CA1261717A - Method and apparatus for oxygen determination - Google Patents

Method and apparatus for oxygen determination

Info

Publication number
CA1261717A
CA1261717A CA000442663A CA442663A CA1261717A CA 1261717 A CA1261717 A CA 1261717A CA 000442663 A CA000442663 A CA 000442663A CA 442663 A CA442663 A CA 442663A CA 1261717 A CA1261717 A CA 1261717A
Authority
CA
Canada
Prior art keywords
oxygen
material
sensor
luminescent material
apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000442663A
Other languages
French (fr)
Inventor
John R. Bacon
James N. Demas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Virginia Licensing and Ventures Group
Original Assignee
University of Virginia Licensing and Ventures Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US45265982A priority Critical
Priority to US452,659 priority
Application filed by University of Virginia Licensing and Ventures Group filed Critical University of Virginia Licensing and Ventures Group
Application granted granted Critical
Publication of CA1261717A publication Critical patent/CA1261717A/en
Application status is Expired legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Abstract

METHOD AND APPARATUS FOR OXYGEN DETERMINATION

ABSTRACT
An oxygen sensor has an inorganic complex, usually a complex of platinum group metals, with ?-diimine ligands immobilized in a polymer support. The metal com-plex is a luminescent material quenchable by oxygen.
The polymer is permeable to oxygen and impermeable to interfering quenchers. Oxygen concentration in a gase-ous or liquid environment is determined by exposing the sensor to the environment and measuring the quenching-related decrease in intensity or lifetime of luminescence.
In one version, a reference device has areas of differing size or concentration of luminescent material immobilized in a support which is relatively impermeable to oxygen.
Matching the luminescence of the sensor with the luminescence of an area of the reference device determines the extent of quenching and the concentration of oxygen. An alterna-tive sensor has a mixture of luminescent materials having differing sensitivities to oxygen quenching and differing colors of emission.

Description

6~7~7 BACKGROUND OF ~ IMV~:NTION

This invention relates generally to oxygen determinations and more particularly has reference to methods and apparatus for determining the con-centration of oxygen in a gaseous or liguld en-vironment based on luminescence quenching.
The two most common methods currently used for determining oxygen concentrations are the Winkler titration method and the oxygen electrode method.
The Winkler method is slow, intrusive, destroys the sample and does not lend itself to automation. The oxygen electrode method consumes oxygen, is sensitive to interferants such as Halothane anesthetic, is in-trusive, and is not readily applicable to the gas phase or vacuum systems. Hence, neither of these methods is particularly desirable.
It is known that many platinum group metal complexes luminesce intensely in the red region (600-650 nm) when excited with visible light or UV light (~ 550 nm).
Both the intensity and the lifetime of the luminescence is decreased when the complex is exposed to deactivators (quenchers). Oxygen, iron(III), copper(II), and mercury~II) are among the common guenchers. When a single quencher is present in an environment, the degree of intensity or lifetime quenching is directly related to the quencher concentration and can be used as an analytical method for determining that concentration.

~6~L7~L7 However, the inability of the method to discriminate among different quenchers in an envirollment has heretofore prevented the method from being universally applicable.
The discrimination problem is particularly acute when dealing with a liquid environment. If the luminescent complexe$ are dissolved directly in the solution, a variet~ of dissolved organic and inorganic, contaminants and interferents would contribute to the ~uenching-and would produce an erroneous indication of the oxygen concentration.
Because the luminescence quenching method presents the possibility of making oxygen determinations without the limitations inherent in the Winkler titration method and the oxygen electrode method, it is desirable to improve upon known methods and apparatus in the luminescence quenching art in order to make that method universally applicable.
Pertinent United States and foreign patents are found in Class 23, subclasses 26, 52, 83, 230, 259, 906 and 927; Class 73, subclass 19; Class 204, subclasses 1, lY, 192P and 195; Class 250, subclasses 71 and 361C;
Class 252, subclasses 188.3CL and 301.2; and Class 422, subclasses 52, 55-58, 83, 85-88 and 91 of the Official Classifications of Patents in the U. S. Patent and Trademark Offi~e.
Examples of pertinen-t patents are V. S. Patent Nos.
998,091; 1,456,964; 2,351,644; 2,929,687i 3,112,99~9;
3,697,226; 3,725,658; 3,764,269; 3,768, 976i 3,881,869;

- ` ~L2~;~7~

3,897,214; 3,976,451; 4,05~,490; ~,073,623; 4,089,797;
4,181,501; 4,231,754; 4,260,392; 4,272,249; 4,272,484 and 4,272,485.
U. S. Patent 3,725,658 shows a method and apparatus for detecting oxygen in a gas stream. The apparatus em-ploys a sensor film comprising afluorescent material dissolved in a carrier or solvent and supported on a substrate. Oxygen contained in the gas stream is dissolved into the Eilm and quenches the ~luorescent emission, the e~tent of quenching being proportional to the oxygen content of the gas stream.
U. S. Patent 3,764,269 shows the use of a gas permeable membrane which permits diffusion of a particular gas while providing protection against the adverse effects of the environment. An electrochemical device detects the concentration of gas which passes through the porous layer and activates the electrode~
U. S. Patent 3,881,869 discloses the chemiluminescent detection of ozone concentration in a gas sample. The gas sample conta`cts an organic polymer having a backbone chain consisting of carbon atoms to produce a chemiluminescent reaction. The concentration of ozone is proportional to the intensity of light emitted by the reaction.
U. S. Patent 4,089,79~ discloses chemiluminescent warning capsules having an air-reactive chemiluminescent formulation encapsulated with a catalyst. Crushing the capsule mixes the air-reactive formulation and the catalyst ~ 26~L7~7 in the external environment to produce chemi-luminescence if air is present.
U. S. Patent 4,272,484 uses fluorescence methods to measure oxygen content a~ter first separating blood protein fractions and other components b~ use o~ a gas permeable membrance. U. S Patent 4 r 272,485 is a related disclosure which includes a carrier which transports particles through the membrane.
U. S. Patent 3,112,999 discloses a gas, particularly carbon monoxide, which permeates a porous layer to make an indication.
U. S. Patent 2,929,687 discloses a dissolved oxygen test.
U. S. Patent 3,768,976 shows a polymeric ~ilm through which oxygen migrates to cause an indication.
U. S. Patent 3,976,451 describes selectively permeable membranes for passing oxygen.
- U. S. Patent 4,260,392 shows a selective-ly permeable plastic tape.
U. S. Patent 3,897,214 discloses reagents impregnated in plastic fibers.
U. S. Patent 3,697,266 discloses a system using a graded scale for visual comparison. The comparison scale is not placed in a solution. It is merely a screen.
U. S. Patent 998,091 discloses a color comparing scheme in which thickness is varied in a graded standard.

~61~7~7 U. S. Patents 4,181,501 and 4,054,490 disclose wedge shaped concentration sensors.
U. S. Patent 2,351,644 discloses a stepped sensor.
U. S. Patent 4,073,623 discloses a non-immersed sensor and standard used for visual comparisons.
U. S. Patent 1,456,964 discloses light intensity comparison.
The remaining patents are of lesser interest.
The following publications are also of interest:
Energy Transfer in Chemiluminescence, Roswell, Paul and White, Journal of the American Chemical Society, 92:16, August 12, 1970, pp. 4855-60; Oxygen Quenching of Charge-Transfer Excited States of Ruthenium tII) Complexes.
Evidence for Singlet Oxygen Production, Demas, Diemente and Harris, Journal of the American Chemical Society, 95:20, October 3, 1973, pp. 6864-65; Enerqy Transfer from Luminescent Transition Metal ComPlexes to Oxygen, Demas, Harris and McBride, Journal o~ the American Chemical Society, 99vll, May 25, 1977, pp. 3547-3551; Britton, Hydrogen Ions Their Determination and Importance in Pure and Industrial Chemistry, D. Van Nostrand Company, Inc. (1943) pp. 338-43; and Fiberoptics Simplify Remote Analyses, C~EN, September 27, 1982, pp. 28-30. Porphyrins XVIII.
Luminescencè of (Co), (Ni), Pd, Pt Complexes, East~ood and Gouterman, Journal of Melecular Spectroscopy, 35:3, September 1970, pp. 359-375; Porphrins. XIX. Tripdoublet and Quartet Luminescence in Cu and VO complexes, Gouterman, Mothies, 6~7~7 , Smith, and Caughey, Journal of Cehmical Physics, 5~:7, April 1, 1970, pp. 3795-3802; Electron-Transfer Quenching of the Luminescent Excited State of OctachlorodirhenatetIII), Nocera and Gray, Journal of the American Chemieal Society 103, 1971, pp. 7349-7350; Spectroscopic Properties and Redox Chemistry of the Phosphorescent State of Pt tP2_5)~H8~ , Che, Butler, and Gray, ~ournal of the Ameriean Chemical Soeiety 103, 1981, pp. 7796-7797; lectronie Speetroseop~
of Diphosphine- and Diarsine-Bridget R~odium (I) Dimers, Fordyce and Crosby, Journal of the American Chemical Soeiety 104, 1982, pp. 985-988.
The Demas, et al artieles diselose oxygen quenehing of ~-diimine eomplexes of Ru(II), Os~II), and Ir(III).

2, 2'-bipyridine, 1, 10-phenanthroline and substituted derivatives are used as ligands to form the metal-ligand eomplexes. A kine-tie meehanism for the eomplex oxyyen interaetion is proposed.
The Roswell artiele diseusses intermolecular energy transfer in ehemilumineseenee.
The Britton publication discloses a wedge method for the determination of indieator eonstants oE two-eolor indica-tors.
The C&EN artiele deals with PTFE control membranes in the eontext of laser optrodes and optical fibers.
The Eastwood artiele deseribes the room temperature lumineseenee and oxygen quenching of Pd and Pt porphyrin complexes in fluid solutions.
The Gouterman et al, article describes low temperature lumineseence of Cu and VO porphyrins. Extrapolation of their data to room temperature indicates oxygen quenchable lifetimes.

2~;~7~'7 The Nocera paper reports quenching of dinuclear Re~
species. Mononuclear and dinuclear ~e complexes also have quenchable excited states.
The Che paper reports long excited state lifetimes and solution oxygen quenching of a dimeric Pt complex in solution and long-lived quenchable excited states of Rh dimers.
The Fordyce reference reports long-lived low tempera-ture emissions of Rh(I) with bridging ligands. Rh~I) and Ir(I) data are referenced. Extrapolation of their data to room temperature suggests oxygen quenchable lifetimes.

SUMMARY OF THE INVENTION
The present invention overcomes the problems which exist in the prior art.
The present invention provides a method for measuring oxygen concentrations either in solutions or in the yas phase. The method is based on the shortening of the life-time or decrease in the emission intensity, i.e., quenching, of particular metal complexes, preferable ruthenium(II) complexes wlth c~ -diimine ligands in the presence of oxygen.
The oxygen concentrations can be directly related to the degree of quenching. To prevent the complexes from responding to con-taminants and interferents, the complex is protected by being immobilized in a gas permeable, solvent impermeable polymer, such as silicon rubber.

The invention provides an oxygen concentration sensor and a graded calibration standard which can be visually compared to determine oxygen concentration.
The sensor is a fluorophor immobilized in oxygen-permeable .

~2~7~q polymer~ The graded.calibration s-tandard is either tapered with thicker (brighter~ portions corresponding to lower oxygen concentrations on the sensor or with higher (brighter) concentrations of a fluorophor at one end of the standard. The sensor and standard are exposed to the environment being sampled and are excited by a light source. Intensity of the light emitted by the sensor is decreased by the oxygen. The eye, or an elec-tronic detector, is used to determine the part of the standard that has the same brightness as the sensor.
An object of the invention is to provide an improved method and apparatus for oxygen determinations.
A further object of the invention is to provide a method and apparatus for oxygen determination based on luminescence quenching.
Still another object of the invention is to provide an oxygen sensor having a platinum group metal complex with c~-diimine ligands immobilized in an oxygen permeable polymer which tends to prevent interfering quenchers from interacting with the complexes.
A further object of the invention is to provide a method for measuring oxygen concentrations which is usable in both liq.uid environments and gaseous environments.
A further object of the invention is to provide an oxygen determination method which is non-destructive and relatively non-intrusive and which readily lends itself to miniaturization and automation.

7~
g Still another object of the invention is to provide a method for oxygen determination which is based on a quencher-related decrease in lifetime of the luminescence of a luminescent material and requires no reference.
Still another object of the invention is to provide a method of oxygen determination which is based on a quanti-tative quencher related decrease in the luminescence inten-sity of a luminescent material.
Yet another object of the invention is to provide an inexpensive method and apparatus for visually determining the extent of quenching.
Yet another object of the invention is to provide a method for determining oxygen concentration which involves comparing the emission intensity of a sensor to the emission intensity of a series of reference emitters.
In accordance with the present invention, a method for determining the presence of oxygen in an environment com-prises providing luminescent material whose intensity and llfetime of luminescence is quenchable by oxygen. The material is then incorporated in a carrier material which is relatively permeable to oxygen and relatively impermeable to interfering quenchers, thus forming a sensor. The sensor is exposed to an environment to be sampled. This allows oxygen in the environment to permeate the carrier material and quench the luminescent material. The quenching-related decrease in intensity or lifetime of luminescence is then measured. Then, the presence of oxygen can be determined based on the measured quenching.
Also in accordance with the present invention, a method for determining the amount of oxygen in an environment com-prises providing a sensor having luminescent material whose luminescence is quenchable in oxygen. A reference device is .~ _ ~ ~$

~12~L7~7 -9a-provided having -the luminescent material distributed therein in areas having differing amoun-ts of the material. The sen-sor and the reference are arranged in a proximate relation-ship and are exposed to an environment to be sampled. This allows the oxygen in the environment to quench the luminescent material in the sensor. The oxygen access to the luminescent material in the reference is restricted. The luminescence of the sensor is compared with the luminescence of the reference to determine a similarity of luminescence between the sensor and an area of the reference. The amount of oxygen in the environment ls determined based on the amount of luminescent material present in the area of the reference.
Still in accordance with the present invention, a sen-sor for determining the presence of oxygen in an environment comprises a luminescent material whose intensity and lifetime of luminescence is quenchable by oxygen. The luminescent material is incorporated in a carrier material which is rela-tively permeable to oxygen and relatively impermeable to interfering quenchers.
Still in accordance with the present invention, a moni-tor for determining oxygen concentration in an environment comprises a support which contains a mixture of luminescent materials quenchable by oxygen. The materials have differing sensitivities to oxygen quenching and have differing colors of emission.
Still in accordance with the present invention, an apparatus uses the phase shift of the luminescence of material relative to a modulated excitation source in order to measure the lifetime and relate it to the oxygen concen-tration.

D

~6~7~
-9b-The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic diagram, in side view, of a visual oxygen monitoring system embodying features of the present invention.
Figure 2 is a top plan view of the sensor and reference shown in Figure 1.
Figure 3 is a detailed schematic diagram of a reference used with the system shown in Figures 1 and 2.

1~ .

7~7 Figure 4 is a detailed schematic diagram of an al-terna-tive reference used with the system shown in Figures 1 and 2.

DETAILED DESCRIPTION OF Tl-IE INVENTION

.
The present invention provides a method and apparatus for measuring oxygen concentrations in liquid environments and gaseous environments. The method is based on the shortening of the lifetime or decrease in the emission intensity (quenching) of certain luminescent materials in the presence of oxygen.
The oxygen concentrations can be directly related to the degree of quenching in a manner well known in the art.
The luminescent materials are luminescent inorganic materials which luminesce when excited with visible or ultra-violet light and whose luminescence is quenchable by oxygen and other quenchers.
rrhe preferred luminescent materials are principally platinum group metal complexes, specifically, ruthenium, osmium, iridium, rhodium, palladium, platinium, rhenium and chromium complexes with C~-diimine ligands. In most instances, the tris complexes are used, but it is recognized that mixed ligand complexes can also be used to provide a degree of design flexi-bility not otherwise availabe. Suitable ligand metal complexes include complexes of ruthenium(II), osmium(II), iridium(III), rhodium(III), and chromium(III) ions with 2,2'-bipyridine, 1,10-phenanthroline, 4,7-diphenyl-(1,10-phenanthroline), 4,7-dimethyl-1,10-phenanthroline, 4,7-disulfonated-diphenyl-1,10-phenanthroline, 5-bromo-1,10-phenanthroline, 5-chloro-1,10 ~Z6~7~

phenanthroline, 2,2'-bi-2-thiazoline, 2,2'-bithiazole, and other c~ -diimine ligands.
Other suitable systems could include porphyrin or phthalocyanine complexes of Vo2 , Cu2 , Zn2~, Pt2 and Pd2+
or dimeric Rh, Pt/ or Ir complexes. 5uitable ligands would be etioporphyrin, octaethylporphin,-porphin and phtalocyanine.
To prevent the complexes from responding to contaminants and interferents, the complex is protected by being immobilized in a gas permeable, solvent impermeable polymer. Preferred polymers include Plexiglas*, polyvinyl chloride (PVC), polystyrene, polycarbonate, latex, fluorinated polymers such as Teflon* and silicon rubbers, such as GE RTV SILASTIC*118, which is very temperature resistant.- A sensor using SILASTIC*118 exhibits a substantial change in lifetime or intensity of luminescence on going from an oxygen saturated environment to a deoxygenated environment. The precision and accuracy of oxy-gen determinations is about 2 per cent arid the same responses are obtained for both lifetime and intensity ~uenching measure-ments. It responds rapidly to changes in both gas phase and solution dissolved oxygen concentrations. The plexiglass and PVC systems have lower oxygen sensitivities and are, thus, suitable for determinations at high (above atmospheric) oxygen pressures. Commercially available silicon rubber has a high permeability of oxygen and excludes highly polar compounds and hydrated ions which is why its use in the present invention is desirable.

The preferred oxygen sensor used tris(4,7-diphenyl-1,10-*: Trademarks .~ .

26~17 phenanthroline)ruthenium(II) dissolved in the SOLASTIC 188 material.

The luminescent complexes can be uniformly diffused into the polymer from dichloromethane and/or alcohol solutions.
Alternatively, the complexes can be mixed with the polymer be-fore final polymerization.
il`he metal complexes can be mechanically or chemically incorporated into the polymer matrix. In one embodiment, the complex molecules are chemically attached to the backbone of the matrix. Either a covalent or an ionic attachment o-f the complex to the polymer can be used. For example, cation exchange bound ~U~ complexes exhlbit high sensitivity to glS phase oxygen quenchlng.

The completed sensor is an integral device having the luminescent material incorporated directly into the self-sup-porting polymer barrier system. It can be ln the ~orm of a strip, a block, a sheet, a microsphere, a film or a laminate and it can be either solid or hollow. If desired, the sensor can be a thin sensing layer diffused onto a thick plate. An overcoat of a less reactive polyrner can be used to further reduce interactions with the solvent or quenahers.
In one embodiment, a thin film sensor is formed by leaching sodium from glass to ~or a porous matrix, dipping the glass into a solution o~ luminescent material and then covering the surface of the glass with a layer lmpermeable to water.
Sultable agents are silicon water probfing which reacts with the surface or polymer overcoats.
To reduce expenses, it is desirable that the sensor be in the form o~ reusable polymer coated cuvettes which are highly durable.

-13- '~ ~6 ~q ~

In use, the sensor is exposed to the liquid or gaseous environment being sampled. Because the polymer material has a relatively high permeability to oxygen, the oxygen will per-meate through the material and interact with -the luminescent material to act as a quencher. Howeve~, the polymer will ex-clude most common ionic and organic interferents and contami-nants.
The quenching-related decrease in the intensity or life-time of luminescence is measured and that measurement is used to determine the concentration of oxygen in the environment.
By measuring the luminescence lifetime or intensity using a back scattering technique, interferences caused by strong scat-tering or absorbing solutions are eliminated.
In an alternative embodiment, the sensor is excited by a modulated light source and a phase shift measurement is made of the luminescence to yield the lifetimes.
The present invention provides a particularly desirable means for oxygen determiatnion because it is non-invasive and does not consume oxygen. It is usable over an extremely wide range of oxygen concentrations or partial pressures and readily lends itself to miniaturized and automated analyses.
Test results have demonstra-ted that the present invention is sensitive, selective and readily implemented. With the preferred combination of metal complex and polymer matrix, a material has been prepared that shows a 3000~ increase in lumi-nescence lifetime on going from an oxygen saturated aqueous environment to a nitrogen saturated environment. Response time is subsecond to minutes depending on film thickness~ The same 7~7 complex-polymer sensor respond equally well to gas phase oxygen concentrations. Filrns of 0 .001"~ thickness have been shown to respond in <1/6 sec. and follow faithfully the oxygen con-centration in the breath of a human.
The ability of the polymer to protect the complex from interferents was shown by introducing a film into a concen-trated solution of iron(III). Normally iron(III) is an excel-lent quencher of unprotected complexes. Yet, even at the high iron(III) concentrations used, there was no detectable quenching~
Strong acid strong base, complexing agents (EDTA), and deter-gents (NaLS) were likewise without effect. ~he sensor is also immune to any deactivation by common anesthetic gases s~ch as Halothane and nitrous oxide at concentrations well above those used medically.
Applications for the present invention iclude: (i) measuring dissolved oxygen in aqueous samples and in oryanic solvents; (2) de-term1ning the oxygen for biochemical oxygen demand (BOD) measurements; ~3) measuring levels of oxygen in blood both in vi-tro and in vivo using a fiber-optic probe;
(4) measuring oxygen levels in air samples (e.g., mines, indus-trial hazard areas, oxygen tents, high pressure oxygen burn treatment and decompression chambers, industrial reactors space capsules, etc.); (5) measuring low oxygen levels in vacuum systems (i.e., a low-cost vacuum gauge); and (6) monitoring low oxygen levels in various chemical reaction vessels, e.g., glove boxes and other sytems purged with inert gas.

~26~7~L7 An application in Category 1 would inclucle pollution moni-toring of waste water.
The application in Category 2 is especially interesting in view of the above described test using iron~III). Iron(III) is added as a nutrient in BOD determinations. However, the test showed that iron(III) concentrations hundreds of tlmes larger than would be encountered in BOD analyses have no de-tectable quenching effect. BOD determinations using quantita-tive intenslty monitoring have been implemented.
The Category 3 applications could involve, for example, the placing of a sensor at the end of a fiber optic catheter for use in following oxygen concentrations in blood vessels and tissue the heart is beating. Such a system has great safety as there is no electrical connection to the patient.
Advantages of the present invention are that it is a~non-destructive and relatively non-intrusive method and that a common system can be used to measure oxygen in polluted, murky water, air samples, vacuum sys-tems and other diverse types of systems. The invention is operable over a temperature range of about -300F to about 400F.
In addition, the system lends i-tself readily -to measure-ments on very small sample size ( ~5~L), instrumental miniatu-rization, and automation. By encapsulating the complex probe in microscopic beads, oxygen concentrations can be measured under a microscope in growing cellular samples.
Quantitative intensity and lifetime methods for measuring oxygen concentrations are accurate and precise. There are many times, however, when a semiquantitative or qualitative method 31 ~6~717 ~ -16-of even lower cost is desirable.
To avoid the cost of a more elaborate instrument the present invention further provides a low cost visual detection system with an internal reference for semiquantitative or qualitative oxygen monitoring.
In the present invention, the human eye is used as the detector. The scheme is similar in application to pH paper except that one monitors oxygen concentrations by comparing the emission intensity of the sensor in the gas or liquid environ-ment to a series of reference emitters in that environment.
Although suitable for semi-quantitation of oxygen concentrations, the system is also usable as a go - no go system where instanta-neous visual discrimination between pure oxygen, air, or an oxy-gen-free system is required.
A schematic diagram of this system is shown in Figures 1 through 4.
A luminescent oxygen sensor 10 and a reference emitter 12 are placed side-by-side in the sample fluid or gas environment 14. The sensor 10 includes a fluorophor immobilized in an oxygen-permeable support, ~ , a polymer. The sensor 10 luminesces when the fluorophor is excited by a light source 16.
The intensity of the emitted light is decreased by oxygen in the environment 14 which serves as a ~uencher.
The human eye càn easily judge the differences in intensity of the emitted light when the sensor film is exposed to pure N2, air and 2 environments.

The estimation of the oxygen concentration beyond air, 2 or N2 is improved by using a reference emitter 12 which is a ~6~L7~7 concentration or optical density graded calibration standard.
In the standard, the same fluorophor as used in the sensor 10 would be immobilized in a riyid polymer, e.g., plexiglass, which shows limited permeability to 2 The fluorophor is distributed in the polymer in areas having different luminescence levels.
The reference emitter 12 next to the sensor 10 provides reference concentration information by emitting reference luminescence levels. The differences in 1uminescence between the sensor 10 and the reference 12 are visually determined by the human eye 18. ~n optional blocking filter 20 can be positioned between the eye 18 and the sensor 10 and reference 12 to improve viewing contrast by removing scattered excitation light. In addition, a filter (not shown) over the light source may be used to improve viewing by limiting excitation wavelengths.
In one embodiment, the standard 12' has a tapered wedge shape as shown in Figure 3. The luminescenceintensity at each point is determined by the thickness of the standard 12'.
The thicker (brighter) portions correspond to lower oxygen concentrations on the sensor 10. A non-uniform slope on the wedge improves the linearity of calibration.
In an alternative embodiment, the standard 12" is a concentration graded reference with the concentration of fluorophor contained therein increasing from one end to the other. The higner (brighter) concentrations correspond to lower o~ygen concentrations on the sensor. In the graded standard 1~" shown in FiguTe 4, the relative concentration of the fluorophor is indicated by the dot density. The sensor 12" is of uniform thickness.

7gl7 The graded concentration standard 12'' can be Eormed by withdrawing a polymer film from a solution containing the fluorophor material. The areas of the film which remain longer in the solution contain greater concentrations of the fluorophor.
In the preferred embodiment, the sensor 10 and the reference 12 are formed of identical luminescent materials.
This ensures that the emission colors are the same and that the observer wiil only be comparing intensities.
Fluorophors suitable for use in the present invention include, but are not limited to, the metal complexes discussed above. The preferred material is tris(4,7-diphenyl-1, 10-phenanthroline)ruthenium(II) immobilized in a silicon rubber polymer matrix. Other fluorophors and polymer matrices will give greater or lesser sensitivity.
The system shown in the figures is used by allowing the oxygen in the environment 14 to impinge upon the sensor 10 and reference 12. The support matrix in the sensor 10 is permeable to oxygen, and thus allows the oxygen to quench the luminscent material. The matrix in the reference 12 restricts oxygen access to the fluorophor material therein.
The luminescence of the quenched sensor 10 is then compared to theluminescence of the reference 12. The area of the reference 12 having the same luminescence as the sensor l0 is then visually selected. Krowledge of the amount of luminesc~nt material present in the selected area is used to determine

3~ L7~

the amount of oxygen present in the environmen-t 1~. Wi~h proper calibration, a visual match of emission intensity can allow oxygen estimations to within a ew per cent.
For sensor 10, films of 0.001" thickness, the response time is subsecond. Thicker sensor films respond more slowly and provide indications of average oxygen concentrations.
In an alternative embodiment, the present invention contemplates the use of a self-referencing sensor. Such a sensor includes a mixture of fluorophors which have differing sensitivities to oxygen quenching and differing colors of emission. By suitably adjusting the characteristics, the sensor is made to change colors at different oxygen concentrations.
It is thus possible to completely dispense with the reference emitter 12 used with the system described above. The self-referencing sensor is especially useful in go-on cJo applications.
The referencing systems described above are inexpensive and provide stable, long-lasting, rapid monitors for gaseous or liquid oxygen levels. They can be incorporated into operating room gas lines, breathing masks, and other hospital devices where the shut-off or improper connection of oxygen could be fatal. They can also be used in mines and industrial areas where oxygen levels vary. Applications as far-reaching as space capsules and as ordinary as welding machines (He-arc purges) are also contemplated.
While the invention has been described with reference to specific embodiments, the exact nature and scope of the invention is defined in the following claims.

Claims (35)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A method for determining the presence of oxygen in an environment comprising providing luminscent material whose intensity and lifetime of luminescence is quenchable by oxygen, incorporating said material in a carrier material which is relatively permeable to oxygen and relatively impermeable to interfering quenchers, thereby forming a sensor, exposing the sensor to an environment to be sampled, allowing oxygen in the environment to permeate the carrier material and quench the luminescent material, measuring the quenching-related decrease in intensity or lifetime of luminescence, and determining the presence of oxygen based on the measured quenching.
2. The method of Claim 1 wherein the environment is a gas.
3. The method of Claim 1 wherein the environment is a liquid.
4. The method of Claim 1 wherein the concentration of oxygen in the environment is determined.
5. A sensor for determining the presence of oxygen in an environment comprising luminescent material whose intensity and lifetime of luminescence is quenchable by oxygen, said luminescent material being incorporated in a carrier material which is relatively permeable to oxygen and relatively impermeable to interfering quenchers.
6. The apparatus of Claim 5 wherein the luminescent material is an inorganic material.
7. The apparatus of Claim 5 wherein the luminescent material is a phosphorescent material.
8. The apparatus of Claim 5 wherein the luminescent material is a platinum group metal complex.
9. The apparatus of Claim 5 wherein the luminescent material is selected from the group consisting of vanadium, copper, ruthenium, rhenium, osmium, iridium, rhodium, platinum, palladium, zinc, and chromium complexes with ?-diimine ligands, porphyrins, phtholocyanine and other ligands.
10. The apparatus of Claim 9 wherein the complexes are selected from the group consisting of mixed ligand complexes, dicyano complexes and tris complexes.
11. The apparatus of Claim 9 wherein the luminescent material is selected from the group consisting of complexes of ruthenium(II), osmium(II), iridium(III), rhodium, rhenium, and chromium (III) with 2,2'-bipyridine,1, 10-phenanthroline, 4,7-diphenyl(1,10-phenanthroline), 4,7-dimethyl-1, 10-phenanthroline, 4,7-disulfonated-diphenyl-1, 10-phenanthroline, 2,2'-bi-2-thiazoline, 2,2'-bithoazole, 5-bromo-1,10-phenanthroline, and 5-chloro-1,10-phenanthroline and 5-cholor-1,10-phenanthroline and complexes of VO(II), CU(II), platinum(II), and zinc(II) with porphin, etioporphorin tetraphenylporphin, mesoporphyrin IX dimethylester, proto porphyrin IX dimethylester, and octaethylporphyrin.
12. The apparatus of Claim 9 wherein the luminescent material comprises tris(4,7-diphenyl-1,10-phenanthroline)-ruthenium(II), tris(disulfonated-(4,7-diphenyl-1),10-phenanthroline)ruthenium(II), and (disulfonated-4,7-diphenyl-1, 10-phenanthroline)bis(1,10-phenanthroline)-ruthenium(II).
13. The apparatus of Claim 5 wherein the carrier material comprises a polymer in the form of sheets, films, blocks, laminates, microspheres, tubes, and strips.
14. The apparatus of Claim 13 wherein the polymer is selected from the group consisting of Plexiglas*, polyvinyl chloride, silicon rubber, natural rubber, polycarbonate, Teflon*, polystrene, polyvinylidene fluoride, poly(tetrafluoroethylene propylene), and caution and anion exchange resins.
15. The apparatus of Claim 13 wherein the luminescent material is incorporated into the polymer by a process selected from the group consisting of diffusing the luminescent material into the polymer from suitable organic solution, mixing the luminescent material with the polymer before final polymerization, and ionically or covalently binding the luminiscent material to the polymer.
16. The apparatus of claim 13, wherein the polymer is protected further from the solvent by overcoating it with an oxygen permeable solvent resistant polymer.
17. The apparatus of claim 5, wherein the carrier material comprises a porous adsorbant selected from the group containing silica gel, alumina etched glass, and con-trolled porosity glass.
18. The apparatus of claim 17, wherein the luminescent material is incorporated into the adsorbant by diffusion from a penetrating solvent and held by adsorption, ionic binding, or covalent chemical attachment to the adsorbant.
19. The apparatus of claim 17, wherein the polymer is protected from the solvent by an overcoat of solvent imper-meable material which can include silicon oils or chemical silinization of the surface.
20. A method for determining the amount of oxygen in an environment comprising providing a sensor having lumines-cent material whose luminescence is quenchable in oxygen, providing a reference device having said luminescent material distributed therein in areas having differing amounts of said material, arranging said sensor and said reference in a proxi-mate relationship, exposing said sensor and said reference to an environment to be sampled, allowing oxygen in the environment to quench the luminescent material in the sensor, restricting oxygen access to the luminescent material in the reference, comparing the luminescence of the sensor with the luminescence of the reference to determine a similarity of luminescence between the sensor and an area of the reference, and determining the amount of oxygen in the environment based on the amount of luminescent material present in said area of the reference.
21. The method of Claim 20 wherein the reference comprises a support having luminescent material distributed therealong in areas having differing amounts of said material, said luminescent material being the same as the sensor material that is quenchable by oxygen.
22. The method of Claim 21 wherein said luminescent reference material is distributed in areas of differing thickness.
23. The method of Claim 21 wherein the reference has a wedge or staircase shape, the amount of luminescent material present in any portion of said wedge or staircase being related to the thickness of said portion.
24. The method of Claim 23 wherein the wedge or staircase has a non-uniform slope or step size.
25. The method of Claim 21 wherein the luminescent material is distributed to form areas having differing concentrations of said luminescent material.
26. The method of Claim 21 wherein the luminescent material comprises fluorophor material.
27. The method of Claim 21 wherein the reference is formed of material which is relatively impermeable to oxygen, said luminescent material being incorporated into the support material.
28. The method of Claim 21 wherein the reference is formed by withdrawing the support from a solution of luminescent material, the concentration of luminescent material in a given area of the support being related to the length of time the area remains in said solution or alternatively, the sensor concentration would be related to the changing concentration in the solvent as the support is withdrawn.
29. A monitor for determining oxygen concentration in an environment comprising a support containing a mixture of luminescent materials quenchable by oxygen, said materials having differing sensitivities to oxygen quenching and having differing colors of emission.
30. An apparatus using the phase shift of the luminescence of material relative to a modulated excitation source to measure the lifetime and relate it to the oxygen concentration.
31. An apparatus of claim 5, wherein the sensor responds to gases other than oxygen.
32. An apparatus of claim 31, wherein the sensor responds to sulfur dioxide.
33. An apparatus of claim 31, wherein the sensor responds to carbon dioxide.
34. An apparatus of claim 31, wherein the sensor responds to chlorine.
35. The apparatus of claim 16, wherein the solvent resistant polymer is tetrafluoroethylene.
CA000442663A 1982-12-23 1983-12-06 Method and apparatus for oxygen determination Expired CA1261717A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US45265982A true 1982-12-23 1982-12-23
US452,659 1982-12-23

Publications (1)

Publication Number Publication Date
CA1261717A true CA1261717A (en) 1989-09-26

Family

ID=23797370

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000442663A Expired CA1261717A (en) 1982-12-23 1983-12-06 Method and apparatus for oxygen determination

Country Status (5)

Country Link
JP (1) JPH0643963B2 (en)
CA (1) CA1261717A (en)
DE (1) DE3346810C2 (en)
FR (1) FR2538550B1 (en)
GB (1) GB2132348B (en)

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190830A3 (en) * 1985-02-04 1988-04-27 Gould Inc. Single optical fiber sensor for measuring the partial pressure of oxygen
US4752115A (en) * 1985-02-07 1988-06-21 Spectramed, Inc. Optical sensor for monitoring the partial pressure of oxygen
WO1987000023A1 (en) * 1985-07-03 1987-01-15 International Biomedics, Inc. Methods of measuring oxygen concentration
US5043286A (en) * 1985-07-03 1991-08-27 Abbott Laboratories Method and sensor for measuring oxygen concentration
US4810655A (en) * 1985-07-03 1989-03-07 Abbott Laboratories Method for measuring oxygen concentration
AT390145B (en) * 1986-01-27 1990-03-26 Avl Verbrennungskraft Messtech A method for determining the concentration of a substance contained in materials, in particular oxygen
US5006314A (en) * 1986-04-18 1991-04-09 Minnesota Mining And Manufacturing Company Sensor and method for sensing the concentration of a component in a medium
US5120510A (en) * 1986-10-10 1992-06-09 Minnesota Mining And Manufacturing Company Sensor and method for sensing the concentration of a component in a medium
US4849172A (en) * 1986-04-18 1989-07-18 Minnesota Mining And Manufacturing Company Optical sensor
US4895156A (en) * 1986-07-02 1990-01-23 Schulze John E Sensor system using fluorometric decay measurements
US5196347A (en) * 1986-07-03 1993-03-23 Terumo Kabushiki Kaisha Method for measuring oxygen concentration
JPH0560542B2 (en) * 1986-07-03 1993-09-02 Rikagaku Kenkyusho
US4861727A (en) * 1986-09-08 1989-08-29 C. R. Bard, Inc. Luminescent oxygen sensor based on a lanthanide complex
US5012809A (en) * 1986-10-10 1991-05-07 Shulze John E Fiber optic catheter system with fluorometric sensor and integral flexure compensation
US5462052A (en) * 1987-01-30 1995-10-31 Minnesota Mining And Manufacturing Co. Apparatus and method for use in measuring a compositional parameter of blood
EP0344313B1 (en) * 1987-02-20 1994-05-11 Terumo Kabushiki Kaisha Probe for measuring concentration of dissolved gas
US5070158A (en) * 1987-03-12 1991-12-03 Hewlett-Packard Company Covalently labeled siloxane polymers
AT389590B (en) * 1987-05-27 1989-12-27 Avl Verbrennungskraft Messtech Process for the continuous quantitative determination of sulfur dioxide and arrangement for performing the method
JPS6463842A (en) * 1987-09-03 1989-03-09 Terumo Corp Method and apparatus for measuring concentration of optical material
US5100709A (en) * 1987-10-09 1992-03-31 Tredegar Industries, Inc. Multilayer film coating for rigid, smooth surfaces
US4947850A (en) * 1988-03-11 1990-08-14 Trustees Of The University Of Pennsylvania Method and apparatus for imaging an internal body portion of a host animal
AT393326B (en) * 1988-08-02 1991-09-25 Avl Verbrennungskraft Messtech Indicator substance parameter of interest of a sample for a measuring device for optically determining and measuring method thereof
US5077222A (en) * 1988-09-30 1991-12-31 Miles Inc. Method for assaying for proteins using a dual indicator reagent composition
US5049358A (en) * 1988-09-30 1991-09-17 Miles Inc. Composition and test device for assaying for proteins
US5047350A (en) * 1989-01-19 1991-09-10 Eastman Kodak Company Material and method for oxygen sensing
AT393035B (en) * 1989-04-25 1991-07-25 Avl Verbrennungskraft Messtech A method for the quantitative determination of at least one chemical parameter of a sample medium
GB8910813D0 (en) * 1989-05-11 1989-06-28 Univ Manchester Method and apparatus for the determination of chlorine
US5094819A (en) * 1989-06-16 1992-03-10 Washington Research Foundation Fluorescence-based optical sensor and method for detection of lipid-soluble analytes
US5182353A (en) * 1989-08-16 1993-01-26 Puritan-Bennett Corporation Method for bonding an analyte-sensitive dye compound to an addition-cure silicone
EP0413499A3 (en) * 1989-08-16 1991-07-24 Puritan-Bennett Corporation Sensor element and method for making the same
US5015715A (en) * 1989-08-16 1991-05-14 Puritan-Bennett Corporation Method for bonding an analyte-sensitive dye compound to an addition-cure silicone
US5330718A (en) * 1989-08-16 1994-07-19 Puritan-Bennett Corporation Sensor element and method for making the same
US5102625A (en) * 1990-02-16 1992-04-07 Boc Health Care, Inc. Apparatus for monitoring a chemical concentration
US5127405A (en) * 1990-02-16 1992-07-07 The Boc Group, Inc. Biomedical fiber optic probe with frequency domain signal processing
US5175016A (en) * 1990-03-20 1992-12-29 Minnesota Mining And Manufacturing Company Method for making gas sensing element
WO1991016612A1 (en) * 1990-04-12 1991-10-31 Tsentralny Aerogidrodinamichesky Institut Imeni N.E.Zhukovskogo Method and device for determining field of presure of continuous fluid medium on the surface of an object
US5155046A (en) * 1990-08-10 1992-10-13 Puritan-Bennett Corporation System and method for measuring oxygen in the presence of halothane
AU647609B2 (en) * 1991-04-18 1994-03-24 Becton Dickinson & Company Microbial monitoring device
CA2086608A1 (en) * 1991-05-08 1992-11-09 Roger J. Morris Method and apparatus to detect bacterial contamination of transfusable blood
US5296381A (en) * 1991-08-08 1994-03-22 Minnesota Mining & Manufacturing Co. Sensing elements and methods for making and using same
US5409666A (en) * 1991-08-08 1995-04-25 Minnesota Mining And Manufacturing Company Sensors and methods for sensing
US5593899A (en) * 1993-02-25 1997-01-14 Trustees Of The University Of Pennsylvania Device and method for measuring tissue oxygenation through the skin using oxygen dependent quenching of phosphorescence
US5233194A (en) * 1992-01-03 1993-08-03 Hewlett-Packard Company Optical gas sensor with enriching polymer
EP0558771A1 (en) * 1992-03-02 1993-09-08 Aliteco Ag Luminescent pressure sensitive composition
US5453248A (en) * 1992-03-09 1995-09-26 Optical Sensors Incorporated Cross-linked gas permeable membrane of a cured perfluorinated urethane polymer, and optical gas sensors fabricated therewith
US5583047A (en) * 1992-12-10 1996-12-10 W. R. Grace & Co.-Conn. Method of detecting the permeability of an object to oxygen
US5326531A (en) * 1992-12-11 1994-07-05 Puritan-Bennett Corporation CO2 sensor using a hydrophilic polyurethane matrix and process for manufacturing
US5607644A (en) * 1993-06-10 1997-03-04 Optical Sensors Incorporated Optical sensor for the measurement of pH in a fluid, and related sensing compositions and methods
US5462880A (en) * 1993-09-13 1995-10-31 Optical Sensors Incorporated Ratiometric fluorescence method to measure oxygen
US6274086B1 (en) 1996-12-16 2001-08-14 The Trustees Of The University Of Pennsylvania Apparatus for non-invasive imaging oxygen distribution in multi-dimensions
US5593854A (en) * 1994-02-16 1997-01-14 Becton Dickinson And Company Data analysis method for use with fluorescent bacterial sensors
US6080574A (en) * 1994-05-10 2000-06-27 Becton, Dickinson And Company Composite optical blood culture sensor
CA2147561C (en) * 1994-05-10 1997-09-16 Klaus W. Berndt Composite optical blood culture sensor
EP0685730B1 (en) * 1994-06-04 2000-09-06 Orbisphere Laboratories Neuchatel Sa Luminoscopic analytic device and method
US6074870A (en) * 1994-08-15 2000-06-13 Becton, Dickinson And Company Optical blood culture sensor
US5718842A (en) * 1994-10-07 1998-02-17 Joanneum Reserach Forschungsgesellschaft Mbh Luminescent dye comprising metallocomplex of a oxoporphyrin
DE19519496A1 (en) * 1995-05-27 1996-11-28 Lau Matthias Dipl Ing An oxygen-sensitive single-layer system and method for assembly of the system
DE69711634T2 (en) * 1996-07-22 2002-10-17 Novartis Ag A process for preparing platinum or palladium benzoporphyrinen and cyclohexenoporphyrinen, intermediates, and oxygen sensor
AU4483997A (en) * 1996-09-18 1998-04-14 Becton Dickinson & Company Microbial monitoring device
AT409306B (en) * 1997-10-03 2002-07-25 Hoffmann La Roche Optical chemical sensor
CN1235185A (en) * 1998-05-12 1999-11-17 湖南大学 High sensibility oxygen sensible luminating material for fluorescent die-out oxygen sensor
US6325978B1 (en) 1998-08-04 2001-12-04 Ntc Technology Inc. Oxygen monitoring and apparatus
US7001536B2 (en) 1999-03-23 2006-02-21 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
AT407090B (en) * 1998-09-15 2000-12-27 Joanneum Research Forschungsge Opto-chemical sensor and method for its manufacture
DE19933104A1 (en) * 1999-07-15 2001-01-18 Ingo Klimant Phosphorescent micro- and nanoparticles as a reference standard and Phosphoreszenzmarker
NL1014464C2 (en) * 2000-02-22 2001-08-24 Tno Optical sensor for measuring oxygen.
DE10025097B4 (en) * 2000-05-20 2004-04-15 Robert Bosch Gmbh the same optical sensor and methods for preparing
DE10051220A1 (en) * 2000-10-16 2002-04-25 Mettler Toledo Gmbh Optical sensor for the determination of an analyte, and method for its production
AT410601B (en) 2000-12-29 2003-06-25 Hoffmann La Roche Sensor for luminescence-optical determination of an analyte and reagent which operates on the principle fret
DE10101576B4 (en) * 2001-01-15 2016-02-18 Presens Precision Sensing Gmbh The optical sensor and sensor array
US20040171094A1 (en) * 2001-06-18 2004-09-02 Ingo Klimant Oxygen sensors disposed on a microtiter plate
GB0121444D0 (en) 2001-09-05 2001-10-24 Univ Strathclyde Sensor
DE10149734B4 (en) * 2001-10-09 2004-09-16 Robert Bosch Gmbh Gas sensor and methods of making its polymer matrix
AT500894T (en) 2002-01-17 2011-03-15 Univ College Cork Nat Univ Ie Test Apparatus and method for chemical or biological screening
WO2004031321A1 (en) * 2002-10-02 2004-04-15 National Research Council Of Canada Oxygen sensing compounds, methods for production thereof and their uses
US7368153B2 (en) 2002-12-06 2008-05-06 Cryovac, Inc. Oxygen detection system for a rigid container
US6999807B2 (en) 2003-01-23 2006-02-14 Scimed Life Systems, Inc. pH measuring balloon
EP1601955B1 (en) * 2003-03-07 2013-01-09 Luxcel Biosciences Limited An oxygen sensitive probe and method for measuring oxygen uptake
US7534615B2 (en) 2004-12-03 2009-05-19 Cryovac, Inc. Process for detecting leaks in sealed packages
JP4727349B2 (en) * 2005-08-30 2011-07-20 三菱瓦斯化学株式会社 Oxygen detecting composition
DE102006001642B4 (en) 2006-01-11 2008-02-21 Sartorius Biotech Gmbh Oxygen sensor and method
US7749768B2 (en) 2006-03-13 2010-07-06 Cryovac, Inc. Non-invasive method of determining oxygen concentration in a sealed package
US7569395B2 (en) 2006-03-13 2009-08-04 Cryovac, Inc. Method and apparatus for measuring oxygen concentration
JP4876686B2 (en) * 2006-04-14 2012-02-15 富士ゼロックス株式会社 Display device
JP4930943B2 (en) * 2007-05-11 2012-05-16 国立大学法人群馬大学 Oxygen concentration measurement reagent and an oxygen concentration measurement method
US8081313B2 (en) 2007-05-24 2011-12-20 Airbus Operations Limited Method and apparatus for monitoring gas concentration in a fluid
GB2452977A (en) 2007-09-21 2009-03-25 Sun Chemical Ltd Ink composition
US8613158B2 (en) 2008-04-18 2013-12-24 Ball Horticultural Company Method for grouping a plurality of growth-induced seeds for commercial use or sale based on testing of each individual seed
GB0813715D0 (en) 2008-07-28 2008-09-03 Airbus Uk Ltd A monitor and a method for measuring oxygen concentration
US20120129268A1 (en) * 2010-11-19 2012-05-24 Mayer Daniel W Photoluminescent oxygen probe with reduced cross-sensitivity to humidity
US9660198B2 (en) 2011-07-15 2017-05-23 Kyulux, Inc. Organic electroluminescence element and compound used therein
JP5590573B2 (en) * 2011-07-15 2014-09-17 国立大学法人九州大学 Oxygen sensor
DE102012205929A1 (en) 2012-04-12 2013-10-17 Robert Bosch Gmbh Safety sensor system for an electrochemical storage system
DE102012104688A1 (en) * 2012-05-30 2013-12-05 Hamilton Bonaduz Ag Optical sensor element
JP6456685B2 (en) * 2014-12-25 2019-01-23 国立研究開発法人産業技術総合研究所 Organic thin-film solar cells
FR3044637B1 (en) * 2015-12-03 2017-12-01 Zodiac Aerotechnics inerting system of a fuel tank of an aircraft, adapted to calculate the amount of oxygen present in an inerting gas injected into said reservoir
WO2018047040A1 (en) 2016-09-08 2018-03-15 Presens Precision Sensing Gmbh Method for calibrated optical measurement and system therefor
DE102016119810A1 (en) * 2016-10-18 2018-04-19 Hamilton Bonaduz Ag Layers for the detection of oxygen
DE102017204082A1 (en) 2017-03-13 2018-09-13 Hamilton Bonaduz Ag Device for temperature-compensated optical detection of the oxygen content of a fluid

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1190583A (en) * 1966-10-19 1970-05-06 Mini Of Power Improvements in or relating to Gas Detectors
US3612866A (en) * 1969-07-08 1971-10-12 Brian Stevens Instrument for determining oxygen quantities by measuring oxygen quenching of fluorescent radiation
DE2117290A1 (en) * 1970-04-13 1971-10-28 Trw Inc
US3725658A (en) * 1971-01-18 1973-04-03 Trw Inc Apparatus and method for continuously detecting oxygen in a gas stream
DD106086A1 (en) * 1973-07-16 1974-05-20
DE2346792C3 (en) * 1973-09-17 1979-09-20 Draegerwerk Ag, 2400 Luebeck
DE2508637C3 (en) * 1975-02-28 1979-11-22 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen
JPS5924379B2 (en) * 1976-12-23 1984-06-08 Toray Industries
DE2833356C2 (en) * 1978-07-29 1987-05-21 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen, De
US4321057A (en) * 1979-09-20 1982-03-23 Buckles Richard G Method for quantitative analysis using optical fibers
DE3063621D1 (en) * 1979-11-21 1983-07-07 Gen Electric Co Plc Optical systems for sensing and measuring physical quantities
DE3001669C2 (en) * 1980-01-18 1989-07-06 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Ev, 3400 Goettingen, De
DE3148830A1 (en) * 1981-12-10 1983-06-23 Barnikol Wolfgang "Apparatus for determining the oxygen concentration in gases, liquids and tissues"
DD217024A1 (en) * 1982-02-01 1985-01-02 Adw Ddr Picosecond phasenfluorometer
US4476870A (en) * 1982-03-30 1984-10-16 The United States Of America As Represented By The Department Of Health And Human Services Fiber optic PO.sbsb.2 probe
JP3612866B2 (en) 1996-06-20 2005-01-19 三菱電機株式会社 Vapor drying method of a semiconductor wafer

Also Published As

Publication number Publication date
FR2538550A1 (en) 1984-06-29
GB2132348B (en) 1987-05-28
FR2538550B1 (en) 1986-07-04
GB8333822D0 (en) 1984-02-01
JPS59170748A (en) 1984-09-27
JPH0643963B2 (en) 1994-06-08
DE3346810A1 (en) 1984-07-26
GB2132348A (en) 1984-07-04
CA1261717A1 (en)
DE3346810C2 (en) 1995-03-23

Similar Documents

Publication Publication Date Title
US3612866A (en) Instrument for determining oxygen quantities by measuring oxygen quenching of fluorescent radiation
Peterson et al. Fiber-optic probe for in vivo measurement of oxygen partial pressure
Moreno-Bondi et al. Oxygen optrode for use in a fiber-optic glucose biosensor
Lee et al. Photostable optical oxygen sensing material: Platinumtetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene
EP0194102B1 (en) Luminescence measuring arrangement
CA2066329C (en) Microbial monitoring device
US7323315B2 (en) Method for reducing effect of hematocrit on measurement of an analyte in whole blood
CA2231771C (en) Simultaneous dual excitation/single emission fluorescent sensing method for ph and pco2
US5116759A (en) Reservoir chemical sensors
US5308771A (en) Chemical sensors
CA2188436C (en) Method of detecting the permeability of an object to oxygen
US5037615A (en) Tethered pair fluorescence energy transfer indicators, chemical sensors, and method of making such sensors
US6254831B1 (en) Optical sensors with reflective materials
US6016372A (en) Chemical sensing techniques employing liquid-core optical fibers
US5747349A (en) Fluorescent reporter beads for fluid analysis
US6051437A (en) Optical chemical sensor based on multilayer self-assembled thin film sensors for aquaculture process control
CA2210770C (en) Diagnostic test carrier with multi-layer test field and method in which it is used to determine and analyte
JP2622430B2 (en) Analytical methods
EP0137157A2 (en) Fluid analysis technology using fluorescence type sensors
US6387709B1 (en) Method of operating an optical sensor adapted for selective analyte-sensing contact with a plurality of samples
US5217876A (en) Method for detecting microorganisms
Freeman et al. Oxygen probe based on tetrakis (alkylamino) ethylene chemiluminescence
JP2862556B2 (en) Apparatus and devices for detecting microorganisms
US8158438B2 (en) Method for the determination of the concentration of a non-volatile analyte
US4889690A (en) Sensor for measuring physical parameters of concentration of particles

Legal Events

Date Code Title Description
MKEX Expiry