WO2018103748A1 - 芘三嗪类衍生物及其在有机电子器件中的应用 - Google Patents

芘三嗪类衍生物及其在有机电子器件中的应用 Download PDF

Info

Publication number
WO2018103748A1
WO2018103748A1 PCT/CN2017/115312 CN2017115312W WO2018103748A1 WO 2018103748 A1 WO2018103748 A1 WO 2018103748A1 CN 2017115312 W CN2017115312 W CN 2017115312W WO 2018103748 A1 WO2018103748 A1 WO 2018103748A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
group
carbon atoms
aromatic group
aromatic
Prior art date
Application number
PCT/CN2017/115312
Other languages
English (en)
French (fr)
Inventor
胡光
杨曦
潘君友
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201780059471.1A priority Critical patent/CN109790129B/zh
Priority to US16/467,423 priority patent/US11672174B2/en
Publication of WO2018103748A1 publication Critical patent/WO2018103748A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/56Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed
    • C07C15/62Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed containing four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/16Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom
    • C07D251/18Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom with nitrogen atoms directly attached to the two other ring carbon atoms, e.g. guanamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/22Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to two ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to oxatriazine-based compounds, compositions and mixtures thereof, and their use in organic electronic devices.
  • organic semiconductor materials Due to the diversity of molecular structure design, relatively low manufacturing cost, and superior optoelectronic performance, organic semiconductor materials have great potential applications in many optoelectronic devices, such as organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs). Airport Effect Transistor (OFET), etc. Especially since Deng Qingyun et al. (CWTang and SAVan Slyke, Appl. Phys. Lett., 1987, 51, 913) reported on the double-layer OLED structure, organic semiconductor materials have developed rapidly in the field of flat panel display and illumination. .
  • the organic thin film light-emitting element must satisfy an improvement in luminous efficiency, a reduction in driving voltage, and an improvement in durability.
  • an improvement in luminous efficiency a reduction in driving voltage
  • an improvement in durability a reduction in durability
  • triazine-based organic semiconductor materials containing three strong electron-withdrawing nitrogen atoms have their wide applications in optoelectronic devices due to their superior optoelectronic properties.
  • planar structures of anthraquinone derivatives generally have good carrier transport properties and optoelectronic properties.
  • CN 104203941 A discloses a class of compounds in which a triazine unit is bonded to a phenyl group, or a phenanthrene group, or a benzothienyl group, or a fluorenyl group. Such compounds are used as electron transport layers for blue OLED devices, which reduce the voltage of the device and increase the efficiency.
  • CN 101003508 B discloses a class of hydrazine compounds characterized in that the two groups directly attached to the hydrazine group are aromatic groups which must not contain heteroatoms. Such compounds are used as electron transport layers for OLED devices, resulting in some improvement in device performance.
  • CN 103570629 B discloses a compound in which a benzoindole group is attached to a triazine. Such compounds are used as electron transport layers for blue OLED devices, which reduces the voltage of the device.
  • No. 2015318508 A discloses a class of compounds in which an anthracene group or a triphenylene group is attached to a triazine. Such compounds are used as an electron transport layer for OLED devices, which reduces the voltage of the device and increases the efficiency.
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are an aromatic group having 6 to 60 carbon atoms or a heterocyclic aromatic group having 3 to 60 carbon atoms, and the heterocyclic aromatic group includes N and O. , S,
  • Ar 1 to Ar 4 is a heterocyclic aromatic group having a nitrogen atom
  • R 1 to R 6 are H, D, F, -CN, -NO 2 , -CF 3 , alkenyl, alkynyl, amino, acyl, amide, cyano, isocyano, alkoxy, hydroxy, a carbonyl group, a sulfone group, an alkyl group having 1 to 60 carbon atoms, a cycloalkyl group having 3 to 60 carbon atoms, an aromatic group having 6 to 60 carbon atoms, and a heterocyclic aromatic group having 3 to 60 carbon atoms.
  • n, p, and q are integers of 1 to 20.
  • At least one of Ar 1 , Ar 2 , Ar 3 and Ar 4 comprises the structure T shown below:
  • X 1 is CR 7 or N, and at least one X 1 of the structure T is N, and two adjacent X 1 are not N at the same time;
  • a condensed ring aromatic group of 7 to 60 or a fused heterocyclic aromatic group having 4 to 60 carbon atoms forms a monocyclic or polycyclic aliphatic or aromatic ring system.
  • a polymer comprising at least one repeating structural unit of a ruthenium triazine compound of the formula (1).
  • a mixture comprising the ruthenium triazine compound or polymer, and at least one organic functional material, which is a hole injection material, a hole transport material, a hole blocking material, an electron injection material, an electron Transmission material, electron blocking material, luminescent host material, fluorescent illuminant, phosphorescent illuminant, thermally excited delayed fluorescent material or organic dye.
  • organic functional material which is a hole injection material, a hole transport material, a hole blocking material, an electron injection material, an electron Transmission material, electron blocking material, luminescent host material, fluorescent illuminant, phosphorescent illuminant, thermally excited delayed fluorescent material or organic dye.
  • a composition comprising at least one ruthenium triazine compound or polymer as described above, and at least one organic solvent.
  • An organic electronic device comprising at least one ruthenium triazine compound or polymer as described above or prepared from a mixture as described above.
  • the organic electronic device may be an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, an organic laser, an organic spintronic device. , organic sensor, or organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • a method for preparing a functional layer containing a ruthenium triazine compound wherein the ruthenium triazine compound is formed into a functional layer on a substrate by evaporation; or the ruthenium triazine is co-evaporated
  • the compound and a functional organic material form a functional layer on a substrate; or the above composition is applied to a substrate by printing or coating to form a functional layer.
  • the method of printing or coating may be selected from, but not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion roller Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, and the like.
  • the ruthenium triazine compound of the present invention comprises three triazine structures having a strong electron-withdrawing nitrogen atom and a fluorene ring structure.
  • the triazine structure has superior photoelectric properties
  • the planar structure of the anthracene derivative has good carrier transport performance and photoelectric performance. Therefore, the ruthenium triazine compound combines the triazine with the fluorene ring to facilitate better carrier transport and photoelectric response, better energy level matching, and improved photoelectric properties and stability of the compound.
  • a polymer polymerized from the ruthenium triazine compound, a mixture comprising the ruthenium triazine compound and the polymer thereof, a composition, and an organic electronic device thereof can finally obtain a light-emitting property with high manufacturing efficiency and long life.
  • Device a polymer polymerized from the ruthenium triazine compound, a mixture comprising the ruthenium triazine compound and the polymer thereof, a composition, and an organic electronic device thereof can finally obtain a light-emitting property with high manufacturing efficiency and long life. Device.
  • the present invention provides a novel type of organic optoelectronic material and its use in an organic electronic device.
  • the present invention will be further described in detail below. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • composition and the printing ink, or ink have the same meaning and are interchangeable.
  • the subject material the matrix material, the Host or the Matrix material have the same meaning, and they are interchangeable.
  • metal organic complexes metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and are interchangeable.
  • the aromatic group means a hydrocarbon group containing at least one aromatic ring.
  • a heterocyclic aromatic group refers to an aromatic hydrocarbon group containing at least one hetero atom.
  • a fused ring aromatic group means that the ring of the aromatic group may have two or more rings in which two carbon atoms are shared by two adjacent rings, that is, a fused ring.
  • a fused heterocyclic aromatic group refers to a fused ring aromatic hydrocarbon group containing at least one hetero atom.
  • the aromatic group contains a fused ring aromatic group and the heterocyclic aromatic group contains a fused heterocyclic aromatic group.
  • an aromatic group or a heterocyclic aromatic group includes not only a system of aromatic rings but also a non-aromatic ring system. Therefore, such as pyridine, thiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, pyrazine, pyridazine, pyrimidine, triazine, carbene and the like, for the purpose of the invention It is considered to be an aromatic group or a heterocyclic aromatic group.
  • the fused ring aromatic or fused heterocyclic aromatic ring system includes not only a system of an aromatic group or a heteroaromatic group, but also a plurality of aromatic groups or heterocyclic aromatic groups may be short.
  • Non-aromatic units are interrupted ( ⁇ 10% non-H atoms, preferably less than 5% non-H atoms, such as C, N or O atoms).
  • such systems as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be fused ring aromatic ring systems for the purposes of this invention.
  • examples of the aromatic group are: benzene, biphenyl, terphenyl, toluene, chlorobenzene, and derivatives thereof.
  • fused ring aromatic group examples include: naphthalene, anthracene, fluoranthene, phenanthrene, triphenylene, perylene, tetracene, anthracene, benzopyrene, anthracene, anthracene, and derivatives thereof.
  • heterocyclic aromatic groups are: pyridine, thiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, pyrazine, pyridazine, pyrimidine, triazine, carbene And its derivatives.
  • fused heterocyclic aromatic group examples include: benzofuran, benzothiophene, anthracene, oxazole, pyrroloimidazole, pyrrolopyrrol, thienopyrrole, thienothiophene, furopyrrol, furanfuran , thienofuran, benzisoxazole, benzisothiazole, benzimidazole, quinoline, isoquinoline, o-diazepine, quinoxaline, phenanthridine, pyridine, quinazoline, quinazolinone And its derivatives.
  • the present invention provides a ruthenium triazine compound represented by the formula (1), wherein the symbols and labels used have the following meanings:
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different and are each independently selected from a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms, a substituted or unsubstituted heterocyclic aromatic group having 3 to 60 carbon atoms. And at least one of Ar 1 to Ar 4 includes a heterocyclic aromatic group having a nitrogen atom;
  • Ar 2 or a plurality of positions by one or more radicals R 2 a substituted or unsubstituted, the radicals R 2 occurs at a plurality of times may be the same or different;
  • R 3 Ar are one or more positions with one or more radicals R 3 substituted or unsubstituted, said R 3 groups may appear multiple times in the same or different;
  • R 1 to R 6 may be the same or different in multiple occurrences, and may be H, D, F, -CN, -NO 2 , -CF 3 , alkenyl, alkynyl, amino, acyl, amide, cyano, Isocyanato, alkoxy, hydroxy, carbonyl, sulfone group, substituted or unsubstituted alkyl group having 1 to 60 carbon atoms, substituted or unsubstituted cycloalkyl group having 3 to 60 carbon atoms, substituted or unsubstituted a 6-60 aromatic group having a carbon number, a substituted or unsubstituted heterocyclic aromatic group having 3 to 60 carbon atoms, a substituted or unsubstituted fused aromatic group having 7 to 60 carbon atoms, or a carbon number a fused heterocyclic aromatic group of 4 to 60, or a ring in which one or more groups may be bonded to each other and/or to the group to form
  • n is an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and most preferably an integer of 0 to 3.
  • n is an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and most preferably an integer of 0 to 3.
  • p is an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and most preferably an integer of 0 to 3.
  • q is an integer of 0 to 20, preferably an integer of 0 to 10, more preferably an integer of 0 to 5, and most preferably an integer of 0 to 3.
  • the Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently selected from a substituted or unsubstituted aromatic group having 6 to 40 carbon atoms, a substituted or unsubstituted carbon atom number of 3 a ⁇ 40 heterocyclic aromatic group, and at least one of Ar 1 to Ar 4 includes a heterocyclic aromatic group having a nitrogen atom; in a more preferred embodiment, Ar 1 , Ar 2 , Ar 3 and Ar 4 respectively Independently selected from substituted or unsubstituted aromatic groups having 6 to 30 carbon atoms, substituted or unsubstituted carbon atoms having 3 to 30 heterocyclic aromatic groups, and at least one of Ar 1 to Ar 4 having a nitrogen atom Heterocyclic aromatic group; in the most preferred embodiment, Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently selected from substituted or unsubstituted aromatic groups having 6 to 20 carbon atoms, substituted or unsubstituted. a carbon atom having 3 to 20
  • the hetero atom of the aromatic heterocyclic ring is preferably selected from the group consisting of Si, N, P, O, S, and/or Ge, and is particularly preferably selected from the group consisting of Si, N, P, O, and/or S, more particularly preferably selected from N, O or S.
  • At least one of Ar 1 , Ar 2 , Ar 3 and Ar 4 contains an aromatic hetero ring having an N atom, and such a heterocyclic ring has, but is not limited to, the following Structure:
  • X 1 is CR 7 or N, and at least one X in each structure is N, and the number of N is preferably from 1 to 6, more preferably from 1 to 3;
  • R 7 to R 12 may be the same or different in multiple occurrences, and may be a linking site with other groups, or H, D, F, -CN, -NO 2 , -CF 3 , alkenyl, alkynyl, amine a group, an acyl group, an amide group, a cyano group, an isocyano group, an alkoxy group, a hydroxyl group, a carbonyl group, a sulfone group, a substituted or unsubstituted alkyl group having 1 to 60 carbon atoms, a substituted or unsubstituted carbon atom number of 3 to 3 a cycloalkyl group of 60, a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms, a substituted or unsubstituted carbon number of 3 to 60 heterocyclic aromatic groups, a substituted or unsubstituted carbon atom of 7 to 60 a fused ring aromatic group or a fused hetero
  • R 7 to R 12 are the same or different in multiple occurrences, and may be a linking site with other groups, or H, D, F, -CN, -NO 2 , -CF 3 , alkenyl, alkynyl, amino, acyl, amide, cyano, isocyano, alkoxy, hydroxy, carbonyl, sulfone, substituted or unsubstituted alkyl having 1 to 30 carbon atoms, substituted or Unsubstituted cycloalkyl group having 3 to 30 carbon atoms, substituted or unsubstituted aromatic group having 6 to 30 carbon atoms, substituted or unsubstituted carbon atom having 3 to 30 heterocyclic aromatic groups, substituted or unsubstituted a fused ring aromatic group having 7 to 30 carbon atoms or a fused heterocyclic aromatic group having 4 to 30 carbon atoms, or one or more groups in which one or more groups may be bonded to each other and/or
  • At least one of Ar 1 , Ar 2 , Ar 3 and Ar 4 comprises an aromatic heterocyclic ring having an N atom, and the aromatic heterocyclic ring is selected from the following structures:
  • Ar 1 or Ar 2 or Ar 3 or Ar 4 in formula (1) is selected from the following structures:
  • X is CR 13 or N, but two adjacent Xs are not N at the same time; in some preferred embodiments, X is CR 9 . In some very preferred embodiments, all X in the above formula are CR 9 , wherein R 9 is H or D;
  • R 13 to R 18 are the same or different in multiple occurrences, and may be a site linked to another group, or H, D, F, -CN, -NO 2 , -CF 3 , alkenyl, alkynyl, amine a group, an acyl group, an amide group, a cyano group, an isocyano group, an alkoxy group, a hydroxyl group, a carbonyl group, a sulfone group, a substituted or unsubstituted alkyl group having 1 to 60 carbon atoms, a substituted or unsubstituted carbon atom number of 3 to 3 a cycloalkyl group of 60, a substituted or unsubstituted aromatic group having 6 to 60 carbon atoms, a substituted or unsubstituted carbon number of 3 to 60 heterocyclic aromatic groups, a substituted or unsubstituted carbon atom of 7 to 60 a fused ring aromatic group or a fused heterocycl
  • R 13 to R 18 are the same or different in multiple occurrences, and may be a linking site with other groups, or H, D, F, -CN, -NO 2 , -CF 3 , alkenyl, alkynyl, amino, acyl, amide, cyano, isocyano, alkoxy, hydroxy, carbonyl, sulfone, substituted or unsubstituted alkyl having 1 to 30 carbon atoms, substituted or Unsubstituted cycloalkyl group having 3 to 30 carbon atoms, substituted or unsubstituted aromatic group having 6 to 30 carbon atoms, substituted or unsubstituted carbon atom having 3 to 30 heterocyclic aromatic groups, substituted or unsubstituted a fused ring aromatic group having 7 to 30 carbon atoms or a fused heterocyclic aromatic group having 4 to 30 carbon atoms, or one or more groups thereof may be bonded to each other and/or to the group
  • the group may be
  • suitable examples of aromatic or aromatic hetero groups which may be Ar 1 -Ar 4 are independently selected from, but not limited to, fluorene, fluoranthene, phenanthrene, benzophenanthrene, and perylene. a group such as benzene, tetracene, anthracene, benzofluorene, anthracene, anthracene, oxazole, dibenzofuran, dibenzothiophene.
  • Ar 1 or Ar 2 or Ar 3 or Ar 4 in the general formula (1) may contain the following structural units or a combination thereof in the same or different manner:
  • n 1 or 2 or 3 or 4.
  • the compounds according to the invention have a high electron mobility, generally ⁇ 10 -5 cm 2 /V ⁇ s, preferably ⁇ 10 -4 cm 2 /Vs, optimally ⁇ 10 -3 Cm 2 /V ⁇ s.
  • the compound according to the invention has a glass transition temperature of ⁇ 100 ° C, preferably ⁇ 110 ° C, more preferably ⁇ 120 ° C, most preferably ⁇ 140 ° C.
  • the lowest unoccupied orbital energy level of the compound according to the invention is LUMO ⁇ -2.9 eV, preferably ⁇ -2.95 eV, more preferably ⁇ -3.0 eV, optimally ⁇ -3.05 eV.
  • the highest occupied orbital energy level of the compound according to the invention is HOMO ⁇ -5.7 eV, preferably ⁇ - 5.8 eV, more preferably ⁇ - 5.9 eV, most preferably ⁇ -6.0 eV.
  • the compound according to the invention has a triplet energy level T1 ⁇ 1.8 eV, preferably ⁇ 1.9 eV, more preferably ⁇ 2.0 eV, and most preferably ⁇ 2.1 eV.
  • the compound according to the invention has a ⁇ HOMO ⁇ 0.5 eV, preferably ⁇ 0.55 eV, more preferably ⁇ 0.6 eV, and most preferably ⁇ 0.7 eV.
  • the energy level structure of the organic compound the triplet energy levels E T , HOMO, and LUMO play an important role.
  • the following is an introduction to the determination of these energy levels.
  • the HOMO and LUMO levels can be measured by photoelectric effect, such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • photoelectric effect such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • quantum chemical methods such as density functional theory (hereinafter referred to as DFT) have also become effective methods for calculating molecular orbital energy levels.
  • the triplet energy level ET of organic materials can be measured by low temperature time-resolved luminescence spectroscopy, or by quantum simulation calculations (such as by Time-dependent DFT), such as by the commercial software Gaussian 03W (Gaussian Inc.), the specific simulation method can be See WO2011141110 or as described below in the examples.
  • the absolute values of HOMO, LUMO, ET depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as starting point and peak point on the CV curve, can give different HOMO/LUMO. value. Therefore, this reasonably meaningful should be carried out using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, and E T are simulations based on Time-dependent DFT, but do not affect the application of other measurement or calculation methods. The energy level values determined by different methods should be mutually calibrated.
  • (HOMO-1) is defined as the second highest occupied orbital level
  • (HOMO-2) is the third highest occupied orbital level, and so on.
  • ⁇ HOMO
  • (LUMO+1) is defined as the second lowest unoccupied orbital level, (LUMO+2) is the third lowest occupied orbital level, and so on.
  • the compound according to the invention is at least partially deuterated, preferably 10% of H is deuterated, more preferably 20% of H is deuterated, very preferably 30% H is replaced, preferably 40% of H is replaced.
  • the organic compound according to the invention is a small molecule material.
  • small molecule refers to a molecule that is not a polymer, oligomer, dendrimer, or blend. In particular, there are no repeating structures in small molecules.
  • the molecular weight of the small molecule is ⁇ 3000 g/mol, preferably ⁇ 2000 g/mol, preferably ⁇ 1500 g/mol.
  • the polymer ie, Polymer
  • the polymer also includes a dendrimer.
  • a dendrimer For the synthesis and application of the tree, see [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome, Charles. N. Moorefield, Fritz Vogtle.].
  • a conjugated polymer is a polymer whose backbone backbone is mainly composed of sp2 hybrid orbitals of C atoms. Famous examples are: polyacetylene polyacetylene and poly(phenylene vinylene), which are on the main chain.
  • the C atom can also be substituted by other non-C atoms, and is still considered to be a conjugated polymer when the sp2 hybrid on the backbone is interrupted by some natural defects.
  • the conjugated polymer also includes an aryl amine, an aryl phosphine and other heteroarmotics, and an organometallic complexes in the main chain. Wait.
  • the present invention also relates to a polymer comprising a repeating unit comprising a structural unit of a ruthenium triazine compound represented by the formula (1).
  • the polymer is a non-conjugated polymer in which the structural unit of the ruthenium triazine compound represented by the formula (1) is on the side chain.
  • the polymer is a conjugated polymer.
  • the invention further relates to a mixture comprising at least one organic compound or polymer according to the invention, and at least one other organic functional material.
  • Another organic functional material described herein comprising holes (also called holes) injection or transport materials (HIM/HTM), hole blocking materials (HBM), electron injecting or transporting materials (EIM/ETM), electrons Blocking material (EBM), organic matrix material (Host), singlet illuminant (fluorescent illuminant), thermally activated delayed fluorescent luminescent material (TADF), triplet illuminant (phosphorescent illuminant), especially luminescent metal organic coordination Things, and organic dyes.
  • holes also called holes injection or transport materials
  • HBM hole blocking materials
  • EIM/ETM electron injecting or transporting materials
  • EBM electrons Blocking material
  • organic matrix material Host
  • singlet illuminant fluorescent illuminant
  • TADF thermally activated delayed fluorescent luminescent material
  • phosphorescent illuminant especially luminescent metal organic coordination Things
  • organic dyes especially luminescent metal organic coordination Things, and organic dyes.
  • the organic functional material can be a small molecule or a polymeric material.
  • the compound is present in the mixture according to the invention in an amount of from 50% by weight to 99.9% by weight, preferably 60% by weight. To 97% by weight, more preferably 60% by weight to 95% by weight, most preferably 70% by weight to 90% by weight.
  • the mixture according to the invention comprises a compound or polymer according to the invention and a fluorescent luminescent material (single-state illuminant).
  • the mixture according to the invention comprises a compound or polymer according to the invention and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • the mixture according to the invention comprises a compound or polymer according to the invention, a fluorescent luminescent material and a TADF material.
  • the mixture according to the invention comprises a compound or polymer according to the invention and another electron transporting material.
  • fluorescent luminescent material or singlet illuminant (fluorescent luminescent material) and TADF material are described in some detail below (but are not limited thereto).
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1
  • indenoindenes and derivatives thereof disclosed in WO 2008/006449 and WO 2007/140847.
  • the singlet emitter can be selected from the group consisting of monostyrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether and aromatic amine.
  • a monostyrylamine refers to a compound comprising an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound comprising two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a ternary styrylamine refers to a compound comprising three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound comprising four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or substituted aromatic ring or heterocyclic systems directly bonded to a nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably selected from the fused ring system and preferably has at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic amine and aromatic diamine.
  • An aromatic amide refers to a compound in which a diaryl arylamine group is attached directly to the oxime, preferably at the position of 9.
  • An aromatic quinone diamine refers to a compound in which two diaryl arylamine groups are attached directly to the oxime, preferably at the 9,10 position.
  • the aromatic decylamine, the aromatic quinone diamine, the aromatic amine and the aromatic diamine are similarly defined, wherein the diarylamine group is preferably bonded to the 1 or 1,6 position of the hydrazine.
  • Examples of singlet emitters based on vinylamines and arylamines are also preferred examples and can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007 /115610, US 7250532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1, the entire contents of which are hereby incorporated by reference. This article is incorporated herein by reference.
  • Further preferred singlet emitters can be selected from indenoindole-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzoindoloindole-amines and benzoindenoindole-diamines , as disclosed in WO 2008/006449, dibenzoindolo-amine and dibenzoindeno-diamine, as disclosed in WO 2007/140847.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-bis(2-naphthoquinone), naphthalene, tetraphenyl, xanthene, phenanthrene , ⁇ (such as 2,5,8,11-tetra-t-butyl fluorene), anthracene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolevinyl)-1 , 1 '-biphenyl), indenyl hydrazine, decacycloolefin, hexacene benzene, anthracene, spirobifluorene, aryl hydrazine (such as US20060222886), arylene vinyl (such as US5121029, US5130603), cyclopentane Alkene such as tetraphenylcyclopentadiene, rub
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ E st ), and triplet excitons can be converted into singlet exciton luminescence by inter-system crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the TADF material needs to have a small singlet-triplet energy level difference, typically ⁇ Est ⁇ 0.3 eV, preferably ⁇ Est ⁇ 0.2 eV, more preferably ⁇ Est ⁇ 0.1 eV, and most preferably ⁇ Est ⁇ 0.05 eV.
  • TADF has better fluorescence quantum efficiency.
  • Some TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al.
  • Adachi et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem. Commun., 48, 2012, 11392, Adachi, et. al. Nature Photonics, 6, 2012, 253, Adachi, et. al.
  • TADF luminescent materials are listed in the table below:
  • the compounds according to the invention are used in vapor-deposited OLED devices.
  • the compounds according to the invention have a molecular weight of ⁇ 1000 mol/kg, preferably ⁇ 900 g/mol, very preferably ⁇ 850 g/mol, more preferably ⁇ 800 g/mol, most preferably ⁇ 700 g/mol.
  • Another object of the invention is to provide a material solution for printing OLEDs.
  • the compounds according to the invention have a molecular weight of ⁇ 700 g/mol, preferably ⁇ 800 g/mol, very preferably ⁇ 900 g/mol, more preferably ⁇ 1000 g/mol, most preferably ⁇ 1100 g/mol.
  • the compound according to the invention has a solubility in toluene of > 10 mg/ml, preferably > 15 mg/ml, most preferably > 20 mg/ml at 25 °C.
  • the invention further relates to a composition or ink comprising a compound or polymer or mixture according to the invention, and at least one organic solvent.
  • the invention further provides a film comprising a compound or polymer according to the invention prepared from a solution.
  • the viscosity and surface tension of the ink are important parameters when used in the printing process. Suitable surface tension parameters for the ink are suitable for the particular substrate and the particular printing method.
  • the ink according to the present invention has a surface tension at an operating temperature or at 25 ° C in the range of from about 19 dyne/cm to 50 dyne/cm; more preferably in the range of from 22 dyne/cm to 35 dyne/cm; It is in the range of 25dyne/cm to 33dyne/cm.
  • the ink according to the present invention has a viscosity at an operating temperature or 25 ° C in the range of about 1 cps to 100 cps; preferably in the range of 1 cps to 50 cps; more preferably in the range of 1.5 cps to 20 cps; Good is in the range of 4.0cps to 20cps.
  • the composition so formulated will be suitable for ink jet printing.
  • the viscosity can be adjusted by different methods, such as by selection of a suitable solvent and concentration of the functional material in the ink.
  • the ink containing the compound or polymer according to the present invention facilitates the adjustment of the printing ink to an appropriate range in accordance with the printing method used.
  • the composition according to the invention comprises a functional material in the range of from 0.3% to 30% by weight, preferably from 0.5% to 20% by weight, more preferably from 0.5% to 15% by weight, even more preferably It is in the range of 0.5% to 10% by weight, preferably in the range of 1% to 5% by weight.
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the
  • solvents suitable for the present invention are, but are not limited to, aromatic or heteroaromatic based solvents: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethyl Naphthalene, 3-isopropylbiphenyl, p-methyl cumene, dipentylbenzene, triphenylbenzene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethyl Benzene, p-diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, two Hexylbenzene, di
  • the at least one solvent may be selected from the group consisting of: an aliphatic ketone, for example, 2-nonanone, 3-fluorenone, 5-nonanone, 2-nonanone, 2, 5 -hexanedione, 2,6,8-trimethyl-4-indolone, phorone, di-n-pentyl ketone, etc.; or an aliphatic ether, for example, pentyl ether, hexyl ether, dioctyl ether, ethylene Dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether , tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and the like.
  • an aliphatic ketone for example, 2-nonan
  • the printing ink further comprises another organic solvent.
  • another organic solvent include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine , toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1, 1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrogen Naphthalene, decalin, hydrazine and/or mixtures thereof.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • the invention further relates to the use of the composition as a printing ink in the preparation of an organic electronic device, particular preference being given to a preparation process by printing or coating.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion roller Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, spray printing (Nozzle printing), slit type extrusion coating, and the like.
  • inkjet printing Nozzle Printing
  • Nozzle Printing typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion roller Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, spray printing (Nozzle printing), slit type extrusion coating, and the like.
  • Preferred are ink jet printing, slit type extrusion coating, jet printing and gravure printing.
  • the solution or suspension may additionally contain one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • surface active compounds such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • solvents and concentrations, viscosity, etc. please refer to Helmut Kipphan's "Printing Media Handbook: Techniques and Production Methods" (Handbook of Print Media: Technologies and Production Methods). ).ISBN 3-540-67326-1.
  • the present invention also provides the use of a compound or polymer as described above in an organic electronic device.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Laser, organic spintronics, organic sensors and organic plasmon Organic Plasmon Emitting Diode, etc., especially OLED.
  • the organic compound is preferably used in an electron transport layer or an electron injection layer or a light-emitting layer of an OLED device.
  • the invention further relates to an organic electronic device comprising at least one compound or polymer as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer between the cathode and the anode, wherein said functional layer comprises at least one compound or polymer as described above.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode).
  • the organic electronic device is an electroluminescent device, particularly an OLED, comprising a substrate, an anode, a cathode, and at least one luminescent layer between the anode and the cathode.
  • a hole transport layer or an electron transport layer may also be included.
  • the organic electronic device comprises an electron transport layer or an electron injection layer comprising a compound or polymer according to the invention.
  • the organic electronic device comprises a hole blocking layer comprising a compound or polymer according to the invention.
  • the organic electronic device comprises a light-emitting layer comprising a compound or polymer according to the invention, more preferably, comprising a light-emitting layer according to the invention.
  • a compound or polymer, and at least one luminescent material, the luminescent material may be preferably selected from a fluorescent illuminant, or a TADF material.
  • the device structure of the electroluminescent device will be described below, but is not limited to the following description.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in the form of a polymer film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-na
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can comprise a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference between the conduction band levels is less than 0.5 eV, preferably less than 0.3 eV, preferably It is less than 0.2eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer. (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the electron transport layer or the electron injecting layer thereof contains the organic compound or polymer of the present invention.
  • the illuminating device according to the invention comprises a hole blocking layer comprising an organic compound or polymer according to the invention.
  • the light-emitting layer thereof contains the organic compound or polymer of the present invention.
  • the light-emitting device has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the invention further relates to the use of an organic electronic device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • a method of synthesizing a compound according to the present invention is exemplified, but the present invention is not limited to the following examples.
  • 1,6-bis(4,6-dichloro-1,3,5-triazine-2-)indole 29 g, 0.05 mol
  • potassium carbonate 27.8 g, 0.2 mol
  • 3-pyridineboronic acid (12.3 g) , 0.1 mol
  • Pd (PPh3) 4 (2.89 g, 0.0025 mol)
  • 1,4-dioxane 500 ml and 100 ml of water, added to a 1 L three-necked flask, protected with nitrogen.
  • 1,6-bis(4-phenyl-6-(pyridine-3)-1,3,5-triazine-2-) ⁇ the yield is 73%.
  • 1,6-bis(4,6-dichloro-1,3,5-triazine-2-)indole 25 g, 0.05 mol
  • potassium carbonate 27.8 g, 0.2 mol
  • 3-pyridineboronic acid (24.6 g) , 0.2 mol
  • Pd (PPh3) 4 (2.89 g, 0.0025 mol)
  • 1,4-dioxane 500 ml and 100 ml of water added to a 1 L three-necked flask, protected with nitrogen. When heated to 120 ° C for 12 hours, cooled, extracted, dried, concentrated, and purified to give 1,6-bis(4,6-bis(pyridine-3)-1,3,5-triazin-2-)indole, The yield was 75%.
  • 1,6-bis(4-chloro-6-phenyl-1,3,5-triazine-2-)indole 29.05 g, 0.05 mol
  • quinoline-6-boronic acid 17.3 g, 0.1 mol
  • Potassium carbonate 27.8 g, 0.2 mol
  • Pd(PPh3)4 2.89 g, 0.0025 mol
  • 1,4-dioxane 500 ml and 100 ml of water were added to a 1 L three-necked flask and protected with nitrogen.
  • 1,6-bis(4-chloro-6-(quinolin-6-)-1,3,5-triazine-2)indole 34 g, 0.05 mol
  • quinoline-6-boronic acid (17.3 g, 0.1 Mol)
  • potassium carbonate 27.8 g, 0.2 mol
  • Pd(PPh3)4 2.89 g, 0.0025 mol
  • 1,4-dioxane 500 ml and 100 ml of water were added to a 1 L three-necked flask and protected with nitrogen. When heated to 120 ° C for 12 hours, cooled, extracted, dried, concentrated, and purified to give 1,6-bis(4,6-bis(quinolin-6)-1,3,5-triazin-2-indole, The yield was 70%.
  • 1,6-bis(4-chloro-6-phenyl-1,3,5-triazine-2)indole 29.0 g, 0.05 mol
  • 4-(3-pyridyl)benzeneboronic acid (20.0 g, 0.1 Mol)
  • potassium carbonate 27.8 g, 0.2 mol
  • Pd(PPh3)4 (2.89 g, 0.0025 mol)
  • 1,4-dioxane 500 ml and 100 ml of water were added to a 1 L three-necked flask and protected with nitrogen.
  • 1,6-bis(4-chloro-6-(4-(pyridine-3-)phenyl)-1,3,5-triazine-2-)indole (36.78 g, 0.05 mol)
  • 4-( 3-pyridyl)benzeneboronic acid (20.0 g, 0.1 mol)
  • potassium carbonate 27.8 g, 0.2 mol
  • Pd(PPh3)4 (2.89 g, 0.0025 mol)
  • reaction solution was transferred to a rotary steaming flask, and most of the solvent was evaporated to dryness, extracted with dichloromethane, washed three times with water, dried over anhydrous magnesium sulfate, filtered and dried and purified to give 2-(4-(9,10- (2-naphthalene) anthracene-2-)phenyl)-1-phenyl-1-H- Benzimidazole, yield 74%.
  • the energy level of the organic material can be obtained by quantum calculation, such as by TD-DFT (time-dependent density functional theory) by Gaussian 03W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 03W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet) is used to optimize the molecular geometry, and then the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91 and the base group "6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S1 and T1 are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are direct calculation results of Gaussian 03W, and the unit is Hartree.
  • the results are shown in Table 1:
  • HIL a triarylamine derivative
  • HTL a triarylamine derivative
  • Dopant a triarylamine derivative
  • a, cleaning of the conductive glass substrate when used for the first time, can be washed with a variety of solvents, such as chloroform, ketone, isopropyl alcohol, and then UV ozone plasma treatment;
  • HIL 50 nm
  • HTL 35 nm
  • EML 25 nm
  • ETL 28 nm
  • cathode LiQ / Al (1nm / 150nm) in a high vacuum (1 ⁇ 10 -6 mbar) in the thermal evaporation;
  • the device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • the current-voltage (JV) characteristics of each OLED device are characterized by characterization equipment while recording important parameters such as efficiency, lifetime and external quantum efficiency.
  • the color coordinates of the prepared blue light device are better than that of the compound 1 , for example, the compound of compound 1 - compound 6 has a color coordinate X ⁇ 0.15, Y ⁇ 0.10.
  • the blue light device prepared by using Compound 1 - Compound 6 as the ETL layer has a luminous efficiency of 5-8 cd/A, which has more excellent luminous efficiency; in terms of device lifetime, Compound 1 - Compound 6 is used as the ETL layer.
  • the lifetime of the preparation of the blue light device is far superior to that of the compound 1, for example, the device prepared by the compound 1 - compound 6 has a T 95 lifetime of at least twice that of the compound 1 at 1000 nits.
  • the test results are shown in Table 2.
  • the triazine containing three strong electron-withdrawing nitrogen atoms is connected with the planar fluorene aromatic fused ring, and achieves better carrier transport and photoelectric response due to the large conjugate plane structure of the molecule, thereby achieving higher efficiency, Longer life and more blue coordinates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种芘三嗪化合物,包含其的混合物、组合物、有机电子器件及应用。所述芘三嗪化合物包括三个强吸电子氮原子的三嗪类结构,及芘稠环结构。由于三嗪类结构具有优越的光电性能,而平面结构的芘类衍生物具有好的载流子传输性能和光电性能,从而将该芘三嗪化合物应用于有机电子器件中,可得到效率高、寿命长的发光器件。

Description

芘三嗪类衍生物及其在有机电子器件中的应用 技术领域
本发明涉及一种芘三嗪类化合物,包含其的组合物和混合物、及其在有机电子器件中的应用。
背景技术
有机半导体材料由于其分子结构设计的多样性、制造成本相对较低、光电性能优越等特性,在许多光电装置上巨大的应用潜力,如有机发光二极管(OLED)、有机光伏电池(OPV)、有机场效应管(OFET)等。尤其从1987年邓青云等(C.W.Tang and S.A.Van Slyke,Appl.Phys.Lett.,1987,51,913)报道了双层OLED结构以来,有机半导体材料在平板显示和照明领域得到了飞速的发展。
有机薄膜发光元件必须满足发光效率的提升、驱动电压的降低、耐久性的提升等。但是,目前仍有许多技术性课题,其中,元件的高效率与长寿命并存是许多难题之一。
为了加速推动OLED大范围产业化的进程,提高其光电性能,各种新型有机光电材料体系被广泛地设计开发生产。其中,含有三个强吸电子氮原子的三嗪类有机半导体材料由于其优越的光电性能使其在光电器件中有着广泛的应用。此外,平面结构的芘类衍生物一般具有好的载流子传输性能和光电性能。
CN 104203941 A公开了一类三嗪单元与苯基、或菲基团、或苯并噻吩基团、或者芴基团等相连的化合物。这类化合物被用作蓝光OLED器件的电子传输层,使器件的电压得到了降低,效率得到了提高。CN 101003508 B公开了一类芘化合物,其特征是与芘基团直接相连的两个基团,是必须不包含杂原子的芳香基团。这类化合物被用作OLED器件的电子传输层,使器件性能得到了一定的提高。CN 103570629 B公开了一类苯并蒽基团与三嗪相连的化合物。这类化合物被用作蓝光OLED器件的电子传输层,使器件的电压得到了降低。US 2015318508 A公开了一类蒽基团或者苯并菲基团与三嗪相连的化合物。这类化合物被用作OLED器件的电子传输层,使器件的电压得到了降低,效率也有所提高。
然而,所有目前报道的三嗪类或者具有芘类稠环结构的有机半导体材料在光电器件中载流子传输能力、稳定性、寿命等还存在一定的局限性。但所有这类化合物用于OLED时,其整体性能,特别是寿命还有需提高。
另外,有着高电子迁移率和光电效率的大平面共轭的芘稠环结构,尚未有公开,其与三嗪的结合可能有着更高的效率及更长的寿命。为了进一步发掘这类材料的光电性能,新型结构的三嗪与芘稠环相结合的材料仍待设计开发。
另外,为了降低生产成本,实现大面积的OLED器件,印刷OLED正在成为一个最有希望的技术选项。对此,印刷OLED材料是关键。然而目前开发的基于蒸镀技术的小分子OLED材料,由于其较低的分子量和刚性的芳香性分子结构使得溶解性和成膜性都此较差,特别是难以形成形貌规整的无空洞的非晶薄膜。 因此,目前,对印刷OLED尚缺乏相应的材料解决方案,高性能的小分子有机发光二极管仍是通过真空蒸镀的方法制备。因此,设计合成具有好的溶解性和成膜性的有机小分子功能化合物对实现高性能溶液加工有机发光二极管显得尤为重要。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一类新型的有机光电材料,特别是一种三嗪芘稠环类化合物,包含其的混合物和组合物、及其在有机电子器件中的应用,旨在降低驱动电压,提高发光效率、稳定性、器件寿命,同时为印刷OLED提供一种材料解决方案。
本发明的技术方案如下:
一种如下通式(1)所示的三嗪稠环化合物:
Figure PCTCN2017115312-appb-000001
其中,
Ar1、Ar2、Ar3和Ar4为碳原子数为6~60的芳香基团或碳原子数为3~60的杂环芳香基团,所述杂环芳香基团中包括N、O、S,
并且Ar1~Ar4中至少一个为具有氮原子的杂环芳香基团;
R1~R6为H、D、F、-CN、-NO2、-CF3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、碳原子数为1~60的烷基、碳原子数为3~60的环烷基、碳原子数6~60的芳香基团、碳原子数3~60的杂环芳香基团、碳原子数为7~60的稠环芳香基团、或碳原子数为4~60的稠杂环芳香基团,或R1~R6彼此形成单环或多环的脂族或芳族环系;
m、n、p、q为1~20的整数。
优选的,所述的Ar1、Ar2、Ar3和Ar4中至少一个包含以下所示的结构T:
Figure PCTCN2017115312-appb-000002
其中,
X1是CR7或N,且结构T中至少有一个X1为N,且两个相邻的X1不同时为N;
Y1选自CR8R9、SiR10R11、NR12、C(=O)、S(=O)2、O、S;
R7~R12与H、D、F、-CN、-NO2、-CF3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、碳原子数1~60的烷基、碳原子数3~60的环烷基、碳原子数6~60芳香基团、碳原子数3~60杂环芳香基团、碳原子数为7~60的稠环芳香基团或碳原子数为4~60的稠杂环芳香基团形成单环或多环的脂族或芳族环系。
一种聚合物,至少包含一个如通式(1)所述芘三嗪类化合物的重复结构单元。
一种混合物,包括所述芘三嗪类化合物或聚合物,及至少一种有机功能材料,所述有机功能材料为空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料、发光主体材料、荧光发光体、磷光发光体、热激发延迟荧光材料或有机染料。
一种组合物,包括至少一种如上所述的芘三嗪类化合物或聚合物,及至少一种有机溶剂。
一种有机电子器件,包含至少一种如上所述的芘三嗪类化合物或聚合物、或由一种如上所述的混合物制备而成。所述有机电子器件可为有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器、或有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
一种含芘三嗪类化合物的功能层的制备方法,将上述芘三嗪类化合物以蒸镀的方法于一基板上形成一功能层;或以共蒸镀的方法将所述芘三嗪类化合物与一有机功能材料于一基板上形成一功能层;或将上述的组合物用印刷或涂布的方法涂布于一基板上形成一功能层。其中印刷或涂布的方法可选于(但不限于)喷墨打印、喷印(Nozzle Printing)、活版印刷、丝网印刷、浸涂、旋转涂布、刮刀涂布、辊筒印花、扭转辊印刷、平版印刷、柔版印刷、轮转印刷、喷涂、刷涂或移印、狭缝型挤压式涂布等。
本发明所述芘三嗪化合物包括三个强吸电子氮原子的三嗪类结构,及芘稠环结构。其中三嗪类结构具有优越的光电性能,而平面结构的芘类衍生物具有好的载流子传输性能和光电性能。因此,所述芘三嗪化合物将三嗪与芘稠环的相结合,有利于实现更好的载流子传输和光电响应,更好的能级匹配,提高了该类化合物的光电性能及稳定性,从而,由该芘三嗪化合物聚合的聚合物、包含芘三嗪化合物及其聚合物的混合物、组合物、及其有机电子器件,也可最终得到一种制造效率高、寿命长的发光器件。
具体实施方式
本发明提供一类新型的有机光电材料及其在有机电子器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明中,组合物和印刷油墨,或油墨具有相同的含义,它们之间可以互换。
在本发明中,主题材料,基质材料,Host或Matrix材料具有相同的含义,它们之间可以互换。
在本发明中,金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。
根据本发明的一种芘三嗪类化合物,将多次涉及芳香族及杂芳族的概念,其具体定义如下:
芳香基团指至少包含一个芳环的烃基。杂环芳香基团指包含至少一个杂原子的芳香烃基。稠环芳香基团指芳香基团的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。稠杂环芳香基团指包含至少一个杂原子的稠环芳香烃基。对于本发明的目的,芳香基团包含了稠环芳香基团,杂环芳香基团包含了稠杂环芳香基团。对于本发明的目的,芳香基团或杂环芳香基团不仅包括芳香环的体系,而且包含非芳香族的环系。因此,此如吡啶、噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吡嗪、哒嗪、嘧啶、三嗪、卡宾等体系,对于该发明目的同样认为是芳香基团或杂环芳香基团。对于本发明的目的,稠环芳香族或稠杂环芳香族环系不仅包括芳香基团或杂芳香基团的体系,而且,其中多个芳香基团或杂环芳香基团也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,此如C、N或O原子)。因此,此如9,9′-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是稠环芳香族环系。
具体地,芳香基团的例子有:苯、二联苯、三联苯、甲苯、氯苯、及其衍生物。
具体地,稠环芳香基团的例子有:萘、蒽、荧蒽、菲、苯并菲、二萘嵌苯、并四苯、芘、苯并芘、苊、芴、及其衍生物。
具体地,杂环芳香基团的例子有:吡啶、噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吡嗪、哒嗪、嘧啶、三嗪、卡宾、及其衍生物。
具体地,稠杂环芳香基团的例子有:苯并呋喃、苯并噻吩、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
本发明提供一种如通式(1)所示的芘三嗪类化合物,其中使用的符号和标记具有以下含义:
Figure PCTCN2017115312-appb-000003
其中,
Ar1、Ar2、Ar3和Ar4相同或不同,分别独立选自取代或未取代的碳原子数6~60芳香基团、取代或未取代的碳原子数3~60杂环芳香基团,并且Ar1~Ar4中至少一个基团包含具有氮原子的杂环芳香基团;
Ar1上一个或多个位置被一个或者多个基团R1取代或者未取代,所述基团R1在多次出现时可以是相同或不同;
Ar2上一个或多个位置被一个或者多个基团R2取代或者未取代,所述基团R2在多次出现时可以是相同或不同;
Ar3上一个或多个位置被一个或者多个基团R3取代或者未取代,所述基团R3在多次出现时可以是相同 或不同;
Ar4上一个或多个位置被一个或者多个基团R4取代或者未取代,所述基团R4在多次出现时可以是相同或不同;
R1~R6在多次出现时相同或不同,可以为H、D、F、-CN、-NO2、-CF3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、取代或未取代的碳原子数1~60的烷基、取代或未取代的碳原子数3~60的环烷基、取代或未取代的碳原子数6~60芳香基团、取代或未取代的碳原子数3~60杂环芳香基团、取代或未取代的碳原子数7~60的稠环芳香基团、或碳原子数4~60的稠杂环芳香基团、或其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系;
m是0~20的整数,较优为0~10的整数,更优为0~5的整数,最优为0~3的整数;
n是0~20的整数,较优为0~10的整数,更优为0~5的整数,最优为0~3的整数;
p是0~20的整数,较优为0~10的整数,更优为0~5的整数,最优为0~3的整数;
q是0~20的整数,较优为0~10的整数,更优为0~5的整数,最优为0~3的整数;
在一些优先的实施例中,所述的Ar1、Ar2、Ar3和Ar4分别独立选自取代或未取代的碳原子数6~40芳香基团、取代或未取代的碳原子数3~40杂环芳香基团,并且Ar1~Ar4中至少一个基团包含具有氮原子的杂环芳香基团;在更加优先的实施例中,Ar1、Ar2、Ar3和Ar4分别独立选自取代或未取代的碳原子数6~30芳香基团、取代或未取代的碳原子数3~30杂环芳香基团,并且Ar1~Ar4中至少一个基团包含具有氮原子的杂环芳香基团;在最为优先的实施例中,Ar1、Ar2、Ar3和Ar4分别独立选自取代或未取代的碳原子数6~20芳香基团、取代或未取代的碳原子数3~20杂环芳香基团,并且Ar1~Ar4中至少一个基团包含具有氮原子的杂环芳香基团;
在一些优选的实施例中,所述的芳杂族稠环的杂原子优先选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S,更加特别优选选自N、O或S。
根据本发明所述的一种芘三嗪类化合物,所述Ar1、Ar2、Ar3和Ar4中至少一个包含具有N原子的芳香族杂环,且此类杂环具有但不限于以下的结构:
Figure PCTCN2017115312-appb-000004
其中,
X1是CR7或N,且每一个结构中至少有一个X是N,且N的个数较优为1~6,更优为1~3;
Y1选自CR8R9、SiR10R11、NR12、C(=O)、S(=O)2、O,较优为CR3R4或O、S;
R7~R12在多次出现时相同或不同,可以是与其它基团的连接位点、或H、D、F、-CN、-NO2、-CF3、 烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、取代或未取代的碳原子数1~60的烷基、取代或未取代的碳原子数3~60的环烷基、取代或未取代的碳原子数6~60芳香基团、取代或未取代的碳原子数3~60杂环芳香基团、取代或未取代的碳原子数为7~60的稠环芳香基团或碳原子数为4~60的稠杂环芳香基团、或中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在一些优先的实施例中,R7~R12在多次出现时相同或不同,可以是与其它基团的连接位点、或H、D、F、-CN、-NO2、-CF3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、取代或未取代的碳原子数1~30的烷基、取代或未取代的碳原子数3~30的环烷基、取代或未取代的碳原子数6~30芳香基团、取代或未取代的碳原子数3~30杂环芳香基团、取代或未取代的碳原子数为7~30的稠环芳香基团或碳原子数为4~30的稠杂环芳香基团、或中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在一些更加优先的实施方案中,所述的Ar1、Ar2、Ar3和Ar4中至少一个包含具有N原子的芳香族杂环,所述的芳香族杂环选自以下的结构:
Figure PCTCN2017115312-appb-000005
在某些优先的实施例中,通式(1)中的Ar1或Ar2或Ar3或Ar4选自以下结构:
Figure PCTCN2017115312-appb-000006
Figure PCTCN2017115312-appb-000007
其中,
X是CR13或N,但两个相邻的X不同时为N;在一些较为优先的实施例中,X是CR9。在一些非常优先的实施例中,以上结构式中所有的X是CR9,其中,R9是H或D;
Y选自CR14R15、SiR16R17、NR18、C(=O)、S(=O)2、O、S;较优为CR3R4或O;
R13~R18在多次出现时相同或不同,可以是与其它基团连接的位点、或H、D、F、-CN、-NO2、-CF3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、取代或未取代的碳原子数1~60的烷基、取代或未取代的碳原子数3~60的环烷基、取代或未取代的碳原子数6~60芳香基团、取代或未取代的碳原子数3~60杂环芳香基团、取代或未取代的碳原子数为7~60的稠环芳香基团或碳原子数为4~60的稠杂环芳香基团、或其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在一些优先的实施例中,R13~R18在多次出现时相同或不同,可以是与其它基团的连接位点、或H、D、F、-CN、-NO2、-CF3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、取代或未取代的碳原子数1~30的烷基、取代或未取代的碳原子数3~30的环烷基、取代或未取代的碳原子数6~30芳香基团、取代或未取代的碳原子数3~30杂环芳香基团、取代或未取代的碳原子数为7~30的稠环芳香基团或碳原子数为4~30的稠杂环芳香基团、或其中一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在一些优先的实施方案中,合适的可作为Ar1-Ar4的芳香或芳杂基团的例子有,分别独立选自但不限于,蒽、荧蒽、菲、苯并菲、二萘嵌苯、并四苯、芘、苯并芘、苊、芴、咔唑、二苯并呋喃、二苯并噻吩等基团。
更进一步,通式(1)中的Ar1或Ar2或Ar3或Ar4可相同或不同地包含以下结构单元或它们中的组合:
Figure PCTCN2017115312-appb-000008
Figure PCTCN2017115312-appb-000009
其中n是1或2或3或4。
在一些优先的实施例中,按照本发明的化合物具有较高的电子迁移率,一般≥10-5cm2/V·s,较优≥10-4cm2/V.s,最优≥10-3cm2/V·s。
在另一些优先的实施例中,按照本发明的化合物的玻璃化温度≥100℃,较好是≥110℃,更好是≥120℃,最好是≥140℃。
在另一些优先的实施例中,按照本发明的化合物的最低未占有轨道的能级LUMO≤-2.9eV,较优≤-2.95eV,更优≤-3.0eV,最优≤-3.05eV。
在另一些优先的实施例中,按照本发明的化合物的最高被占有轨道的能级HOMO≤-5.7eV,较优≤-5.8eV,更优≤-5.9eV,最优≤-6.0eV。
在另一些优先的实施例中,按照本发明的化合物的三线态能级T1≥1.8eV,较优≥1.9eV,更优≥2.0eV,最优≥2.1eV。
在另一些优先的实施例中,按照本发明的化合物的ΔHOMO≥0.5eV,较优≥0.55eV,更优≥0.6eV,最优≥0.7eV。
在本发明实施例中,有机化合物的能级结构,三线态能级ET、HOMO、LUMO起着重要的作用。以下对这些能级的确定做一介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的三线态能级ET可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。
应该注意,HOMO、LUMO、ET的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的此较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、ET的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。不同方法确定的能级值应进行相 互标定。
在本发明中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。ΔHOMO=|(HOMO-1)-HOMO。|(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
在一个此较优先的实施例中,按照本发明的化合物是至少部分被氘代,较好是10%的H被氘代,更好是20%的H被氘代,很好是30%的H被氘代,最好是40%的H被氘代。
以下列出优选的按照本发明的化合物的例子,但不限于以下结构:
Figure PCTCN2017115312-appb-000010
Figure PCTCN2017115312-appb-000011
Figure PCTCN2017115312-appb-000012
Figure PCTCN2017115312-appb-000013
Figure PCTCN2017115312-appb-000014
Figure PCTCN2017115312-appb-000015
Figure PCTCN2017115312-appb-000016
Figure PCTCN2017115312-appb-000017
Figure PCTCN2017115312-appb-000018
在一个优先的实施例中,按照本发明的有机化合物是一种小分子材料。
本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000克/摩尔,较好是≤2000克/摩尔,最好是≤1500克/摩尔。
聚合物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,聚合物也包括树状物(dendrimer),有关树状物的合成及应用请参见[Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.]。
共轭聚合物(conjugated polymer)是一聚合物,它的主链backbone主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭聚合物。另外在本发明中共轭聚合物也包括主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、有机金属络合物(organometallic complexes)等。
本发还涉及一种聚合物,包含一个重复单元,其中包含一种如通式(1)所示的芘三嗪类化合物结构单元。在某些实施例中,所述的聚合物是非共轭聚合物,其中如通式(1)所示的芘三嗪类化合物结构单元在侧链上。在另一个优先的实施例中,所述的聚合物是共轭聚合物。
本发明进一步涉及一种混合物,包含至少一种按照本发明的有机化合物或聚合物,及至少另一种的有机功能材料。
这里所述另一种的有机功能材料,包含空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),热激活延迟荧光发光材料(TADF),三重态发光体(磷光发光体),特别是发光金属有机配合物,和有机染料。例如在WO2010135519A1,US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。
有机功能材料可以是小分子或聚合物材料。
在某些实施例中,按照本发明的混合物中,所述的化合物的含量为50wt%至99.9wt%,优选为60wt% 至97wt%,更优选为60wt%至95wt%,最优选为70wt%至90wt%。
在一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的化合物或聚合物和一种荧光发光材料(单重态发光体)。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的化合物或聚合物和一种热激活延迟荧光发光材料(TADF)。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的化合物或聚合物,一种荧光发光材料和一种TADF材料。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的化合物或聚合物和另一种的电子传输材料。
下面对荧光发光材料或单重态发光体(荧光发光材料)和TADF材料作一些较详细的描述(但不限于此)。
1.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,和在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物。
在一个优先的实施方案中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优先选于稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香届胺和芳香届二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香届胺和芳香届二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上.
基于乙烯胺及芳胺的单重态发光体的例子,也是优选的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的单重态发光体的例子有US 5121029。
进一步的优选的单重态发光体可选于茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO 2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753 A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的单重态发光体的例子:
Figure PCTCN2017115312-appb-000019
2.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子 和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。
TADF材料需要具有较小的单线态-三线态能级差,一般是ΔEst<0.3eV,较好是ΔEst<0.2eV,更好是ΔEst<0.1eV,最好是ΔEst<0.05eV。在一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的TADF发光材料的例子:
Figure PCTCN2017115312-appb-000020
Figure PCTCN2017115312-appb-000021
以上出现的有机功能材料出版物为公开的目的以参考方式并入本申请。
在一个优选的实施方案中,按照本发明的化合物用于蒸镀型OLED器件。用于这个目的,按照本发明的化合物,其分子量≤1000mol/kg,优选≤900g/mol,很优选≤850g/mol,更优选≤800g/mol,最优选≤700g/mol。
本发明的另一个目的是为印刷OLED提供材料解决方案。
在某些实施例中,按照本发明的化合物,其分子量≥700g/mol,优选≥800g/mol,很优选≥900g/mol,更优选≥1000g/mol,最优选≥1100g/mol。
在另一些实施例中,按照本发明的化合物,在25℃时,在甲苯中的溶解度≥10mg/ml,优选≥15mg/ml,最优选≥20mg/ml。
本发明进一步涉及一种组合物或油墨,其中,包含一种按照本发明的化合物或聚合物或混合物,以及至少一种有机溶剂。本发明进一步提供一种从溶液中制备包含有按照本发明的化合物或聚合物的薄膜。
用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一个优选的实施例中,按照本发明的油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
在另一个优选的实施例中,按照本发明的油墨在工作温度或25℃下的粘度约在1cps到100cps范围;较好是在1cps到50cps范围;更好是在1.5cps到20cps范围;最好是在4.0cps到20cps范围。如此配制的组合物将适合于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。按照本发明的包含有所述地化合物或聚合物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般地,按照本发明的组合物包含的功能材料的重量此为0.3%~30wt%范围,较好的为0.5%~20wt%范围,更好的为0.5%~15wt%范围,更更好的为0.5%~10wt%范围,最好的为1%~5wt%范围。
在一些实施例中,按照本发明的油墨,所述的至少一种的有机溶剂选自基于芳族或杂芳族的溶剂,特别是脂肪族链/环取代的芳族溶剂、或芳族酮溶剂,或芳族醚溶剂。
适合本发明的溶剂的例子有,但不限于:基于芳族或杂芳族的溶剂:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等;基于酮的溶剂:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮,异佛尔酮、2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮、二 正戊基酮;芳族醚溶剂:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚c己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚;酯溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。
进一步,按照本发明的油墨,所述的至少一种的有溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些实施例中,所述的印刷油墨进一步包含有另一种有机溶剂。另一种有机溶剂的例子,包含(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明还涉及所述组合物作为印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包含(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,喷印刷(Nozzle printing),狭缝型挤压式涂布等。首选的是喷墨印刷,狭缝型挤压式涂布,喷印刷及凹版印刷。
溶液或悬浮液可以另外包含一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods).ISBN 3-540-67326-1。
基于上述化合物,本发明还提供一种如上所述的化合物或聚合物在有机电子器件的应用。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发 射二极管(Organic Plasmon Emitting Diode)等,特别是OLED。本发明实施例中,优选地将所述有机化合物用于OLED器件的电子传输层或电子注入层或发光层中。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的化合物或聚合物。一般的,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的化合物或聚合物。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
在一个较为优选的实施例中,所述的有机电子器件是电致发光器件,特别是OLED,其中包含一基片,一阳极,一阴极,和至少一位于阳极和阴极之间的发光层,选择性的还可包含一空穴传输层或电子传输层。在一个较为优先的实施例中,在所述的有机电子器件包含一电子传输层或电子注入层,其中包含一按照本发明的化合物或聚合物。在另一个较为优先的实施例中,在所述的有机电子器件包含空穴阻挡层,其中包含一按照本发明的化合物或聚合物。在另一个优选的实施方案中,在所述的有机电子器件包含一发光层,其中包含一按照本发明的化合物或聚合物,更加优先的,在所述的发光层中包含一按照本发明的化合物或聚合物,及至少一种发光材料,发光材料可优先选于荧光发光体,或TADF材料。
下面对电致发光器件的器件结构做一描述,但不限于以下描述。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包含一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包含但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包含一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好 是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包含但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料为本领域的业者所熟知,并容易在文献中找到。
在一个优选的实施例中,按照本发明的发光器件中,其电子传输层或电子注入层包含本发明的有机化合物或聚合物。
在另一个优选的实施例中,按照本发明的发光器件包含一空穴阻挡层,其中包含一个按照本发明的有机化合物或聚合物。
在另一个优选的实施例中,按照本发明的发光器件中,其发光层包含本发明的有机化合物或聚合物。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1.按照本发明的化合物的合成方法举例,但本发明并不局限于下述实施例。
实施例1:1,6-双(4-苯基-6-(吡啶-3)-1,3,5-三嗪-2-)芘(1)的合成
Figure PCTCN2017115312-appb-000022
1,6-双(4,6-二氯-1,3,5-三嗪-2-)芘(29g,0.05mol),碳酸钾(27.8g,0.2mol),3-吡啶硼酸(12.3g,0.1mol),Pd(PPh3)4(2.89g,0.0025mol),1,4-二氧六环500ml和100ml水,加入到1L三口瓶中,氮气保护。加热到120℃反应12时,冷却,萃取,干燥,浓缩,纯化,得到1,6-双(4-苯基-6-(吡啶-3)-1,3,5-三嗪-2-)芘,收率73%。
实施例2:1,6-双(4,6-二(吡啶-3)-1,3,5-三嗪-2-)芘(2)的合成
Figure PCTCN2017115312-appb-000023
1,6-双(4,6-二氯-1,3,5-三嗪-2-)芘(25g,0.05mol),碳酸钾(27.8g,0.2mol),3-吡啶硼酸(24.6g,0.2mol),Pd(PPh3)4(2.89g,0.0025mol),1,4-二氧六环500ml和100ml水,加入到1L三口瓶中,氮气保护。加热到120℃反应12时,冷却,萃取,干燥,浓缩,纯化,得到1,6-双(4,6-二(吡啶-3)-1,3,5-三嗪-2-)芘,收率75%。
实施例3:1,6-双(4-苯基-6-(喹啉-6)-1,3,5-三嗪-2-)芘(3)的合成
Figure PCTCN2017115312-appb-000024
1,6-双(4-氯-6-苯基-1,3,5-三嗪-2-)芘(29.05g,0.05mol),喹啉-6-硼酸(17.3g,0.1mol),碳酸钾(27.8g,0.2mol),Pd(PPh3)4(2.89g,0.0025mol),1,4-二氧六环500ml和100ml水,加入到1L三口瓶中,氮气保护。加热到120℃反应12时,冷却,萃取,干燥,浓缩,纯化,得到1,6-双(4-苯基-6-(喹啉-6)-1,3,5-三嗪-2-)芘的合成,收率80%。
实施例4:1,6-双(4,6-二(喹啉-6)-1,3,5-三嗪-2-芘(4)的合成
Figure PCTCN2017115312-appb-000025
1,6-双(4-氯-6-(喹啉-6-)-1,3,5-三嗪-2)芘(34g,0.05mol),喹啉-6-硼酸(17.3g,0.1mol),碳酸钾(27.8g,0.2mol),Pd(PPh3)4(2.89g,0.0025mol),1,4-二氧六环500ml和100ml水,加入到1L三口瓶中,氮气保护。加热到120℃反应12时,冷却,萃取,干燥,浓缩,纯化,得到1,6-双(4,6-二(喹啉-6)-1,3,5-三嗪-2-芘,收率70%。
实施例5:1,6-双(4-苯基-6-(4-(吡啶-3-)苯基)-1,3,5-三嗪-2-)芘(5)的合成
Figure PCTCN2017115312-appb-000026
1,6-双(4-氯-6-苯基-1,3,5-三嗪-2)芘(29.0g,0.05mol),4-(3-吡啶基)苯硼酸(20.0g,0.1mol),碳酸钾(27.8g,0.2mol),Pd(PPh3)4(2.89g,0.0025mol),1,4-二氧六环500ml和100ml水,加入到1L三口瓶中,氮气保护。加热到120℃反应12时,冷却,萃取,干燥,浓缩,纯化,得到1,6-双(4-苯基-6-(4-(吡啶-3-)苯基)-1,3,5-三嗪-2-)芘的合成,收率79%。
实施例6:1,6-双(4,6-双(4-(吡啶基-3-)苯基)-1,3,5-三嗪-2-)芘(6)的合成
Figure PCTCN2017115312-appb-000027
1,6-双(4-氯代-6-(4-(吡啶-3-)苯基)-1,3,5-三嗪-2-)芘(36.78g,0.05mol),4-(3-吡啶基)苯硼酸(20.0g,0.1mol),碳酸钾(27.8g,0.2mol),Pd(PPh3)4(2.89g,0.0025mol),1.4-二氧六环500ml和100ml水,加入到1L三口瓶中,氮气保护。加热到120℃反应12时,冷却,萃取,干燥,浓缩,纯化,得到1,6-双(4,6-双(4-(吡啶基-3-)苯基)-1,3,5-三嗪-2-)芘,收率75%。
对此例1:对此化合物2-(4-(9,10-二(2-萘)蒽-2-)苯基)-1-苯基-1-H-苯并咪唑(此1)的合成
Figure PCTCN2017115312-appb-000028
取9,10-二(2-萘)蒽-2-硼酸(47.4g,0.1mol),2-(4-溴苯)-1-苯基-1-H-苯并咪唑(34.9g,0.1mol),于1L的双口圆底烧瓶中,加入500ml甲苯为溶剂,安装装置,然后取碳酸钾(20.7g,0.15mol)用100ml水使其完全溶解,加入圆底烧瓶,最后取Pd(PPh3)4(3.4g,0.003mol)于烧瓶中,用油泵抽去瓶中空气,通入氮气,恒温加热回流12小时,冷却。将反应液转移到旋蒸瓶中,旋转蒸发干大部分溶剂,用二氯甲烷萃取、水洗三次,无水硫酸镁干燥,过滤旋干,纯化,得到2-(4-(9,10-二(2-萘)蒽-2-)苯基)-1-苯基-1-H- 苯并咪唑,产率74%。
有机化合物的能量结构
有机材料的能级可通过量子计算得到,此如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 03W的直接计算结果,单位为Hartree。结果如表一所示:
表一
Figure PCTCN2017115312-appb-000029
2.OLED器件的制备与表征:
HIL:一种三芳胺衍生物;
HTL:一种三芳胺衍生物;
Host:蒽衍生物;
Dopant:一种三芳胺衍生物;
ETL:化合物1-化合物6、对此化合物1。
具有ITO/HIL(50nm)/HTL(35nm)/Host:5%Dopant(25nm)/ETL(28nm)/LiQ(1nm)/Al(150nm)/阴极的OLED器件的制备步骤如下:
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理;
b、HIL(50nm),HTL(35nm),EML(25nm)、ETL(28nm):在高真空(1×10-6毫巴,mbar)中热蒸镀 而成。
c、阴极:LiQ/Al(1nm/150nm)在高真空(1×10-6毫巴)中热蒸镀而成;
d、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及外部量子效率。经检测,采用化合物1-化合物6作为电子转移层ETL,所制备的蓝光器件的色坐标更优于对此化合物1,例如化合物1-化合物6所制备器件的色坐标X<0.15,Y<0.10;此外,采用化合物1-化合物6作为ETL层所制备蓝光器件的发光效率都在5-8cd/A范围,具有更加优异的发光效率;在器件寿命方面,采用化合物1-化合物6作为ETL层所制备蓝光器件的寿命更加优于对此化合物1,例如化合物1-化合物6所制备器件在1000nits下的T95寿命至少是对此化合物1的两倍以上。测试结果如表二所示。
表二
Figure PCTCN2017115312-appb-000030
本发明含有三个强吸电子氮原子的三嗪与平面芘芳香稠环相连,由于分子的大共轭平面结构,实现了更好的载流子传输和光电响应,从而实现了更高效率、更长寿命以及更蓝色坐标。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种如通式(1)所示的芘三嗪类化合物:
    Figure PCTCN2017115312-appb-100001
    其中,
    Ar1、Ar2、Ar3和Ar4为碳原子数为6~60的芳香基团或碳原子数为3~60的杂环芳香基团,所述杂环芳香基团中杂原子包括N、O、S,
    并且Ar1~Ar4中至少一个为具有氮原子的杂环芳香基团;
    R1~R6为H、D、F、-CN、-NO2、-CF3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、碳原子数为1~60的烷基、碳原子数为3~60的环烷基、碳原子数为6~60的芳香基团、碳原子数为3~60的杂环芳香基团、碳原子数为7~60的稠环芳香基团、或碳原子数为4~60的稠杂环芳香基团,或R1~R6彼此形成单环或多环的脂族或芳族环系;
    m、n、p、q为0~20的整数。
  2. 根据权利要求1所述的芘三嗪类化合物,其特征在于,所述的Ar1、Ar2、Ar3和Ar4中至少一个包含以下所示的结构T:
    Figure PCTCN2017115312-appb-100002
    其中,
    X1是CR7或N,且结构T中至少有一个X1为N,且两个相邻的X1不同时为N;
    Y1选自CR8R9、SiR10R11、NR12、C(=O)、S(=O)2、O、S;
    R7~R12与H、D、F、-CN、-NO2、-CF3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、碳原子数1~60的烷基、碳原子数3~60的环烷基、碳原子数6~60芳香基团、碳原子 数3~60杂环芳香基团、碳原子数为7~60的稠环芳香基团或碳原子数为4~60的稠杂环芳香基团形成单环或多环的脂族或芳族环系。
  3. 根据权利要求1~2任一所述的芘三嗪类化合物,其特征在于,其中Ar1或Ar2或Ar3或Ar4选自以下结构Q:
    Figure PCTCN2017115312-appb-100003
    其中,
    X是CR13或N,但两个相邻的X不同时为N;
    Y选自CR14R15、SiR16R17、NR18、C(=O)、S(=O)2、O、S;
    R13~R18与H、D、F、-CN、-NO2、-CF3、烯基、炔基、胺基、酰基、酰胺基、氰基、异氰基、烷氧基、羟基、羰基、砜基、碳原子数为1~60的烷基、碳原子数为3~60的环烷基、碳原子数为6~60的芳香基团、碳原子数为3~60的杂环芳香基团、碳原子数为7~60的稠环芳香基团或碳原子数为4~60的稠杂环芳香基团形成单环或多环的脂族或芳族环系。
  4. 一种聚合物,包含有至少两个如通式(1)所述芘三嗪类化合物的重复结构单元。
  5. 一种混合物,其特征在于,包含如权利要求1-3任一项所述的芘三嗪类化合物或如权利要求4所述的聚合物、以及至少一种有机功能材料,所述有机功能材料为空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料、发光主体材料、荧光发光体、磷光发光体、热激发延迟荧光材料或有机染料。
  6. 一种组合物,其特征在于,包含至少一种如权利要求1-3任一项所述的芘三嗪类化合物或如权利要求4所述的聚合物或权利要求5所述的混合物,及至少一种有机溶剂。
  7. 一种有机电子器件,其特征在于,包含一种如权利要求1-3任一项所述的芘三嗪类化合物或如权利要求4所述的聚合物或权利要求5所述的混合物。
  8. 根据权利要求7所述的有机电子器件,其特征在于,所述有机电子器件为有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器,有机自旋电子器件,有机传感器或有机等离激元发射二极管。
  9. 根据权利要求7所述的有机电子器件,其特征在于,所述有机电子器件为有机电致发光器件,所述有机电子器件包括一电子传输层或电子注入层或发光层,所述电子传输层或电子注入层或发光层包括如权利要求1-3任一项所述的芘三嗪类化合物或如权利要求4所述的聚合物或权利要求5所述的混合物。
  10. 一种含芘三嗪类化合物的功能层的制备方法,其特征在于,将权利要求1-3中任一项所述芘三嗪类化合物以蒸镀的方法于一基板上形成一功能层;或以共蒸镀的方法将所述芘三嗪类化合物与一有机功能材料于一基板上形成一功能层;或将权利要求6中所述的组合物用印刷或涂布的方法涂布于一基板上形成一功能层。
PCT/CN2017/115312 2016-12-08 2017-12-08 芘三嗪类衍生物及其在有机电子器件中的应用 WO2018103748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780059471.1A CN109790129B (zh) 2016-12-08 2017-12-08 芘三嗪类衍生物及其在有机电子器件中的应用
US16/467,423 US11672174B2 (en) 2016-12-08 2017-12-08 Pyrene-triazine derivative and applications thereof in organic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611124123.1 2016-12-08
CN201611124123 2016-12-08

Publications (1)

Publication Number Publication Date
WO2018103748A1 true WO2018103748A1 (zh) 2018-06-14

Family

ID=62491733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115312 WO2018103748A1 (zh) 2016-12-08 2017-12-08 芘三嗪类衍生物及其在有机电子器件中的应用

Country Status (3)

Country Link
US (1) US11672174B2 (zh)
CN (1) CN109790129B (zh)
WO (1) WO2018103748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478416A (zh) * 2022-02-14 2022-05-13 季华恒烨(佛山)电子材料有限公司 基于芘-三嗪的有机化合物及有机电致发光组合物和有机电致发光器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790459B (zh) * 2016-11-23 2022-08-12 广州华睿光电材料有限公司 有机化合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003508A (zh) * 2006-01-16 2007-07-25 Lg电子株式会社 电子传输化合物和包含该化合物的有机发光器件
CN103165818A (zh) * 2011-12-16 2013-06-19 乐金显示有限公司 有机发光器件
US20140197381A1 (en) * 2013-01-11 2014-07-17 Se-Hun Kim Organic light-emitting diode comprising amine-based compounds and pyrene-based compounds
KR20150026055A (ko) * 2013-08-30 2015-03-11 엘지디스플레이 주식회사 파이렌 화합물 및 이를 포함하는 유기전계발광소자

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2913116B2 (ja) 1990-11-20 1999-06-28 株式会社リコー 電界発光素子
JP2686418B2 (ja) 1994-08-12 1997-12-08 東洋インキ製造株式会社 ジアリールアミン誘導体、その製造方法及び用途
EP0765106B1 (en) 1995-09-25 2002-11-27 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
WO2001021729A1 (fr) 1999-09-21 2001-03-29 Idemitsu Kosan Co., Ltd. Support organique a electroluminescence et support organique lumineux
KR20030093240A (ko) 2001-03-16 2003-12-06 이데미쓰 고산 가부시키가이샤 방향족 아미노 화합물의 제조방법
CN100368363C (zh) 2004-06-04 2008-02-13 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
DE102004031000A1 (de) 2004-06-26 2006-01-12 Covion Organic Semiconductors Gmbh Organische Elektrolumineszenzvorrichtungen
TW200613515A (en) 2004-06-26 2006-05-01 Merck Patent Gmbh Compounds for organic electronic devices
JP2006176491A (ja) * 2004-11-25 2006-07-06 Kyoto Univ ピレン系化合物及びこれを用いた発光トランジスタ素子
TW200639140A (en) 2004-12-01 2006-11-16 Merck Patent Gmbh Compounds for organic electronic devices
JP4263700B2 (ja) 2005-03-15 2009-05-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
DE102005058543A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102006015183A1 (de) 2006-04-01 2007-10-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
DE102006025846A1 (de) 2006-06-02 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102006031990A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP2008124156A (ja) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
JP2010138121A (ja) * 2008-12-12 2010-06-24 Canon Inc トリアジン化合物及びこれを用いた有機発光素子
US8586203B2 (en) 2009-05-20 2013-11-19 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands
KR20130020883A (ko) 2010-03-11 2013-03-04 메르크 파텐트 게엠베하 요법 및 미용에서의 섬유
US20130059924A1 (en) 2010-05-12 2013-03-07 Merck Patent Gesellschaft Mit Beschrankter Haftung Photostabilisers
US9783734B2 (en) 2011-02-28 2017-10-10 Kyulux, Inc. Delayed fluorescence material and organic electroluminescence device
JP5624518B2 (ja) * 2011-06-16 2014-11-12 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、該素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
WO2013009095A1 (ko) * 2011-07-11 2013-01-17 주식회사 두산 트리페닐렌계 화합물 및 이를 이용한 유기 전계 발광 소자
US9660198B2 (en) 2011-07-15 2017-05-23 Kyulux, Inc. Organic electroluminescence element and compound used therein
KR20140058550A (ko) 2011-07-15 2014-05-14 고쿠리쓰다이가쿠호진 규슈다이가쿠 지연 형광 재료 및 그것을 사용한 유기 일렉트로 루미네선스 소자
US9985215B2 (en) 2012-03-09 2018-05-29 Kyulux, Inc. Light-emitting material, and organic light-emitting element
JP2014135466A (ja) 2012-04-09 2014-07-24 Kyushu Univ 有機発光素子ならびにそれに用いる発光材料および化合物
WO2013161437A1 (ja) 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
JP5594750B2 (ja) 2012-05-17 2014-09-24 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014010823A1 (ko) 2012-07-13 2014-01-16 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
CN103570629B (zh) 2012-07-27 2015-10-07 昆山维信诺显示技术有限公司 一种含有嘧啶或吡嗪或三嗪基团的苯并蒽衍生物及应用
CN103483332B (zh) 2013-09-11 2016-08-10 中山大学 具有热激活延迟荧光和聚集诱导发光性能的压致发光材料及其合成方法和应用
KR20150126755A (ko) 2014-05-02 2015-11-13 삼성디스플레이 주식회사 유기 발광 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003508A (zh) * 2006-01-16 2007-07-25 Lg电子株式会社 电子传输化合物和包含该化合物的有机发光器件
CN103165818A (zh) * 2011-12-16 2013-06-19 乐金显示有限公司 有机发光器件
US20140197381A1 (en) * 2013-01-11 2014-07-17 Se-Hun Kim Organic light-emitting diode comprising amine-based compounds and pyrene-based compounds
KR20150026055A (ko) * 2013-08-30 2015-03-11 엘지디스플레이 주식회사 파이렌 화합물 및 이를 포함하는 유기전계발광소자

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478416A (zh) * 2022-02-14 2022-05-13 季华恒烨(佛山)电子材料有限公司 基于芘-三嗪的有机化合物及有机电致发光组合物和有机电致发光器件
CN114478416B (zh) * 2022-02-14 2023-11-14 季华恒烨(佛山)电子材料有限公司 基于芘-三嗪的有机化合物及有机电致发光组合物和有机电致发光器件

Also Published As

Publication number Publication date
CN109790129B (zh) 2022-08-12
US11672174B2 (en) 2023-06-06
US20190334093A1 (en) 2019-10-31
CN109790129A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN109803957B (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
CN111278795B (zh) 有机混合物及其在有机电子器件中的应用
WO2017092508A1 (zh) D-a型化合物及其应用
WO2015180524A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2018095394A1 (zh) 有机混合物、组合物及有机电子器件和应用
CN108137604B (zh) 并吡咯衍生物及其在有机电子器件的应用
WO2016086887A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2018103745A1 (zh) 咔唑类化合物及其应用
WO2018095392A1 (zh) 有机混合物、组合物以及有机电子器件
WO2018103744A1 (zh) 混合物、组合物及有机电子器件
CN109790087B (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
WO2019105326A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
US20190330152A1 (en) Fused ring compound, high polymer, mixture, composition, and organic electronic component
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2017118252A1 (zh) 含砜基稠杂环化合物及其应用
WO2022144018A1 (zh) 有机混合物及其在有机电子器件的应用
WO2019120177A1 (zh) 用于制备有机电子器件的组合物、有机电子器件及应用
US11672174B2 (en) Pyrene-triazine derivative and applications thereof in organic electronic component
WO2019120085A1 (zh) 包含有热激发延迟荧光材料的印刷油墨及其应用
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法
WO2018099432A1 (zh) 稠环化合物及制备方法和应用
WO2018099433A1 (zh) 稠环化合物及其应用、混合物、有机电子器件
WO2018099431A1 (zh) 芘类有机化合物及其制备方法和应用
WO2019114611A1 (zh) 芳香胺化合物,包含其的有机电子器件及应用
CN113816861B (zh) 芳香胺化合物、混合物、组合物及有机电子器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879177

Country of ref document: EP

Kind code of ref document: A1