WO2019128875A1 - 芳香胺衍生物及有机电子器件 - Google Patents

芳香胺衍生物及有机电子器件 Download PDF

Info

Publication number
WO2019128875A1
WO2019128875A1 PCT/CN2018/122766 CN2018122766W WO2019128875A1 WO 2019128875 A1 WO2019128875 A1 WO 2019128875A1 CN 2018122766 W CN2018122766 W CN 2018122766W WO 2019128875 A1 WO2019128875 A1 WO 2019128875A1
Authority
WO
WIPO (PCT)
Prior art keywords
atoms
group
substituted
aromatic
organic
Prior art date
Application number
PCT/CN2018/122766
Other languages
English (en)
French (fr)
Inventor
杨曦
潘君友
李冬云
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Publication of WO2019128875A1 publication Critical patent/WO2019128875A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • the invention relates to the field of electroluminescence technology, in particular to an aromatic amine derivative and an organic electronic device.
  • OLEDs Organic Light-Emitting Diodes
  • Organic electroluminescence refers to the phenomenon of converting electrical energy into light energy using organic matter.
  • An organic electroluminescence device utilizing an organic electroluminescence phenomenon generally has a structure in which a positive electrode and a negative electrode and an organic layer are contained therebetween.
  • the organic layer has a multilayer structure, and each layer contains a different organic substance. Specifically, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like may be included.
  • Such an organic electroluminescence device when a voltage is applied between the two electrodes, a hole is injected from the positive electrode into the organic layer, and a negative electrode is injected into the organic substance, and when the injected hole meets the electron, an exciton is formed. The excitons emit light when they transition back to the ground state.
  • Such an organic electroluminescence device has characteristics such as self-luminescence, high luminance, high efficiency, low driving voltage, wide viewing angle, high contrast, and high responsiveness.
  • R 101 -R 104 the same or different, said R 101 -R 104 are independently selected from H, straight chain alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, a branched or cyclic alkyl group having 3 to 20 C atoms, a branched or cyclic alkoxy group having 3 to 20 C atoms, having a branched or cyclic thioalkoxy group of 3 to 20 C atoms, a substituted or unsubstituted silyl group, a substituted ketone group having 1 to 20 C atoms, an alkane having 2 to 20 C atoms An oxycarbonyl group, an aryloxycarbonyl group having 7 to 20 C atoms, a cyano group, a carbamoyl group, a haloformyl group, a formyl group, an isocyano
  • n 0, 1, 2, 3 or 4;
  • B is selected from a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, and having 3 to 20 C atoms.
  • Ar 1 and Ar 2 are the same or different from each other; the Ar 1 and Ar 2 are independently selected from a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring atoms and having 5 to 40 ring atoms. One or more of an aryloxy or heteroaryloxy group;
  • R 109 -R 132 are the same or different from each other, and R 109 -R 132 are independently selected from H, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, a branched or cyclic alkyl group having 3 to 20 C atoms, a branched or cyclic alkoxy group having 3 to 20 C atoms, having a branched or cyclic thioalkoxy group of 3 to 20 C atoms, a substituted or unsubstituted silyl group, a substituted ketone group having 1 to 20 C atoms, an alkane having 2 to 20 C atoms An oxycarbonyl group, an aryloxycarbonyl group having 7 to 20 C atoms, a cyano group, a carbamoyl group, a haloformyl group, a formyl group
  • A is selected from a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, and 3 to 20 C atoms.
  • the dotted line indicates the single key of the connection.
  • a polymer in which at least one repeating unit comprises the above aromatic amine derivative comprises the above aromatic amine derivative.
  • a mixture comprising at least one organic functional material and the above aromatic amine derivative or the above polymer; wherein the organic functional material is selected from the group consisting of a hole injecting material, a hole transporting material, a hole blocking material, and an electron Injecting material, electron transporting material, electron blocking material, organic matrix material, singlet illuminant, triplet illuminant, thermally excited delayed fluorescent material or organic dye.
  • the organic functional material is selected from the group consisting of a hole injecting material, a hole transporting material, a hole blocking material, and an electron Injecting material, electron transporting material, electron blocking material, organic matrix material, singlet illuminant, triplet illuminant, thermally excited delayed fluorescent material or organic dye.
  • a composition comprising at least one organic solvent and the above aromatic amine derivative or the above polymer or a mixture thereof.
  • An organic electronic device comprising the above aromatic amine derivative or the above polymer or the above mixture, or a functional layer of the organic electronic device is prepared from the above composition.
  • the above aromatic amine derivative has a fluorescence emission having an emission wavelength at a short wavelength, and an emission spectrum thereof exhibits a narrow half-peak width, so that the substance has a deep blue fluorescence emission and has high luminous efficiency.
  • the organic electroluminescent device prepared by such an aromatic amine derivative has dark blue color coordinates, high luminous efficiency, and long device lifetime.
  • 1 is a schematic view showing the structure of an organic electronic device of an embodiment.
  • host material matrix material, Host material, and Matrix material have the same meaning and are interchangeable.
  • Metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and are interchangeable.
  • Compositions, printing inks, inks, and inks have the same meaning and are interchangeable.
  • the present invention provides an aromatic amine derivative of the formula (I):
  • R 101 -R 104 the same or different, said R 101 -R 104 are independently selected from H, straight chain alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, a branched or cyclic alkyl group having 3 to 20 C atoms, a branched or cyclic alkoxy group having 3 to 20 C atoms, having a branched or cyclic thioalkoxy group of 3 to 20 C atoms, a substituted or unsubstituted silyl group, a substituted ketone group having 1 to 20 C atoms, an alkane having 2 to 20 C atoms An oxycarbonyl group, an aryloxycarbonyl group having 7 to 20 C atoms, a cyano group, a carbamoyl group, a haloformyl group, a formyl group, an isocyano
  • n 0, 1, 2, 3 or 4;
  • B is selected from a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, and having 3 to 20 C atoms.
  • Ar 1 and Ar 2 are the same or different from each other; the Ar 1 and Ar 2 are independently selected from a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring atoms and having 5 to 40 ring atoms. One or more of an aryloxy or heteroaryloxy group;
  • R 109 -R 132 are the same or different from each other, and R 109 -R 132 are independently selected from H, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, a branched or cyclic alkyl group having 3 to 20 C atoms, a branched or cyclic alkoxy group having 3 to 20 C atoms, having a branched or cyclic thioalkoxy group of 3 to 20 C atoms, a substituted or unsubstituted silyl group, a substituted ketone group having 1 to 20 C atoms, an alkane having 2 to 20 C atoms An oxycarbonyl group, an aryloxycarbonyl group having 7 to 20 C atoms, a cyano group, a carbamoyl group, a haloformyl group, a formyl group
  • A is selected from a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, and 3 to 20 C atoms.
  • the dotted line indicates the single key of the connection.
  • R 101 -R 104 , Ar 1 , Ar 24 , R 109 -R 132 , A or B may be further substituted by D
  • R 101 -R 104 are the same or different from each other, and R 101 -R 108 are independently selected from H, D, a linear alkyl group having 1 to 10 C atoms, and having 1 to 10 C atoms.
  • n and n are independently 0, 1, or 2. Further, m and n are independently 0 or 1.
  • B is selected from the group consisting of a linear alkyl group having 1 to 10 C atoms, an alkoxy group having 1 to 10 C atoms, a thioalkoxy group having 1 to 10 C atoms, a branched or cyclic alkyl group of 3 to 10 C atoms, a branched or cyclic alkoxy group having 3 to 10 C atoms, a branched or cyclic thio group having 3 to 10 C atoms Alkoxy, substituted or unsubstituted silyl, substituted keto group having 1 to 10 C atoms, alkoxycarbonyl group having 2 to 10 C atoms, aryloxy group having 7 to 10 C atoms Carbonyl, carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxy, nitro, CF 3 , Cl, Br, crosslinkable group, having One or more of
  • Ar 1 , Ar 2 are independently selected from substituted or unsubstituted aromatic or heteroaromatic ring systems having 5 to 15 ring atoms and aryloxy groups having 5 to 15 ring atoms or One or more of the heteroaryloxy groups.
  • the aromatic ring system contains from 5 to 15 carbon atoms in the ring system. Further, the aromatic ring system contains 5 to 10 carbon atoms in the ring system.
  • the heteroaromatic ring system contains 2-15 carbon atoms and at least one hetero atom in the ring system, provided that the total number of carbon atoms and heteroatoms is at least 4.
  • the hetero atom is selected from one or more of Si, N, P, O, S, and Ge.
  • the hetero atom is selected from one or more of Si, N, P, O, and S. Further, the hetero atom is selected from N, O or S.
  • the heteroaromatic ring system contains from 2 to 10 carbon atoms in the ring system.
  • aromatic group refers to a hydrocarbon group containing at least one aromatic ring.
  • An aromatic ring system refers to a ring system comprising a monocyclic group and a polycyclic ring.
  • the above heteroaromatic group refers to a hydrocarbon group (containing a hetero atom) containing at least one heteroaromatic ring.
  • Heteroaromatic ring refers to a ring system comprising a monocyclic group and a polycyclic ring. These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring. At least one of these rings of the polycyclic ring is aromatic or heteroaromatic.
  • aromatic or heteroaromatic ring systems include not only aromatic or heteroaromatic systems, but also multiple aryl or heteroaryl groups may also be interrupted by short non-aromatic units ( ⁇ 10%).
  • Non-H atoms such as C, N or O atoms).
  • a plurality of aryl or heteroaryl groups may also be interrupted by short non-aromatic units (less than 5% atomic percent of non-H atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be aromatic ring systems for the purposes of the present invention.
  • the aromatic group is selected from the group consisting of benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzopyrene, triphenylene, anthracene, anthracene, spiro or a derivative thereof .
  • the heteroaromatic group is selected from the group consisting of furan, benzofuran, dibenzofuran, thiophene, benzothiophene, dibenzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, and evil.
  • R 109 -R 132 are independently selected from linear alkyl groups having 1 to 10 C atoms, alkoxy groups having 1 to 10 C atoms, and thio having 1 to 10 C atoms.
  • A is selected from the group consisting of a linear alkyl group having 1 to 10 C atoms, an alkoxy group having 1 to 10 C atoms, a thioalkoxy group having 1 to 10 C atoms, and having a branched or cyclic alkyl group of 3 to 10 C atoms, a branched or cyclic alkoxy group having 3 to 10 C atoms, a branched or cyclic thio group having 3 to 10 C atoms Alkoxy group, substituted ketone group having 1 to 10 C atoms, alkoxycarbonyl group having 2 to 10 C atoms, aryloxycarbonyl group having 7 to 10 C atoms, having 5 to 20 ring atoms One or more of a substituted or unsubstituted aromatic or heteroaromatic ring system and an aryloxy or heteroaryloxy group having 5 to 20 ring atoms. It should be noted that one or more of the above respective groups H may be further substituted
  • Ar 1 , Ar 2 are independently selected from any of the following groups:
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 are each independently selected from CR 3 or N;
  • R 3 , R 4 , R 5 are independently selected from H, D, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, and sulfur having 1 to 20 C atoms.
  • Ar 1 , Ar 2 are independently selected from any of the following groups, and the replaced H of any of the groups may be optionally substituted.
  • the aromatic amine derivative has the structure shown by the general formula (II-a)-(II-d):
  • R 101 and R 102 are independently selected from the group consisting of: H, D, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, sec-butyl, Tert-butyl, cyclobutyl, methylbutyl, n-pentyl, sec-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, ethylhexyl , trifluoromethyl, pentafluoroethyl, trifluoroethyl, vinyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptan
  • W is selected from CR 6 or N, and adjacent W is not N at the same time;
  • R 6 is selected from a linear alkyl group having 1 to 10 C atoms, an alkoxy group having 1 to 10 C atoms, a thioalkoxy group having 1 to 10 C atoms, a branched or cyclic alkyl group having 3 to 10 C atoms, a branched or cyclic alkoxy group having 3 to 10 C atoms, a branched or cyclic sulfur having 3 to 10 C atoms Alkenyloxy, substituted keto group having 1 to 10 C atoms, alkoxycarbonyl group having 2 to 10 C atoms, aryloxycarbonyl group having 7 to 10 C atoms, having 5 to 20 rings A substituted or unsubstituted aromatic or heteroaromatic ring system of an atom and one or more of an aryloxy or heteroaryloxy group having 5 to 20 ring atoms.
  • One or more of the various groups described above may be further substituted with D.
  • R 101 and R 102 are the same or differently selected from any of the following groups.
  • both R 101 and R 102 are selected from H. In another embodiment, both R 101 and R 102 are selected from D. In other embodiments, both R 101 and R 102 are selected from isopropyl. In other embodiments, both R 101 and R 102 are selected from isobutyl. In other embodiments, both R 101 and R 102 are selected from the group consisting of t-butyl.
  • both R 101 and R 102 are selected from the group consisting of trimethylsilane. In other embodiments, both R 101 and R 102 are selected from benzene.
  • both R 101 and R 102 are selected from the group consisting of diphenyl. In other embodiments, both R 101 and R 102 are selected from benzene or diphenyl containing at least one D atom.
  • R 101 and R 102 are the same or different from each other, and R 101 and R 102 are independently selected from the group consisting of H, D, methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl Base, isobutyl, sec-butyl, tert-butyl, cyclobutyl, methylbutyl, n-pentyl, sec-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, cycloheptyl, positive Octyl, cyclooctyl, ethylhexyl, trifluoromethyl, pentafluoroethyl, trifluoroethyl, vinyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, ring Hexenyl, he
  • Y is selected from CR 7 or N, and adjacent Y is not N at the same time;
  • R 7 is selected from H, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, and having 3 to 20 a branched or cyclic alkyl group of a C atom, a branched or cyclic alkoxy group having 3 to 20 C atoms, a branched or cyclic thioalkoxy group having 3 to 20 C atoms, a substituted or unsubstituted silyl group, a substituted ketone group having 1 to 20 C atoms, an alkoxycarbonyl group having 2 to 20 C atoms, an aryloxycarbonyl group having 7 to 20 C atoms, a cyano group , carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxy, nitro, CF 3 ,
  • R 7 is selected from the group consisting of a linear alkyl group having 1 to 10 C atoms, an alkoxy group having 1 to 10 C atoms, a thioalkoxy group having 1 to 10 C atoms, and having a branched or cyclic alkyl group of 3 to 10 C atoms, a branched or cyclic alkoxy group having 3 to 10 C atoms, a branched or cyclic thio group having 3 to 10 C atoms Alkoxy group, substituted ketone group having 1 to 10 C atoms, alkoxycarbonyl group having 2 to 10 C atoms, aryloxycarbonyl group having 7 to 10 C atoms, having 5 to 20 ring atoms One or more of a substituted or unsubstituted aromatic or heteroaromatic ring system and an aryloxy or heteroaryloxy group having 5 to 20 ring atoms.
  • One or more of the various groups described above may be further substituted with D.
  • R 101 and R 102 are the same or different from each other, and R 101 and R 102 are independently selected from an aromatic group as shown in any of the following:
  • the dotted line indicates the connected single bond.
  • a and B are independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclobutyl Methyl butyl, n-pentyl, sec-pentyl, cyclopentyl, n-hexyl, cyclohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, ethylhexyl, trifluoromethyl, Pentafluoroethyl, trifluoroethyl, vinyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octen
  • Y is selected from CR 401 or N, and adjacent Y is not N at the same time;
  • R 401 is selected from the group consisting of H, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, a thioalkoxy group having 1 to 20 C atoms, and having 3 to 20 a branched or cyclic alkyl group of a C atom, a branched or cyclic alkoxy group having 3 to 20 C atoms, a branched or cyclic thioalkoxy group having 3 to 20 C atoms, a substituted or unsubstituted silyl group, a substituted ketone group having 1 to 20 C atoms, an alkoxycarbonyl group having 2 to 20 C atoms, an aryloxycarbonyl group having 7 to 20 C atoms, a cyano group , carbamoyl, haloformyl, formyl, isocyano, isocyanate, thiocyanate, isothiocyanate, hydroxy, nitro
  • the dotted line indicates the single key of the connection.
  • R 401 is selected from the group consisting of a linear alkyl group having 1 to 10 C atoms, an alkoxy group having 1 to 10 C atoms, a thioalkoxy group having 1 to 10 C atoms, and having a branched or cyclic alkyl group of 3 to 10 C atoms, a branched or cyclic alkoxy group having 3 to 10 C atoms, a branched or cyclic thio group having 3 to 10 C atoms Alkoxy group, substituted ketone group having 1 to 10 C atoms, alkoxycarbonyl group having 2 to 10 C atoms, aryloxycarbonyl group having 7 to 10 C atoms, having 5 to 20 ring atoms One or more of a substituted or unsubstituted aromatic or heteroaromatic ring system and an aryloxy or heteroaryloxy group having 5 to 20 ring atoms.
  • One or more of the various groups described above may be further substituted with D.
  • a and B are independently selected from any of the following aromatic groups:
  • the dotted line indicates the connected single bond.
  • a and B are independently selected from the group consisting of methyl, isopropyl, isobutyl, tert-butyl, trimethylsilane, benzene, diphenyl, benzene containing at least one D, or at least one Diphenylene of D.
  • At least a portion of the above aromatic amine derivative is deuterated. In one embodiment, 10% of the above aromatic amine derivatives are deuterated. Further, 20% of the above aromatic amine derivatives are deuterated. Further, 30% of the above aromatic amine derivatives are deuterated. Further, 40% of the above aromatic amine derivatives are deuterated.
  • a specific example of an aromatic amine derivative according to the present invention is as follows, but is not limited thereto.
  • the aromatic amine derivative has luminescent properties with an emission wavelength between 300 and 1000 nm. Further, the aromatic amine derivative has an emission wavelength of between 350 and 900 nm. Further, the aromatic amine derivative has an emission wavelength of between 400 and 800 nm. In one embodiment, the aromatic amine derivative has an emission wavelength between 400 and 600 nm. Further, the aromatic amine derivative has an emission wavelength of between 400 and 500 nm. Among them, light refers to photoluminescence or electroluminescence.
  • the photoamine or electroluminescent efficiency of the aromatic amine derivative is > 30%. Further, the photoinduced or electroluminescent efficiency of the aromatic amine derivative is ⁇ 40%. Further, the photo- or electroluminescence efficiency of the aromatic amine derivative is ⁇ 50%. Still further, the photoinduced or electroluminescent efficiency of the aromatic amine derivative is ⁇ 60%.
  • the aromatic amine derivative is used in an evaporation type OLED device.
  • the molecular weight of the aromatic amine derivative is ⁇ 1100 g/mol.
  • the aromatic amine derivative has a molecular weight of ⁇ 1000 g/mol.
  • the aromatic amine derivative has a molecular weight of ⁇ 950 g/mol.
  • the aromatic amine derivative has a molecular weight of ⁇ 900 g/mol.
  • the aromatic amine derivative has a molecular weight of ⁇ 800 g/mol.
  • the aromatic amine derivative is used in a printed OLED.
  • the molecular weight of the aromatic amine derivative is ⁇ 700 g/mol.
  • the aromatic amine derivative has a molecular weight of ⁇ 800 g/mol.
  • the aromatic amine derivative has a molecular weight of > 900 g/mol.
  • the aromatic amine derivative has a molecular weight of > 1000 g/mol.
  • the aromatic amine derivative has a molecular weight of > 1100 g/mol.
  • the solubility of the above aromatic amine derivative in toluene is ⁇ 2 mg/ml at 25 °C. In one of the examples, the solubility of the above fused ring compound or polymer in toluene is > 3 mg/ml at 25 °C. In one of the examples, the solubility of the above fused ring compound or polymer in toluene is ⁇ 5 mg/ml at 25 °C.
  • active materials comprise at least one leaving group, for example, bromine, iodine, boric acid or a boronic ester.
  • Suitable reactions to form C-C linkages are well known to those skilled in the art and are described in the literature.
  • Particularly suitable and preferred coupling reactions are SUZUKI, STILLE and HECK coupling reactions.
  • the polymer of one embodiment wherein at least one repeating unit of the polymer comprises the above aromatic amine derivative.
  • the polymer is a non-conjugated high polymer, wherein, as in formula (I) or (II-a) or (II-b) or (II-c) or (II-d) or The structural unit represented by (III-a) or (III-b) or (III-c) or (III-d) is on the side chain.
  • the polymer is a conjugated polymer.
  • the method of synthesizing the polymer is selected from the group consisting of SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HART WIG-BUCHWALD- and ULLMAN.
  • the polymer has a glass transition temperature (Tg) ⁇ 100 °C. Further, the glass transition temperature of the polymer is ⁇ 120 °C. Further, the glass transition temperature of the polymer is ⁇ 140 °C. Still further, the glass transition temperature of the polymer is > 160 °C. Still further, the glass transition temperature of the polymer is > 180 °C.
  • Tg glass transition temperature
  • the polymer has a molecular weight distribution (PDI) of from 1 to 5. Further, the polymer has a molecular weight distribution of from 1 to 4. Further, the molecular weight distribution of the polymer is 1-3. Still further, the polymer has a molecular weight distribution of 1-2. Still further, the polymer has a molecular weight distribution of from 1 to 1.5.
  • PDI molecular weight distribution
  • the polymer has a weight average molecular weight (Mw) of from 10,000 to 1,000,000. Further, the polymer has a weight average molecular weight of 50,000 to 500,000. Further, the polymer has a weight average molecular weight of from 100,000 to 400,000. Further, the polymer has a weight average molecular weight of 150,000 to 300,000. Still further, the polymer has a weight average molecular weight of from 200,000 to 250,000.
  • Mw weight average molecular weight
  • the mixture of an embodiment comprises the above aromatic amine derivative or polymer, and at least another organic functional material.
  • the organic functional material is selected from the group consisting of a hole (also called a hole) injection or transport material (HIM/HTM), a hole blocking material (HBM), an electron injecting or transporting material (EIM/ETM), and an electron blocking material (EBM). , organic matrix material (Host), luminescent materials or organic dyes.
  • the luminescent material is a singlet illuminant (fluorescent illuminant), a triplet illuminant (phosphorescent illuminant) or a thermally excited delayed fluorescent material (TADF material).
  • Various organic functional materials are described in detail in, for example, WO2010135519A1, US20090134784A1, and WO 2011110277A1, the entire contents of each of which are hereby incorporated by reference.
  • the mixture comprises the above aromatic amine derivative or polymer, and a fluorescent host material (or singlet matrix material).
  • the above aromatic amine derivative or the above polymer may be used as a guest in a weight percentage of ⁇ 15% by weight.
  • the above aromatic amine derivative or the above-mentioned high polymer is ⁇ 12% by weight
  • the above aromatic amine derivative or the above polymer has a weight percentage of ⁇ 9 wt%
  • the above aromatic amine derivative or the above-mentioned high polymer has a weight percentage of ⁇ 7 wt%.
  • the mixture comprises the above aromatic amine derivative or the above-described polymer, another fluorescent illuminant (or singlet illuminant), and a fluorescent host material.
  • the above aromatic amine derivative or the above-mentioned high polymer may be used as an auxiliary luminescent material, and the weight ratio thereof to another fluorescent illuminant is from 1:2 to 2:1.
  • the mixture comprises one of the above aromatic amine derivatives or the above-described polymers, and a TADF material.
  • the mixture comprises an aromatic amine derivative as described above or a high polymer as described above, and an HTM material.
  • HTM singlet matrix materials
  • singlet emitters singlet emitters
  • Suitable organic HIM/HTM materials may optionally comprise compounds having the following structural units: phthalocyanine, porphyrin, amine, aromatic amine, biphenyl triarylamine, thiophene, thiophene such as dithienothiophene and thiophene, pyrrole, aniline , carbazole, azide and azepine and their derivatives.
  • suitable HIMs also include self-assembling monomers such as compounds containing phosphonic acid and sliane derivatives; metal complexes and crosslinking compounds and the like.
  • An electron blocking layer is used to block electrons from adjacent functional layers, particularly the luminescent layer.
  • the electron blocking material (EBM) of the electron blocking layer (EBL) requires a higher LUMO than an adjacent functional layer such as a light emitting layer.
  • the HBM has a larger excited state level than the adjacent luminescent layer, such as a singlet or triplet, depending on the illuminant, while the EBM has a hole transport function.
  • HIM/HTM materials that typically have high LUMO levels can be used as EBMs.
  • cyclic aromatic amine-derived compounds useful as HIM, HTM or EBM include, but are not limited to, the following general structures:
  • Each of Ar 1 to Ar 9 may be independently selected from the group consisting of a cyclic aromatic hydrocarbon compound such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalrene, phenanthrene, anthracene, anthracene, fluorene, anthracene, anthracene; Heterocyclic compounds such as dibenzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, oxazole, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, evil Triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, acesulfazine, oxadiazine, hydrazine
  • Ar 1 to Ar 9 may be independently selected from the group consisting of:
  • n is an integer from 1 to 20; X 1 to X 8 are CH or N; and Ar 1 is as defined above.
  • metal complexes that can be used as HTM or HIM include, but are not limited to, the following general structures:
  • M is a metal having an atomic weight greater than 40
  • (Y 1 -Y 2 ) is a two-dentate ligand, Y 1 and Y 2 are independently selected from C, N, O, P and S; L is an ancillary ligand; m is an integer from 1 to The maximum coordination number of this metal; m+n is the maximum coordination number of this metal.
  • (Y 1 -Y 2 ) is a 2-phenylpyridine derivative.
  • (Y 1 -Y 2 ) is a carbene ligand.
  • M is selected from Ir, Pt, Os, and Zn.
  • the HOMO of the metal complex is greater than -5.5 eV (relative to the vacuum level).
  • HIM/HTM compounds Suitable examples that can be used as HIM/HTM compounds are listed in the table below.
  • the example of the singlet host material is not particularly limited, and any organic compound may be used as the host as long as its singlet energy is higher than that of the illuminant, particularly the singlet illuminant or the luminescent illuminant.
  • Examples of the organic compound used as the singlet host material may be selected from the group consisting of a cyclic aromatic compound such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, anthracene, phenanthrene, anthracene, anthracene, fluorene, fluorene, fluorene, An aromatic heterocyclic compound such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, oxazole, carbazole, pyridine Anthraquinone, pyrrole dipyridine, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrim
  • the singlet host material can be selected from compounds comprising at least one of the following groups.
  • R 1 may be independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl;
  • Ar 1 is an aryl group Or a heteroaryl group, which has the same meaning as Ar 1 defined in the above HTM;
  • n is an integer from 0 to 20;
  • X 1 -X 8 is selected from CH or N;
  • X 9 and X 10 are selected from CR 1 R 2 Or NR 1 .
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1
  • indenoindenes and derivatives thereof disclosed in WO 2008/006449 and WO 2007/140847.
  • the singlet emitter may be selected from the group consisting of monostyrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether and arylamine.
  • a monostyrylamine refers to a compound comprising an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound comprising two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a ternary styrylamine refers to a compound comprising three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound comprising four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or substituted aromatic ring or heterocyclic systems bonded directly to the nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably selected from the fused ring system and preferably has at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine.
  • An aromatic amide refers to a compound in which a diaryl arylamine group is attached directly to the oxime, preferably at the position of 9.
  • An aromatic quinone diamine refers to a compound in which two diaryl arylamine groups are attached directly to the oxime, preferably at the 9,10 position.
  • the definitions of aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine are similar, wherein the diaryl aryl group is preferably bonded to the 1 or 1,6 position of hydrazine.
  • Examples of singlet emitters based on vinylamines and arylamines are also preferred examples and can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007 /115610, US 7250532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1, the entire contents of which are hereby incorporated by reference. This article is incorporated herein by reference.
  • Further preferred singlet emitters can be selected from indenoindole-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzoindoloindole-amines and benzoindenoindole-diamines , as disclosed in WO 2008/006449, dibenzoindolo-amine and dibenzoindeno-diamine, as disclosed in WO 2007/140847.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-bis(2-naphthoquinone), naphthalene, tetraphenyl, xanthene, phenanthrene , ⁇ (such as 2,5,8,11-tetra-t-butyl fluorene), anthracene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolevinyl)-1 , 1 '-biphenyl), indenyl hydrazine, decacycloolefin, hexacene benzene, anthracene, spirobifluorene, aryl hydrazine (such as US20060222886), arylene vinyl (such as US5121029, US5130603), cyclopentane Alkene such as tetraphenylcyclopentadiene, rub
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be converted into singlet exciton luminescence by anti-intersystem crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the material structure is controllable, the property is stable, the price is cheap, no precious metal is needed, and the application prospect in the OLED field is broad.
  • the TADF material needs to have a small singlet-triplet energy level difference, preferably ⁇ Est ⁇ 0.3 eV, and secondly ⁇ Est ⁇ 0.2 eV, preferably ⁇ Est ⁇ 0.1 eV.
  • the TADF material has a relatively small ⁇ Est, and in another preferred embodiment, the TADF has a better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al. Adv. Mater., 21, 2009, 4802, Adachi, et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem.
  • TADF luminescent materials Some examples of suitable TADF luminescent materials are listed in the table below.
  • composition of an embodiment comprises the above aromatic amine derivative or a polymer thereof or a mixture thereof, and an organic solvent.
  • the deuterated aromatic amine derivative is used as a singlet emitter material.
  • composition comprising a host material and the above aromatic amine derivative or a polymer thereof or a mixture thereof.
  • composition comprising at least two host materials and the above aromatic amine derivatives or polymers thereof or mixtures thereof.
  • composition comprising a host material, a thermally activated delayed fluorescent material, and the above aromatic amine derivative or polymer thereof or a mixture thereof.
  • a composition comprising a hole transporting material (HTM) and the above aromatic amine derivative or a polymer thereof or a mixture thereof.
  • HTM hole transporting material
  • a composition comprises a hole transporting material (HTM) comprising a crosslinkable group and the above aromatic amine derivative or a polymer thereof or a mixture thereof.
  • HTM hole transporting material
  • the above composition is a solution.
  • the above composition is a suspension.
  • 0.01% by weight to 20% by weight of the above aromatic amine derivative or a polymer thereof or the above mixture is included in the composition.
  • the composition comprises from 0.1% by weight to 15% by weight of the above aromatic amine derivative or a polymer thereof or a mixture thereof.
  • the composition comprises from 0.2% by weight to 10% by weight of the above aromatic amine derivative or a polymer thereof or a mixture thereof.
  • the composition comprises from 0.25 wt% to 5 wt% of the above aromatic amine derivative or a polymer thereof or a mixture thereof.
  • a composition the solvent used in the composition is selected from the group consisting of: an aromatic or heteroaromatic, an ester, an aromatic ketone or an aromatic ether, an aliphatic ketone or an aliphatic ether, an alicyclic or An olefinic compound, or an inorganic ester compound such as a boronic acid ester or a phosphate ester, or a mixture of two or more solvents.
  • composition comprising at least 50% by weight of an aromatic or heteroaromatic solvent
  • composition comprising at least 80% by weight of an aromatic or heteroaromatic solvent
  • composition comprising at least 90% by weight of an aromatic or heteroaromatic solvent.
  • examples based on aromatic or heteroaromatic solvents are, but are not limited to, 1-tetralone, 3-phenoxytoluene, acetophenone, 1-methoxynaphthalene, p-diiso Propylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3-isopropylbiphenyl, p-methylisopropylbenzene, dipentylbenzene, o-diethylbenzene , m-diethylbenzene, p-diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecane Benzobenzene, 1-methylnaphthalene, 1,2,4-trich
  • suitable and preferred solvents are aliphatic, cycloaliphatic or aromatic hydrocarbons, amines, thiols, amides, nitriles, esters, ethers, polyethers, alcohols, glycols or polyols.
  • the alcohol represents a suitable class of solvent.
  • Preferred alcohols include alkylcyclohexanols, especially methylated aliphatic alcohols, naphthols and the like.
  • the solvent may be a cycloalkane such as decalin.
  • the solvent may be used singly or as a mixture of two or more organic solvents.
  • the above composition comprises one of the above aromatic amine derivatives or a high polymer thereof, and at least one organic solvent, and may further comprise another organic solvent, and another organic solvent is exemplified.
  • organic solvent Including but not limited to: methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, and Xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1,1-trichloroethane 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene, de
  • the organic solvent in the above composition is a solvent having a Hansen solubility parameter in the following range:
  • ⁇ d (dispersion force) is in the range of 17.0 to 23.2 MPa 1/2 , especially in the range of 18.5 to 21.0 MPa 1/2 ;
  • ⁇ p polar forces in the range of 0.2 ⁇ 12.5MPa 1/2, especially in the 2.0 ⁇ 6.0MPa 1/2;
  • the boiling point parameter should be considered when selecting the organic solvent in the above composition.
  • the organic solvent has a boiling point ⁇ 150 ° C; in one embodiment, the organic solvent has a boiling point ⁇ 180 ° C; in one embodiment, the organic solvent has a boiling point ⁇ 200 ° C In one embodiment, the organic solvent has a boiling point ⁇ 250 ° C; in one embodiment, the organic solvent has a boiling point ⁇ 275 ° C; in one embodiment, the organic solvent has a boiling point ⁇ 300 °C.
  • the boiling points within these ranges are beneficial for preventing nozzle clogging of the inkjet printhead.
  • the organic solvent can be evaporated from the solvent system to form a film comprising the functional material.
  • a composition the viscosity of the selected solvent, has a surface tension as follows:
  • the surface tension parameter should be considered when selecting the organic solvent in the above composition. Suitable ink surface tension parameters are suitable for a particular substrate and a particular printing method. For example, for inkjet printing, in one embodiment, the surface tension of the organic solvent at 25 ° C is in the range of about 19 dyne / cm to 50 dyne / cm; the surface tension of the organic solvent at 25 ° C is about 22 dyne The range of /cm to 35dyne/cm; the surface tension of the organic solvent at 25 ° C is in the range of about 25 dyne / cm to 33 dyne / cm.
  • the surface tension of the ink at 25 ° C is in the range of from about 19 dyne / cm to 50 dyne / cm; in one embodiment, the surface tension of the ink at 25 ° C is in the range of from about 22 dyne / cm to 35 dyne / cm; In one embodiment, the ink has a surface tension at 25 ° C ranging from about 25 dyne/cm to 33 dyne/cm.
  • the viscosity parameter of the ink should be considered when selecting the organic solvent in the composition.
  • the viscosity can be adjusted by different methods, such as by the selection of a suitable organic solvent and the concentration of the functional material in the ink.
  • the organic solvent has a viscosity of less than 100 cps; in one embodiment, the organic solvent has a viscosity of less than 50 cps; in one embodiment, the organic solvent has a viscosity of 1.5 to 20cps.
  • the viscosity herein refers to the viscosity at ambient temperature at the time of printing, and is usually 15 to 30 ° C, preferably 18 to 28 ° C, more preferably 20 to 25 ° C, and most preferably 23 to 25 ° C. Compositions so formulated will be particularly suitable for ink jet printing.
  • a composition has a viscosity at 25 ° C in the range of from about 1 cps to about 100 cps; in one embodiment, a composition having a viscosity at 25 ° C in the range of from about 1 cps to about 50 cps; In one embodiment, a composition has a viscosity at 25 ° C in the range of from about 1.5 cps to about 20 cps.
  • An ink obtained by an organic solvent satisfying the above boiling point and surface tension parameters and viscosity parameters can form a functional material film having uniform thickness and composition properties.
  • the organic electronic device is selected from the group consisting of an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic laser.
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OEEC organic light emitting cell
  • OFET organic field effect transistor
  • organic light emitting field effect transistor an organic light emitting field effect transistor
  • organic laser organic laser.
  • Organic spintronic devices organic sensors or Organic Plasmon Emitting Diodes.
  • the above aromatic amine derivative or a polymer or mixture thereof is formed into a functional layer on a substrate by evaporation, or a function is formed on a substrate by co-evaporation together with at least one other organic functional material.
  • a layer, or coating the above composition on a substrate by printing or coating to form a functional layer wherein the printing or coating method can be selected from, but not limited to, inkjet printing, printing (Nozzle Printing) ), typography, screen printing, dip coating, spin coating, knife coating, roller printing, torsion roll printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit extrusion Pressure coating, etc.
  • the above composition is used as a printing ink for the preparation of an organic electronic device.
  • the above-described organic electronic device is prepared by a printing or coating preparation method.
  • suitable printing or coating techniques can be inkjet printing, letterpress printing, screen printing, dip coating, spin coating, blade coating, roller printing, torsion roller printing, lithography, flexographic printing, and rotary printing. , spraying, brushing or pad printing, slit type extrusion coating, etc.
  • Preferred are gravure, screen printing and inkjet printing. Gravure printing, ink jet printing will be applied in embodiments of the invention.
  • the solution or suspension may additionally comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the functional layer formed by the above described preparation method has a thickness of from 5 nm to 1000 nm.
  • the organic electronic device of an embodiment comprises a functional layer comprising the above fused ring compound or the above polymer or a mixture thereof, or the functional layer is prepared from the above composition.
  • the organic electronic device comprises at least one cathode, one anode, and a functional layer between the cathode and the anode, wherein the functional layer contains at least one of the above aromatic amine derivatives.
  • the organic electronic device is an electroluminescent device.
  • the electroluminescent device is an OLED. As shown in FIG. 1, the OLED includes a substrate 101, an anode 102, a light-emitting layer 104, and a cathode 106 which are sequentially stacked.
  • the substrate 101 can be opaque or transparent.
  • the transparent substrate 101 can be used to make a transparent luminescent component, see Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can also be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in a polymeric film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, and most preferably more than 300 ° C. .
  • the flexible substrate can be poly(ethylene terephthalate) (PET) or polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode 102 can include a conductive metal, a metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5eV.
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.3eV. In one embodiment, the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.2eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • Cathode 106 can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or an electron transport layer (ETL) or a hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in the conduction band energy level is less than 0.5 eV.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or an electron transport layer (ETL) or a hole blocking layer (HBL) in the luminescent layer or
  • the absolute value of the difference in conduction band energy levels is less than 0.3 eV.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or an electron transport layer (ETL) or a hole blocking layer (HBL) in the luminescent layer or
  • the absolute value of the difference in conduction band energy levels is less than 0.2 eV.
  • cathode materials for the devices of the invention.
  • the cathode material include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further comprise other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL) or a hole blocking layer. (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • Materials suitable for use in these functional layers are described in detail in WO2010135519A1, US20090134784A1, and WO2011110277A1, the entire contents of each of which are hereby incorporated by reference.
  • the OLED further includes a hole transport layer 103 between the anode 102 and the light emitting layer 104 and an electron transport layer 105 between the light emitting layer 104 and the cathode 106.
  • the light-emitting layer 104 is formed by vacuum evaporation, and the evaporation source contains the above aromatic amine derivative.
  • the light-emitting layer 104 is prepared by printing from the above composition.
  • the electroluminescent device has an emission wavelength between 300 and 1000 nm. In one of the embodiments, the electroluminescent device has an emission wavelength between 350 and 900 nm. In one of the embodiments, the electroluminescent device has an emission wavelength between 400 and 800 nm.
  • the electronic device is a display device, a lighting device, a light source or a sensor, and the like.
  • An electronic device of an embodiment includes the above-described organic electronic device.
  • the electronic device is a display device, a lighting device, a light source or a sensor, and the like.
  • 9-1 (10.6 g, 28 mmol), 9-2 (6.2 g, 14 mmol), Pd(dba) 2 (800 mg, 1.4 mmol) and sodium tert-butoxide (13.4 g, 140 mmol) were placed in a 500 mL dry double-mouth bottle
  • 180 mL of anhydrous toluene and 8.0 mL of tBu 3 P were added under a nitrogen atmosphere, and stirred at 100 ° C overnight. After the reaction was cooled, it was washed with water, dried, and then purified by column chromatography.
  • ITO/HIL 5 nm) / HTL (35 nm) / Host: 5% Dopant (25 nm) / ETL (28 nm) / cathode, wherein Dopant weighs 5% by weight of Host, and Dopant and Host constitute an EML layer.
  • HIL MoO 3
  • HTL a triarylamine derivative, specifically NPD
  • Host anthracene derivative
  • a, cleaning of the conductive glass substrate when used for the first time, can be washed with a variety of solvents, such as chloroform, ketone, isopropyl alcohol, and then UV ozone plasma treatment;
  • HIL 50 nm
  • HTL 35 nm
  • EML 25 nm
  • ETL 28 nm
  • cathode LiQ / Al (1nm / 150nm) in a high vacuum (1 ⁇ 10 -6 mbar) in the thermal evaporation;
  • the device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • the current-voltage (J-V) characteristics of each OLED device are characterized by characterization equipment while recording important parameters such as efficiency, lifetime and external quantum efficiency, as shown in Table 1.
  • the color coordinates of the blue light device prepared by using Compound 1 - Compound 12 as the EML layer illuminator were more preferably superior to Comparative Compound 1 and Comparative Compound 2.
  • the luminous efficiency of the blue light device prepared by using Compound 1 - Compound 12 as the EML layer illuminant is in the range of 8-9 cd/A, which has more excellent luminous efficiency; in terms of device lifetime, Compound 1 - Compound 12 is used as the EML layer.
  • the lifetime of the blue light device prepared by the illuminant is better than that of the comparative compound 1 and the comparative compound 2.
  • the color coordinates of the blue light device prepared by Compound 1 - Compound 12 are much better than that of Comparative Compound 2, which indicates that the design of the substituent substituted by the specific position employed in the present invention has a very large positive effect on the luminescent color, which is advantageous for obtaining More excellent blue light.
  • the special position-substituted substituent design employed in the present invention also has a very large improvement over the unsubstituted comparative compound.

Abstract

本发明涉及一种芳香胺衍生物及有机电子器件,该芳香胺衍生物的结构如通式(1)所示,该通式(1)中的符号的定义与说明书中的相同。上述芳香胺衍生物,具有发光波长位于短波长的荧光发射,其发光光谱表现为具有窄的半峰宽,从而该类物质具有深蓝色的荧光发射,且具有高的发光效率。以此类芳香胺衍生物制备得到的有机电致发光元件具有深蓝的色坐标、高的发光效率、及长的器件寿命。

Description

芳香胺衍生物及有机电子器件
本申请要求于2017年12月29日提交中国专利局、申请号为201711481138.8发明名称为“芳香胺衍生物及有机电子器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电致发光技术领域,特别是涉及一种芳香胺衍生物及有机电子器件。
背景技术
由于有机半导体材料在合成上具有多样性、制造成本相对较低及优良的光学与电学性能,有机发光二极管(Organic Light-Emitting Diode,OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
有机电致发光现象是指利用有机物质将电能转化为光能的现象。利用有机电致发光现象的有机电致发光元件通常具有正极与负极以及在它们中间包含有机物层的结构。为了提高有机电致发光元件的效率与寿命,有机物层具有多层结构,每一层包含有不同的有机物质。具体的,可以包括空穴注入层、空穴传输层、发光层、电子传输层、电子注入层等。在这种有机电致发光元件中,在两个电极之间施加电压,则由正极向有机物层注入空穴,有负极向有机物曾注入电子,当注入的空穴与电子相遇时形成激子,该激子跃迁回基态时发出光。这种有机电致发光元件具有自发光、高亮度、高效率、低驱动电压、广视角、高对比度及高响应性等特性。
为了提高有有机电致发光元件的发光效率,各种基于荧光和磷光的发光材料体系已被开发出来,而无论是荧光材料还是磷光材料,优秀的蓝光材料的开发都是一个巨大的挑战,总体而言,目前使用的蓝光荧光材料的有机发光二级管可靠性更高。尽管如此,一般地,大多数蓝光荧光材料的发射光谱过宽,色纯度较差,不利于高端显示,并且这类荧光材料的合成也较复杂,不利于大规模量产,同时这类蓝色荧光材料的OLED稳定性还需进一步提高。
发明内容
基于此,有必要针对传统的电子器件的发光效率低和稳定性差的问题,提供一种芳香胺衍生物及有机电子器件。
一种如通式(I)所示的芳香胺衍生物:
Figure PCTCN2018122766-appb-000001
其中,R 101-R 104彼此相同或不同,所述R 101-R 104独立地选自H、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或者多种;其中,R 101-R 104 中的至少一个与所键合的环形成单环或多环的脂族或芳族环,或者R 301-R 304中的至少两个相互之间形成单环或多环的脂族或芳族环;
m和n独立地为0、1、2、3或4;
B选自具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
Ar 1、Ar 2彼此相同或不同;所述Ar 1、Ar 2独立地选自具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
并且,所述Ar 1、Ar 2中至少有一个的结构如通式(I-a)-(I-d)中的任一结构所示:
Figure PCTCN2018122766-appb-000002
其中,R 109-R 132彼此相同或不同,所述R 109-R 132独立地选自H、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;其中,R 109-R 132中的至少一个与所键合的环形成单环或多环的脂族或芳族环系,或者R 109-R 132中的至少两个相互之间形成单环或多环的脂族或芳族环系;
A选自具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
虚线表示连接的单键。
一种聚合物,所述聚合物中至少一个重复单元包括上述芳香胺衍生物。
一种混合物,所述混合物包括至少一种有机功能材料以及上述芳香胺衍生物或者上述聚合物;其中,所述有机功能材料选自空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料、有机基质材料、单重态发光体、三重态发光体、热激发延迟荧光材料或者有机染料。
一种组合物,所述组合物包括至少一种有机溶剂以及上述芳香胺衍生物或上述聚合物或上述混合物。
一种有机电子器件,所述有机电子器件包括上述芳香胺衍生物或者上述聚合物或者上述混合物,或者所述有机电子器件的功能层由上述组合物制备而成。
有益效果:上述芳香胺衍生物,具有发光波长位于短波长的荧光发射,其发光光谱表现 为具有窄的半峰宽,从而该类物质具有深蓝色的荧光发射,且具有高的发光效率。以此类芳香胺衍生物制备得到的有机电致发光元件具有深蓝的色坐标、高的发光效率、及长的器件寿命。
附图说明
图1为一实施例的有机电子器件的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本文中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。组合物、印刷油墨、油墨、和墨水具有相同的含义,可以互换。
本发明提供一种如通式(I)所示的芳香胺衍生物:
Figure PCTCN2018122766-appb-000003
其中,R 101-R 104彼此相同或不同,所述R 101-R 104独立地选自H、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或者多种;其中,R 101-R 104中的至少一个与所键合的环形成单环或多环的脂族或芳族环,或者R 301-R 304中的至少两个相互之间形成单环或多环的脂族或芳族环;
m和n独立地为0、1、2、3或4;
B选自具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
Ar 1、Ar 2彼此相同或不同;所述Ar 1、Ar 2独立地选自具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
并且,所述Ar 1、Ar 2中至少有一个的结构如通式(I-a)-(I-d)中的任一结构所示:
Figure PCTCN2018122766-appb-000004
其中,R 109-R 132彼此相同或不同,所述R 109-R 132独立地选自H、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;其中,R 109-R 132中的至少一个与所键合的环形成单环或多环的脂族或芳族环系,或者R 109-R 132中的至少两个相互之间形成单环或多环的脂族或芳族环系;
A选自具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
虚线表示连接的单键。
需要说明的是,R 101-R 104、Ar 1、Ar 24、R 109-R 132、A或者B中的一个或多个H还可进一步被D所取代
在其中一个实施例中,R 101-R 104彼此相同或不同,R 101-R 108独立地选自H、D、具有1至10个C原子的直链烷基、具有1至10个C原子的烷氧基、具有1至10个C原子的硫代烷氧基、具有3至10个C原子的支链或环状的烷基、具有3至10个C原子的支链或环状的烷氧基、具有3至10个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至10个C原子的取代的酮基、具有2至10个C原子的烷氧基羰基、具有7至10个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至20个环原子的取代或未取代的芳族或杂芳族环系以及具有5至20个环原子的芳氧基或杂芳氧基基团中的一种或多种。需要说明的是,以上各种基团中的一个或多个H还可进一步被D取代。
在其中一个实施例中,m和n独立地为0、1或2。进一步地,m和n独立地为0或1。
在其中一个实施例中,B选自具有1至10个C原子的直链烷基、具有1至10个C原子的烷氧基、具有1至10个C原子的硫代烷氧基、具有3至10个C原子的支链或环状的烷基、具有3至10个C原子的支链或环状的烷氧基、具有3至10个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至10个C原子的取代的酮基、具有2至10个C原子的烷氧基羰基、具有7至10个C原子的芳氧基羰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、可交联的基团、具有5至20个环原子的取代或未取代的芳族或杂芳族环系以及具有5至20个环原子的芳氧基或杂芳氧基基团中的一种或多种。需要说明的是,以上各种基团中的一个或多个H还可进一步被D取代。
在其中一个实施例中,Ar 1、Ar 2独立地选自具有5至15个环原子的取代或未取代的芳族或杂芳族环系以及具有5至15个环原子的芳氧基或杂芳氧基基团中的一种或多种。
在其中一个实施例中,芳香环系在环系中包含5-15个碳原子。进一步地,芳香环系在环系中包含5-10个碳原子。杂芳香环系在环系中包含2-15个碳原子和至少一个杂原子,条件是碳原子和杂原子的总数至少为4。杂原子选自Si、N、P、O、S以及Ge中的一种或多种。在其中一个实施例中,杂原子选自Si、N、P、O以及S中的一种或多种。进一步地,杂原子选自N、O或S。在其中一个实施例中,杂芳香环系在环系中包含2-10个碳原子。
需要说明的是,芳族基团指的是至少包含一个芳环的烃基。芳香环系指的是包括单环基团和多环的环系统。上述杂芳族基团指的是包含至少一个杂芳环的烃基(含有杂原子)。杂芳香环系指的是包括单环基团和多环的环系统。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香族或杂芳香族环系不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳基也可以被短的非芳族单元间断(<10%的非H原子,比如C、N或O原子)。在其中一个实施例中,多个芳基或杂芳基也可以被短的非芳族单元间断(小于5%原子数占比的非H原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族环系。
在其中一个实施例中,芳族基团选自苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、螺芴或它们的衍生物。
在其中一个实施例中,杂芳族基团选自呋喃、苯并呋喃、二苯并呋喃、噻吩、苯并噻吩、二苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮或它们的衍生物。
在一些实施例中,R 109-R 132独立地选自具有1至10个C原子的直链烷基、具有1至10个C原子的烷氧基、具有1至10个C原子的硫代烷氧基、具有3至10个C原子的支链或环状的烷基、具有3至10个C原子的支链或环状的烷氧基、具有3至10个C原子的支链或环状的硫代烷氧基、具有1至10个C原子的取代的酮基、具有2至10个C原子的烷氧基羰基、具有7至10个C原子的芳氧基羰基、具有5至20个环原子的取代或未取代的芳族或杂芳族环系以及具有5至20个环原子的芳氧基或杂芳氧基基团中的一种或多种。需要说明的是,以上各个基团中的一个或多个H可进一步被D取代。
在其中一个实施例中,A选自具有1至10个C原子的直链烷基、具有1至10个C原子的烷氧基、具有1至10个C原子的硫代烷氧基、具有3至10个C原子的支链或环状的烷基、具有3至10个C原子的支链或环状的烷氧基、具有3至10个C原子的支链或环状的硫代烷氧基、具有1至10个C原子的取代的酮基、具有2至10个C原子的烷氧基羰基、具有7至10个C原子的芳氧基羰基、具有5至20个环原子的取代或未取代的芳族或杂芳族环系以及具有5至20个环原子的芳氧基或杂芳氧基基团中的一种或多种。需要说明的是,以上各个基团中的一个或多个H可进一步被D取代。
在其中一个实施例中,Ar 1、Ar 2独立地选自如下任一基团:
Figure PCTCN2018122766-appb-000005
其中,A 1、A 2、A 3、A 4、A 5、A 6、A 7、A 8分别独立地选自CR 3或N;
Y 1选自CR 4R 5、SiR 4R 5、NR 3、C(=O)、S或O;
R 3、R 4、R 5独立地选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基基团、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状 的硫代烷氧基基团、取代或未取代的甲硅烷基基团、具有1至20个C原子的取代的酮基基团、具有2至20个C原子的烷氧基羰基基团、具有7至20个C原子的芳氧基羰基基团、氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF 3基团、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;其中,一个或多个基团R 3,R 4,R 5可以彼此和/或与所键合的环形成单环或多环的脂族或芳族环系。
在一些实施例中,Ar 1、Ar 2独立地选自如下任一基团,任一基团的换上的H可被任意取代。
Figure PCTCN2018122766-appb-000006
在一些实施例中,芳香胺衍生物具有通式(II-a)-(II-d)所示的结构:
Figure PCTCN2018122766-appb-000007
在一些实施例中,R 101和R 102独立地选自:H、D、甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、甲基丁基、正戊基、仲戊基、环戊基、正己基、环己基、正庚基、环庚基、正辛基、环辛基、乙基己基、三氟甲基、五氟乙基、三氟乙基、乙烯基、丙烯基、丁烯基、戊烯基、环戊烯基、己烯基、环己烯基、庚烯基、环庚烯基、辛烯基、环辛烯基、乙炔基、丙炔基、丁炔基、戊炔基、己炔基、辛炔基、甲氧基、三氟甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基、甲基丁氧基、三甲基硅烷或者如下任一结构所示的芳香族基团:
Figure PCTCN2018122766-appb-000008
其中,W选自CR 6或N,且相邻的W不同时为N;
R 6选自H、D、具有1至20个C原子的直链烷基、有1至20个C原子的烷氧基、有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基(-CN)、氨基甲酰基(-C(=O)NH 2)、卤甲酰基、甲酰基(-C(=O)-H)、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;其中,一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系;虚线表示连接的单键。以上所述的各种基团中的一个或多个H还可进一步被D所取代。
在其中一个实施例中,R 6选自具有1至10个C原子的直链烷基、具有1至10个C原子的烷氧基、具有1至10个C原子的硫代烷氧基、具有3至10个C原子的支链或环状的烷基、具有3至10个C原子的支链或环状的烷氧基、具有3至10个C原子的支链或环状的硫代烷氧基、具有1至10个C原子的取代的酮基、具有2至10个C原子的烷氧基羰基、具有7至10个C原子的芳氧基羰基、具有5至20个环原子的取代或未取代的芳族或杂芳族环系以及具有5至20个环原子的芳氧基或杂芳氧基基团中的一种或多种。以上所述的各种基团中的一个或多个H还可进一步被D所取代。
在一些实施例中,R 101和R 102相同或不同地选自如下任一基团。
Figure PCTCN2018122766-appb-000009
在一些实施例中,R 101和R 102都选自H。在另一个实施例中,R 101和R 102都选自D。在另一些实施例中,R 101和R 102都选自异丙基。在另一些实施例中,R 101和R 102都选自异丁基。在另一些实施例中,R 101和R 102都选自叔丁基。
在一些实施例中,R 101和R 102都选自三甲基硅烷。在另一些实施例中,R 101和R 102都选自苯。
在一些实施例中,R 101和R 102都选自二连苯。在另一些实施例中,R 101和R 102都选自至少含有一个D原子的苯或二连苯。
在另一些实施例中,R 101和R 102彼此相同或不同,R 101和R 102独立地选自H、D、甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、甲基丁基、正戊基、仲戊基、环戊基、正己基、环己基、正庚基、环庚基、正辛基、环辛基、乙基己基、三氟甲基、五氟乙基、三氟乙基、乙烯基、丙烯基、丁烯基、戊烯基、环戊烯基、己烯基、环己烯基、庚烯基、环庚烯基、辛烯基、环辛烯基、乙炔基、丙炔基、丁炔基、戊炔基、己炔基、辛炔基、甲氧基、三氟甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基、甲基丁氧基、三甲基硅烷或如下任一芳香族基团:
Figure PCTCN2018122766-appb-000010
其中,Y选自CR 7或N,且相邻的Y不同时为N;
R 7选自H、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或无取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;其中,一个或多个基团可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系;虚线表示连接的单键。以上所述的各种基团中的一个或多个H还可进一步被D所取代。
在一实施例中,R 7选自具有1至10个C原子的直链烷基、具有1至10个C原子的烷氧基、具有1至10个C原子的硫代烷氧基、具有3至10个C原子的支链或环状的烷基、具有3至10个C原子的支链或环状的烷氧基、具有3至10个C原子的支链或环状的硫代烷氧基、具有1至10个C原子的取代的酮基、具有2至10个C原子的烷氧基羰基、具有7至10个C原子的芳氧基羰基、具有5至20个环原子的取代或未取代的芳族或杂芳族环系以及具有5至20个环原子的芳氧基或杂芳氧基基团中的一种或多种。以上所述的各种基团中的一个或多个H还可进一步被D所取代。
在一些实施例中,R 101和R 102彼此相同或不同,R 101和R 102独立地选自如下任一所示的芳香族基团:
Figure PCTCN2018122766-appb-000011
其中,虚线表示连接的单键。
在一些实施例中,A和B相同或不同,A和B独立的选自D、具有1至10个C原子的直链烷基、具有1至10个C原子的烷氧基、具有1至10个C原子的硫代烷氧基、具有3至 10个C原子的支链或环状的烷基、具有3至10个C原子的支链或环状的烷氧基、具有3至10个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至10个C原子的取代的酮基、具有2至10个C原子的烷氧基羰基、具有7至10个C原子的芳氧基羰基、氰基(-CN)、氨基甲酰基(-C(=O)NH 2)、卤甲酰基(-C(=O)-X,其中X代表卤素原子)、甲酰基(-C(=O)-H)、异氰基、异氰酸酯、硫氰酸酯或异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至20个环原子的取代或未取代的芳族或杂芳族环系以及具有5至20个环原子的芳氧基或杂芳氧基基团中的一种或多种。以上所述的各种基团中的一个或多个H还可进一步被D所取代。
在另一些实施例中,A和B独立地选自甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、甲基丁基、正戊基、仲戊基、环戊基、正己基、环己基、正庚基、环庚基、正辛基、环辛基、乙基己基、三氟甲基、五氟乙基、三氟乙基、乙烯基、丙烯基、丁烯基、戊烯基、环戊烯基、己烯基、环己烯基、庚烯基、环庚烯基、辛烯基、环辛烯基、乙炔基、丙炔基、丁炔基、戊炔基、己炔基、辛炔基、甲氧基、三氟甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基、甲基丁氧基、三甲基硅烷或者如下任一结构所示的芳香族基团:
Figure PCTCN2018122766-appb-000012
其中,Y选自CR 401或N,且相邻的Y不同时为N;
R 401选自H、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或无取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;其中,所述R 401与所键合的环形成单环或多环的脂族或芳族环;
虚线表示连接的单键。
在一实施例中,R 401选自具有1至10个C原子的直链烷基、具有1至10个C原子的烷氧基、具有1至10个C原子的硫代烷氧基、具有3至10个C原子的支链或环状的烷基、具有3至10个C原子的支链或环状的烷氧基、具有3至10个C原子的支链或环状的硫代烷氧基、具有1至10个C原子的取代的酮基、具有2至10个C原子的烷氧基羰基、具有7至10个C原子的芳氧基羰基、具有5至20个环原子的取代或未取代的芳族或杂芳族环系以及具有5至20个环原子的芳氧基或杂芳氧基基团中的一种或多种。以上所述的各种基团中的一个或多个H还可进一步被D所取代。
在一些实施例中,A和B独立地选自如下任一芳香族基团:
Figure PCTCN2018122766-appb-000013
其中,虚线表示连接的单键。
在另一些实施例中,A和B独立地选自甲基、异丙基、异丁基、叔丁基、三甲基硅烷、苯、二连苯、含有至少一个D的苯或含有至少一个D的二连苯。
在其中一个实施例中,上述芳香胺衍生物中至少部分H被氘代。在其中一个实施例中,上述芳香胺衍生物中的10%H被氘代。进一步地,上述芳香胺衍生物中的20%H被氘代。更进一步地,上述芳香胺衍生物中的30%H被氘代。更更进一步地,上述芳香胺衍生物中的40%H被氘代。
按照本发明的一种芳香胺衍生物,其具体的例子如下,但不仅限于此。
Figure PCTCN2018122766-appb-000014
Figure PCTCN2018122766-appb-000015
Figure PCTCN2018122766-appb-000016
Figure PCTCN2018122766-appb-000017
Figure PCTCN2018122766-appb-000018
Figure PCTCN2018122766-appb-000019
Figure PCTCN2018122766-appb-000020
Figure PCTCN2018122766-appb-000021
在其中一个实施例中,芳香胺衍生物具有发光性能,其发光波长在300-1000nm之间。进一步地,芳香胺衍生物的发光波长在350-900nm之间。更进一步地,芳香胺衍生物的发光波长在400-800nm之间。在其中一个实施例中,芳香胺衍生物的发光波长在400-600nm之间。进一步地,芳香胺衍生物的发光波长在400-500nm之间。其中,发光指的是光致发光或者电致发光。
在其中一个实施例中,芳香胺衍生物的光致或电致发光效率≥30%。进一步地,芳香胺衍生物的光致或电致发光效率≥40%。更进一步地,芳香胺衍生物的光致或电致发光效率≥50%。更更进一步地,芳香胺衍生物的光致或电致发光效率≥60%。
在其中一个实施例中,该芳香胺衍生物用于蒸镀型OLED器件。此时,该芳香胺衍生物的分子量≤1100g/mol。在其中一个实施例中,芳香胺衍生物的分子量≤1000g/mol。在其中一个实施例中,芳香胺衍生物的分子量≤950g/mol。在其中一个实施例中,芳香胺衍生物的分子量≤900g/mol。在其中一个实施例中,芳香胺衍生物的分子量≤800g/mol。
在其中一个实施例中,该芳香胺衍生物用于印刷型OLED。此时,该芳香胺衍生物的分子量≥700g/mol。在其中一个实施例中,芳香胺衍生物的分子量≥800g/mol。在其中一个实施例中,芳香胺衍生物的分子量≥900g/mol。在其中一个实施例中,芳香胺衍生物的分子量≥1000g/mol。在其中一个实施例中,芳香胺衍生物的分子量≥1100g/mol。
在其中一个实施例中,在25℃时,上述芳香胺衍生物在甲苯中的溶解度≥2mg/ml。在其中一个实施例中,在25℃时,上述稠环化合物或聚合物在甲苯中的溶解度≥3mg/ml。在其中一个实施例中,在25℃时,上述稠环化合物或聚合物在甲苯中的溶解度≥5mg/ml。
上述芳香胺衍生物在墨水中的应用。进一步地,上述芳香胺衍生物在有机电子器件中的应用。
一种如上述任一通式所示的芳香胺衍生物的合成方法,其中使用含有活性基团的原料进行反应。这些活性原料包含至少一种离去基团,例如,溴,碘,硼酸或硼酸酯。形成C-C连接的适当的反应是本领域技术人员熟知的并描述于文献中,特别适当和优选的偶联反应是SUZUKI,STILLE和HECK偶联反应。
一实施例的聚合物,该聚合物中至少有一个重复单元包含上述芳香胺衍生物。在其中一个实施例中,该聚合物是非共轭高聚物,其中,如通式(I)或(II-a)或(II-b)或(II-c)或(II-d)或(III-a)或(III-b)或(III-c)或(III-d)所示的结构单元在侧链上。在另一个实施例中,该聚合物是共轭高聚物。
在其中一个实施例中,聚合物的合成方法选自SUZUKI-,YAMAMOTO-,STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HART WIG-BUCHWALD-和ULLMAN。
在其中一个实施例中,聚合物的玻璃化温度(Tg)≥100℃。进一步地,聚合物的玻璃化温度≥120℃。更进一步地,聚合物的玻璃化温度≥140℃。更更进一步地,聚合物的玻璃化温度≥160℃。再进一步地,聚合物的玻璃化温度≥180℃。
在其中一个实施例中,聚合物的分子量分布(PDI)为1-5。进一步地,聚合物的分子量分布为1-4。更进一步地,聚合物的分子量分布为1-3。更更进一步地,聚合物的分子量分布为 1-2。再进一步地,聚合物的分子量分布为1-1.5。
在其中一个实施例中,该聚合物的重均分子量(Mw)为1万-100万。进一步地,聚合物的重均分子量为5万-50万。更进一步地,聚合物的重均分子量为10万-40万。更更进一步地,聚合物的重均分子量为15万-30万。再进一步地,聚合物的重均分子量为20万-25万。
上述聚合物在有机电子器件中的应用。
一实施例的混合物包含上述芳香胺衍生物或聚合物,以及至少另一种有机功能材料。其中,有机功能材料选自空穴(也称电洞)注入或传输材料(HIM/HTM)、空穴阻挡材料(HBM)、电子注入或传输材料(EIM/ETM)、电子阻挡材料(EBM)、有机基质材料(Host)、发光材料或者有机染料。在其中一个实施例中,发光材料为单重态发光体(荧光发光体)、三重态发光体(磷光发光体)或热激发延迟荧光材料(TADF材料)。例如在WO2010135519A1,US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此三篇专利文件中的全部内容并入本文作为参考。
在其中一个实施例中,所述的混合物包含上述芳香胺衍生物或聚合物,和一种荧光主体材料(或单重态基质材料)。上述芳香胺衍生物或上述聚合物可以作为客体,其重量百分比≤15wt%。
在一实施例中,上述芳香胺衍生物或上述的高聚物的重量百分比≤12wt%;
在一实施例中,上述芳香胺衍生物或上述的高聚物的重量百分比≤9wt%;
在一实施例中,上述芳香胺衍生物或上述的高聚物的重量百分比≤8wt%;
在一实施例中,上述芳香胺衍生物或上述的高聚物的重量百分比≤7wt%。
在一个实施例中,所述的混合物包含上述芳香胺衍生物或上述的聚合物、另一种荧光发光体(或单重态发光体)以及一种荧光主体材料。其中,上述芳香胺衍生物或上述的高聚物的可以作为辅助发光材料,其与另一种荧光发光体的重量比为从1:2到2:1。
某些实施例中,所述的混合物包含一种上述芳香胺衍生物或上述的高聚物的,和TADF材料。
在另一实施例中,所述的混合物包含一种上述芳香胺衍生物或上述的高聚物,和HTM材料。
下面对HTM,单重态基质材料,单重态发光体和TADF材料作一些较详细的描述(但不限于此)。
1.HIM/HTM/EBM
合适的有机HIM/HTM材料可选包含有如下结构单元的化合物:酞菁、卟啉、胺、芳香胺、联苯类三芳胺、噻吩、并噻吩如二噻吩并噻吩和并噻吩、吡咯、苯胺、咔唑、氮茚并氮芴及它们的衍生物。另外,合适的HIM也包括自组装单体,如含有膦酸和sliane衍生物的化合物;金属络合物和交联化合物等。
电子阻挡层(EBL)用来阻挡来自相邻功能层,特别是发光层的电子。对比一个没有阻挡层的发光器件,EBL的存在通常会导致发光效率的提高。电子阻挡层(EBL)的电子阻挡材料(EBM)需要有比相邻功能层,如发光层更高的LUMO。在一个优先的实施方案中,HBM有比相邻发光层更大的激发态能级,如单重态或三重态,取决于发光体,同时,EBM有空穴传输功能。通常具有高的LUMO能级的HIM/HTM材料可以作为EBM。
可用作HIM,HTM或EBM的环芳香胺衍生化合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2018122766-appb-000022
每个Ar 1到Ar 9可独立选自环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、非那烯、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、呋喃、噻吩、 苯并呋喃、苯并噻吩、咔唑、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、二苯并硒吩、苯并硒吩、苯并呋喃吡啶、吲哚咔唑、吡啶吲哚、吡咯二吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个方面,Ar 1到Ar 9可独立选自包含如下组的基团:
Figure PCTCN2018122766-appb-000023
n是1到20的整数;X 1到X 8是CH或N;Ar 1如以上所定义。
环芳香胺衍生化合物的另外的例子可参见US3567450,US4720432,US5061569,US3615404,和US5061569.
可用作HTM或HIM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2018122766-appb-000024
M是一金属,有大于40的原子量;
(Y 1-Y 2)是一两齿配体,Y 1和Y 2独立地选自C、N、O、P和S;L是一个辅助配体;m是一整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个实施例中,(Y 1-Y 2)是2-苯基吡啶衍生物.
在另一个实施例中,(Y 1-Y 2)是一卡宾配体.
在另一个实施例中,M选于Ir、Pt、Os和Zn.
在另一个方面,金属络合物的HOMO大于-5.5eV(相对于真空能级).
在下面的表中列出合适的可作为HIM/HTM化合物的例子。
Figure PCTCN2018122766-appb-000025
2.单重态基质材料(Singlet Host):
单重态主体材料的例子并不受特别的限制,任何有机化合物都可能被用作为主体,只要其单重态能量比发光体,特别是单重态发光体或荧光发光体更高。
作为单重态主体材料使用的有机化合物的例子可选自含有环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、萉、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、噌啉、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩二吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。
在一个实施方案中,单重态主体材料可选于包含至少一个以下基团的化合物。
Figure PCTCN2018122766-appb-000026
其中,R 1可相互独立地选于如下的基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基;Ar 1是芳基或杂芳基,它与上述的HTM中定义的Ar 1意义相同;n是一个从0到20的整数;X 1-X 8选于CH或N;X 9和X 10选于CR 1R 2或NR 1
在下面的表中列出一些蒽基单重态主体材料的例子。
Figure PCTCN2018122766-appb-000027
3.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,和在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物。
在一个实施方案中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含 三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优先选于稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上.
基于乙烯胺及芳胺的单重态发光体的例子,也是优选的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的单重态发光体的例子有US 5121029。
进一步的优选的单重态发光体可选于茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO 2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753 A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的单重态发光体的例子。
Figure PCTCN2018122766-appb-000028
4.热激发延迟荧光发光材料(TADF材料)
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需要贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差,较好是ΔEst<0.3eV,次好是ΔEst<0.2eV,最好是ΔEst<0.1eV。在一个优先的实施方案中,TADF材料有比较小的ΔEst,在另一 个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的TADF发光材料的例子。
Figure PCTCN2018122766-appb-000029
Figure PCTCN2018122766-appb-000030
以上出现的有机功能材料出版物为公开的目的以参考方式并入本申请。
一实施例的组合物包括上述芳香胺衍生物或其聚合物或上述混合物,以及有机溶剂。
在一些实施方案中,所述的氘代芳香胺衍生物作为单重态发光体材料。
在一个实施例中,一种组合物,包含有一种主体材料和上述芳香胺衍生物或其聚合物或上述混合物。
在另一个实施例中,一种组合物,包含有至少两种主体材料和上述芳香胺衍生物或其聚合物或上述混合物。
在另一个实施例中,一种组合物,包含有一种主体材料,一种热激活延迟荧光发光材料和上述芳香胺衍生物或其聚合物或上述混合物。
在另一实施方案中,一种组合物,包含有一种空穴传输材料(HTM)和上述芳香胺衍生物或其聚合物或上述混合物。
在另一实施方案中,一种组合物,包含有一种包含有一可交联基团的空穴传输材料(HTM)和上述芳香胺衍生物或其聚合物或上述混合物。
在一个实施方案中,上述组合物是一溶液。
在另一个实施方案中,上述组合物是一悬浮液。
在一实施例中,组合物中包括0.01wt%~20wt%的上述芳香胺衍生物或其聚合物或上述混合物。
在一实施例中,组合物中包括0.1wt%~15wt%的上述芳香胺衍生物或其聚合物或上述混合物。
在一实施例中,组合物中包括0.2wt%~10wt%的上述芳香胺衍生物或其聚合物或上述混合物。
在一实施例中,组合物中包括0.25wt%~5wt%的上述芳香胺衍生物或其聚合物或上述混合物。
在一实施例中,一种组合物,该组合物中所用的溶剂选自:芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯等无机酯类化合物,或两种及两种以上溶剂的混合物。
在一实施例中,一种组合物,其中包含至少50wt%的芳族或杂芳族溶剂;
在一实施例中,一种组合物,其中包含至少80wt%的芳族或杂芳族溶剂;
在一实施例中,一种组合物,其中包含至少90wt%的的芳族或杂芳族溶剂。
在一实施例中,基于芳族或杂芳族溶剂的例子有,但不限于:1-四氢萘酮、3-苯氧基甲苯、苯乙酮、1-甲氧基萘、对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、二苯醚、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、N-甲基二苯胺、4-异丙基联 苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等。
在另一些实施例中,适当的和优选的溶剂是脂肪族、脂环族或芳烃族,胺,硫醇,酰胺,腈,酯,醚,聚醚,醇,二醇或多元醇。
在另一些实施例中,醇代表适当类别的溶剂。优选的醇包括烷基环己醇,特别是甲基化的脂肪族醇,萘酚等。
所述的溶剂可以是环烷烃,例如十氢化萘。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些实施例中,上述组合物,包含有一种上述芳香胺衍生物或其高聚物,及至少一种有机溶剂,还可进一步包含另一种有机溶剂,另一种有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一实施例中,上述组合物中的有机溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δ d(色散力)在17.0~23.2MPa 1/2的范围,尤其是在18.5~21.0MPa 1/2的范围;
δ p(极性力)在0.2~12.5MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围;
δ h(氢键力)在0.9~14.2MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围。
选取上述组合物中的有机溶剂时需考虑其沸点参数。在一实施例中,所述的有机溶剂的沸点≥150℃;在一实施例中,所述的有机溶剂的沸点≥180℃;在一实施例中,所述的有机溶剂的沸点≥200℃;在一实施例中,所述的有机溶剂的沸点≥250℃;在一实施例中,所述的有机溶剂的沸点≥275℃;在一实施例中,所述的有机溶剂的沸点≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
在一实施例中,一种组合物,所选用的溶剂的粘度核表面张力如下所述:
1)其粘度@25℃,在1cPs到100cPs范围,和/或
2)其表面张力@25℃,在19dyne/cm到50dyne/cm范围。
在选取上述组合物中有机溶剂时需考虑其表面张力参数。合适的油墨表面张力参数适合于特定的基板和特定的印刷方法。例如对喷墨印刷,在一个实施例中,所述的有机溶剂在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;所述的有机溶剂在25℃下的表面张力约在22dyne/cm到35dyne/cm范围;所述的有机溶剂在25℃下的表面张力约在25dyne/cm到33dyne/cm范围。
在一个实施例中,油墨在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;在一个实施例中,油墨在25℃下的表面张力约在22dyne/cm到35dyne/cm范围;在一个实施例中,油墨在25℃下的表面张力约在25dyne/cm到33dyne/cm范围。
在选取组合物中的有机溶剂时需考虑其油墨的粘度参数。粘度可以通过不同的方法调节,如通过合适的有机溶剂的选取和油墨中功能材料的浓度。在一个实施例中,所述的有机溶剂的粘度低于100cps;在一个实施例中,所述的有机溶剂的粘度低于50cps;在一个实施例中,所述的有机溶剂的粘度为1.5到20cps。这里的粘度是指在印刷时的环境温度下的粘度,一般在15-30℃,较好的是18-28℃,更好是20-25℃,最好是23-25℃。如此配制的组合物将特别适合于喷墨印刷。
在一个实施例中,一种组合物,在25℃下的粘度约在1cps到100cps范围;在一个实施例中,一种组合物,在25℃下的粘度约在1cps到50cps范围;在一个实施例中,一种组合物,在25℃下的粘度约在1.5cps到20cps范围。
满足上述沸点及表面张力参数及粘度参数的有机溶剂获得的油墨能够形成具有均匀厚度 及组成性质的功能材料薄膜。
上述组合物在制备有机电子器件中的应用。
在其中一个实施例中,有机电子器件选自有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器,有机自旋电子器件、有机传感器或有机等离子激元发射二极管(Organic Plasmon Emitting Diode)。
一种制备上述有机电子器件的方法;具体技术方案如下:
将上述芳香胺衍生物或其聚合物或混合物以蒸镀的方法于一基板上形成一功能层,或以共蒸镀的方法与至少一种另一有机功能材料一起于一基板上形成一功能层,或将上述的组合物用印刷或涂布的方法涂布于一基板上形成一功能层,其中印刷或涂布的方法可选于(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。
上述组合物作为印刷油墨在制备有机电子器件时的用途。在一实施例中,采用打印或涂布的制备方法制备上述有机电子器件。
其中,适合的打印或涂布技术可以为喷墨打印,活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,丝网印刷及喷墨印刷。凹版印刷,喷墨印刷将在本发明的实施例中应用。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
在一实施例中,按上所述的制备方法所形成的功能层的厚度在5nm-1000nm。
一实施例的有机电子器件包含功能层,该功能层包含上述稠环化合物或上述聚合物或者上述混合物,或者该功能层由上述组合物制备而成。
在其中一个实施例中,该有机电子器件至少包含一个阴极、一个阳极及位于阴极和阳极之间的一个功能层,其中,该功能层至少包含一种上述芳香胺衍生物。
在其中一个实施例中,该有机电子器件是电致发光器件。在其中一个实施例中,该电致发光器件为OLED。如图1所示,该OLED包括依次层叠的基片101、阳极102、发光层104以及阴极106。
基片101可以是不透明或透明。透明的基片101可以用来制造一个透明的发光元器件,请参见Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片也可以是塑料,金属,半导体晶片或玻璃。在其中一个实施例中,基片具有平滑的表面。无表面缺陷的基板是特别理想的选择。在一实施例,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。柔性基板可以为聚(对苯二甲酸乙二醇酯)(PET)或聚乙二醇(2,6-萘)(PEN)。
阳极102可包括导电金属、金属氧化物或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在其中一个实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV。在其中一个实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.3eV。在其中一个实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选 择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在其中一个实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极106可包括导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在其中一个实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV。在其中一个实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.3eV。在其中一个实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)或空穴阻挡层(HBL)。适合用于这些功能层中的材料在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此三篇专利文件中的全部内容并入本文作为参考。如图1所示,该OLED还包括位于阳极102和发光层104之间的空穴传输层103以及位于发光层104和阴极106之间的电子传输层105。
在其中一个实施例中,发光层104采用真空蒸镀的方式形成,其蒸镀源包含上述芳香胺衍生物。
在其中一个实施例中,发光层104由上述组合物通过打印方式制备而成。
在其中一个实施例中,电致发光器件的发光波长在300到1000nm之间。在其中一个实施例中,电致发光器件的发光波长在350到900nm之间。在其中一个实施例中,电致发光器件的发光波长在400到800nm之间。
上述有机电子器件在电子设备中的应用。该电子设备为显示设备、照明设备、光源或传感器等等。
一实施例的电子设备包含有上述有机电子器件。该电子设备为显示设备、照明设备、光源或传感器等等。
下面将结合具体实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
合成例1:化合物1的合成
Figure PCTCN2018122766-appb-000031
将1-1(9.1g,30mmol),1-2(5.4g,15mmol),Pd(dba) 2(860mg,1.5mmol)和叔丁醇钠(14.4g,150mmol)置于500mL干燥双口瓶中,氮气保护下加入150mL无水甲苯和8.6mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物1(3.86g,32%)。
合成例2:化合物2的合成
Figure PCTCN2018122766-appb-000032
将2-1(9.7g,30mmol),2-2(5.4g,15mmol),Pd(dba) 2(860mg,1.5mmol)和叔丁醇钠(14.4g,150mmol)置于500mL干燥双口瓶中,氮气保护下加入150mL无水甲苯和8.6mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物2(3.8g,32%)。
合成例3:化合物3的合成
Figure PCTCN2018122766-appb-000033
将3-1(11.3g,35mmol),3-2(6.3g,17.5mmol),Pd(dba) 2(1.0g,1.75mmol)和叔丁醇钠(16.8g,175mmol)置于500mL干燥双口瓶中,氮气保护下加入180mL无水甲苯和10mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物3(4.4g,37%)。
合成例4:化合物4的合成
Figure PCTCN2018122766-appb-000034
将4-1(9.7g,30mmol),4-2(6.6g,15mmol),Pd(dba) 2(860mg,1.5mmol)和叔丁醇钠(14.4g,150mmol)置于500mL干燥双口瓶中,氮气保护下加入150mL无水甲苯和8.6mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物4(4.6g,33%)。
合成例5:化合物5的合成
Figure PCTCN2018122766-appb-000035
将5-1(8.7g,27mmol),5-2(6.0g,13.5mmol),Pd(dba) 2(770mg,1.35mmol)和叔丁醇钠(13.0g,135mmol)置于500mL干燥双口瓶中,氮气保护下加入150mL无水甲苯和7.7mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物5(4.3g,34%)。
合成例6:化合物6的合成
Figure PCTCN2018122766-appb-000036
将6-1(10.1g,30mmol),6-2(6.6g,15mmol),Pd(dba) 2(860mg,1.5mmol)和叔丁醇钠(14.4g,150mmol)置于500mL干燥双口瓶中,氮气保护下加入180mL无水甲苯和8.6mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物6(4.3g,30%)。
合成例7:化合物7的合成
Figure PCTCN2018122766-appb-000037
将7-1(9.1g,24mmol),7-2(5.3g,12mmol),Pd(dba) 2(690mg,1.2mmol)和叔丁醇钠(11.5g,120mmol)置于500mL干燥双口瓶中,氮气保护下加入150mL无水甲苯和6.9mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物7(5.0g,40%)。
合成例8:化合物8的合成
Figure PCTCN2018122766-appb-000038
将8-1(9.1g,24mmol),8-2(5.3g,12mmol),Pd(dba) 2(690mg,1.2mmol)和叔丁醇钠(11.5g,120mmol)置于500mL干燥双口瓶中,氮气保护下加入150mL无水甲苯和6.9mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物8(5.0g,40%)。
合成例9:化合物9的合成
Figure PCTCN2018122766-appb-000039
将9-1(10.6g,28mmol),9-2(6.2g,14mmol),Pd(dba) 2(800mg,1.4mmol)和叔丁醇钠(13.4g,140mmol)置于500mL干燥双口瓶中,氮气保护下加入180mL无水甲苯和8.0mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物9(4.6g,35%)。
合成例10:化合物10的合成
Figure PCTCN2018122766-appb-000040
将10-1(9.1g,24mmol),10-2(5.3g,12mmol),Pd(dba) 2(690mg,1.2mmol)和叔丁醇钠(11.5g,120mmol)置于500mL干燥双口瓶中,氮气保护下加入150mL无水甲苯和6.9mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物10(3.75g,30%)。
合成例11:化合物11的合成
Figure PCTCN2018122766-appb-000041
将11-1(9.1g,24mmol),11-2(5.3g,12mmol),Pd(dba) 2(690mg,1.2mmol)和叔丁醇钠(11.5g,120mmol)置于500mL干燥双口瓶中,氮气保护下加入150mL无水甲苯和6.9mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物11(4.0g,32%)。
合成例12:化合物12的合成
Figure PCTCN2018122766-appb-000042
将12-1(7.71g,20mmol),1.6-二溴芘(5.4g,15mmol),Pd(dba) 2(575mg,1mmol)和叔丁醇钠(3.96g,40mmol)置于500mL干燥双口瓶中,氮气抽通保护下加入150mL无水甲苯和4.2mL tBu 3P,100℃搅拌过夜。反应完冷却后水洗,干燥,柱色谱纯化得黄色固体产物化合物2(6.7g,35%)。
对比合成例1:对比化合物1的合成
Figure PCTCN2018122766-appb-000043
在氮气流下带有冷凝管的500mL三口烧瓶中,加入1,6-二溴芘(7.2g,20mmol)、二邻甲苯基胺(7.9g,40mmol)、Pd(dba) 2(690mg,1.2mmol)、NaOtBu(11.5g,120mmol)、(tBu) 3P(730 mg,3.6mmol)和无水甲苯150mL,100℃搅拌过夜。反应结束后,滤出析出的固体,用甲苯和甲醇洗涤得淡黄色固体粉末(10.7g,90%)。
对比合成例2:对比化合物2
Figure PCTCN2018122766-appb-000044
实施例:OLED器件的制备与表征:
ITO/HIL(5nm)/HTL(35nm)/Host:5%Dopant(25nm)/ETL(28nm)/阴极,其中,Dopant的重量为Host重量的5%,Dopant和Host构成EML层。
HIL:MoO 3;HTL:一种三芳胺衍生物,具体为NPD;Host:蒽衍生物;
Figure PCTCN2018122766-appb-000045
Dopant:化合物1-化合物11(实施例1-实施例11)、对比化合物1(对比实施例1)。
具有ITO/HIL(50nm)/HTL(35nm)/Host:5%Dopant(25nm)/ETL(28nm)/LiQ(1nm)/Al(150nm)/阴极的OLED器件的制备步骤如下:
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理;
b、HIL(50nm),HTL(35nm),EML(25nm)、ETL(28nm):在高真空(1×10 -6毫巴,mbar)中热蒸镀而成。
c、阴极:LiQ/Al(1nm/150nm)在高真空(1×10 -6毫巴)中热蒸镀而成;
d、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及外部量子效率,如表1所示。经检测,采用化合物1-化合物12作为EML层发光体所制备蓝光器件的色坐标更优于对比化合物1和对比化合物2。此外,采用化合物1-化合物12作为EML层发光体所制备蓝光器件的发光效率都在8-9cd/A范围,具有更加优异的发光效率;在器件寿命方面,采用化合物1-化合物12作为EML层发光体所制备蓝光器件的寿命更加优于对比化合物1和对比化合物2。特别地,化合物1-化合物12所制备蓝光器件的色坐标大大地优于对比化合物2,这表明本发明说采用的特殊位置取代的取代基设计对发光颜色有非常大的正面作用,有利于得到更加优异的蓝色发光。同时,从效率及寿命表现上看,本发明所采用的特殊位置取代的取代基设计相对于无取代的对比化合物也具有非常大的提升。
表1
Figure PCTCN2018122766-appb-000046
Figure PCTCN2018122766-appb-000047
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种如通式(I)所示的芳香胺衍生物:
    Figure PCTCN2018122766-appb-100001
    其中,R 101-R 104彼此相同或不同,所述R 101-R 104独立地选自:H、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或者多种,其中,R 101-R 104中的至少一个与所键合的环形成单环或多环的脂族或芳族环,或者R 301-R 304中的至少两个相互之间形成单环或多环的脂族或芳族环;
    m和n独立地选自0、1、2、3或4;
    B选自:具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
    Ar 1、Ar 2彼此相同或不同,所述Ar 1、Ar 2独立地选自具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
    并且,所述Ar 1、Ar 2中至少有一个的结构如通式(I-a)-(I-d)中的任一结构所示:
    Figure PCTCN2018122766-appb-100002
    其中,R 109-R 132彼此相同或不同,所述R 109-R 132独立地选自:H、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种,其中,R 109-R 132中的至少一个与所键合的环形成单环或多环的脂族或芳族环系,或者R 109-R 132中的至少两个相互之间形成单环或多环的脂族或芳族环系;
    A选自:具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C 原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或未取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
    虚线表示连接的单键。
  2. 根据权利要求1所述的芳香胺衍生物,其特征在于,所述芳香胺衍生物的结构如通式(II-a)至(II-d)所示:
    Figure PCTCN2018122766-appb-100003
  3. 根据权利要求1或2所述的芳香胺衍生物,其特征在于,所述A和B独立地选自:甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、甲基丁基、正戊基、仲戊基、环戊基、正己基、环己基、正庚基、环庚基、正辛基、环辛基、乙基己基、三氟甲基、五氟乙基、三氟乙基、乙烯基、丙烯基、丁烯基、戊烯基、环戊烯基、己烯基、环己烯基、庚烯基、环庚烯基、辛烯基、环辛烯基、乙炔基、丙炔基、丁炔基、戊炔基、己炔基、辛炔基、甲氧基、三氟甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基、甲基丁氧基、三甲基硅烷或者如下任一结构所示的芳香族基团:
    Figure PCTCN2018122766-appb-100004
    其中,Y选自CR 401或N,且相邻的Y不同时为N;
    R 401选自:H、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代 或无取代的甲硅烷基、具有1至20个C原子的取代的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、氨基甲酰基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;或者,所述R 401与所键合的环形成单环或多环的脂族或芳族环;
    虚线表示连接的单键。
  4. 根据权利要求1-3中任一项所述的芳香胺衍生物,其特征在于,所述R 101和R 102相同,且所述R 101和R 102选自H、异丙基、异丁基、叔丁基或三甲基硅烷。
  5. 根据权利要求1-4中任一项所述的芳香胺衍生物,其特征在于,所述A和B独立地选自甲基、异丙基、异丁基、异丁基、叔丁基或三甲基硅烷。
  6. 根据权利要求1-5中任一项所述的芳香胺衍生物,其特征在于,所述芳香胺衍生物中的至少一个H原子被D原子取代。
  7. 一种聚合物,其特征在于,所述聚合物中至少一个重复单元包括如权利要求1-6中任一项所述的芳香胺衍生物。
  8. 一种混合物,其特征在于,所述混合物包括至少一种有机功能材料以及如权利要求1-6中任一项所述的芳香胺衍生物或者如权利要求7所述的聚合物,其中,所述有机功能材料选自空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料、有机基质材料、单重态发光体、三重态发光体、热激发延迟荧光材料或者有机染料。
  9. 一种组合物,其特征在于,所述组合物包括至少一种有机溶剂以及如权利要求1-6中任一项所述的芳香胺衍生物或如权利要求7所述的聚合物或如权利要求8所述的混合物。
  10. 一种有机电子器件,其特征在于,所述有机电子器件包括如权利要求1-6中任一项所述的芳香胺衍生物或者如权利要求7所述的聚合物或者如权利要求8所述的混合物,或者所述有机电子器件的功能层由如权利要求9所述的组合物制备而成。
  11. 根据权利要求10所述的有机电子器件,其特征在于,所述有机电子器件选自有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器或有机等离子激元发射二极管。
  12. 根据权利要求11所述的有机电子器件,其特征在于,所述有机电子器件为有机发光二极管,所述有机发光二极管至少包含有发光层,所述发光层包含所述芳香胺衍生物或所述聚合物或所述混合物,或者所述发光层由所述组合物制备而成。
PCT/CN2018/122766 2017-12-29 2018-12-21 芳香胺衍生物及有机电子器件 WO2019128875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711481138.8A CN108047062B (zh) 2017-12-29 2017-12-29 芳香胺衍生物及有机电子器件
CN201711481138.8 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019128875A1 true WO2019128875A1 (zh) 2019-07-04

Family

ID=62129182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122766 WO2019128875A1 (zh) 2017-12-29 2018-12-21 芳香胺衍生物及有机电子器件

Country Status (2)

Country Link
CN (1) CN108047062B (zh)
WO (1) WO2019128875A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022078456A1 (zh) * 2020-10-14 2022-04-21 浙江光昊光电科技有限公司 一种高聚物、包含其的组合物、有机光电器件及应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108047062B (zh) * 2017-12-29 2019-07-16 广州华睿光电材料有限公司 芳香胺衍生物及有机电子器件
CN113620815A (zh) * 2020-05-08 2021-11-09 北京夏禾科技有限公司 芳香族胺衍生物有机电致发光材料及其器件
CN114195653B (zh) * 2020-09-18 2023-12-22 广州华睿光电材料有限公司 有机化合物、混合物、组合物及有机电子器件
CN115322138B (zh) * 2022-08-05 2024-03-08 深圳市华星光电半导体显示技术有限公司 四氢萘类有机化合物、混合物、组合物以及有机电子器件

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1535089A (zh) * 2002-12-24 2004-10-06 Lg������ʽ���� 有机场致发光器件
WO2009102054A1 (ja) * 2008-02-15 2009-08-20 Idemitsu Kosan Co., Ltd. 有機発光媒体および有機el素子
CN101747889A (zh) * 2008-12-05 2010-06-23 乐金显示有限公司 蓝色荧光化合物及使用该蓝色荧光化合物的有机电致发光器件
US20110006669A1 (en) * 2009-07-10 2011-01-13 Lee Seung-Jae Blue fluorescent compound and organic electroluminescent device using the same
KR20110015213A (ko) * 2009-08-07 2011-02-15 에스에프씨 주식회사 청색 발광 화합물 및 이를 이용한 유기전계발광소자
KR20110098646A (ko) * 2010-02-26 2011-09-01 에스에프씨 주식회사 피렌계 화합물 및 이를 포함하는 유기전계발광소자
CN103304428A (zh) * 2012-03-06 2013-09-18 三星显示有限公司 胺类化合物、包含胺类化合物的有机发光元件以及有机发光装置
KR20140076170A (ko) * 2012-12-12 2014-06-20 에스에프씨 주식회사 피렌계 화합물 및 이를 이용한 유기전계발광소자
KR20140126108A (ko) * 2013-04-22 2014-10-30 에스에프씨 주식회사 아릴 아민기를 포함하는 비대칭 피렌 유도체 및 이를 포함하는 유기 발광 소자
WO2016036031A1 (en) * 2014-09-05 2016-03-10 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device comprising the same
US20160218294A1 (en) * 2015-01-25 2016-07-28 Universal Display Corporation Organic Electroluminescent Materials and Devices
CN108047062A (zh) * 2017-12-29 2018-05-18 广州华睿光电材料有限公司 芳香胺衍生物及有机电子器件
CN108558678A (zh) * 2017-12-29 2018-09-21 广州华睿光电材料有限公司 芳香胺衍生物及有机电子器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106588675B (zh) * 2015-10-14 2019-06-25 陕西莱特迈思光电材料有限公司 新型有机化合物及包含其的有机电致发光器件

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1535089A (zh) * 2002-12-24 2004-10-06 Lg������ʽ���� 有机场致发光器件
WO2009102054A1 (ja) * 2008-02-15 2009-08-20 Idemitsu Kosan Co., Ltd. 有機発光媒体および有機el素子
CN101747889A (zh) * 2008-12-05 2010-06-23 乐金显示有限公司 蓝色荧光化合物及使用该蓝色荧光化合物的有机电致发光器件
US20110006669A1 (en) * 2009-07-10 2011-01-13 Lee Seung-Jae Blue fluorescent compound and organic electroluminescent device using the same
KR20110015213A (ko) * 2009-08-07 2011-02-15 에스에프씨 주식회사 청색 발광 화합물 및 이를 이용한 유기전계발광소자
KR20110098646A (ko) * 2010-02-26 2011-09-01 에스에프씨 주식회사 피렌계 화합물 및 이를 포함하는 유기전계발광소자
CN103304428A (zh) * 2012-03-06 2013-09-18 三星显示有限公司 胺类化合物、包含胺类化合物的有机发光元件以及有机发光装置
KR20140076170A (ko) * 2012-12-12 2014-06-20 에스에프씨 주식회사 피렌계 화합물 및 이를 이용한 유기전계발광소자
KR20140126108A (ko) * 2013-04-22 2014-10-30 에스에프씨 주식회사 아릴 아민기를 포함하는 비대칭 피렌 유도체 및 이를 포함하는 유기 발광 소자
WO2016036031A1 (en) * 2014-09-05 2016-03-10 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device comprising the same
US20160218294A1 (en) * 2015-01-25 2016-07-28 Universal Display Corporation Organic Electroluminescent Materials and Devices
CN108047062A (zh) * 2017-12-29 2018-05-18 广州华睿光电材料有限公司 芳香胺衍生物及有机电子器件
CN108558678A (zh) * 2017-12-29 2018-09-21 广州华睿光电材料有限公司 芳香胺衍生物及有机电子器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022078456A1 (zh) * 2020-10-14 2022-04-21 浙江光昊光电科技有限公司 一种高聚物、包含其的组合物、有机光电器件及应用

Also Published As

Publication number Publication date
CN108047062B (zh) 2019-07-16
CN108047062A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2017092508A1 (zh) D-a型化合物及其应用
WO2019128875A1 (zh) 芳香胺衍生物及有机电子器件
WO2019128633A1 (zh) 含硼杂环化合物、高聚物、混合物、组合物及其用途
WO2018095382A1 (zh) 芳香胺衍生物及其制备方法和用途
CN109608342B (zh) 芳香胺衍生物、聚合物、混合物、组合物和有机电子器件
WO2016112762A1 (zh) 化合物、包含其的混合物、组合物和有机电子器件
WO2017118237A1 (zh) 并吡咯衍生物及其在有机电子器件的应用
WO2018095392A1 (zh) 有机混合物、组合物以及有机电子器件
CN109705100B (zh) 含萘咔唑类有机光化合物、混合物、组合物及其用途
WO2018095385A1 (zh) 稠环化合物、高聚物、混合物、组合物以及有机电子器件
WO2017118137A1 (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
WO2018095386A1 (zh) 稠环化合物、高聚物、混合物、组合物以及有机电子器件
US20190006609A1 (en) Organic functional compound for preparing organic electronic device and application thereof
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2017118252A1 (zh) 含砜基稠杂环化合物及其应用
CN109790087B (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
CN116685580A (zh) 有机混合物及其在有机电子器件的应用
WO2018095383A1 (zh) 氘代芳香胺衍生物及其制备方法和用途
CN111279508B (zh) 组合物及其应用、有机电子器件
WO2018099432A1 (zh) 稠环化合物及制备方法和应用
WO2018099433A1 (zh) 稠环化合物及其应用、混合物、有机电子器件
WO2018103748A1 (zh) 芘三嗪类衍生物及其在有机电子器件中的应用
WO2018099431A1 (zh) 芘类有机化合物及其制备方法和应用
WO2018108107A1 (zh) 共轭聚合物及其在有机电子器件的应用
WO2018108108A1 (zh) 共轭聚合物及其在有机电子器件的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894905

Country of ref document: EP

Kind code of ref document: A1