WO2013005419A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2013005419A1 WO2013005419A1 PCT/JP2012/004303 JP2012004303W WO2013005419A1 WO 2013005419 A1 WO2013005419 A1 WO 2013005419A1 JP 2012004303 W JP2012004303 W JP 2012004303W WO 2013005419 A1 WO2013005419 A1 WO 2013005419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- side transistor
- low
- unit
- units
- capacitor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/40—Working vehicles
- B60L2200/42—Fork lift trucks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/60—Electric or hybrid propulsion means for production processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a power conversion device.
- FIG. 1 is a circuit diagram showing a configuration of a general power conversion device (inverter) 2.
- the power converter 2 is used to drive a load 4 including a motor.
- the power conversion device 2 includes a high side transistor MH (U to W) and a low side transistor ML (U to W) provided for each of the U, V, and W phases, and a high side transistor MH (U to W) for each phase.
- a gate drive circuit 10 for driving the low-side transistor ML (U to W) and a snubber circuit 12 (U to W) provided for each phase are provided.
- large-capacity power transistors are used as the high-side transistor MH and the low-side transistor ML. If noise is applied to a large-capacity power transistor, the reliability of the circuit may be impaired. Therefore, in order to prevent this, a large snubber circuit is required.
- Patent Document 1 discloses a configuration in which a large-capacity snubber circuit is connected to the outside of a power module (power transistor) via a bus bar. Generally, the number of silicon chips corresponding to the capacity is built in the power module. In this configuration, the distance between each silicon chip and the snubber circuit is non-uniform, so that a sufficient surge suppression effect is obtained for transistors formed on a silicon chip that is far from the snubber circuit. The problem that it is not possible arises.
- the snubber circuit is configured by using large-capacity, that is, large and heavy circuit components, and they are screwed onto the bus bar, so that the vibration causes long-term reliability of the circuit. There is a risk of adverse effects.
- the present invention has been made in view of such problems, and one of exemplary purposes of an aspect thereof is to provide a power conversion device that can be suitably used for industrial vehicles.
- An aspect of the present invention relates to a power conversion device that is mounted on a forklift and supplies power to a motor.
- the power conversion device is provided for each phase of the upper power supply line, the lower power supply line, and the high-side transistor provided between the output terminal of the corresponding phase and the upper power supply line, and for each phase.
- a low-side transistor provided between the corresponding phase output terminal and the lower power supply line, N snubber circuits, and a metal base substrate.
- the high-side transistor is configured to include N (N is an integer of 2 or more) high-side transistor units that are electrically parallel.
- the low-side transistor includes N low-side transistor units that are electrically in parallel.
- Each of the N snubber circuits is provided for each pair of one high-side transistor unit and one corresponding low-side transistor unit.
- the high side transistor, the low side transistor, and the N snubber circuits are mounted on a metal base substrate.
- a pair of high-side transistor unit and low-side transistor unit and a snubber circuit corresponding to the pair are set as one layout unit, and N layout units are regularly arranged on the metal base substrate.
- the high-side transistor unit and the low-side transistor unit are arranged adjacent to each other in the first direction, and the corresponding snubber circuit is connected to the high-side transistor unit and the low-side transistor unit in the first direction. Adjacent in the second vertical direction.
- the following advantages can be obtained.
- the capacitance value of the capacitor constituting the snubber circuit can be reduced compared to the case where one snubber circuit is provided for the entire high side transistor and low side transistor, High frequency surge can be suitably suppressed.
- the component parts by mounting the component parts on the metal base substrate, heat can be radiated through the metal base substrate, and temperature rise can be suppressed.
- the resistance to vibration can be increased compared to the case of connecting via the bus bar.
- the metal base substrate may be formed by being physically divided for each layout unit. According to this aspect, heat conduction between adjacent layout units can be suppressed, and a snubber circuit or transistor in one layout unit can be suppressed from being heated by heat from a transistor in another layout unit. In general, solder that connects circuit components and circuit components to the substrate is accelerated by repeated increases and decreases in temperature. Reliability can be improved. Further, by physically dividing into layout units, the number of layout units can be easily increased or decreased when designing several types of power conversion devices that drive loads of different capacities, thus losing the advantages described above. Without increasing the design efficiency.
- the metal base substrate may be provided with a pair of slits formed so as to sandwich the snubber circuits in the second direction. Focusing on the snubber circuit of a certain layout unit, in addition to the thermal effect from the transistor of the same layout unit, the thermal effect from the transistor of the adjacent layout unit can be mitigated, so that long-term reliability can be improved. .
- the high-side transistor unit and the low-side transistor unit may each include two sub-transistor units that are adjacent in the first direction.
- the metal base substrate may be divided for each high-side transistor unit and each low-side transistor unit.
- Each of the high-side transistor unit and the low-side transistor unit may include two sub-transistor units adjacent in the first direction, and the metal base substrate may be divided into two sub-transistor units.
- Each of the N snubber circuits may be a C snubber circuit including a first capacitor and a second capacitor provided in series between the upper power supply line and the lower power supply line.
- the first capacitor may be disposed adjacent to the sub-transistor unit of the high-side transistor, and the second capacitor may be disposed adjacent to the sub-transistor unit of the low-side transistor.
- Each of the N snubber circuits includes a third capacitor, a first diode, a second diode, a fourth capacitor, and a third capacitor and a first diode that are provided in series between the upper power supply line and the lower power supply line.
- RCD snubber circuit including a connection point, a first resistor provided between the lower power supply line, a connection point between the second diode and the fourth capacitor, and a second resistor provided between the upper power supply line It may be.
- the third capacitor and the first diode may be disposed adjacent to the sub-transistor unit of the high-side transistor, and the second diode and the fourth capacitor may be disposed adjacent to the sub-transistor unit of the low-side transistor.
- FIG. 7A and 7B are diagrams illustrating a configuration example of the layout unit of FIG. 8A and 8B are diagrams showing another configuration example of the layout unit of FIG.
- FIGS. 9A and 9B are diagrams showing the configuration of the forklift.
- the state in which the member A is connected to the member B means that the member A and the member B are electrically connected to each other in addition to the case where the member A and the member B are physically directly connected. It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
- the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as their electric It includes cases where the connection is indirectly made through other members that do not substantially affect the general connection state, or that do not impair the functions and effects achieved by their combination.
- FIG. 2 is an equivalent circuit diagram showing a configuration of the power conversion device 2 according to the embodiment.
- the power conversion device 2 is mounted on an industrial vehicle such as a forklift, and drives a motor for cargo handling and a motor for wheels.
- the basic configuration of the power converter 2 is the same as that of the power converter 2r in FIG. That is, the power conversion device 2 is provided for each phase of the upper power supply line LP, the lower power supply line LN, and the output terminal OUTU (OUTV, OUTW) and the upper power supply line of the corresponding phase U (V, W).
- Low side transistors MLU (MLV, MLW) provided between the lower power supply lines LN are provided.
- FIG. 2 shows only the configuration of the U phase, and the configuration regarding the V phase and the W phase is omitted. Moreover, since the power converter device 2 is similarly configured in the U phase, the V phase, and the W phase, the characteristics thereof will be described with reference to the U phase.
- the high-side transistor MH and the low-side transistor ML may be configured by any of a MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), and a bipolar transistor.
- MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
- IGBT Insulated Gate Bipolar Transistor
- the high side transistor MHU includes N (N is an integer of 2 or more) high side transistor units 14U 1 to N that are electrically parallel.
- the low-side transistor MLU includes N low-side transistor units 16U 1 to N that are electrically in parallel.
- the power conversion device 2 includes N snubber circuits 12U 1 to N. Each snubber circuit 12U i is provided for each pair of transistor units 14U i , 16U i .
- the transistor units 14U 1 to 4 constituting the high side transistor MH, 16U 1 to 4 constituting the low side transistor ML, and N snubber circuits 12U 1 to 4 are mounted on the metal base substrate 20.
- the pair of the high-side transistor unit 14U i and the low-side transistor unit 16U i and the corresponding snubber circuit 12U i are regarded as one layout unit 22U i .
- the N layout units 22U 1 to 4U 4 are regularly arranged on the metal base substrate 20.
- each layout unit 22U i the high-side transistor unit 14U i and the low-side transistor unit 16U i are disposed adjacent to each other in the first direction X.
- the snubber circuit 12U i corresponding to them is arranged adjacent to the second direction Y perpendicular to the first direction X with respect to the high-side transistor unit 14U i and the low-side transistor unit 16U i .
- the high-side transistor MHU is divided into N transistor units 14U 1 to N
- the low-side transistor MLU is divided into N transistor units 16U 1 to N
- the snubber circuit 12U is divided into N pieces. Divided and configured. Accordingly, each snubber circuit 12U i can be arranged adjacent to each corresponding transistor unit 14U i , 16U i , and the electrical distance between the snubber circuit and the transistor to be protected can be shortened. Thereby, the suppression effect of a surge can be heightened.
- each layout unit 22U i the electrical distance between the transistor units 14U i and 16U i and the snubber circuit 12U i can be equal. Thereby, the surge with respect to all the transistor units can be suppressed, and the situation where the reliability of some transistor units falls can be prevented.
- the capacitance value of the capacitor constituting the snubber circuit 12 becomes large.
- low-frequency surge noise can be suitably suppressed, it is difficult to suppress high-frequency surges, and this is a problem in power converters for forklifts that are increasing in frequency.
- the capacitance value of each capacitor of each snubber circuit 12U is reduced by dividing the snubber circuit 12U into 1 to N , a high-frequency surge is suitably applied. Can be suppressed.
- the resistance to vibration can be increased compared to the case of connecting via the bus bar.
- the power conversion device 2 according to the embodiment can satisfy the specifications required for industrial vehicles.
- FIG. 4 is a diagram illustrating a configuration of the power conversion device 2a according to the first modification.
- the metal base substrate 20 is physically divided and formed for each layout unit 22U. Adjacent layout units 22U may be screwed together.
- heat conduction between adjacent layout units 22U can be suppressed, and the transistor units 14U and 16U of one layout unit 22U or the snubber circuit 12U can be heated by the heat of the transistors of another layout unit 22U. Heating can be suppressed.
- the temperature fluctuation of a transistor unit, a snubber circuit, and solder can be suppressed, those deterioration can be suppressed, and long-term reliability can be improved.
- the number of layout units 22U can be easily increased or decreased, and the driving capability (current capacity) of the power converter can be easily changed. That is, the design efficiency can be increased.
- FIG. 5 is a diagram illustrating a configuration of a power conversion device 2b according to a second modification.
- the metal base substrate 20 is provided with a pair of slits formed so as to sandwich the snubber circuits 12U 1 to 4U in the second direction Y.
- this modification when focusing on the snubber circuit 12U i of a certain layout unit 22U i , the thermal influence from the transistor units 14U i and 16U i of the same layout unit 22U i can be reduced by one slit, and the other The slit can mitigate the thermal influence from the transistor units 14U j and 16U j of the adjacent layout unit 22U j , and can improve long-term reliability.
- the second modification may be combined with the first modification. That is, the metal base substrate 20 may be divided for each layout unit, and slits may be formed on both sides of the snubber circuit 12.
- FIG. 6 is a diagram illustrating a configuration of a power conversion device 2c according to a third modification.
- each of the high-side transistor unit 14U and the low-side transistor unit 16U includes two sub-transistor units 26 and 28 that are adjacent to each other in the first direction X.
- the metal base substrate 20 is formed not for each layout unit 22U but for each high-side transistor unit 14U and each low-side transistor unit 16U.
- This modification can also achieve the same effect as the embodiment. Further, by dividing the metal base substrate 20, the same effect as that of the first modification can be obtained.
- the names of the sub-transistor unit and the transistor unit are for convenience, and the sub-transistor unit in FIG. 6 corresponds to the transistor unit in FIGS.
- the power conversion device 2c when the sub-transistor unit is grasped as a transistor unit, the power conversion device 2c can also be understood as follows.
- the low-side transistor MLU includes K ⁇ L low-side transistor units that are electrically parallel.
- Each snubber circuit 12U is provided for each set of K high-side transistor units and K low-side transistor units corresponding thereto.
- the K high-side transistor units, the K low-side transistor units, and the corresponding snubber circuits 12U constitute one layout unit 22U.
- L layout units 22U are regularly arranged on the metal base substrate 20.
- each layout unit 22U K high-side transistor units and K low-side transistor units are arranged adjacent to each other in the first direction X. Further, the corresponding snubber circuit 12U is arranged adjacent to the K high-side transistor units and the K low-side transistor units in the second direction Y perpendicular to the first direction X.
- FIG. 7A and 7B are diagrams showing a configuration example of the layout unit 22U in FIG.
- FIG. 7A shows a layout on the substrate
- FIG. 7B shows an equivalent circuit diagram.
- the snubber circuit in FIG. 7B is a C snubber circuit.
- Snubber circuit 12U includes a first capacitor C11 and a second capacitor C12 provided in series between upper power supply line LP and lower power supply line LN.
- the first capacitor C11 includes two parallel capacitors C11a and C11b, and is disposed adjacent to the sub-transistor units 26 and 28 of the high-side transistor unit 14U.
- the second capacitor C12 includes two parallel capacitors C12a and C12b, and is disposed adjacent to the sub-transistor units 26 and 28 of the low-side transistor unit 16U.
- the divided metal base substrates are connected by jumpers (metal plates) 30 and 32.
- FIG. 8A and 8B are diagrams showing another configuration example of the layout unit 22U in FIG.
- FIG. 8A shows a layout on the substrate
- FIG. 8B shows an equivalent circuit diagram.
- the snubber circuit in FIG. 8B is an RCD snubber circuit.
- the snubber circuit 12U includes a third capacitor C13, a first diode D11, a second diode D12, a fourth capacitor C14, and a third capacitor C13, which are provided in series between the upper power line LP and the lower power line LN.
- a first resistor R11 provided between the connection point P7 of the first diode D11 and the lower power supply line LN, and a connection point P8 of the second diode D12 and the fourth capacitor C14 and the upper power supply line LP.
- the third capacitor C13 and the first diode D11 are disposed adjacent to the sub-transistor units 26 and 28 of the high-side transistor unit 14U.
- the second diode D12 and the fourth capacitor C14 are disposed adjacent to the sub-transistor units 26 and 28 of the low-side transistor unit 16U.
- the resistance values of the resistors R11 and R12 are sufficiently higher than the resistance value of the wiring, even if the electrical distance to the transistor is long, the function of the snubber circuit is not affected. Therefore, the first resistor R11, the second resistor R12h, and the metal base substrate 20 are externally attached.
- one sub-transistor unit 26, 28 can be associated with one circuit component constituting the snubber circuit, and an efficient layout can be realized.
- the use of the above-described power conversion device 2 will be described.
- the power conversion device 2 can be suitably used for a forklift that requires high frequency and vibration resistance.
- the forklift 1 includes a main body 60, a fork 62, an elevating body 64, a mast 66, and wheels 68.
- the mast 66 is provided on all sides of the main body 60.
- the elevating body 64 is driven by a power source such as a hydraulic pump (not shown) and moves up and down along the mast 66.
- a fork 62 for supporting a load is attached to the elevating body 64.
- FIG. 9B is a diagram showing the configuration of the electrical system of the forklift 1.
- the forklift 1 includes two systems of motors M1 and M2.
- the first motor M1 is a wheel motor for rotating the wheels 68
- the second motor M2 is a cargo handling motor for controlling a hydraulic actuator that raises and lowers the elevating body 64.
- Each of the power conversion devices 2_1 and 2_2 receives a DC voltage from the battery 80, converts it into a three-phase AC signal, and supplies it to the corresponding motors M1 and M2.
- the battery 80, the power conversion devices 2_1 and 2_2, and the motors M1 and M2 are fixed to the main body 60.
- the power conversion devices 2_1 and 2_2 may be separate modules or may be configured as a single module.
- the above-described power conversion device can be suitably used for such a forklift 1 in view of its vibration resistance, high-frequency surge resistance, and the like.
- the power conversion device 2 that drives a three-phase motor has been described.
- the present invention is not limited to a three-phase motor, and can be applied to a multi-phase motor having two or more phases.
- the case where the motor 4 is directly connected to the power conversion device 2 has been described.
- another conversion device or other circuit block is inserted between the power conversion device 2 and the motor 4. It may be.
- the present invention relates to a power conversion device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Inverter Devices (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
ハイサイドトランジスタMHUは、対応する相の出力端子OUTUと上側電源ラインLPの間に設けられ、電気的に並列なN個(Nは2以上の整数)のハイサイドトランジスタユニット14U1~Nを含む。ローサイドトランジスタMLUは、対応する相の出力端子OUTUと下側電源ラインLNの間に設けられ、電気的に並列なN個のローサイドトランジスタユニット16U1~Nを含む。スナバ回路12は、それぞれが、ひとつのハイサイドトランジスタユニット14およびそれと対応するひとつのローサイドトランジスタユニット16のペアごとに設けられる。ハイサイドトランジスタMHU、ローサイドトランジスタMLUおよびN個のスナバ回路12U1~Nは、金属ベース基板上に実装される。
Description
本発明は、電力変換装置に関する。
図1は、一般的な電力変換装置(インバータ)2の構成を示す回路図である。電力変換装置2は、モータをはじめとする負荷4を駆動するために利用される。電力変換装置2は、U、V、W相ごとに設けられたハイサイドトランジスタMH(U~W)およびローサイドトランジスタML(U~W)と、各相のハイサイドトランジスタMH(U~W)、ローサイドトランジスタML(U~W)を駆動するゲートドライブ回路10と、各相毎に設けられたスナバ回路12(U~W)を備える。
負荷に大電流を供給する場合、ハイサイドトランジスタMHおよびローサイドトランジスタMLとして大容量のパワートランジスタが使用される。大容量のパワートランジスタにノイズが印加されると回路の信頼性を損なうおそれがあるため、これを防止するために、大型のスナバ回路が必要となる。
特許文献1には、パワーモジュール(パワートランジスタ)の外側に、ブスバーを介して大容量のスナバ回路を接続する構成が開示される。一般にパワーモジュールの内部には、その容量に応じた個数のシリコンチップが内蔵される。この構成では、各シリコンチップとスナバ回路との距離が不均一となるため、スナバ回路との電気的な距離が遠いシリコンチップ上に形成されるトランジスタに対しては、十分なサージ抑制効果が得られないという問題が生ずる。
またフォークリフトをはじめとする産業用車両では、インバータの高周波化が進んでおり、高周波のサージノイズを抑制する必要がある。ところが特許文献1の構成では、個々のパワーモジュールごとに大容量のスナバ回路が設けられるため、スナバ回路を構成する回路素子、たとえばキャパシタの容量値が大きくなる。キャパシタの周波数特性は、その容量の増大とともに劣化するため、これにより、高い周波数のサージを抑制することが困難となる。
さらに産業用車両では、振動に対する耐性が重要である。特許文献1の構成では、スナバ回路が大容量の、すなわち大型で重い回路部品を用いて構成されており、それらがブスバー上にねじ止めされるため、振動が、回路の長期的な信頼性に悪影響を及ぼすおそれがある。
本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、産業用車両に好適に利用可能な電力変換装置の提供にある。
本発明のある態様は、フォークリフトに搭載され、モータに電力を供給する電力変換装置に関する。電力変換装置は、上側電源ラインと、下側電源ラインと、各相ごとに設けられ、対応する相の出力端子と上側電源ラインの間に設けられたハイサイドトランジスタと、各相ごとに設けられ、対応する相の出力端子と下側電源ラインの間に設けられたローサイドトランジスタと、N個のスナバ回路と、金属ベース基板と、を備える。
ハイサイドトランジスタは、電気的に並列なN個(Nは2以上の整数)のハイサイドトランジスタユニットを含んで構成される。ローサイドトランジスタは、電気的に並列なN個のローサイドトランジスタユニットを含んで構成される。N個のスナバ回路はそれぞれが、ひとつのハイサイドトランジスタユニットおよびそれと対応するひとつのローサイドトランジスタユニットのペアごとに設けられる。ハイサイドトランジスタ、ローサイドトランジスタおよびN個のスナバ回路は、金属ベース基板上に実装される。
ハイサイドトランジスタユニットおよびローサイドトランジスタユニットのペアおよびそれと対応するスナバ回路がひとつのレイアウト単位とされ、N個のレイアウト単位は金属ベース基板上に規則的に配置される。各レイアウト単位内において、ハイサイドトランジスタユニットおよびローサイドトランジスタユニットは、第1方向に隣接して配置され、それらと対応するスナバ回路は、ハイサイドトランジスタユニットおよびローサイドトランジスタユニットに対して、第1方向と垂直な第2方向に隣接して配置される。
ハイサイドトランジスタは、電気的に並列なN個(Nは2以上の整数)のハイサイドトランジスタユニットを含んで構成される。ローサイドトランジスタは、電気的に並列なN個のローサイドトランジスタユニットを含んで構成される。N個のスナバ回路はそれぞれが、ひとつのハイサイドトランジスタユニットおよびそれと対応するひとつのローサイドトランジスタユニットのペアごとに設けられる。ハイサイドトランジスタ、ローサイドトランジスタおよびN個のスナバ回路は、金属ベース基板上に実装される。
ハイサイドトランジスタユニットおよびローサイドトランジスタユニットのペアおよびそれと対応するスナバ回路がひとつのレイアウト単位とされ、N個のレイアウト単位は金属ベース基板上に規則的に配置される。各レイアウト単位内において、ハイサイドトランジスタユニットおよびローサイドトランジスタユニットは、第1方向に隣接して配置され、それらと対応するスナバ回路は、ハイサイドトランジスタユニットおよびローサイドトランジスタユニットに対して、第1方向と垂直な第2方向に隣接して配置される。
この態様によると、以下の利点を得ることができる。
第1に、ハイサイドトランジスタおよびローサイドトランジスタを複数のトランジスタユニットに分割し、各トランジスタユニットに隣接してスナバ回路を設けることにより、スナバ回路と保護対象のトランジスタの電気的な距離を短くでき、サージの抑制効果を高めることができる。
第2に、各レイアウト単位において、トランジスタユニットとスナバ回路の電気的な距離が等長とすることができる。これにより、一部のトランジスタユニットの信頼性が低下するのを防止できる。
第3に、N個のスナバ回路に分割することにより、ハイサイドトランジスタおよびローサイドトランジスタ全体に対して、ひとつのスナバ回路を設ける場合に比べて、スナバ回路を構成するキャパシタの容量値を小さくでき、高周波サージを好適に抑制できる。
第4に、また構成部品を金属ベース基板上に実装することにより、金属ベース基板を介して放熱することができ、温度上昇を抑制できる。
第5に、スナバ回路の構成部品が、金属ベース基板上に実装されるため、ブスバーを介して接続する場合に比べて、振動に対する耐性を高めることができる。
これらの利点によって、産業用車両に好適に利用することが可能となる。
第1に、ハイサイドトランジスタおよびローサイドトランジスタを複数のトランジスタユニットに分割し、各トランジスタユニットに隣接してスナバ回路を設けることにより、スナバ回路と保護対象のトランジスタの電気的な距離を短くでき、サージの抑制効果を高めることができる。
第2に、各レイアウト単位において、トランジスタユニットとスナバ回路の電気的な距離が等長とすることができる。これにより、一部のトランジスタユニットの信頼性が低下するのを防止できる。
第3に、N個のスナバ回路に分割することにより、ハイサイドトランジスタおよびローサイドトランジスタ全体に対して、ひとつのスナバ回路を設ける場合に比べて、スナバ回路を構成するキャパシタの容量値を小さくでき、高周波サージを好適に抑制できる。
第4に、また構成部品を金属ベース基板上に実装することにより、金属ベース基板を介して放熱することができ、温度上昇を抑制できる。
第5に、スナバ回路の構成部品が、金属ベース基板上に実装されるため、ブスバーを介して接続する場合に比べて、振動に対する耐性を高めることができる。
これらの利点によって、産業用車両に好適に利用することが可能となる。
金属ベース基板は、レイアウト単位ごとに物理的に分割して形成されてもよい。
この態様によれば、隣接するレイアウト単位の間の熱伝導を抑制することができ、あるレイアウト単位のスナバ回路あるいはトランジスタが、別のレイアウト単位のトランジスタからの熱によって加熱されるのを抑制できる。一般的には、回路部品や、回路部品と基板を接続するはんだは、温度が上昇、低下を繰り返すことにより、劣化が早まることになるが、この態様では温度変化が緩和されるため、長期的な信頼性を高めることができる。
さらにレイアウト単位ごとに物理的に分割することにより、異なる容量の負荷を駆動するいくつかの種類の電力変換装置を設計する際に、レイアウト単位の個数を容易に増減できるため、上述の利点を損なうことなく、設計効率を高めることができる。
この態様によれば、隣接するレイアウト単位の間の熱伝導を抑制することができ、あるレイアウト単位のスナバ回路あるいはトランジスタが、別のレイアウト単位のトランジスタからの熱によって加熱されるのを抑制できる。一般的には、回路部品や、回路部品と基板を接続するはんだは、温度が上昇、低下を繰り返すことにより、劣化が早まることになるが、この態様では温度変化が緩和されるため、長期的な信頼性を高めることができる。
さらにレイアウト単位ごとに物理的に分割することにより、異なる容量の負荷を駆動するいくつかの種類の電力変換装置を設計する際に、レイアウト単位の個数を容易に増減できるため、上述の利点を損なうことなく、設計効率を高めることができる。
ある態様において、金属ベース基板には、スナバ回路それぞれを第2方向に挟むように形成されたスリットのペアが設けられていてもよい。
あるレイアウト単位のスナバ回路に着目すると、同じレイアウト単位のトランジスタからの熱的影響に加えて、隣接するレイアウト単位のトランジスタからの熱的影響を緩和できるため、長期的な信頼性を高めることができる。
あるレイアウト単位のスナバ回路に着目すると、同じレイアウト単位のトランジスタからの熱的影響に加えて、隣接するレイアウト単位のトランジスタからの熱的影響を緩和できるため、長期的な信頼性を高めることができる。
ハイサイドトランジスタユニットおよびローサイドトランジスタユニットはそれぞれ、第1方向に隣接する2個のサブトランジスタユニットを含んでもよい。金属ベース基板は、ハイサイドトランジスタユニットごと、ローサイドトランジスタユニットごとに分割されてもよい。
ハイサイドトランジスタユニットおよびローサイドトランジスタユニットはそれぞれ、第1方向に隣接する2個のサブトランジスタユニットを含み、金属ベース基板は、2個のサブトランジスタユニットごとに分割して形成されてもよい。
N個のスナバ回路はそれぞれ、上側電源ラインと下側電源ラインの間に直列に設けられた第1キャパシタおよび第2キャパシタを含むCスナバ回路であってもよい。第1キャパシタは、ハイサイドトランジスタのサブトランジスタユニットと隣接して配置され、第2キャパシタは、ローサイドトランジスタのサブトランジスタユニットと隣接して配置されてもよい。
N個のスナバ回路はそれぞれ、上側電源ラインと下側電源ラインの間に順に直列に設けられた第3キャパシタ、第1ダイオード、第2ダイオードおよび第4キャパシタと、第3キャパシタと第1ダイオードの接続点と、下側電源ラインの間に設けられた第1抵抗と、第2ダイオードと第4キャパシタの接続点と、上側電源ラインの間に設けられた第2抵抗と、を含むRCDスナバ回路であってもよい。第3キャパシタおよび第1ダイオードは、ハイサイドトランジスタのサブトランジスタユニットと隣接して配置され、第2ダイオードおよび第4キャパシタは、ローサイドトランジスタのサブトランジスタユニットと隣接して配置されてもよい。
なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
本発明によれば、産業用車両に要求される仕様を満たす電力変換装置を提供できる。
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
図2は、実施の形態に係る電力変換装置2の構成を示す等価回路図である。電力変換装置2は、フォークリフトをはじめとする産業用車両に搭載され、荷役用のモータや、車輪用のモータを駆動する。電力変換装置2の基本的な構成は、図1の電力変換装置2rと同様である。すなわち、電力変換装置2は、上側電源ラインLPと、下側電源ラインLNと、各相ごとに設けられ、対応する相U(V、W)の出力端子OUTU(OUTV、OUTW)と上側電源ラインLPの間に設けられたハイサイドトランジスタMHU(MHV、MHW)と、各相U(V、W)ごとに設けられ、対応する相U(V、W)の出力端子OUTU(OUTV、OUTW)と下側電源ラインLNの間に設けられたローサイドトランジスタMLU(MLV、MLW)を備える。図2にはU相の構成のみが示され、V相、W相に関する構成は省略されている。また、電力変換装置2は、U相、V相、W相が同様に構成されるため、その特徴についてはU相を参照して説明するものとする。
ハイサイドトランジスタMHおよびローサイドトランジスタMLは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタのいずれで構成されてもよい。
ハイサイドトランジスタMHUは、電気的に並列なN個(Nは2以上の整数)のハイサイドトランジスタユニット14U1~Nを含んで構成される。同様に、ローサイドトランジスタMLUは、電気的に並列なN個のローサイドトランジスタユニット16U1~Nを含んで構成される。
電力変換装置2は、N個のスナバ回路12U1~Nを備える。各スナバ回路12Uiは、トランジスタユニットのペア14Ui、16Uiごとに設けられる。
図3は、図2の電力変換装置2の構成を示す平面図である。図3にはN=4の場合が示される。ハイサイドトランジスタMHを構成するトランジスタユニット14U1~4、ローサイドトランジスタMLを構成する16U1~4およびN個のスナバ回路12U1~4は、金属ベース基板20上に実装される。
i番目(1≦i≦N)のトランジスタユニットに着目すると、ハイサイドトランジスタユニット14Uiおよびローサイドトランジスタユニット16Uiのペアおよびそれと対応するスナバ回路12Uiがひとつのレイアウト単位22Uiとされる。そして、N個のレイアウト単位22U1~4は金属ベース基板20上に規則的に配置される。
各レイアウト単位22Ui内において、ハイサイドトランジスタユニット14Uiおよびローサイドトランジスタユニット16Uiは、第1方向Xに隣接して配置される。また、それらと対応するスナバ回路12Uiは、ハイサイドトランジスタユニット14Uiよびローサイドトランジスタユニット16Uiに対して、第1方向Xと垂直な第2方向Yに隣接して配置される。
以上が電力変換装置2の構成である。この電力変換装置2によると、以下の利点を得ることができる。
U相に着目すると、ハイサイドトランジスタMHUがN個のトランジスタユニット14U1~Nに分割され、ローサイドトランジスタMLUがN個のトランジスタユニット16U1~Nに分割され、さらに、スナバ回路12UがN個に分割して構成される。これにより、各スナバ回路12Uiを、それに対応する各トランジスタユニット14Ui、16Uiに隣接して配置することができ、スナバ回路と、保護対象のトランジスタの電気的な距離を短くできる。それにより、サージの抑制効果を高めることができる。
各レイアウト単位22Uiにおいて、トランジスタユニット14Ui、16Uiとスナバ回路12Uiの電気的な距離が等長とすることができる。これにより、すべてのトランジスタユニットに対するサージを抑制でき、一部のトランジスタユニットの信頼性が低下する状況を防止できる。
図1のようにハイサイドトランジスタおよびローサイドトランジスタ全体に対して、ひとつのスナバ回路を設ける場合、スナバ回路12を構成するキャパシタの容量値が大きくなる。この場合、低周波のサージノイズは好適に抑制できるが、高周波サージを抑制することは困難であり、高周波化が進むフォークリフト用の電力変換装置では問題となる。これに対して実施の形態に係る電力変換装置2では、N個のスナバ回路12U1~Nに分割することにより、各スナバ回路12Uそれぞれのキャパシタの容量値が小さくなるため、高周波サージを好適に抑制できる。
さらに、また構成部品を金属ベース基板20上に実装することにより、金属ベース基板20を介して放熱することができ、各部品の温度上昇を抑制できる。
さらに、スナバ回路12の構成部品が、金属ベース基板20上に実装されるため、ブスバーを介して接続する場合に比べて、振動に対する耐性を高めることができる。
これらの利点によって、実施の形態に係る電力変換装置2は、産業用車両に要求される仕様を満たすことが可能となる。
以上、本発明について、実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、こうした変形例について説明する。
(第1の変形例)
図4は、第1の変形例に係る電力変換装置2aの構成を示す図である。
金属ベース基板20は、レイアウト単位22Uごとに物理的に分割して形成される。隣り合うレイアウト単位22U同士は、ねじ止めされてもよい。
図4は、第1の変形例に係る電力変換装置2aの構成を示す図である。
金属ベース基板20は、レイアウト単位22Uごとに物理的に分割して形成される。隣り合うレイアウト単位22U同士は、ねじ止めされてもよい。
この変形例によれば、隣接するレイアウト単位22Uの間の熱伝導を抑制することができ、あるレイアウト単位22Uのトランジスタユニット14U、16Uあるいはスナバ回路12Uが、別のレイアウト単位22Uのトランジスタの熱により加熱されるのを抑制できる。これにより、トランジスタユニットやスナバ回路およびはんだの温度変動を抑制することができ、それらの劣化を抑制し、長期的信頼性を高めることができる。
またこの変形例によれば、レイアウト単位22Uの個数を容易に増減することができ、電力変換装置の駆動能力(電流容量)を簡易に変更することができる。つまり、設計効率を高めることができる。
(第2の変形例)
図5は、第2の変形例に係る電力変換装置2bの構成を示す図である。
金属ベース基板20には、スナバ回路12U1~4それぞれを第2方向Yに挟むように形成されたスリットのペアが設けられる。
この変形例によれば、あるレイアウト単位22Uiのスナバ回路12Uiに着目すると、一方のスリットにより、同じレイアウト単位22Uiのトランジスタユニット14Ui、16Uiからの熱的影響を緩和でき、他方のスリットにより、隣接するレイアウト単位22Ujのトランジスタユニット14Uj、16Ujからの熱的影響を緩和でき、長期的な信頼性を高めることができる。
図5は、第2の変形例に係る電力変換装置2bの構成を示す図である。
金属ベース基板20には、スナバ回路12U1~4それぞれを第2方向Yに挟むように形成されたスリットのペアが設けられる。
この変形例によれば、あるレイアウト単位22Uiのスナバ回路12Uiに着目すると、一方のスリットにより、同じレイアウト単位22Uiのトランジスタユニット14Ui、16Uiからの熱的影響を緩和でき、他方のスリットにより、隣接するレイアウト単位22Ujのトランジスタユニット14Uj、16Ujからの熱的影響を緩和でき、長期的な信頼性を高めることができる。
第2の変形例を、第1の変形例と組み合わせてもよい。すなわち、レイアウト単位ごとに金属ベース基板20を分割するとともに、スナバ回路12の両側にスリットを形成してもよい。
(第3の変形例)
図6は、第3の変形例に係る電力変換装置2cの構成を示す図である。
この変形例において、ハイサイドトランジスタユニット14Uおよびローサイドトランジスタユニット16Uはそれぞれ、第1方向Xに隣接する2個のサブトランジスタユニット26、28を含む。
図6は、第3の変形例に係る電力変換装置2cの構成を示す図である。
この変形例において、ハイサイドトランジスタユニット14Uおよびローサイドトランジスタユニット16Uはそれぞれ、第1方向Xに隣接する2個のサブトランジスタユニット26、28を含む。
金属ベース基板20は、レイアウト単位22Uごとではなく、ハイサイドトランジスタユニット14Uごと、ローサイドトランジスタユニット16Uごとに分割して形成される。
この変形例によっても、実施の形態と同様の効果を得ることができる。また、金属ベース基板20を分割することにより、第1の変形例と同様の効果を得ることができる。
なお、サブトランジスタユニットおよびトランジスタユニットの名称は便宜的なものであり、図6のサブトランジスタユニットは、図3~5のトランジスタユニットに相当する。図6において、サブトランジスタユニットを、トランジスタユニットと把握する場合、電力変換装置2cは、以下のように理解することも可能である。
電力変換装置2cにおいて、ハイサイドトランジスタMHUは、電気的に並列なN=K×L個(K、Lは2以上の整数)のハイサイドトランジスタユニットを含んで構成される。図6の例では、K=2、L=2である。同様にローサイドトランジスタMLUは、電気的に並列なK×L個のローサイドトランジスタユニットを含んで構成される。
図6の電力変換装置2cは、L個のスナバ回路を備える。各スナバ回路12Uは、K個のハイサイドトランジスタユニットおよびそれらと対応するK個のローサイドトランジスタユニットのセットごとに設けられる。
そして、K個のハイサイドトランジスタユニットおよびK個のローサイドトランジスタユニットおよびそれらと対応するスナバ回路12Uがひとつのレイアウト単位22Uを構成する。L個のレイアウト単位22Uが、金属ベース基板20上に規則的に配置される。
各レイアウト単位22U内において、K個のハイサイドトランジスタユニットおよびK個のローサイドトランジスタユニットは、第1方向Xに隣接して配置される。またそれらと対応するスナバ回路12Uは、K個のハイサイドトランジスタユニットおよびK個のローサイドトランジスタユニットに対して、第1方向Xと垂直な第2方向Yに隣接して配置される。
図7(a)、(b)は、図6のレイアウト単位22Uの構成例を示す図である。図7(a)は基板上のレイアウトを、図7(b)は等価回路図を示す。図7(b)のスナバ回路は、Cスナバ回路である。スナバ回路12Uは、上側電源ラインLPと下側電源ラインLNの間に直列に設けられた第1キャパシタC11、第2キャパシタC12を含む。第1キャパシタC11は、2つの並列なキャパシタC11a、C11bを含み、ハイサイドトランジスタユニット14Uのサブトランジスタユニット26、28に隣接して配置される。同様に第2キャパシタC12は、2つの並列なキャパシタC12a、C12bを含み、ローサイドトランジスタユニット16Uのサブトランジスタユニット26、28に隣接して配置される。分割された金属ベース基板の間は、ジャンパ(金属プレート)30、32により結線される。
図8(a)、(b)は、図6のレイアウト単位22Uの別の構成例を示す図である。図8(a)は基板上のレイアウトを、図8(b)は等価回路図を示す。図8(b)のスナバ回路は、RCDスナバ回路である。スナバ回路12Uは、上側電源ラインLPと下側電源ラインLNの間に順に直列に設けられた第3キャパシタC13、第1ダイオードD11、第2ダイオードD12および第4キャパシタC14と、第3キャパシタC13と第1ダイオードD11の接続点P7と下側電源ラインLNの間に設けられた第1抵抗R11と、第2ダイオードD12と第4キャパシタC14の接続点P8と上側電源ラインLPの間に設けられた第2抵抗R12と、を含む。
第3キャパシタC13および第1ダイオードD11は、ハイサイドトランジスタユニット14Uのサブトランジスタユニット26、28と隣接して配置される。第2ダイオードD12および第4キャパシタC14は、ローサイドトランジスタユニット16Uのサブトランジスタユニット26、28と隣接して配置される。
抵抗R11、R12の抵抗値は、配線の抵抗値に比べて十分に高いため、トランジスタとの電気的距離が遠くても、スナバ回路の機能に影響はない。そこで第1抵抗R11、第2抵抗R12h、金属ベース基板20の外部に外付けされる。
図6~図8の構成によれば、ひとつのサブトランジスタユニット26、28に対して、スナバ回路を構成するひとつの回路部品を対応付けることができ、効率的なレイアウトを実現することができる。
上述の電力変換装置2の用途を説明する。電力変換装置2は、高周波化が進み、かつ耐振動性が要求されるフォークリフトに好適に利用できる。
図9(a)、(b)は、フォークリフトの構成を示す図である。図9(a)に示すように、フォークリフト1は、本体60、フォーク62、昇降体64、マスト66、車輪68を備える。マスト66は本体60の全方に設けられる。昇降体64は、油圧ポンプ(不図示)などの動力源によって駆動され、マスト66に沿って昇降する。昇降体64には、荷物を支持するためのフォーク62が取り付けられている。
図9(b)は、フォークリフト1の電気系統の構成を示す図である。フォークリフト1は、2系統のモータM1、M2を備える。第1モータM1は、車輪68を回転させるための車輪用モータであり、第2モータM2は、昇降体64を昇降させる油圧アクチュエータを制御するための荷役用モータである。電力変換装置2_1、2_2はそれぞれ、電池80から直流電圧を受け、それを3相交流信号に変換し、対応するモータM1、M2へと供給する。電池80、電力変換装置2_1、2_2、モータM1、M2は、本体60に固定される。電力変換装置2_1、2_2は、別個のモジュールであってもよいし、単一のモジュールとして構成されてもよい。
上述の電力変換装置は、その耐振動性、高周波サージの耐性などに鑑みて、このようなフォークリフト1に好適に利用できる。
実施の形態では、三相モータを駆動する電力変換装置2について説明したが、本発明は駆動対象のモータは三相に限定されず、2相以上の多相モータに適用可能である。また、実施の形態では、電力変換装置2に直接的にモータ4が接続される場合を説明したが、電力変換装置2とモータ4の間に、別の変換装置あるいはその他の回路ブロックが挿入されていてもよい。
以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
1…フォークリフト、2…電力変換装置、4…モータ、6…電源、C1…平滑化コンデンサ、10…ゲートドライブ回路、12…スナバ回路、14…ハイサイドトランジスタユニット、16…ローサイドトランジスタユニット、20…金属ベース基板、22…レイアウト単位、24…スリット、26,28…サブトランジスタユニット、M1…ハイサイドトランジスタ、M2…ローサイドトランジスタ、LP…上側電源ライン、LN…下側電源ライン。
本発明は、電力変換装置に関する。
Claims (7)
- フォークリフトに搭載され、モータに電力を供給する電力変換装置であって、
上側電源ラインと、
下側電源ラインと、
各相ごとに設けられ、対応する相の出力端子と前記上側電源ラインの間に設けられたハイサイドトランジスタであって、電気的に並列なN個(Nは2以上の整数)のハイサイドトランジスタユニットを含んで構成される、ハイサイドトランジスタと、
各相ごとに設けられ、対応する相の出力端子と前記下側電源ラインの間に設けられたローサイドトランジスタであって、電気的に並列なN個のローサイドトランジスタユニットを含んで構成される、ローサイドトランジスタと、
それぞれが、ひとつのハイサイドトランジスタユニットおよびそれと対応するひとつのローサイドトランジスタユニットのペアごとに設けられた、N個のスナバ回路と、
前記ハイサイドトランジスタ、前記ローサイドトランジスタおよび前記N個のスナバ回路が実装される金属ベース基板と、
を備え、
前記ハイサイドトランジスタユニットおよび前記ローサイドトランジスタユニットのペアおよびそれと対応する前記スナバ回路がひとつのレイアウト単位とされ、N個のレイアウト単位が前記金属ベース基板上に規則的に配置されるとともに、
各レイアウト単位内において、前記ハイサイドトランジスタユニットおよび前記ローサイドトランジスタユニットは、第1方向に隣接して配置され、それらと対応する前記スナバ回路は、前記ハイサイドトランジスタユニットおよび前記ローサイドトランジスタユニットに対して、前記第1方向と垂直な第2方向に隣接して配置されることを特徴とする電力変換装置。 - 前記金属ベース基板は、前記レイアウト単位ごとに分割して形成されることを特徴とする請求項1に記載の電力変換装置。
- 前記金属ベース基板には、前記スナバ回路それぞれを前記第2方向に挟むように形成されたスリットのペアが設けられていることを特徴とする請求項1または2に記載の電力変換装置。
- 前記ハイサイドトランジスタユニットおよび前記ローサイドトランジスタユニットはそれぞれ、前記第1方向に隣接する2個のサブトランジスタユニットを含み、
前記金属ベース基板は、前記ハイサイドトランジスタユニットごと、前記ローサイドトランジスタユニットごとに分割されることを特徴とする請求項1に記載の電力変換装置。 - 前記N個のスナバ回路はそれぞれ、前記上側電源ラインと下側電源ラインの間に直列に設けられた第1キャパシタおよび第2キャパシタを含むCスナバ回路であり、
前記第1キャパシタは、前記ハイサイドトランジスタのサブトランジスタユニットと隣接して配置され、
前記第2キャパシタは、前記ローサイドトランジスタのサブトランジスタユニットと隣接して配置されることを特徴とする請求項4に記載の電力変換装置。 - 前記N個のスナバ回路はそれぞれ、
前記上側電源ラインと下側電源ラインの間に順に直列に設けられた第3キャパシタ、第1ダイオード、第2ダイオードおよび第4キャパシタと、
前記第3キャパシタと前記第1ダイオードの接続点と、前記下側電源ラインの間に設けられた第1抵抗と、
前記第2ダイオードと前記第4キャパシタの接続点と、前記上側電源ラインの間に設けられた第2抵抗と、
を含むRCDスナバ回路であり、
前記第3キャパシタおよび前記第1ダイオードは、それらと対応する前記ハイサイドトランジスタのサブトランジスタユニットと隣接して配置され、
前記第2ダイオードおよび前記第4キャパシタは、前記ローサイドトランジスタのサブトランジスタユニットと隣接して配置されることを特徴とする請求項4に記載の電力変換装置。 - フォークリフトに搭載され、モータに電力を供給する電力変換装置であって、
上側電源ラインと、
下側電源ラインと、
各相ごとに設けられ、対応する相の出力端子と前記上側電源ラインの間に設けられたハイサイドトランジスタであって、電気的に並列なK×L個(K、Lは2以上の整数)のハイサイドトランジスタユニットを含んで構成される、ハイサイドトランジスタと、
各相ごとに設けられ、対応する相の出力端子と前記下側電源ラインの間に設けられたローサイドトランジスタであって、電気的に並列なK×L個のローサイドトランジスタユニットを含んで構成される、ローサイドトランジスタと、
それぞれが、K個のハイサイドトランジスタユニットおよびそれらと対応するK個のローサイドトランジスタユニットのセットごとに設けられた、L個のスナバ回路と、
前記K個のハイサイドトランジスタ、前記K個のローサイドトランジスタおよび前記L個のスナバ回路が実装される金属ベース基板と、
を備え、
前記K個のハイサイドトランジスタユニットおよび前記K個のローサイドトランジスタユニットおよびそれらと対応する前記スナバ回路がひとつのレイアウト単位とされ、L個のレイアウト単位が前記金属ベース基板上に規則的に配置されるとともに、
各レイアウト単位内において、前記K個のハイサイドトランジスタユニットおよび前記K個のローサイドトランジスタユニットは、第1方向に隣接して配置され、それらと対応する前記スナバ回路は、前記K個のハイサイドトランジスタユニットおよび前記K個のローサイドトランジスタユニットに対して、前記第1方向と垂直な第2方向に隣接して配置されることを特徴とする電力変換装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280033319.3A CN103650321A (zh) | 2011-07-04 | 2012-07-03 | 电力转换装置 |
US14/147,176 US20140117899A1 (en) | 2011-07-04 | 2014-01-03 | Power conversion apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011148543A JP2013017310A (ja) | 2011-07-04 | 2011-07-04 | 電力変換装置 |
JP2011-148543 | 2011-07-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/147,176 Continuation US20140117899A1 (en) | 2011-07-04 | 2014-01-03 | Power conversion apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013005419A1 true WO2013005419A1 (ja) | 2013-01-10 |
Family
ID=47436782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/004303 WO2013005419A1 (ja) | 2011-07-04 | 2012-07-03 | 電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140117899A1 (ja) |
JP (1) | JP2013017310A (ja) |
CN (1) | CN103650321A (ja) |
WO (1) | WO2013005419A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015089245A (ja) * | 2013-10-31 | 2015-05-07 | Ntn株式会社 | 車両駆動モータ用インバータ装置 |
JP6227480B2 (ja) * | 2014-05-23 | 2017-11-08 | 三菱電機株式会社 | 半導体装置 |
JP6106127B2 (ja) * | 2014-05-29 | 2017-03-29 | 株式会社ソニー・インタラクティブエンタテインメント | スイッチングコンバータおよびそれを用いた電子機器 |
JP6708562B2 (ja) * | 2017-01-16 | 2020-06-10 | トヨタ自動車株式会社 | 自動車 |
FR3068544B1 (fr) * | 2017-06-28 | 2019-07-26 | Valeo Equipements Electriques Moteur | Convertisseur de tension, procede de fabrication d'un tel convertisseur de tension et ensemble d'un module principal et d'un module bornier pour former un tel convertisseur de tension |
JP6685020B2 (ja) * | 2017-12-22 | 2020-04-22 | パナソニックIpマネジメント株式会社 | スイッチング電源装置 |
TWI762894B (zh) * | 2019-11-05 | 2022-05-01 | 友達光電股份有限公司 | 電路裝置 |
CN112071833B (zh) * | 2019-11-05 | 2023-05-09 | 友达光电股份有限公司 | 芯片 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5822885U (ja) * | 1981-07-31 | 1983-02-12 | 株式会社東芝 | インバータ装置 |
JPH05227763A (ja) * | 1992-02-17 | 1993-09-03 | Hitachi Ltd | 直列多重インバータ |
JPH08251908A (ja) * | 1995-03-10 | 1996-09-27 | Hitachi Ltd | 電力変換装置,インバータ装置及びスナバ装置 |
JPH1042573A (ja) * | 1996-07-19 | 1998-02-13 | Hitachi Ltd | 電力変換器のスナバ回路 |
JP2002078104A (ja) * | 2000-08-24 | 2002-03-15 | Nippon Yusoki Co Ltd | 荷役車両の制御装置 |
JP2002222920A (ja) * | 2001-01-24 | 2002-08-09 | Mitsubishi Heavy Ind Ltd | 並列接続mosfetの保護装置 |
JP2005166867A (ja) * | 2003-12-02 | 2005-06-23 | Fuji Electric Holdings Co Ltd | 電力変換装置の導体構造 |
JP2007124769A (ja) * | 2005-10-27 | 2007-05-17 | Meidensha Corp | インバータ回路 |
JP2008029093A (ja) * | 2006-07-20 | 2008-02-07 | Hitachi Ltd | 電力変換装置 |
JP2009044920A (ja) * | 2007-08-10 | 2009-02-26 | Toyota Motor Corp | 電力変換ユニット |
JP2009219268A (ja) * | 2008-03-11 | 2009-09-24 | Daikin Ind Ltd | 電力変換装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2809095B2 (ja) * | 1994-03-04 | 1998-10-08 | 株式会社デンソー | インバータ装置 |
US5574636A (en) * | 1994-09-09 | 1996-11-12 | Center For Innovative Technology | Zero-voltage-transition (ZVT) 3-phase PWM voltage link converters |
US6166500A (en) * | 1997-07-18 | 2000-12-26 | Siemens Canada Limited | Actively controlled regenerative snubber for unipolar brushless DC motors |
US7511976B2 (en) * | 2006-06-27 | 2009-03-31 | Rockwell Automation Technologies, Inc. | Self powered supply for power converter switch driver |
GB0906020D0 (en) * | 2009-04-07 | 2009-05-20 | Trw Ltd | Motor drive circuitry |
JP5429032B2 (ja) * | 2010-05-07 | 2014-02-26 | 三菱電機株式会社 | 電力変換回路 |
JP5447603B2 (ja) * | 2011-08-27 | 2014-03-19 | 株式会社デンソー | 電力変換装置 |
-
2011
- 2011-07-04 JP JP2011148543A patent/JP2013017310A/ja not_active Withdrawn
-
2012
- 2012-07-03 CN CN201280033319.3A patent/CN103650321A/zh active Pending
- 2012-07-03 WO PCT/JP2012/004303 patent/WO2013005419A1/ja active Application Filing
-
2014
- 2014-01-03 US US14/147,176 patent/US20140117899A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5822885U (ja) * | 1981-07-31 | 1983-02-12 | 株式会社東芝 | インバータ装置 |
JPH05227763A (ja) * | 1992-02-17 | 1993-09-03 | Hitachi Ltd | 直列多重インバータ |
JPH08251908A (ja) * | 1995-03-10 | 1996-09-27 | Hitachi Ltd | 電力変換装置,インバータ装置及びスナバ装置 |
JPH1042573A (ja) * | 1996-07-19 | 1998-02-13 | Hitachi Ltd | 電力変換器のスナバ回路 |
JP2002078104A (ja) * | 2000-08-24 | 2002-03-15 | Nippon Yusoki Co Ltd | 荷役車両の制御装置 |
JP2002222920A (ja) * | 2001-01-24 | 2002-08-09 | Mitsubishi Heavy Ind Ltd | 並列接続mosfetの保護装置 |
JP2005166867A (ja) * | 2003-12-02 | 2005-06-23 | Fuji Electric Holdings Co Ltd | 電力変換装置の導体構造 |
JP2007124769A (ja) * | 2005-10-27 | 2007-05-17 | Meidensha Corp | インバータ回路 |
JP2008029093A (ja) * | 2006-07-20 | 2008-02-07 | Hitachi Ltd | 電力変換装置 |
JP2009044920A (ja) * | 2007-08-10 | 2009-02-26 | Toyota Motor Corp | 電力変換ユニット |
JP2009219268A (ja) * | 2008-03-11 | 2009-09-24 | Daikin Ind Ltd | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2013017310A (ja) | 2013-01-24 |
CN103650321A (zh) | 2014-03-19 |
US20140117899A1 (en) | 2014-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013005419A1 (ja) | 電力変換装置 | |
JP3633432B2 (ja) | 半導体装置及び電力変換装置 | |
JP3642012B2 (ja) | 半導体装置,電力変換装置及び自動車 | |
US8400775B2 (en) | Capacitor with direct DC connection to substrate | |
JP3723869B2 (ja) | 半導体装置 | |
JP5807516B2 (ja) | 電力変換装置及び電力変換装置における導体の配置方法 | |
JP5240215B2 (ja) | 回路基板及びそれを用いた電力変換装置 | |
JP6230946B2 (ja) | 電力変換装置、およびそれを搭載した鉄道車両 | |
JP2014217270A (ja) | 3レベル電力変換装置用ハーフブリッジ | |
JP5669677B2 (ja) | 電力変換装置および電力変換モジュール | |
JP2016220356A (ja) | 電力変換装置 | |
JP5241421B2 (ja) | 電力変換装置 | |
JP6502768B2 (ja) | 電力変換器 | |
JP3793700B2 (ja) | 電力変換装置 | |
JP2007142073A (ja) | パワー半導体モジュール | |
JP6498370B2 (ja) | 電力変換装置 | |
JP5347565B2 (ja) | 電力変換ユニット | |
JP2005176555A (ja) | 電力変換装置 | |
JP6720601B2 (ja) | 電力変換装置 | |
WO2013179463A1 (ja) | 電力変換装置 | |
JP6633789B2 (ja) | 半導体装置、インバータ回路、駆動装置、車両、及び、昇降機 | |
JP4424918B2 (ja) | 電力変換装置 | |
JP6619507B2 (ja) | インバータ装置 | |
JP6674398B2 (ja) | 電力変換装置および制御線の配線構造 | |
JP2023128422A (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12807931 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12807931 Country of ref document: EP Kind code of ref document: A1 |