化合物H2-2(E g(H1-2)>E g(H2-2);S1(H2-2)-T1(H2-2)≤0.3eV)
以上组合物的制备方法如下:
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在小瓶中配制9.8g 3-苯氧基甲苯溶剂。在手套箱中称取0.19g实施例1-4中的混合物和0.01g E1,加到小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至有机混合物完全溶解后,冷却至室温。将得到的有机混合物溶液经0.2um PTFE滤膜过滤。密封并保存
有机组合物的粘度由DV-I Prime Brookfield流变仪测试;有机组合物的表面张力由SITA气泡压力张力仪测试。
经上述测试,得到的4种有机组合物的粘度均为5.7±0.5cPs-6.4±0.5cPs范围,表面张力为32.3±0.5dyne/cm-34.1±0.5dyne/cm范围。
在进一步的实验中,实施例1-4的混合物在如下的溶剂中制备组合物:1-四氢萘酮,1-甲氧基萘,四氢萘,环己基苯,氯萘,1,4-二甲基萘,3-异丙基联苯,对甲基异丙苯,二戊苯,邻二乙苯,对二乙苯,1,2,3,4-四甲苯,1,2,3,5-四甲苯,1,2,4,5-四甲苯,十二烷基苯,1-甲基萘,4-异丙基联苯,苯甲酸苄酯,1,1-双(3,4-二甲基苯基)乙烷,2-异丙基萘,二苄醚,所得的组合物其粘度均在2-20cPs的范围,经过组合溶剂及其他方法可对粘度做进一步的调节,可以适合喷墨打印等技术的需求。
对比实施例1:
组合物的制备与上述实施例1相同,唯一的区别是用化合物H2-1取代化合物H1-1+化合物H2-1的组合。
对比实施例2:
组合物的制备与上述实施例2相同,唯一的区别是用化合物H2-2取代化合物H1-1+化合物H2-2的组合。
对比实施例3:
组合物的制备与上述实施例1相同,唯一的区别是用化合物H2-1+化合物Host1的组合取代化合物H1-1+化合物H2-1的组合。
对比实施例4:
组合物的制备与上述实施例1相同,唯一的区别是用化合物H2-1+化合物Host2的组合取代化合物H1-1+化合物H2-1的组合。
OLED器件的制备:
具有ITO/HIL/HTL/EML(实施例1-实施例4、对比实施例1)/Al,OLED器件的制备步骤如下:
1)ITO透明电极(阳极)玻璃衬底的清洗:使用5%Decon90清洗液的水溶液超声处理30分钟,之后去离子水超声清洗数次,然后异丙醇超声清洗,氮气吹干;在氧气等离子下处理5分钟,以清洁ITO表面并提升ITO电极的功函;
2)HIL及HTL的制备:在经过氧气等离子体处理过的玻璃衬底上旋涂PEDOT:PSS(Clevios TM PEDOT:PSS Al4083),得到80nm的薄膜,旋涂完成后在空气中150℃退火20分钟,然后在PEDOT:PSS层上旋涂得到20nm的Poly-TFB薄膜(CAS:223569-31-1,购自Lumtec.Corp;5mg/mL甲苯溶液),随后在180℃的热板上处理60分钟;
3)发光层制备:将上述组合物在氮气手套箱中旋涂得到80nm薄膜,然后在120℃退火10分钟。
4)阴极制备:将旋涂完成的器件放入真空蒸镀腔体,依次蒸镀2nm钡和100nm铝,完成发光器件。
5)所有器件在氮气手套箱中采用紫外固化树脂加玻璃盖板封装。
各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及电流效率,结果如表二所示。表二中,所有器件数据都是用对比实施例1的相对值。
表二
Figure PCTCN2018120701-appb-000028
经检测,实施例1-实施例4的发光效率和寿命与对比实施例1相比有明显提高。相比于对比实施例3,4中的H2-1+化合物Host组合可以形成exciplex,实施例1-2的发光效率和寿命都有明显的提高。可见,采用本发明的有机混合物制备的OLED器件,其发光效率和寿命均得到大大提高。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (17)

  1. 一种组合物,包含至少两种有机功能材料H1和H2,及至少一种有机溶剂,其特征在于:1)所述H1和H2形成I型的半导体异质结结构,2)S1(H2)-T1(H2)≤0.3eV;其中S1(H2),T1(H2)分别是H2的单线态能级和三线态能级;3)所述的组合物在25℃的粘度,在1cPs到100cPs范围,和/或所述组合物在25℃的表面张力,在19dyne/cm到50dyne/cm范围。
  2. 根据权利要求1所述的组合物,其特征在于,所述H1和H2的分子量的差≥50g/mol或所述H1和H2的升华温度的差≥30K。
  3. 根据权利要求1-2任一项所述的组合物,其特征在于,所述的有机功能材料H1与有机功能材料H2在所述的有机溶剂中的溶解度均大于等于0.5wt%,且H1与H2在有机溶剂中的溶解度差小于等于0.2wt%。
  4. 根据权利要求1-3任一项所述的组合物,其特征在于,所述的有机功能材料H1与有机功能材料H2的分子量至少有一个大于等于800g/mol。
  5. 根据权利要求1-4任一项所述的组合物,其特征在于,所述的组合物中,有机功能材料H1与有机功能材料H2的摩尔比范围为1:9-9:1。
  6. 根据权利要求1-5任一项所述的一种组合物,其特征在于,所述的有机功能材料H1的能隙大于H2。
  7. 根据权利要求1-5任一项所述的组合物,其特征在于,所述的有机功能材料H1具有空穴传输特性或电子传输特性。
  8. 根据权利要求1-7任一项所述的组合物,其特征在于,所述的有机功能材料H1具有通式(I-1)或(I-2)所示的结构,
    Figure PCTCN2018120701-appb-100001
    其中,
    Z 4,Z 5,Z 6分别独立的选于N或CR 2
    Ar 1~Ar 3分别独立的选自以下基团:具有5至40个环原子的芳族或杂芳族环系,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或是具有5至40个环原子的非芳香族基团,或这些体系的组合,其中一个或多个基团可进一步被R 2取代,或R 2可以进一步与所取代的基团形成环系;
    R 1、R 2在每一次出现时,分别独立的选自以下基团:H、D、具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至 40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合;
    L 11为单键、取代或未取代的环原子数为5~30的芳香族烃基或芳香族杂环基,所述L 11的连接位置可以是苯环上任意一碳原子上;
    X 1表示单键、N(R)、C(R 11R 12)、Si(R 11R 12)、O、C=N(R)、C=C(R 11R 12)、P(R)、P(=O)R、S、S=O或SO2;
    X 2表示N(R)、C(R 11R 12)、Si(R 11R 12)、O、C=N(R)、C=C(R 11R 12)、P(R)、P(=O)R、S、S=O或SO2;
    R、R 11、R 12分别独立表示D、取代或未取代的碳原子数1~30的烷基、取代或未取代的碳原子数3~30的环烷基、取代或未取代的环原子数为5~60芳香族烃基或芳香族杂环基,此外,R 11和R 12可以键合形成饱和或不饱和的环结构;
    m、m1、m2独立地为1或2或3。
  9. 根据权利8所述的组合物,其特征在于,通式(I-1)中的Ar 1-Ar 3在多次出现时,分别独立地选自如下结构基团中的一种或它们的组合:
    Figure PCTCN2018120701-appb-100002
    其中,n1是1或2或3或4。
  10. 根据权利要求1~9任一项所述的组合物,其特征在于,所述有机功能材料H2具有热激发延迟荧光特性。
  11. 根据权利要求1-10任一项所述的组合物,其特征在于,所述的有机功能材料H2为如下通式(II)-(V)之一所示的化合物:
    Figure PCTCN2018120701-appb-100003
    Figure PCTCN2018120701-appb-100004
    其中,
    L 1表示环原子数为5-60的芳香基团或芳杂基团;
    L 2表示单键、环原子数为5-30的芳香基团或芳杂基团;
    Ar 4-Ar 9分别独立表示具有5至40个环原子的芳族或杂芳族环系;
    X表示单键、N(R 3)、C(R 3) 2、Si(R 3) 2、O、C=N(R 3)、C=C(R 3) 2、P(R 3)、P(=O)R 3、S、S=O或SO 2
    X 2-X 9分别独立表示单键、N(R 3)、C(R 3) 2、Si(R 3) 2、O、C=N(R 3)、C=C(R 3) 2、P(R 3)、P(=O)R 3、S、S=O或SO 2,但X 2和X 3不同时为单键,X 4和X 5不同时为单键,X 6和X 7不同时为单键,X 8和X 9不同时为单键;
    R 3、R 4、R 5分别独立表示H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、环原子数为5~60芳香族烃基或芳香族杂环基,其中,R 4、R 5的连接位置可以是稠环上任意一碳原子上,而且被R 4、R 5取代的碳原子可以有任意多个;
    n2表示1-4的整数。
  12. 根据权利要求1-11任一项所述的组合物,其特征在于,所述的有机功能材料H2选自如下的结构式中的一种,其可以进一步被任意取代:
    Figure PCTCN2018120701-appb-100005
    Figure PCTCN2018120701-appb-100006
    Figure PCTCN2018120701-appb-100007
  13. 根据权利要求1-11任一项所述的一种组合物,其特征在于,所述的组合物进一步包含第三种有机功能材料,所述的第三种的有机功能材料可选于空穴注入或传输材料,空穴阻挡材料,电子注入或传输材料,电子阻挡材料,有机基质材料,单重态发光体,三重态发光体、热激发延迟荧光材料及有机染料。
  14. 根据权利要求1-13任一项所述的组合物,其特征在于,所述的至少一种有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯类化合物,或两种及两种以上溶剂的混合物。
  15. 一种如权利要求1-14任一项所述的组合物在制备有机电子器件中的应用。
  16. 一种有机电子器件,其特征在于,包括功能层,所述功能层由权利要求1~14任一项所述的组合物制备而成。
  17. 根据权利要求15-16任一项所述的有机电子器件,所述有机电子器件为有机电致发光器件,其特征在于,所述有机电致发光器件的功能层包括发光层,所述的发光层由一种如权利要求1-14任一项所述的组合物制备而成。
PCT/CN2018/120701 2017-12-21 2018-12-12 用于制备有机电子器件的组合物、有机电子器件及应用 WO2019120125A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880069418.4A CN111868050B (zh) 2017-12-21 2018-12-12 用于制备有机电子器件的组合物、有机电子器件及应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711397209.6 2017-12-21
CN201711397209 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019120125A1 true WO2019120125A1 (zh) 2019-06-27

Family

ID=66993068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120701 WO2019120125A1 (zh) 2017-12-21 2018-12-12 用于制备有机电子器件的组合物、有机电子器件及应用

Country Status (2)

Country Link
CN (1) CN111868050B (zh)
WO (1) WO2019120125A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3771737A1 (en) * 2019-07-30 2021-02-03 cynora GmbH Organic molecules in particular for use in optoelectronic devices
US20210317144A1 (en) * 2020-04-02 2021-10-14 Sfc Co., Ltd. Boron compound and organic light emitting diode including the same
WO2022138790A1 (ja) * 2020-12-24 2022-06-30 三菱ケミカル株式会社 有機電界発光素子の発光層形成用組成物、有機電界発光素子、有機el表示装置及び有機el照明
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050238910A1 (en) * 2004-04-26 2005-10-27 Ionkin Alex S Electroluminescent silylated pyrenes, and devices made with such compounds
CN1788057A (zh) * 2003-03-13 2006-06-14 录象射流技术公司 喷墨式油墨组合物及安全打印方法
CN102709485A (zh) * 2011-09-30 2012-10-03 昆山维信诺显示技术有限公司 一种有机电致发光器件及其制备方法
CN102916097A (zh) * 2011-08-01 2013-02-06 潘才法 一种电致发光器件
CN103985822A (zh) * 2014-05-30 2014-08-13 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017591A1 (de) * 2008-04-07 2009-10-08 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
TWI579262B (zh) * 2011-06-09 2017-04-21 住友化學股份有限公司 鹽、光阻組成物及光阻圖案的製造方法
CN106206997B (zh) * 2015-04-29 2018-03-20 北京维信诺科技有限公司 一种有机电致发光器件
CN105153811B (zh) * 2015-08-14 2019-12-10 广州华睿光电材料有限公司 一种用于印刷电子的油墨
KR101744248B1 (ko) * 2016-09-06 2017-06-07 주식회사 엘지화학 유기발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1788057A (zh) * 2003-03-13 2006-06-14 录象射流技术公司 喷墨式油墨组合物及安全打印方法
US20050238910A1 (en) * 2004-04-26 2005-10-27 Ionkin Alex S Electroluminescent silylated pyrenes, and devices made with such compounds
CN102916097A (zh) * 2011-08-01 2013-02-06 潘才法 一种电致发光器件
CN102709485A (zh) * 2011-09-30 2012-10-03 昆山维信诺显示技术有限公司 一种有机电致发光器件及其制备方法
CN103985822A (zh) * 2014-05-30 2014-08-13 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
EP3771737A1 (en) * 2019-07-30 2021-02-03 cynora GmbH Organic molecules in particular for use in optoelectronic devices
EP3916072A1 (en) * 2019-07-30 2021-12-01 cynora GmbH Organic molecules in particular for use in optoelectronic devices
US11944005B2 (en) 2019-07-30 2024-03-26 Samsung Display Co., Ltd. Organic molecules in particular for use in optoelectronic devices
US20210317144A1 (en) * 2020-04-02 2021-10-14 Sfc Co., Ltd. Boron compound and organic light emitting diode including the same
WO2022138790A1 (ja) * 2020-12-24 2022-06-30 三菱ケミカル株式会社 有機電界発光素子の発光層形成用組成物、有機電界発光素子、有機el表示装置及び有機el照明

Also Published As

Publication number Publication date
CN111868050B (zh) 2023-07-25
CN111868050A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2017092508A1 (zh) D-a型化合物及其应用
CN111278795B (zh) 有机混合物及其在有机电子器件中的应用
WO2017092495A1 (zh) 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
WO2019128633A1 (zh) 含硼杂环化合物、高聚物、混合物、组合物及其用途
WO2018103749A1 (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
WO2019120125A1 (zh) 用于制备有机电子器件的组合物、有机电子器件及应用
WO2018095390A1 (zh) 有机化合物及其应用、有机混合物、有机电子器件
WO2017092545A1 (zh) 一种金属有机配合物及其在电子器件中的应用
WO2018095392A1 (zh) 有机混合物、组合物以及有机电子器件
WO2017118237A1 (zh) 并吡咯衍生物及其在有机电子器件的应用
WO2019128875A1 (zh) 芳香胺衍生物及有机电子器件
CN109705100B (zh) 含萘咔唑类有机光化合物、混合物、组合物及其用途
WO2017118137A1 (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
WO2018103745A1 (zh) 咔唑类化合物及其应用
WO2019105326A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2018103744A1 (zh) 混合物、组合物及有机电子器件
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2017118252A1 (zh) 含砜基稠杂环化合物及其应用
WO2022144018A1 (zh) 有机混合物及其在有机电子器件的应用
WO2019120085A1 (zh) 包含有热激发延迟荧光材料的印刷油墨及其应用
WO2019120177A1 (zh) 用于制备有机电子器件的组合物、有机电子器件及应用
WO2017092481A1 (zh) 金属有机配合物、高聚物、混合物、组合物以及有机电子器件
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
WO2018099432A1 (zh) 稠环化合物及制备方法和应用
WO2018103748A1 (zh) 芘三嗪类衍生物及其在有机电子器件中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891350

Country of ref document: EP

Kind code of ref document: A1