WO2013005307A1 - 不等リードエンドミル - Google Patents

不等リードエンドミル Download PDF

Info

Publication number
WO2013005307A1
WO2013005307A1 PCT/JP2011/065381 JP2011065381W WO2013005307A1 WO 2013005307 A1 WO2013005307 A1 WO 2013005307A1 JP 2011065381 W JP2011065381 W JP 2011065381W WO 2013005307 A1 WO2013005307 A1 WO 2013005307A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer peripheral
end mill
lead end
angle
groove
Prior art date
Application number
PCT/JP2011/065381
Other languages
English (en)
French (fr)
Inventor
二朗 大沢
格 伊東
重俊 請井
浩司 冨田
Original Assignee
オーエスジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーエスジー株式会社 filed Critical オーエスジー株式会社
Priority to JP2013522645A priority Critical patent/JP5649729B2/ja
Priority to CN201180072065.1A priority patent/CN103635277B/zh
Priority to US14/128,292 priority patent/US9364904B2/en
Priority to EP11869035.3A priority patent/EP2730359B1/en
Priority to PCT/JP2011/065381 priority patent/WO2013005307A1/ja
Publication of WO2013005307A1 publication Critical patent/WO2013005307A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • B23C2210/0492Helix angles different
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/20Number of cutting edges
    • B23C2210/204Number of cutting edges five
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/24Overall form of the milling cutter
    • B23C2210/241Cross sections of the whole milling cutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/28Arrangement of teeth
    • B23C2210/282Unequal angles between the cutting edges, i.e. cutting edges unequally spaced in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/40Flutes, i.e. chip conveying grooves
    • B23C2210/402Flutes, i.e. chip conveying grooves of variable depth
    • B23C2210/405Flutes, i.e. chip conveying grooves of variable depth having decreasing depth in the direction of the shank from the tip of the tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1946Face or end mill
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1946Face or end mill
    • Y10T407/1948Face or end mill with cutting edge entirely across end of tool [e.g., router bit, end mill, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/19Rotary cutting tool
    • Y10T407/1952Having peripherally spaced teeth
    • Y10T407/1954Axially tapering tool

Definitions

  • the present invention relates to an end mill, and more particularly to an improvement of an unequal lead end mill that can provide excellent machining accuracy.
  • the tool sometimes breaks at the rounded-up portion of the twisted groove when performing high-load machining or high-efficiency machining with a large depth of cut.
  • the present invention has been made against the background described above, and its object is to improve the break strength of an unequal lead end mill that can provide excellent machining accuracy.
  • the first invention is a unequal lead end mill having a plurality of outer peripheral cutting edges having different twist angles, and a groove bottom diameter of a plurality of twisting grooves constituting a rake face of the plurality of outer peripheral cutting edges. d is increased in the axial direction from the tip of the tool toward the shank.
  • the second invention is characterized in that in the unequal lead end mill of the first invention, the land of the outer peripheral cutting edge is composed only of the outer peripheral second part (portion also referred to as the first flank).
  • the cross-sectional shape perpendicular to the axis O of the torsion groove on the back side of the blade connected to the heel of the land is the groove of the plurality of torsion grooves from the heel of the land.
  • the groove wall surface enters the tolerance range E defined by a width dimension of 0.05D with respect to the blade diameter D on both sides of the tangent line C. It is defined.
  • a fourth invention is the unequal lead end mill according to any one of the first to third inventions, wherein the groove bottom diameter d is continuous with a taper half angle in the range of 0.5 ° to 5.5 ° in the axial direction. It is characterized by increasing.
  • the blade thickness t which is the width dimension of the land of the orthogonal
  • they are equal to each other in a variation range of 0.04D or less, and are within the variation range over the entire axial length.
  • the rake angles ⁇ of the plurality of outer peripheral cutting edges are equal to each other within a variation range of 3 ° or less and have a total axial length. It is characterized by being within the variation range.
  • a seventh invention is the unequal lead end mill according to any one of the first to sixth inventions, wherein the plurality of bottom cutting edges are continuous to the plurality of outer peripheral cutting edges.
  • the gash is provided at different gash angles, and when the twist angle is large, the gash angle is larger than when the gash angle is small.
  • the land of the outer peripheral cutting edge is composed of only the second outer peripheral portion, the groove width dimension between the lands, that is, the width dimension of the chip pocket is increased, and it is sufficiently large regardless of the increase in the groove bottom diameter d. Chip pockets can be secured, and the break strength can be improved by providing an inclination in the groove bottom while suppressing chip clogging.
  • the cross-sectional shape of the twisted groove on the back side of the blade is determined with a width dimension of 0.05D on each side of the tangent line C on the basis of the tangent line C drawn from the heel of the land to the groove bottom circle Q. Since it is determined that the groove wall surface falls within the range E, only the outer peripheral second part is maintained while maintaining the shape of the rake face on the outer peripheral cutting edge side regardless of the difference or change in the groove width dimension between the lands.
  • the shape of the back side of the land made of can be appropriately set.
  • the groove bottom diameter d continuously increases in a taper half angle within the range of 0.5 ° to 5.5 ° in the axial direction, chip clogging and stress due to an increase in the groove bottom diameter d. Breaking strength can be improved appropriately while avoiding concentration.
  • the thickness t of the plurality of outer peripheral cutting edges is equal to each other within a variation range of 0.04D or less and is within the variation range over the entire length in the axial direction, the outer peripheral cut due to unequal leads. Regardless of the change in the interval in the circumferential direction of the blade, variation in the strength of the outer peripheral cutting edge is prevented, and a predetermined cutting edge strength can be ensured.
  • the rake angles ⁇ of the plurality of outer peripheral cutting edges are equal to each other within a variation range of 3 ° or less and within the variation range over the entire length in the axial direction. Regardless of the change in the circumferential interval, cutting performance, wear resistance, variation in cutting edge strength, and the like are prevented.
  • the gash angle of the bottom edge gash differs depending on the torsion angle of the outer peripheral cutting edge, and when the torsion angle is large, the gash angle is made larger than when the torsion angle is small.
  • the bottom blade chips are properly discharged. That is, when the twist angle of the outer peripheral cutting edge is large, the chip room of the bottom blade is small, so the chip lift-up effect (lifting performance in the axial direction) is low, and the chip tends to stay, but the twist angle is large. In this case, since the gash angle is increased, the chips of the bottom blade are appropriately discharged to the outer peripheral side through the gash, and chip clogging is suppressed.
  • FIG. 4D is a longitudinal sectional view showing the twisted groove parallel to the axis O.
  • FIG. It is an expanded view of the outer periphery cutting edge of the unequal lead end mill of FIG. It is a figure explaining the groove cross-sectional shape at right angles to the axial center O of the unequal lead end mill of FIG.
  • FIG. 5 is a diagram showing a result of examining a limit value of an axial incision dimension capable of grooving processing under test condition No. 1 using test products No. 1 to No. 6 in FIG. 4;
  • FIG. 5 is a diagram showing the results of examining the cutting distance or the amount of wear by performing cutting under test conditions No. 2 to No. 5 using the test products No. 1, No. 3 and No. 6 in FIG.
  • the plurality of outer peripheral cutting edges of the unequal lead end mill of the present invention are each provided with a constant twist angle over the entire length.
  • the difference in twist angle between the plurality of outer peripheral cutting edges is, for example, 10 ° or less and preferably about 5 ° or less.
  • the twist angles of the plurality of outer peripheral cutting edges may be all different from each other, but at least one cutting edge only needs to be different.
  • a part of the outer peripheral cutting edge may be a straight blade parallel to the axis.
  • the outer peripheral cutting edge may be used not only for smooth finishing but also for rough machining provided with a wave shape, a nick or the like.
  • the present invention can be applied to various end mills such as a radius end mill having a rounded corner at the tip of the outer peripheral cutting edge, a square end mill having a square corner, and a ball end mill having a bottom blade provided on a spherical surface. .
  • the groove bottom diameter d of the torsion groove is increased by a constant taper half angle in the range of 0.5 ° to 5.5 ° in the axial direction, for example, in the axial direction from the tool tip to the shank side. It may be changed stepwise or continuously within the range of ° to 5.5 °. If the taper half angle exceeds 5.5 °, breakage may occur due to chip clogging. If the taper half angle is less than 0.5 °, the effect of improving the breakage strength cannot be obtained sufficiently. The range of 0.5 ° to 5.5 ° is appropriate, depending on the case.
  • a parallel portion parallel to the axis may be provided in the middle, and the taper half angle is 0.5 ° to 5.5 ° depending on the tool specifications such as the blade length and the processing conditions. Various aspects are possible, such as being deviated from the range.
  • the plurality of twisted grooves are provided so that the groove bottom diameters d are equal to each other if the axial position is the same.
  • the land of the outer peripheral cutting edge is composed of only the outer peripheral second part, but in implementing other inventions, there are various modes such as the land may be provided with a spine such as a third countersink Is possible.
  • a land consisting only of the outer periphery No. 2 part for example, by changing the posture of a grindstone for grinding a torsion groove in the course of grooving, one time using a multi-axis (for example, 5-axis) processing machine.
  • a multi-axis for example, 5-axis
  • various modes are possible, such as forming by grinding the second outer peripheral portion by a plurality of times of grinding.
  • the thickness t of the plurality of outer peripheral cutting edges is equal to each other within a variation range of 0.04D or less, and is within the variation range over the entire length in the axial direction.
  • the groove width of the groove changes in the axial direction, such an end mill is also multiaxial (for example, five axes) such as changing the posture of a grindstone for grinding a torsion groove in the course of grooving. It can be formed by a single grinding process using a processing machine. You may adjust so that the blade thickness t may become substantially constant by grinding several times.
  • the variation range of 0.04D or less can be obtained by, for example, processing within a variation range (tolerance) of ⁇ 0.02D or less with respect to the target value.
  • the variation in the blade thickness t exceeds 0.04D, the strength of the outer peripheral cutting blade may vary, and the durability may be impaired.
  • the blade thickness t varies beyond 0.04D. Also good.
  • the rake angles ⁇ of the plurality of outer peripheral cutting edges are equal to each other within a variation range of 3 ° or less, and within the variation range over the entire length in the axial direction.
  • a grindstone for grinding a twist groove Can be formed by one grinding process by holding the wire in a substantially constant posture and feeding the lead, but if necessary, the rake angle ⁇ can be made substantially constant by multiple grinding operations. You may adjust so that it may become.
  • the variation range of 3 ° or less can be obtained by processing within a variation range (tolerance) of ⁇ 1.5 ° or less with respect to the target value, for example. If the rake angle ⁇ varies beyond 3 °, durability may be impaired due to variations in cutting performance, wear resistance, cutting edge strength, etc., but the rake angle ⁇ exceeds 3 ° when implementing other inventions. It may be scattered.
  • the gouache angle of the gouache provided on the bottom blade is different depending on the twist angle.
  • the gouache is provided at a constant gouache angle regardless of the difference in the twist angle. May be.
  • the magnitude of the gash angle is different according to the difference of the twist angle, but it is not necessary to make the gash angle different when the twist angle is different, for example, when the twist angle changes in three stages.
  • Various modes are possible, such as the gash angle may be changed only in two stages.
  • the circumferential interval between the plurality of outer peripheral cutting edges continuously changes, but the outer peripheral cutting edge and the bottom edge of the tool tip are positioned at equal angular intervals (also referred to as equal division). It can also be configured. Alternatively, the outer peripheral cutting edge and the bottom edge at the tip of the tool can be configured to be positioned at predetermined unequal angular intervals (also referred to as unequal division).
  • FIG. 1A and 1B are views showing an unequal lead end mill 10 according to an embodiment of the present invention, in which FIG. 1A is a front view seen from a direction perpendicular to the axis O, and FIG. (C) is a bottom view seen from the tip side, and (d) is a longitudinal sectional view showing the torsion groove 16 parallel to the axis O.
  • FIG. 2 is a developed view in which a plurality (five in this embodiment) of peripheral cutting edges 20 of the unequal lead end mill 10 are developed around the axis O.
  • the unequal lead end mill 10 includes a shank 12 and a blade portion 14 concentrically with an axis O.
  • the blade portion 14 is divided into five lands 18 by providing five twist grooves 16.
  • An outer peripheral cutting edge 20 is provided along the twist groove 16 at one end of the land 18 in the circumferential direction.
  • the unequal lead end mill 10 of the present embodiment has a blade diameter D of 12.7 mm, a blade length L which is the axial length of the blade portion 14, that is, a groove length excluding the groove rounded-up portion of the torsion groove 16 is about 31.8 mm. ( ⁇ 2.5D), which is integrally formed of a cemented carbide, and the surface of the blade portion 14 is coated with a hard coating of TiAlN.
  • This unequal lead end mill 10 performs cutting by being rotated clockwise as viewed from the shank 12 side, and all the outer peripheral cutting edges 20 are twisted in the same clockwise direction as the cutting rotation direction. As apparent from the development of FIG. 2, these outer peripheral cutting edges 20 are each provided with a constant lead over the entire length, but the leads, that is, the twist angles ⁇ are different.
  • FIG. 2 shows the five outer peripheral cutting edges 20, the twist grooves 16, the lands 18, and the signs a to e in order to distinguish the twist angle ⁇ .
  • the widths of the lands 18a to 18e are equal to each other and are substantially constant over the entire length in the axial direction. Thus, the lands 18a to 18e are twisted by being provided with a constant width.
  • the groove widths of the twisted grooves 16a to 16e continuously change in the axial direction according to the difference in the angle ⁇ .
  • the torsion angles ⁇ a to ⁇ e may all be different, but in this embodiment, the torsion angle ⁇ a of the outer peripheral cutting edge 20a and the torsion angle ⁇ d of the outer peripheral cutting edge 20d are equal to each other and about 41 °,
  • the twist angle ⁇ b of 20b is about 42 °
  • the twist angle ⁇ c of the outer peripheral cutting edge 20c and the twist angle ⁇ e of the outer peripheral cutting edge 20e are equal to each other and about 43 °.
  • the angular interval around the axis O of the outer peripheral cutting edges 20a to 20e at the tool tip is such that the angle ⁇ a between the outer peripheral cutting edges 20e and 20a and the angle ⁇ d between the outer peripheral cutting edges 20c and 20d are equal to each other.
  • the angle ⁇ b between the outer peripheral cutting edges 20a and 20b and the angle ⁇ e between the outer peripheral cutting edges 20d and 20e are equal to each other and about 62 °
  • the angle ⁇ c between the outer peripheral cutting edges 20b and 20c is About 70 °. That is, these outer peripheral cutting edges 20 are continuously provided with bottom blades 22, but these bottom blades 22 are also unequally divided at different intervals around the axis O.
  • the bottom blades 22 are each provided with a gash 24 so as to form a rake face, and the gash angle varies depending on the twist angle ⁇ , and the case where the twist angle ⁇ is large is small.
  • the gash angle is made larger than that.
  • the gash angle of the gash 24 of the bottom blade 22 provided continuously to the outer peripheral cutting edges 20a and 20d having a relatively small twist angle ⁇ is about 15 °, and the other bottom blade 22, that is, the outer peripheral cutting edge.
  • the gouache angle of the gouache 24 of the bottom blade 22 provided continuously to 20b, 20c, 20e is about 20 °.
  • the gash angle is an inclination angle in the axial direction of the gash 24 from a direction perpendicular to the axis O, and the larger the gash angle, the easier the chips flow to the outer peripheral side. That is, when the torsion angle ⁇ of the outer peripheral cutting edge 20 is large, the chip room of the bottom blade 22 is small, so that the chip lift-up effect (lifting performance in the axial direction) is low and the chips are liable to stay.
  • the chips of the bottom blade 22 are appropriately transferred via the gash 24. It is discharged to the outer peripheral side, and chip clogging is suppressed.
  • the torsional grooves 16 continuously change in width as they extend in the axial direction, but the groove bottom diameters d of the plurality of torsional grooves 16 have the same axial position as shown in FIG. If they are equal to each other. Further, as apparent from FIG. 1 (d) ⁇ ⁇ ⁇ , the groove bottom diameter d continuously increases at a constant taper half angle ⁇ in the axial direction from the tool tip toward the shank 12 side.
  • the taper half angle ⁇ is appropriately determined within a range of 0.5 ° to 5.5 °, and is about 1.5 ° in this embodiment.
  • the groove bottom diameter d at the tip of the tool that is, the core thickness is about 8.26 mm ( ⁇ 0.65 D) in this embodiment.
  • the land 18 is composed of only the outer peripheral second part (corresponding to the first flank), and the blade thickness t ( FIG. 1 (a)) is about 0.95 mm, and the blade thickness t of the plurality of lands 18 is within a variation range ( ⁇ 0.02 ⁇ 12.7 ⁇ 0.25 mm in this embodiment) or less. Are equal to each other in the permissible range) and within the variation range over the entire length in the axial direction. Further, the rake angle ⁇ of the plurality of outer peripheral cutting edges 20 is approximately 2 °, and is equal to each other within a variation range (allowable range) of ⁇ 1.5 ° or less, and within the variation range over the entire axial length. Yes.
  • FIG. 3 (a) is a view for explaining an example of a cross-sectional shape of the twist grooves 16a to 16e perpendicular to the axis O extending from the outer peripheral cutting edges 20a to 20e to the heels of the lands 18a to 18e.
  • a common concave curve (for example, an arc) S is set which passes through the groove bottom circle Q passing through the groove bottom of 16e and the cutting edges of the outer peripheral cutting edges 20a to 20e and has the rake angle ⁇ having a predetermined size.
  • 0.05D (0.05 ⁇ 12.7 in this embodiment) is provided on both sides of the tangent line C with reference to the tangent line C drawn from the heel of each land 18a to 18e to the groove bottom circle Q.
  • Straight lines La to Le that are smoothly connected from the heel to the concave curve S are determined so that the groove wall surface falls within the allowable range E defined by the width dimension of ⁇ 0.64 mm), and these straight lines La
  • the cross-sectional shapes of the torsion grooves 16a to 16e are determined by ⁇ Le and the concave curve S.
  • the allowable range E is shown for the twisted grooves 16a and 16b, but the cross-sectional shape is determined so that the other torsion grooves 16c to 16e also fall within the same allowable range E.
  • Such torsion grooves 16a to 16e can be formed by performing a plurality of grinding processes. However, depending on the groove shape, the positions and postures of the grinding wheel are changed and the torsion grooves 16a to 16e are relatively aligned. By moving it, it is also possible to form by one grinding using a multi-axis (for example, 5-axis) processing machine.
  • the torsion groove 16 having a target cross-sectional shape can be obtained.
  • the cross-sectional shapes of the torsion grooves 16a to 16e may be defined by the right-angle cross-sections of the outer peripheral cutting edges 20a to 20e.
  • the land 18 of the outer peripheral cutting edge 20 consists only of the outer peripheral second portion, the groove width dimension of the torsional groove 16 between the lands 18, that is, the width dimension of the chip pocket is increased, and the groove bottom diameter d is increased.
  • a sufficiently large chip pocket can be secured, and the breaking strength can be improved by providing an inclination on the groove bottom while suppressing clogging of chips.
  • the cross-sectional shape of the torsion groove 16 on the back side of the blade is an allowance defined with a width dimension of 0.05D on each side of the tangent line C with reference to the tangent line C drawn from the heel of each land 18 to the groove bottom circle Q. Since the groove wall surface is determined to fall within the range E, the shape of the rake face (concave curve S) on the outer peripheral cutting edge 20 side is appropriately maintained regardless of the difference or change in the groove width dimension between the lands 18. On the other hand, the shape of the blade back side of the land 18 composed only of the outer peripheral second part can be appropriately set.
  • the groove bottom diameter d continuously increases with a constant taper half angle ⁇ in the range of 0.5 ° to 5.5 ° in the axial direction, chip clogging and stress due to the increase in the groove bottom diameter d. Breaking strength can be improved appropriately while avoiding concentration.
  • the blade thicknesses t of the plurality of outer peripheral cutting edges 20 are equal to each other within a variation range of ⁇ 0.02 D or less with respect to the target value (0.95 mm), and within the variation range over the entire length in the axial direction. Therefore, the variation in strength of the outer peripheral cutting edge 20 is prevented regardless of the change in the circumferential interval of the outer peripheral cutting edge 20 due to unequal leads, and a predetermined cutting edge strength can be secured.
  • the rake angles ⁇ of the plurality of outer peripheral cutting edges 20 are equal to each other within a variation range of ⁇ 1.5 ° or less with respect to the target value (2 °), and within the variation range over the entire length in the axial direction. Therefore, variations in cutting performance, wear resistance, cutting edge strength, and the like are prevented regardless of changes in the circumferential interval of the outer peripheral cutting edge 20 due to unequal leads.
  • the gash angle of the gash 24 of the bottom blade 22 differs depending on the twist angle ⁇ of the outer peripheral cutting edge 20, and when the twist angle ⁇ is large, the gash angle is made larger than when it is small. Regardless of this, the chips of the bottom blade 22 are appropriately discharged.
  • FIG. 4 is a diagram for explaining test products and test conditions when various tests are performed using the products of the present invention and comparative products.
  • 10 is a product of the present invention configured in the same manner as in FIG.
  • “pocket” cutting is a side cutting from the center to the outer circumference along a square spiral line
  • “ap” in the “cut” column is an axial cut.
  • the dimension “ae” is the radial cut dimension.
  • the “cutting area” in the “Remarks” column is a test to check the cutting possible area (limit) of the axial cutting dimension ap
  • the “durability” is a test to check the cutting distance until the tool life and the wear amount at the predetermined cutting distance. It is.
  • FIG. 5 shows the limit value of the axial infeed dimension ap that allows the groove cutting of the test condition No. 1 using the test products No. 1 to No. 6 in FIG. 4, that is, the axial infeed dimension ap in increments of 0.5D to 0.1D.
  • the axial depth of cut ap is larger than that of the conventional test products No. 1 and No. 4 and the comparative products of the test products No. 2 and No. 5. It becomes larger by about 0.2D, and it can be seen that the breaking strength is improved by providing a taper on the groove bottom diameter d as well as simply increasing the groove width to increase the chip pocket.
  • FIG. 6 shows the results of conducting a durability test under test conditions No. 2 to No. 5 using test products No. 1, No. 3, and No. 6, and examining the cutting distance and the amount of wear.
  • the cutting distance of test condition No. 2 is the cutting distance until the average of the wear amount of the plurality of outer peripheral cutting edges 20 (corresponding to the outer peripheral flank wear width) reaches 0.3 mm.
  • the wear amount of test conditions No. 3 to No. 5 is This is the amount of wear (corresponding to the outer peripheral flank wear width) when the cutting distance is 3.2 m.
  • % in parentheses is a value when the conventional product of the test product No1 is 100%, and the amount of wear is less than the test product No1 (reciprocal). From this result, in the test conditions No. 2 and No.
  • FIG. 7 shows the result of examining the cutting distance until the average amount of wear of the outer peripheral cutting edge 20 reaches 0.3 mm after performing side cutting under the test condition No. 5 using the test products No. 1 and No. 3 of FIG. It is a figure.
  • the durability improved by about 25% compared to the test product No. 1 conventional product.
  • FIG. 8 shows the result of examining the influence of the taper half angle ⁇ of the axial inclination of the groove bottom of the twisted groove 16 on the groove machining performance and the side machining performance.
  • the taper half angle ⁇ is obtained. 7 kinds of test products having 0 °, 0.5 °, 1.5 °, 3 °, 4 °, 5 °, 6 ° are prepared.
  • FIG. 9 is a longitudinal sectional view corresponding to FIG. 1 (d), and the taper half angle of the axial inclination of the groove bottom of the torsion groove 42 provided in the blade portion 40 changes in the middle of the blade length L. It is a case. That is, the taper half angle ⁇ 1 of the shank side portion L1 of the blade length L is different from the taper half angle ⁇ 2 of the tip end portion L2, and both satisfy ⁇ 1 ⁇ 2 within a range of 0.5 ° to 5.5 °.
  • the boundary portions are connected in a convex arc shape so that the taper half angle changes smoothly. Also in this embodiment, the same effect as in the above embodiment can be obtained.
  • FIG. 10 is a view for explaining still another embodiment of the present invention.
  • a land 18 consisting only of the outer peripheral portion 2 is formed and a twist with a large groove width is formed.
  • the groove 50 is formed.
  • 10 (a) has a land 62 having a back-opening 60 such as a third counter and a twisted groove 64 having a constant groove width formed in the same manner as the rake face groove 32 of FIG. 3 (b).
  • a twisted groove 50 having a target shape shown in (b) is obtained.
  • the twist groove 50 has a groove wall surface within an allowable range E defined by a width dimension of 0.05D on both sides of the tangent C with reference to the tangent C drawn from the heel of the land 18 to the groove bottom circle Q. It is formed as follows. In this case, irregularities are formed on the groove wall surface, but since it is 0.1 D or less, there is almost no influence, and by providing a twisted groove 50 with a large groove width, chips are formed regardless of an increase in the groove bottom diameter d. The same effects as in the above embodiment can be obtained, such as good discharge performance.

Abstract

 複数のねじれ溝16の溝底径dを、工具先端からシャンク12側へ向かうに従って増大させたため、折損強度が向上し、切込み寸法が大きい高負荷や高能率の加工が可能になるとともに工具寿命が向上する一方、工具剛性が高くなって撓み変形が抑制されるため加工精度が一層向上する。また、外周切れ刃20のランド18を外周2番部のみから構成したので、そのランド18間のねじれ溝16の溝幅寸法すなわちチップポケットの幅寸法が大きくなり、溝底径dの増大に拘らず十分な大きさのチップポケットを確保でき、切り屑詰まりを抑制しつつ溝底に傾斜を設けて折損強度を向上させることができる。

Description

不等リードエンドミル
 本発明はエンドミルに係り、特に、優れた加工精度が得られる不等リードエンドミルの改良に関するものである。
 エンドミルの一種に、ねじれ角が異なる複数の外周切れ刃を有する不等リードエンドミルが提案されている。特許文献1に記載のエンドミルはその一例で、複数の外周切れ刃の周方向の間隔が連続的に変化するため、共振によるビビリ振動等が抑制されて優れた加工精度(面粗さ)が得られる。
特開2008-110452号公報
 しかしながら、このような従来の不等リードエンドミルにおいては、切込み寸法が大きい高負荷の加工や高能率加工を行う際にねじれ溝の切り上がり部分で工具が折損することがあった。
 本発明は以上の事情を背景として為されたもので、その目的とするところは、優れた加工精度が得られる不等リードエンドミルの折損強度を向上させることにある。
 かかる目的を達成するために、第1発明は、ねじれ角が異なる複数の外周切れ刃を有する不等リードエンドミルにおいて、前記複数の外周切れ刃のすくい面を構成する複数のねじれ溝の溝底径dが、軸方向において工具先端からシャンク側へ向かうに従って増大していることを特徴とする。
 第2発明は、第1発明の不等リードエンドミルにおいて、前記外周切れ刃のランドは外周2番部(第1逃げ面とも言われる部分)のみから成ることを特徴とする。
 第3発明は、第2発明の不等リードエンドミルにおいて、前記ランドのヒールに繋がる刃裏側の前記ねじれ溝の軸心Oと直角な断面形状は、該ランドのヒールから前記複数のねじれ溝の溝底を通る溝底円Qに引いた接線Cを基準として、該接線Cの両側に刃径Dに対してそれぞれ0.05Dの幅寸法で定められた許容範囲E内に溝壁面が入るように定められていることを特徴とする。
 第4発明は、第1発明~第3発明の何れかの不等リードエンドミルにおいて、前記溝底径dは、軸方向において0.5°~5.5°の範囲内のテーパ半角で連続的に増大していることを特徴とする。
 第5発明は、第2発明または第3発明の不等リードエンドミルにおいて、前記複数の外周切れ刃の刃直角方向のランドすなわち外周2番部の幅寸法である刃厚tは、刃径Dに対して0.04D以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘ってそのばらつき範囲内とされていることを特徴とする。
 第6発明は、第1発明~第5発明の何れかの不等リードエンドミルにおいて、前記複数の外周切れ刃のすくい角γは、3°以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘ってそのばらつき範囲内とされていることを特徴とする。
 第7発明は、第1発明~第6発明の何れかの不等リードエンドミルにおいて、前記複数の外周切れ刃に連続して複数の底刃を有するとともに、その底刃には、前記ねじれ角によって異なる大きさのギャッシュ角でギャッシュが設けられており、そのねじれ角が大きい場合は小さい場合に比較してそのギャッシュ角が大きくされていることを特徴とする。
 このような不等リードエンドミルにおいては、複数のねじれ溝の溝底径dが工具先端からシャンク側へ向かうに従って増大しているため折損強度が向上し、切込み寸法が大きい高負荷や高能率の加工が可能になるとともに工具寿命が向上する一方、工具剛性が高くなって撓み変形が抑制されるため加工精度が一層向上する。
 第2発明では、外周切れ刃のランドが外周2番部のみから成るため、そのランド間の溝幅寸法すなわちチップポケットの幅寸法が大きくなり、溝底径dの増大に拘らず十分な大きさのチップポケットを確保でき、切り屑詰まりを抑制しつつ溝底に傾斜を設けて折損強度を向上させることができる。
 第3発明では、刃裏側におけるねじれ溝の断面形状が、ランドのヒールから溝底円Qに引いた接線Cを基準として、その接線Cの両側にそれぞれ0.05Dの幅寸法で定められた許容範囲E内に溝壁面が入るように定められているため、ランド間の溝幅寸法の相違や変化に拘らず外周切れ刃側のすくい面の形状を適切に維持しつつ、外周2番部のみから成るランドの刃裏側の形状を適切に設定することができる。
 第4発明では、溝底径dが軸方向において0.5°~5.5°の範囲内のテーパ半角で連続的に増大しているため、溝底径dの増大による切り屑詰まりや応力集中を回避しつつ折損強度を適切に向上させることができる。
 第5発明では、複数の外周切れ刃の刃厚tが0.04D以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘ってそのばらつき範囲内とされているため、不等リードによる外周切れ刃の周方向の間隔の変化に拘らず外周切れ刃の強度のばらつきが防止され、所定の切れ刃強度を確保できる。
 第6発明では、複数の外周切れ刃のすくい角γが3°以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘ってそのばらつき範囲内とされているため、不等リードによる外周切れ刃の周方向の間隔の変化に拘らず切削性能や耐摩耗性、刃先強度のばらつき等が防止される。
 第7発明は、底刃のギャッシュのギャッシュ角が外周切れ刃のねじれ角によって異なり、ねじれ角が大きい場合は小さい場合に比較してギャッシュ角が大きくされているため、ねじれ角の相違に拘らず底刃の切り屑が適切に排出されるようになる。すなわち、外周切れ刃のねじれ角が大きい場合は、底刃のチップルームが小さいため切り屑のリフトアップ効果(軸方向への持ち上げ性能)が低く、切り屑が滞留し易いが、ねじれ角が大きい場合はギャッシュ角が大きくされるため、底刃の切り屑がギャッシュを介して適切に外周側へ排出されるようなり、切り屑詰まりが抑制されるのである。
本発明の一実施例である不等リードエンドミルを示す図で、(a) は正面図、(b) は刃部における軸心Oと直角な断面図、(c) は先端側から見た底面図、(d) はねじれ溝を軸心Oと平行に示した縦断面図である。 図1の不等リードエンドミルの外周切れ刃の展開図である。 図1の不等リードエンドミルの軸心Oと直角な溝断面形状を説明する図で、(a) は断面図、(b) はすくい面側を研削加工した状態の部分断面図である。 本発明品および比較品を用いて各種の試験を行った際の試験品および試験条件を説明する図である。 図4の試験品No1~No6を用いて試験条件No1の溝切削加工が可能な軸方向切込み寸法の限界値を調べた結果を示す図である。 図4の試験品No1、No3、およびNo6を用いて試験条件No2~No5の切削加工を行って切削距離または摩耗量を調べた結果を示す図である。 図4の試験品No1およびNo3を用いて試験条件No5の側面切削加工を行って切削距離を調べた結果を示す図である。 テーパ半角αが溝加工性能および側面加工性能に与える効果を調べた結果を示す図である。 本発明の他の実施例を説明する図で、図1(d) に対応する縦断面図である。 本発明の更に別の実施例を説明する図で、従来の背抜き部分を再研削加工によって除去する場合の一例であり、(a) は従来形状の断面図、(b) は再研削後の形状の断面図である。
 本発明の不等リードエンドミルの複数の外周切れ刃は、それぞれ全長に亘って一定のねじれ角で設けられる。複数の外周切れ刃のねじれ角の角度差は、例えば10°以下で、5°程度以下が望ましい。複数の外周切れ刃のねじれ角は、互いに全部相違していても良いが、少なくとも1刃が相違していれば良い。外周切れ刃の一部は、軸心と平行な直刃であっても良い。外周切れ刃は、滑らかな仕上げ用だけでなく、波形状やニック等が設けられた荒加工用であっても良い。また、本発明は、外周切れ刃の先端のコーナーに丸みが設けられたラジアスエンドミルや、コーナーが角形のスクエアエンドミル、底刃が球面上に設けられたボールエンドミルなど、種々のエンドミルに適用され得る。
 ねじれ溝の溝底径dは、工具先端からシャンク側へ向かうに従って例えば軸方向において0.5°~5.5°の範囲内の一定のテーパ半角で増大させられるが、テーパ半角が0.5°~5.5°の範囲内で段階的或いは連続的に変化していても良い。テーパ半角が5.5°を超えると切り屑詰まりによる折損が生じる場合があり、0.5°未満では折損強度の向上効果が十分に得られないため、刃長等の工具諸元や加工条件によって異なるが0.5°~5.5°の範囲内が適当である。第1発明の実施に際しては、途中に軸心と平行な平行部が設けられても良いし、刃長等の工具諸元や加工条件によってはテーパ半角が0.5°~5.5°の範囲を逸脱して定められても良いなど、種々の態様が可能である。複数のねじれ溝は、軸方向位置が同じであれば互いに溝底径dが等しくなるように設けられる。
 第2発明では、外周切れ刃のランドが外周2番部のみで構成されるが、他の発明の実施に際しては、ランドに三番取り等の背抜きが設けられていても良いなど、種々の態様が可能である。外周2番部のみから成るランドを形成する場合、例えばねじれ溝を研削加工する砥石の姿勢を溝加工の途中で変化させるなど、多軸(例えば5軸など)の加工機を用いて1回の研削加工で形成することもできるが、複数回の研削加工で外周2番部分を研削するなどして形成しても良いなど、種々の態様が可能である。
 第5発明では、複数の外周切れ刃の刃厚tが0.04D以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘ってそのばらつき範囲内とされているため、ねじれ角の相違によりねじれ溝の溝幅が軸方向において変化することになるが、このようなエンドミルも、例えばねじれ溝を研削加工する砥石の姿勢を溝加工の途中で変化させるなど、多軸(例えば5軸など)の加工機を用いて1回の研削加工で形成することができる。複数回の研削加工で刃厚tが略一定になるように調整しても良い。0.04D以下のばらつき範囲は、例えば目標値に対して±0.02D以下のばらつき範囲(公差)で加工することによって得られる。刃厚tのばらつきが0.04Dを超えると、外周切れ刃の強度がばらついて耐久性が損なわれる恐れがあるが、他の発明の実施に際しては刃厚tが0.04Dを超えてばらついても良い。
 第6発明では、複数の外周切れ刃のすくい角γが3°以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘ってそのばらつき範囲内とされており、例えばねじれ溝を研削加工する砥石を略一定の姿勢に保持してリード送りしながら溝加工を行うことにより、1回の研削加工で形成することができるが、必要に応じて複数回の研削加工ですくい角γが略一定になるように調整しても良い。3°以下のばらつき範囲は、例えば目標値に対して±1.5°以下のばらつき範囲(公差)で加工することによって得られる。すくい角γが3°を超えてばらつくと、切削性能や耐摩耗性、刃先強度のばらつき等により耐久性が損なわれる恐れがあるが、他の発明の実施に際してはすくい角γが3°を超えてばらついても良い。
 第7発明では、底刃に設けられるギャッシュのギャッシュ角がねじれ角によって異なる大きさとされるが、他の発明の実施に際しては、ねじれ角の相違に拘らず一定のギャッシュ角でギャッシュを設けるようにしても良い。第7発明では、ねじれ角の相違に従ってギャッシュ角が異なる大きさとされるが、ねじれ角が異なる場合に総てギャッシュ角を相違させる必要はなく、例えばねじれ角が3段階で変化している場合にギャッシュ角は2段階で変化させるだけでも良いなど、種々の態様が可能である。
 本発明の不等リードエンドミルは、複数の外周切れ刃の周方向の間隔が連続的に変化するが、工具先端の外周切れ刃および底刃が等角度間隔(等分割ともいう)で位置するように構成することもできる。或いは、工具先端の外周切れ刃および底刃が所定の不等角度間隔(不等分割ともいう)で位置するように構成することもできる。
 以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
 図1は、本発明の一実施例である不等リードエンドミル10を示す図で、(a) は軸心Oと直角方向から見た正面図、(b) は刃部14における軸心Oと直角な断面図、(c) は先端側から見た底面図、(d) はねじれ溝16を軸心Oと平行に示した縦断面図である。また、図2は、不等リードエンドミル10の複数(本実施例では5枚)の外周切れ刃20を軸心Oまわりに展開した展開図である。この不等リードエンドミル10は、シャンク12と刃部14とを軸心Oと同心に備えており、刃部14には5本のねじれ溝16が設けられることにより5つのランド18に分断され、それ等のランド18の周方向の一端にそれぞれねじれ溝16に沿って外周切れ刃20が設けられている。本実施例の不等リードエンドミル10は、刃径Dが12.7mm、刃部14の軸方向長さである刃長Lすなわちねじれ溝16の溝切上げ部分を除く溝長さが約31.8mm(≒2.5D)で、超硬合金にて一体に構成されているとともに、刃部14の表面にはTiAlNの硬質被膜がコーティングされている。
 この不等リードエンドミル10は、シャンク12側から見て右まわりに回転駆動されることにより切削加工を行うもので、外周切れ刃20は何れもその切削回転方向と同じ右まわりにねじれている。これ等の外周切れ刃20は、図2の展開図から明らかなように、それぞれ全長に亘って一定のリードで設けられているが、そのリードすなわちねじれ角λが相違している。図2は、5枚の外周切れ刃20やねじれ溝16、ランド18、ねじれ角λを区別するためにa~eの符号を付けて示したものである。具体的には、ランド18a~18eの幅寸法は互いに等しく、且つ軸方向の全長に亘って略一定とされており、このようにランド18a~18eが一定の幅寸法で設けられることにより、ねじれ角λの相違に応じてねじれ溝16a~16eの溝幅が軸方向において連続的に変化している。ねじれ角λa~λeは総て相違していても良いが、本実施例では外周切れ刃20aのねじれ角λaおよび外周切れ刃20dのねじれ角λdが互いに等しくて約41°であり、外周切れ刃20bのねじれ角λbが約42°であり、外周切れ刃20cのねじれ角λcおよび外周切れ刃20eのねじれ角λeが互いに等しくて約43°である。
 また、工具先端における外周切れ刃20a~20eの軸心Oまわりの角度間隔は、外周切れ刃20eと20aとの間の角度θaおよび外周切れ刃20cと20dとの間の角度θdが互いに等しくて約83°、外周切れ刃20aと20bとの間の角度θbおよび外周切れ刃20dと20eとの間の角度θeが互いに等しくて約62°、外周切れ刃20bと20cとの間の角度θcが約70°である。すなわち、これ等の外周切れ刃20には連続して底刃22が設けられるが、これ等の底刃22も軸心Oまわりの間隔が異なる不等分割とされているのである。
 上記底刃22には、それぞれすくい面を構成するようにギャッシュ24が設けられているが、そのギャッシュ角は、前記ねじれ角λによって異なる大きさとされており、ねじれ角λが大きい場合は小さい場合に比較してギャッシュ角が大きくされている。具体的には、ねじれ角λが比較的小さい外周切れ刃20a、20dに連続して設けられた底刃22のギャッシュ24のギャッシュ角は約15°で、他の底刃22、すなわち外周切れ刃20b、20c、20eに連続して設けられた底刃22のギャッシュ24のギャッシュ角は約20°である。ギャッシュ角は、軸心Oに対して直角な方向からのギャッシュ24の軸方向への傾斜角度で、ギャッシュ角が大きい程切り屑は外周側へ流れ易くなる。すなわち、外周切れ刃20のねじれ角λが大きい場合は、底刃22のチップルームが小さいため切り屑のリフトアップ効果(軸方向への持ち上げ性能)が低く、切り屑が滞留し易いが、ねじれ角λが大きい外周切れ刃20b、20c、20eに連続して設けられた底刃22のギャッシュ24のギャッシュ角が大きくされることにより、その底刃22の切り屑がギャッシュ24を介して適切に外周側へ排出されるようなり、切り屑詰まりが抑制される。
 前記ねじれ溝16は、その幅寸法が軸方向へ向かうに従って連続的に変化するが、複数のねじれ溝16の溝底径dは、図1の(b) に示すように軸方向位置が同じであれば互いに等しい。また、その溝底径dは、図1の(d) から明らかなように軸方向において工具先端からシャンク12側へ向かうに従って一定のテーパ半角αで連続的に増大している。このテーパ半角αは、0.5°~5.5°の範囲内で適宜定められ、本実施例では約1.5°程度である。また、工具先端における溝底径dすなわち心厚は、本実施例では約8.26mm(≒0.65D)である。
 前記ランド18は、図1の(b) から明らかなように外周2番部(第1逃げ面に相当)のみから構成されており、刃直角方向のランド18の幅寸法である刃厚t(図1(a) 参照)は約0.95mmで、複数のランド18の刃厚tは、±0.02D(本実施例では0.02×12.7≒0.25mm)以下のばらつき範囲(許容範囲)で互いに等しく、且つ軸方向の全長に亘ってそのばらつき範囲内とされている。また、複数の外周切れ刃20のすくい角γは約2°で、±1.5°以下のばらつき範囲(許容範囲)で互いに等しいとともに、軸方向の全長に亘ってそのばらつき範囲内とされている。
 図3の(a) は、外周切れ刃20a~20eからランド18a~18eのヒールに至る軸心Oと直角なねじれ溝16a~16eの断面形状の一例を説明する図で、複数のねじれ溝16a~16eの溝底を通る溝底円Qと外周切れ刃20a~20eの刃先とを通り、且つ上記すくい角γが所定の大きさになる共通の凹曲線(例えば円弧)Sを設定する。また、刃裏側に関しては、各ランド18a~18eのヒールから溝底円Qに引いた接線Cを基準として、その接線Cの両側にそれぞれ0.05D(本実施例では0.05×12.7≒0.64mm)の幅寸法で定められた許容範囲E内に溝壁面が入るように、ヒールから凹曲線Sに対して滑らかに接続される直線La~Leが定められ、それ等の直線La~Leおよび凹曲線Sによって各ねじれ溝16a~16eの断面形状が定められる。図3(a) ではねじれ溝16aおよび16bについて許容範囲Eが示されているが、他のねじれ溝16c~16eについても同様の許容範囲E内に入るように断面形状が定められる。このようなねじれ溝16a~16eは、複数回の研削加工を行うことによって形成することができるが、溝形状によっては研削砥石の位置や姿勢を変化させつつ各ねじれ溝16a~16eに沿って相対移動させることにより、多軸(例えば5軸など)の加工機を用いて1回の研削加工で形成することも可能である。図3の(b) は複数回の研削加工で溝研削を行う場合の一例で、棒状素材30に対して凹曲線Sに対応するすくい面溝32を研削加工した状態であり、この後、二点鎖線で示すように上記直線La~Leに沿って研削加工を行うことにより、目的とする断面形状のねじれ溝16が得られる。なお、各外周切れ刃20a~20eの刃直角断面で各ねじれ溝16a~16eの断面形状を規定するようにしても良い。
 このような本実施例の不等リードエンドミル10においては、複数のねじれ溝16の溝底径dが工具先端からシャンク12側へ向かうに従って増大しているため折損強度が向上し、切込み寸法が大きい高負荷や高能率の加工が可能になるとともに工具寿命が向上する一方、工具剛性が高くなって撓み変形が抑制されるため加工精度が一層向上する。
 また、外周切れ刃20のランド18が外周2番部のみから成るため、そのランド18間のねじれ溝16の溝幅寸法すなわちチップポケットの幅寸法が大きくなり、溝底径dの増大に拘らず十分な大きさのチップポケットを確保でき、切り屑詰まりを抑制しつつ溝底に傾斜を設けて折損強度を向上させることができる。
 また、刃裏側におけるねじれ溝16の断面形状が、各ランド18のヒールから溝底円Qに引いた接線Cを基準として、その接線Cの両側にそれぞれ0.05Dの幅寸法で定められた許容範囲E内に溝壁面が入るように定められているため、ランド18間の溝幅寸法の相違や変化に拘らず外周切れ刃20側のすくい面の形状(凹曲線S)を適切に維持しつつ、外周2番部のみから成るランド18の刃裏側の形状を適切に設定することができる。
 また、溝底径dが軸方向において0.5°~5.5°の範囲内の一定のテーパ半角αで連続的に増大しているため、溝底径dの増大による切り屑詰まりや応力集中を回避しつつ折損強度を適切に向上させることができる。
 また、複数の外周切れ刃20の刃厚tが目標値(0.95mm)に対して±0.02D以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘ってそのばらつき範囲内とされているため、不等リードによる外周切れ刃20の周方向の間隔の変化に拘らず外周切れ刃20の強度のばらつきが防止され、所定の切れ刃強度を確保できる。
 また、複数の外周切れ刃20のすくい角γが目標値(2°)に対して±1.5°以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘ってそのばらつき範囲内とされているため、不等リードによる外周切れ刃20の周方向の間隔の変化に拘らず切削性能や耐摩耗性、刃先強度のばらつき等が防止される。
 また、底刃22のギャッシュ24のギャッシュ角が外周切れ刃20のねじれ角λによって異なり、ねじれ角λが大きい場合は小さい場合に比較してギャッシュ角が大きくされているため、ねじれ角λの相違に拘らず底刃22の切り屑が適切に排出されるようになる。
 図4は、本発明品および比較品を用いて各種の試験を行った際の試験品および試験条件を説明する図である。(a) の試験品No1およびNo4は、テーパ半角α=0°で且つ図10の(a) に示すように背抜き60を有するランド62や溝幅が一定のねじれ溝64が設けられた不等リードの従来品、試験品No2およびNo5は、前記不等リードエンドミル10に比較してテーパ半角α=0°である点が異なるだけの比較品、試験品No3およびNo6は、前記不等リードエンドミル10と同様に構成された本発明品である。なお、4枚刃、5枚刃共に刃径D=12.7mmで、刃長L=31.8mm(≒2.5D)である。また、図4(b) の試験条件に関し、「ポケット」切削は、正方形のうずまき線に沿って中心から外周側へ側面切削を行うもので、「切込み」の欄の「ap」は軸方向切込み寸法、「ae」は径方向切込み寸法である。「備考」の欄の「切削領域」は、軸方向切込み寸法apの切削可能領域(限界)を調べる試験で、「耐久性」は工具寿命までの切削距離や所定切削距離における摩耗量を調べる試験である。
 図5は、図4の試験品No1~No6を用いて試験条件No1の溝切削加工が可能な軸方向切込み寸法apの限界値、すなわち軸方向切込み寸法apを0.5Dから0.1D刻みで増加させ、工具が折損する直前の軸方向切込み寸法apを調べた結果である。この図5から明らかなように、試験品No3およびNo6の本発明品によれば、試験品No1、No4の従来品や試験品No2、No5の比較品に比較して、軸方向切込み寸法apが0.2D程度大きくなり、単に溝幅を大きくしてチップポケットを大きくするだけでなく溝底径dにテーパを設けることで折損強度が向上することが判る。
 図6は、試験品No1、No3、およびNo6を用いて試験条件No2~No5の耐久性試験を行い、切削距離や摩耗量を調べた結果である。試験条件No2の切削距離は、複数の外周切れ刃20の摩耗量(外周逃げ面摩耗幅に相当)の平均が0.3mmに達するまでの切削距離で、試験条件No3~No5の摩耗量は、切削距離が3.2mの時点の摩耗量(外周逃げ面摩耗幅に相当)である。また、括弧内の%は、試験品No1の従来品を100%とした場合の値で、摩耗量については試験品No1より少ない程度(逆数)を表している。この結果から、比較的負荷が大きい試験条件No2およびNo3では、試験品No3およびNo6の本発明品によれば試験品No1の従来品に比較して34%~73%耐久性が向上した。5枚刃の試験品No6において特に優れた耐久性の向上効果が得られた。比較的負荷が小さい試験条件No4およびNo5についても、試験品No3の本発明品によれば試験品No1の従来品に比べて16%~18%耐久性が向上した。
 図7は、図4の試験品No1およびNo3を用いて試験条件No5の側面切削加工を行い、外周切れ刃20の摩耗量の平均が0.3mmに達するまでの切削距離を調べた結果を示した図である。この場合には、試験品No3の本発明品によれば試験品No1の従来品に比較して耐久性が約25%が向上した。
 図8は、ねじれ溝16の溝底の軸方向の傾斜のテーパ半角αが溝加工性能および側面加工性能に与える影響を調べた結果で、前記実施例の不等リードエンドミル10において、テーパ半角αを0°、0.5°、1.5°、3°、4°、5°、6°とした7種類の試験品を用意し、(a) の溝加工性能試験では、前記試験条件No1の溝切削加工が可能な軸方向切込み寸法apの限界値、すなわち軸方向切込み寸法apを0.5Dから0.1D刻みで増加させ、工具が折損する直前の軸方向切込み寸法apを調べた。この図8(a) の結果から、テーパ半角αを0.5°以上にすれば、α=0°の比較品に比較して折損強度が向上することが判る。(b) の側面加工性能試験では、前記試験条件No5において軸方向切込み寸法apを31.8mm(≒2.5D)とした点のみが異なる加工条件で側面切削加工を行い、外周切れ刃20の摩耗量の平均が0.3mmに達するまでの切削距離を調べた。この図8(b) において、α=6°の場合、切り屑詰まりにより約0.1mで折損した。この図8の(a) および(b) の結果から、溝底の傾斜のテーパ半角αは0.5°~5.5°の範囲内が適当であると考えられる。
 次に、本発明の他の実施例を説明する。なお、以下の実施例において前記実施例と実質的に共通する部分には同一の符号を付して詳しい説明を省略する。
 図9は、前記図1の(d) に対応する縦断面図で、刃部40に設けられたねじれ溝42の溝底の軸方向の傾斜のテーパ半角が、刃長Lの途中で変化している場合である。すなわち、刃長Lのうちシャンク側部位L1のテーパ半角β1と、先端側部位L2のテーパ半角β2とが相違し、何れも0.5°~5.5°の範囲内でβ1<β2となるように設定されているとともに、それ等の境界部分ではテーパ半角が滑らかに変化するように凸円弧状に接続されている。本実施例においても、前記実施例と同様の効果が得られる。
 図10は、本発明の更に別の実施例を説明する図で、従来の背抜き部分を再研削加工によって除去することにより、外周2番部のみから成るランド18を形成するとともに大きな溝幅のねじれ溝50を形成した場合である。図10の(a) は、三番取り等の背抜き60を有するランド62と、前記図3(b) のすくい面溝32と同様に形成された一定の溝幅寸法のねじれ溝64とを有する従来形状の断面図で、その背抜き60の部分を例えば二点鎖線で示すように研削除去することにより、(b) に示す目的形状のねじれ溝50が得られる。このねじれ溝50は、ランド18のヒールから溝底円Qに引いた接線Cを基準として、その接線Cの両側にそれぞれ0.05Dの幅寸法で定められた許容範囲E内に溝壁面が入るように形成されている。この場合は、溝壁面に凹凸が形成されるが、0.1D以下であるため殆ど影響が無く、大きな溝幅のねじれ溝50が設けられることにより、溝底径dの増大に拘らず切り屑排出性能が良好に維持されるなど、前記実施例と同様の効果が得られる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
 10:不等リードエンドミル  16、16a~16e、42、50:ねじれ溝  18、18a~18e:ランド  20、20a~20e:外周切れ刃  22:底刃  24:ギャッシュ  O:軸心  D:刃径  d:溝底径  λ、λa~λe:ねじれ角  γ:すくい角  t:刃厚  α、β1、β2:テーパ半角  Q:溝底円  C:接線  E:許容範囲

Claims (7)

  1.  ねじれ角が異なる複数の外周切れ刃を有する不等リードエンドミルにおいて、
     前記複数の外周切れ刃のすくい面を構成する複数のねじれ溝の溝底径dが、軸方向において工具先端からシャンク側へ向かうに従って増大している
     ことを特徴とする不等リードエンドミル。
  2.  前記外周切れ刃のランドは外周2番部のみから成る
     ことを特徴とする請求項1に記載の不等リードエンドミル。
  3.  前記ランドのヒールに繋がる刃裏側の前記ねじれ溝の軸心Oと直角な断面形状は、該ランドのヒールから前記複数のねじれ溝の溝底を通る溝底円Qに引いた接線Cを基準として、該接線Cの両側に刃径Dに対してそれぞれ0.05Dの幅寸法で定められた許容範囲E内に溝壁面が入るように定められている
     ことを特徴とする請求項2に記載の不等リードエンドミル。
  4.  前記溝底径dは、軸方向において0.5°~5.5°の範囲内のテーパ半角で連続的に増大している
     ことを特徴とする請求項1~3の何れか1項に記載の不等リードエンドミル。
  5.  前記複数の外周切れ刃の刃直角方向のランドの幅寸法である刃厚tは、刃径Dに対して0.04D以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘って該ばらつき範囲内とされている
     ことを特徴とする請求項2または3に記載の不等リードエンドミル。
  6.  前記複数の外周切れ刃のすくい角γは、3°以下のばらつき範囲で互いに等しいとともに、軸方向の全長に亘って該ばらつき範囲内とされている
     ことを特徴とする請求項1~5の何れか1項に記載の不等リードエンドミル。
  7.  前記複数の外周切れ刃に連続して複数の底刃を有するとともに、該底刃には、前記ねじれ角によって異なる大きさのギャッシュ角でギャッシュが設けられており、該ねじれ角が大きい場合は小さい場合に比較して該ギャッシュ角が大きくされている
     ことを特徴とする請求項1~6の何れか1項に記載の不等リードエンドミル。
PCT/JP2011/065381 2011-07-05 2011-07-05 不等リードエンドミル WO2013005307A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013522645A JP5649729B2 (ja) 2011-07-05 2011-07-05 不等リードエンドミル
CN201180072065.1A CN103635277B (zh) 2011-07-05 2011-07-05 不等导程端铣刀
US14/128,292 US9364904B2 (en) 2011-07-05 2011-07-05 Variable lead end mill
EP11869035.3A EP2730359B1 (en) 2011-07-05 2011-07-05 Variable lead end mill
PCT/JP2011/065381 WO2013005307A1 (ja) 2011-07-05 2011-07-05 不等リードエンドミル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/065381 WO2013005307A1 (ja) 2011-07-05 2011-07-05 不等リードエンドミル

Publications (1)

Publication Number Publication Date
WO2013005307A1 true WO2013005307A1 (ja) 2013-01-10

Family

ID=47436680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065381 WO2013005307A1 (ja) 2011-07-05 2011-07-05 不等リードエンドミル

Country Status (5)

Country Link
US (1) US9364904B2 (ja)
EP (1) EP2730359B1 (ja)
JP (1) JP5649729B2 (ja)
CN (1) CN103635277B (ja)
WO (1) WO2013005307A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502266A (ja) * 2011-12-21 2015-01-22 ヨーゼフ ポミカチェクJosef Pomikacsek 金属製の工作物の長手方向縁部を加工する方法及び装置
WO2015115484A1 (ja) * 2014-01-28 2015-08-06 京セラ株式会社 エンドミルおよび切削加工物の製造方法
EP2929966A1 (de) * 2014-04-09 2015-10-14 Fraisa SA Vollfräswerkzeug zur rotierenden Materialbearbeitung
WO2016063894A1 (ja) * 2014-10-24 2016-04-28 京セラ株式会社 エンドミル
US20160228955A1 (en) * 2013-10-21 2016-08-11 Walter Ag End Milling Cutter for Heat-Resistant Superalloys
EP3134224A4 (en) * 2014-04-25 2018-07-25 GWS Tool, LLC Diamond plated grinding endmill for advanced hardened ceramics machining
JP2018534150A (ja) * 2015-10-12 2018-11-22 イスカル リミテッド エンドミル
WO2019044791A1 (ja) * 2017-08-30 2019-03-07 株式会社イシイコーポレーション テーパーリーマ
JP2020163555A (ja) * 2019-03-29 2020-10-08 日進工具株式会社 切削工具

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047655A (ja) * 2013-08-30 2015-03-16 三菱マテリアル株式会社 クーラント穴付きエンドミル
EP2959996A1 (en) * 2014-06-27 2015-12-30 Seco Tools Ab Milling cutter with core having two tapered portions
US10118236B2 (en) * 2014-09-26 2018-11-06 Kennametal Inc. Rotary cutting tool
US9862038B2 (en) * 2015-04-10 2018-01-09 Kennametal Inc. Rotary cutting tool with unequal indexing, alternating helix angle and varying helix angle along length of cut
US10052700B2 (en) 2015-07-28 2018-08-21 Kennametal Inc. Rotary cutting tool with blades having repeating, unequal indexing and helix angles
DE102015116623A1 (de) * 2015-09-30 2017-03-30 Haimer Gmbh Schaftfräser
DE102015116624B4 (de) * 2015-09-30 2023-06-15 Haimer Gmbh Schaftfräser
IL249676B (en) 2016-12-20 2021-08-31 Hanita Metal Works Ltd An end mill with differently rotated slot profiles
CN110709201B (zh) * 2017-05-30 2021-01-05 京瓷株式会社 立铣刀以及切削加工物的制造方法
CN107511517B (zh) * 2017-09-21 2019-04-16 华东理工大学 一种石墨模具加工用涂层端铣刀及其制备方法
US10486246B2 (en) 2018-02-26 2019-11-26 Iscar, Ltd. End mill having a peripheral cutting edge with a variable angle configuration
CN109332769A (zh) 2018-11-22 2019-02-15 青岛理工大学 一种不同润滑条件下的铣削系统及方法
EP3670048A1 (de) * 2018-12-21 2020-06-24 CERATIZIT Balzheim GmbH & Co. KG Fräswerkzeug
DE102019214041A1 (de) * 2019-09-16 2021-03-18 Gühring KG Fräswerkzeug
KR102208022B1 (ko) * 2020-04-28 2021-01-28 주식회사 와이지-원 절삭날별 피드에 비례하여 칩 공간을 구현한 엔드밀
US11865629B2 (en) 2021-11-04 2024-01-09 Kennametal Inc. Rotary cutting tool with high ramp angle capability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646816U (ja) * 1992-11-30 1994-06-28 三菱マテリアル株式会社 エンドミル
JP2002361515A (ja) * 2001-06-08 2002-12-18 Hitachi Tool Engineering Ltd 軟質材切削用エンドミル
JP2009220188A (ja) * 2008-03-13 2009-10-01 Mitsubishi Materials Corp エンドミル
JP2011020193A (ja) * 2009-07-14 2011-02-03 Sumitomo Electric Hardmetal Corp 防振エンドミル
JP2011110692A (ja) * 2009-11-24 2011-06-09 Hitachi Tool Engineering Ltd 超硬合金製エンドミル

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU631271A1 (ru) 1975-10-08 1978-11-05 Предприятие П/Я Р-6564 Концева фреза
DE3706282A1 (de) * 1986-02-28 1987-09-03 Izumo Sangyo Kk Umlaufendes schneidwerkzeug
US4893968A (en) * 1988-03-15 1990-01-16 Levy Zadok H End mill
JPH10151513A (ja) 1996-11-19 1998-06-09 Hitachi Tool Eng Co Ltd 細径エンドミル
IL131119A0 (en) * 1999-07-26 2001-01-28 Hanita Metal Works Ltd Milling cutter
IL141828A (en) 2001-03-05 2009-05-04 Hanita Metal Works Ltd Multi-purpose end-mill
US6991409B2 (en) * 2002-12-24 2006-01-31 Niagara Cutter Rotary cutting tool
JP4622520B2 (ja) * 2002-12-26 2011-02-02 三菱マテリアル株式会社 ラジアスエンドミル
JP4313579B2 (ja) * 2003-01-22 2009-08-12 オーエスジー株式会社 スクエアエンドミル
US7153067B2 (en) * 2005-02-18 2006-12-26 Greenwood Mark L Rotary cutting tool having multiple helical cutting edges with differing helix angles
US8414228B2 (en) * 2006-01-04 2013-04-09 Sgs Tool Company Rotary cutting tool
US7306408B2 (en) * 2006-01-04 2007-12-11 Sgs Tool Company Rotary cutting tool
IL174720A (en) * 2006-04-02 2010-04-15 Alexander Khina Cutting tool
JP4848928B2 (ja) 2006-10-31 2011-12-28 三菱マテリアル株式会社 エンドミル
DE102008018399A1 (de) * 2008-04-10 2009-10-15 Sandvik Intellectual Property Ab Schaftfräser mit unterschiedlichen Drallwinkeln
US8366354B2 (en) * 2009-02-20 2013-02-05 Kennametal Inc. Rotary cutting tool with chip breaker pattern
DE102009002738A1 (de) 2009-03-07 2010-09-23 Gühring Ohg Schaftfräser
CN201405114Y (zh) * 2009-05-20 2010-02-17 住研精密刀具(武汉)有限公司 不等螺旋角立铣刀
CN201519790U (zh) 2009-09-29 2010-07-07 龙岩市华锐硬质合金工具有限公司 双导程立铣刀
CN101698250A (zh) 2009-10-22 2010-04-28 苏州市永创金属科技有限公司 抗振长刃锥度细杆铝用立铣刀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646816U (ja) * 1992-11-30 1994-06-28 三菱マテリアル株式会社 エンドミル
JP2002361515A (ja) * 2001-06-08 2002-12-18 Hitachi Tool Engineering Ltd 軟質材切削用エンドミル
JP2009220188A (ja) * 2008-03-13 2009-10-01 Mitsubishi Materials Corp エンドミル
JP2011020193A (ja) * 2009-07-14 2011-02-03 Sumitomo Electric Hardmetal Corp 防振エンドミル
JP2011110692A (ja) * 2009-11-24 2011-06-09 Hitachi Tool Engineering Ltd 超硬合金製エンドミル

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502266A (ja) * 2011-12-21 2015-01-22 ヨーゼフ ポミカチェクJosef Pomikacsek 金属製の工作物の長手方向縁部を加工する方法及び装置
US10124421B2 (en) * 2013-10-21 2018-11-13 Walter Ag End milling cutter for heat-resistant superalloys
US20160228955A1 (en) * 2013-10-21 2016-08-11 Walter Ag End Milling Cutter for Heat-Resistant Superalloys
WO2015115484A1 (ja) * 2014-01-28 2015-08-06 京セラ株式会社 エンドミルおよび切削加工物の製造方法
CN105939805A (zh) * 2014-01-28 2016-09-14 京瓷株式会社 立铣刀以及切削加工物的制造方法
JPWO2015115484A1 (ja) * 2014-01-28 2017-03-23 京セラ株式会社 エンドミルおよび切削加工物の製造方法
US10010951B2 (en) 2014-01-28 2018-07-03 Kyocera Corporation End mill and method of manufacturing machined product
EP2929966A1 (de) * 2014-04-09 2015-10-14 Fraisa SA Vollfräswerkzeug zur rotierenden Materialbearbeitung
EP3134224A4 (en) * 2014-04-25 2018-07-25 GWS Tool, LLC Diamond plated grinding endmill for advanced hardened ceramics machining
JP5956705B1 (ja) * 2014-10-24 2016-07-27 京セラ株式会社 エンドミル
WO2016063894A1 (ja) * 2014-10-24 2016-04-28 京セラ株式会社 エンドミル
JP2018534150A (ja) * 2015-10-12 2018-11-22 イスカル リミテッド エンドミル
JP7096151B2 (ja) 2015-10-12 2022-07-05 イスカル リミテッド エンドミル
WO2019044791A1 (ja) * 2017-08-30 2019-03-07 株式会社イシイコーポレーション テーパーリーマ
JPWO2019044791A1 (ja) * 2017-08-30 2020-07-30 株式会社イシイコーポレーション テーパーリーマ
US10926344B2 (en) 2017-08-30 2021-02-23 Ishii Corporation Co., Ltd. Taper reamer
JP2020163555A (ja) * 2019-03-29 2020-10-08 日進工具株式会社 切削工具

Also Published As

Publication number Publication date
US20140119844A1 (en) 2014-05-01
EP2730359B1 (en) 2016-06-22
EP2730359A1 (en) 2014-05-14
CN103635277B (zh) 2016-01-13
EP2730359A4 (en) 2015-02-18
JPWO2013005307A1 (ja) 2015-02-23
US9364904B2 (en) 2016-06-14
CN103635277A (zh) 2014-03-12
JP5649729B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
WO2013005307A1 (ja) 不等リードエンドミル
US10449611B2 (en) Ball end mill
CA2679762C (en) End mill
JP5958277B2 (ja) クーラント穴付きエンドミル
WO2015115484A1 (ja) エンドミルおよび切削加工物の製造方法
WO2013137021A1 (ja) クーラント穴付きボールエンドミル
US20150258616A1 (en) End mill
JP2007175830A (ja) クリスマスカッター
WO2019044791A1 (ja) テーパーリーマ
JPH02256412A (ja) エンドミル
US9862038B2 (en) Rotary cutting tool with unequal indexing, alternating helix angle and varying helix angle along length of cut
JP4804127B2 (ja) スローアウェイインサートおよびそれを装着した転削工具、並びに、それらを用いた被削材の切削方法
JP6999031B2 (ja) テーパエンドミル
KR20200123425A (ko) 가변 각 구조를 가진 주변부 절삭 변부를 가진 엔드밀
JP2015062978A (ja) ボールエンドミル
JP2013202748A (ja) エンドミル
JP4961061B2 (ja) ボールエンドミル
JP6825400B2 (ja) テーパボールエンドミル
JP5849817B2 (ja) スクエアエンドミル
JP2018164946A (ja) ラジアスエンドミル
JPS6389213A (ja) エンドミル
JP5515327B2 (ja) エンドミル
KR20230088814A (ko) 엔드밀
JP2023140443A (ja) エンドミル
JP2023165507A (ja) エンドミル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14128292

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013522645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011869035

Country of ref document: EP