WO2013002210A1 - ガラスロールの製造方法 - Google Patents

ガラスロールの製造方法 Download PDF

Info

Publication number
WO2013002210A1
WO2013002210A1 PCT/JP2012/066252 JP2012066252W WO2013002210A1 WO 2013002210 A1 WO2013002210 A1 WO 2013002210A1 JP 2012066252 W JP2012066252 W JP 2012066252W WO 2013002210 A1 WO2013002210 A1 WO 2013002210A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
film
roll
glass film
winding
Prior art date
Application number
PCT/JP2012/066252
Other languages
English (en)
French (fr)
Inventor
薫 鑑継
博通 梅村
道治 江田
妥夫 寺西
義徳 長谷川
森 浩一
森 弘樹
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020137025967A priority Critical patent/KR101904794B1/ko
Priority to CN201280028010.5A priority patent/CN103596890B/zh
Priority to US13/724,353 priority patent/US9656901B2/en
Publication of WO2013002210A1 publication Critical patent/WO2013002210A1/ja
Priority to US15/444,908 priority patent/US10189736B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • B65H18/10Mechanisms in which power is applied to web-roll spindle
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/412Roll
    • B65H2301/4127Roll with interleaf layer, e.g. liner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/41Winding, unwinding
    • B65H2301/414Winding
    • B65H2301/4148Winding slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2801/00Application field
    • B65H2801/61Display device manufacture, e.g. liquid crystal displays

Definitions

  • the present invention relates to an improvement in manufacturing technology of a glass roll obtained by winding a glass film formed by a downdraw method into a roll.
  • a flat panel display represented by a liquid crystal display, a plasma display, an organic EL display and the like has become the mainstream as a video display device in recent years.
  • FPD substrates glass substrates are used to ensure various required characteristics such as airtightness, flatness, heat resistance, translucency, and insulation.
  • the actual situation is that the glass substrate used in the FPD is being thinned from the viewpoint of weight reduction.
  • an FPD such as an organic EL display
  • organic EL is being used as a flat light source such as a light source for indoor lighting by causing only three colors (for example, white) to emit light without causing the three primary colors to be flickered by TFT as in a display.
  • the organic EL lighting device has an advantage that if the glass substrate is flexible, the light emitting surface can be freely deformed, and the usage is greatly expanded. For this reason, thinning of the glass substrate used in this type of lighting device has been promoted from the viewpoint of ensuring sufficient flexibility.
  • the touch panel is operated by rubbing the surface with a human finger or the like, a glass substrate is often used to ensure the robustness of the surface.
  • the glass substrate for the touch panel is also required to be thin to reduce the weight.
  • a glass film that has been thinned to a film shape (for example, a thickness of 300 ⁇ m or less) has been developed. Since this glass film has moderate flexibility, it may be rolled up around the core together with a protective film so as to be rolled up and accommodated in a so-called glass roll (for example, patent document). 1). In this way, the storage space for the glass film is significantly reduced, so that the transportation efficiency can be improved.
  • the roll-to-roll apparatus can continuously perform various processes such as cutting and film formation on the glass film unwound from the upstream glass roll. Significant improvement can be achieved.
  • glass films are often formed by the downdraw method. Therefore, when it is going to accommodate in the state of a glass roll, it will be necessary to wind up the glass film continuously shape
  • the wound glass film is likely to cause winding displacement due to subsequent movement in the width direction.
  • the glass film is lifted from the core in the state of a glass roll, and an unjustified gap may be formed between the glass films. If the glass film is wound or lifted (gap in the radial direction) as described above, the glass film is easily damaged and handling becomes very troublesome. Furthermore, in this case, since the glass film is irregularly wound up, the appearance of the glass roll is very deteriorated, which may be a factor of reducing the product value.
  • the present invention accommodates a glass film continuously formed by the downdraw method in the state of a glass roll
  • the glass film contained in the glass roll is not subject to winding deviation or lifting.
  • the technical challenge is to reduce it as much as possible.
  • a first invention created to solve the above-described problems includes a molding step of conveying a glass film downstream while continuously molding a glass film by a molding apparatus that executes a downdraw method, and a conveyance path of the molding step.
  • the first protective film is rolled on the glass film at the downstream end of the first roll, wound into a roll shape, and conveyed to the downstream side while unwinding the glass film from the original glass roll.
  • the second protective film is overlaid on the glass film and rewound into a roll to produce a glass roll.
  • the tension in the winding direction acting on the glass film is larger than the tension acting on the glass film in the first winding step.
  • the glass film wound up by the 1st winding process has a bigger tension
  • the film Even if the film is misaligned or lifted, it can be corrected in the second winding process. That is, in the second winding process, even if a large tension is applied to the glass film, it does not adversely affect the molding of the glass film. While being applied, the glass film can be rewound to produce a glass roll.
  • the tension in the winding direction acting on the first protective film is larger than the tension in the winding direction acting on the glass film in the first winding step.
  • the movement of the glass film can be suppressed by the first protective film without applying a large tension directly to the glass film. That is, an effect equivalent to that obtained when a tension is directly applied to the glass film can be obtained. For this reason, it is possible to suppress the winding deviation and lifting of the glass film generated in the first winding process to a minimum range.
  • the glass film since the glass film is securely pressed by the first protective film in the state of the original glass roll, when the glass fill is unwound from the original glass roll in the second winding process, the glass in the original glass roll. It is unlikely that the film will be unduly wound. When the glass film is tightened, rubbing occurs between the glass film and the protective film, so that there is a possibility that micro scratches may be formed on the surface of the glass film.
  • a tension in the winding direction that acts on the glass film may be larger than a tension in the winding direction that acts on the second protective film.
  • the glass film In the second winding step, it is preferable to transport the glass film while supporting and supporting only one surface of the glass film.
  • the other surface of the glass film becomes a non-contact surface. Therefore, the surface of the glass film serving as the non-contact surface is less likely to be formed with minute scratches due to conveyance. Therefore, when manufacturing a glass substrate for FPD such as an organic EL display from this glass film, if the element or wiring is formed on the non-contact surface side of the glass film, the formation of the element or wiring is poor due to micro scratches. Therefore, it is possible to provide a highly reliable FPD.
  • the glass film is wound so that the contact support surface of the glass film is positioned on the inner peripheral surface side of the glass roll.
  • the contact support surface is wound so that the contact support surface is positioned on the inner peripheral surface side of the glass roll. Only compressive stress acts. Therefore, even if a micro-scratch occurs on the contact support surface, it is difficult for a force that causes the micro-scratch to develop.
  • a non-contact surface substantially free of micro-scratches is located on the outer peripheral surface side of the glass film on which a force that causes micro-scratches to develop is applied, so that the glass film is reliably damaged. It becomes possible to reduce it.
  • the glass film may be cut into a predetermined width by laser cutting and then wound.
  • laser cutting includes laser cleaving and laser fusing.
  • Laser cleaving is a method of cutting a glass film by developing an initial crack using thermal stress generated by expansion by a heating action of a laser and contraction by a cooling action of a refrigerant.
  • laser fusing is a method of cutting by injecting high-pressure gas into a portion where glass has been softened and melted by heating with laser energy.
  • the downdraw method is an overflow downdraw method.
  • the thickness of the glass film is preferably 1 ⁇ m or more and 300 ⁇ m or less.
  • the second invention created in order to solve the above problems is a glass roll manufacturing method in which a glass film is formed by a downdraw method, and the formed glass film is stacked on a protective film and wound into a roll. And it is characterized by winding up the said glass film and the said protective film, providing the tension
  • the glass film can be tightened by the relatively large tension in the winding direction applied to the protective film without applying a large tension in the winding direction to the glass film.
  • a glass roll having no looseness can be produced.
  • the glass film is not applied with a tension in the winding direction or the tension is small, so that the glass film is bent in a curved region so as to be substantially along the horizontal direction. Even so, the curvature of the curved region can be prevented from changing, and the glass film can be stably formed, and the glass film without warping or undulation or change in plate thickness can be wound.
  • laser cutting includes laser cleaving and laser fusing.
  • Laser cleaving is a method of cutting a glass film by developing an initial crack using thermal stress generated by expansion by a heating action of a laser and contraction by a cooling action of a refrigerant.
  • laser fusing is a method of cutting by injecting high-pressure gas into a portion where glass has been softened and melted by heating with laser energy.
  • the glass film and the protective film are preferably wound while the protective film is stacked on the outer peripheral surface side of the glass film so that the protective film is maintained in the outermost layer.
  • the glass film can be easily clamped by the protective film, and a glass roll without looseness can be reliably produced.
  • the downdraw method is an overflow downdraw method.
  • a third invention created to solve the above problems is a glass roll obtained by stacking a glass film formed by a downdraw method on a protective film and winding it into a roll shape, the protective film comprising: It is characterized in that a larger tension in the winding direction than that of the glass film is applied.
  • the glass film preferably has a thickness of 1 ⁇ m to 300 ⁇ m.
  • the arithmetic average roughness Ra of both end surfaces in the width direction of the glass film is 0.1 ⁇ m or less.
  • the protective film protrudes from both sides of the glass film in the width direction.
  • the glass film is the first winding in the second winding process. Rewinding is performed in a state where a larger tension is applied in the winding direction than in the winding process. Therefore, even when the glass film is continuously formed by the downdraw method, an appropriate tension is imparted to the glass film through the first winding process and the second winding process, and the winding deviation or lift is caused. It is possible to produce a glass roll that is difficult to cause.
  • FIG. 1 is a flowchart of a glass roll manufacturing method according to the first embodiment of the present invention.
  • the glass roll manufacturing method includes a forming step S1, a cutting step S2, a temporary winding step (first winding step) S3, and a main winding step (second winding step) S4.
  • the molding step S1 is performed by a molding apparatus 1 that executes an overflow downdraw method, as shown in FIG.
  • the molding apparatus 1 includes a molding zone 2, a slow cooling (annealing) zone 3, and a cooling zone 4 in order from the top.
  • molding apparatus 1 may perform other downdraw methods, such as a slot downdraw method and a redraw method.
  • the molten glass Gm is supplied to the molded body 5 having a wedge-shaped cross-sectional shape, and the molten glass Gm overflowing on both sides from the top of the molded body 5 is fused and flowed down at its lower end. Then, a plate-like glass film G is formed from the molten glass Gm.
  • the glass film G gradually increases in viscosity as it moves downward, and after reaching a sufficient viscosity to maintain the shape, the glass film G is dedistorted in the slow cooling zone 3 and further cooled to near room temperature in the cooling zone 4.
  • a roller group 6 having a pair of rollers is disposed at a plurality of locations from the upstream side to the downstream side of the conveyance path of the glass film G.
  • the part is guided downward.
  • the roller disposed at the uppermost portion of the molding zone 2 in the molding apparatus 1 functions as a cooling roller for cooling both ends in the width direction of the glass film G, and the glass film G is moved downward. It also functions as a drive roller for pulling out.
  • the remaining rollers in the forming apparatus 1 function as a free running roller, a pulling roller, and the like for guiding the glass film G downward.
  • the glass film G formed in the forming step S1 is a long body having a thickness of 1 to 600 ⁇ m (preferably 1 to 300 ⁇ m, more preferably 10 to 200 ⁇ m).
  • a liquid crystal display, a plasma display, and an organic EL display Used for glass substrates of devices such as FPD, solar cells, lithium ion batteries, digital signage, touch panels, electronic paper, etc., cover glasses for organic EL lighting, glass containers for medical products, window glass, laminated lightweight window glass, etc. Is done.
  • the width of the glass film G is preferably 100 mm or more, more preferably 300 mm or more, and further preferably 500 mm or more.
  • the glass film G is used for a wide variety of devices from small screen displays for small mobile phones to large screen displays such as large television receivers. Therefore, it is preferable to finally select the width of the glass film G according to the size of the substrate of the device used.
  • the glass composition of the glass film G various glass compositions such as silicate glass such as silica glass and borosilicate glass can be used, but alkali-free glass is preferable.
  • silicate glass such as silica glass and borosilicate glass
  • alkali-free glass is preferable.
  • an alkali component is contained in the glass film G
  • a so-called soda blowing phenomenon occurs and the structure becomes rough.
  • the glass film G is curved, the glass film G is structurally rough due to deterioration over time. This is because breakage may occur from the part that has become.
  • the alkali-free glass referred to here is a glass that does not substantially contain an alkali component.
  • the alkali metal oxide is 1000 ppm or less (preferably 500 ppm or less, more preferably 300 ppm. The following).
  • An example of glass that satisfies this condition is OA-10G manufactured by Nippon Electric Glass Co., Ltd.
  • molding processes S1 is curved in the substantially horizontal direction by the attitude
  • the posture changing roller group 7 may be omitted as appropriate.
  • the cutting device 8 cuts and removes the ineffective portions (ear portions) Gx formed at both ends in the width direction of the glass film G in the forming step S1.
  • the ineffective portion Gx is relatively thicker than the effective portion Ga at the center in the width direction of the glass film G.
  • the cutting device 8 performs laser cleaving, and transporting means 9 for transporting the glass film G continuously formed by the forming device 1 to the downstream side in a substantially horizontal posture, and this transport
  • the local heating means 10 that irradiates the glass film G placed on the means 9 with the laser beam L from the surface side to perform local heating, and the cooling water W from the surface side to the heating region heated by the local heating means 10.
  • a cooling means 11 for injecting water. If the glass film G is cut by laser cleaving in this way, moderate smoothness can be easily imparted to the cut surfaces constituting both end faces in the width direction of the glass film G without performing post-processing such as polishing. it can.
  • the end face of the glass film G does not bite into the protective film F1, and the separation between the glass film G and the protective film F1 can be maintained well.
  • the crack resulting from a fine crack becomes difficult to produce on the both end surfaces of the glass film G.
  • the arithmetic average roughness Ra of the both ends in the width direction of the glass film G is preferably 0.1 ⁇ m or less, and is 0.05 ⁇ m or less. It is more preferable.
  • a carbon dioxide laser is used as the local heating means 10, but it may be a means capable of performing other local heating such as heating wire or hot air injection.
  • the cooling means 11 injects the cooling water W as a refrigerant by air pressure or the like.
  • This refrigerant can be a cooling liquid other than cooling water, a gas such as air or an inert gas, or a gas and a liquid. What mixed, Furthermore, what mixed solids, such as dry ice and ice, and the said gas and / or the said liquid, etc. may be sufficient.
  • the cutting device 8 may be one that performs folding along a scribe line using a diamond cutter, or one that performs laser fusing.
  • the heating area of the local heating means 10 is cut along the planned cutting line (the effective part Ga and the extending area) along the longitudinal direction of the glass film G prior to the cooling area of the cooling means 11. ,
  • the boundary portion with the ineffective portion Gx) is scanned from one end side.
  • thermal stress is generated by expansion due to the heating action and contraction due to the cooling action of the refrigerant, and an initial crack (not shown) formed in advance at the tip portion of the planned cutting line propagates along the planned cutting line, and the glass Film G is continuously cleaved full body.
  • the ineffective portion Gx of the cut glass film G is bent downward and separated from the effective portion Ga, and then discarded.
  • the effective portion Ga of the glass film G is sent to the temporary winding process S3.
  • the protective film F1 unwound from the protective roll 12 on the outer peripheral surface side of the glass film G (specifically, the effective portion Ga) so that the protective film F1 is maintained in the outermost layer.
  • the glass film G and the protective film F1 are cut in the width direction by a cutting device (not shown), and the original glass roll 14 is manufactured.
  • a cutting device not shown
  • tension for example, 0 to 20 (less than) N / W in the width direction of the glass film G
  • N / W in the width direction of the glass film G is applied to the glass film G in a range that does not adversely affect the molding of the glass film G. Winding around the core 13 while acting m).
  • temporary winding process S3 it is not necessary to make a tension
  • tensile_strength of the winding direction larger than the glass film G is made to act on the protective film F1 in temporary winding process S3. Specifically, for example, a tension of 0.8 to 400 N / m in the width direction is applied to the protective film F1.
  • a tension of the protective film F1 for example, a rotational speed difference is provided between the original glass roll 14 and the protective roll 12, or a tension roller 15 as illustrated is interposed between the original glass roll 14 and the protective roll 12. It is given by. In this way, the movement of the glass film G can be suppressed by the protective film F1 without applying a large tension directly to the glass film G.
  • the thickness of the protective film F1 for the original glass roll 14 is preferably 20 to 1000 ⁇ m (more preferably 25 to 500 ⁇ m). Moreover, in order to protect the width direction both end surfaces of the glass film G from various contact, it is preferable that the width
  • the temperature of the glass film G may be 50 ° C. or higher in the stage of performing the temporary winding step S3, it is preferable that the protective film F1 does not change in quality such as softening around 100 ° C.
  • the protective film F1 is preferably an elastic film. Thereby, the original glass roll 14 without a looseness can be produced, giving the tension
  • the tensile elastic modulus of the protective film F1 is preferably 1 to 5 GPa.
  • the protective film F1 is preferably provided with conductivity. If it does in this way, when taking out the glass film G from the original glass roll 14, since it becomes difficult to produce peeling electrification between the glass film G and the protective film F1, the protective film F1 can be easily peeled from the glass film G. You can enjoy the benefits.
  • a method for imparting conductivity to the protective film F1 for example, when the protective film F1 is made of a resin, a component that imparts conductivity, such as polyethylene glycol, may be added to the protective film F1.
  • the protective film F1 is a slip sheet, it is possible to engrave conductive fibers into the slip sheet.
  • the protective film F1 for example, ionomer film, polyethylene film, polypropylene film, polyvinyl chloride film, polyvinylidene chloride film, polyvinyl alcohol film, polyester film, polycarbonate film, polystyrene film, polyacrylonitrile film, ethylene
  • Use resin films such as vinyl acetate copolymer films, ethylene-vinyl alcohol copolymer films, ethylene-methacrylic acid copolymer films, polyamide films, polyimide films, cellophane and other organic resin films (synthetic resin films). Can do.
  • a foamed resin film such as a polyethylene foamed resin film or a composite material in which the foamed resin film is laminated on the above resin film can be used as the protective film F1.
  • the glass film G unwound from the original glass roll 14 (specifically, the effective portion Ga) is wound again by a roll-to-roll apparatus.
  • the glass roll 16 used as a product is manufactured.
  • the glass film G unwound from the original glass roll 14 at the unwinding position P1 is guided in a substantially circumferential shape while being rotated by a roller group 17 composed of a plurality of rollers
  • the glass roll 16 is manufactured by rewinding around the core 18 at the take-up position P2. If the glass film G is guided in this way, an appropriate tension is easily applied to the glass film G even between the rollers of the roller group 17.
  • the protective film F1 is peeled off from the glass film G, and the protective film F1 is wound up as the protective roll 19.
  • the protective film F2 is superposed on the outer peripheral surface side of the glass film G so that the state in which the protective film F2 is in the outermost layer is maintained. It is wound around the core 18.
  • the protective film F2 (or the glass film G and the protective film F2) is cut in the width direction by a cutting device (not shown).
  • the glass roll 16 is manufactured.
  • the protective film F2 is the same type as the protective film F1 used in the temporary winding process S3.
  • tensile_strength b of the winding direction which acts on the glass film G is made larger than the tension a which acts on the glass film G in temporary winding process S3.
  • a tension of 10 to 500 N / m in the width direction is applied to the glass film G.
  • tensile_strength of this glass film G is provided by providing a rotational speed difference between the original glass roll 14 and the glass roll 16, for example. If it does in this way, even if winding shift and a lift will arise in the glass film G contained in the former glass roll 14 manufactured by temporary winding process S3, it will be enough for glass film G in this winding process S4. Tension can be applied to correct these winding deviations and rewind.
  • a larger tension in the winding direction may be applied to the glass film G than the protective film F2.
  • the tension of the protective film F2 is, for example, by providing a rotational speed difference between the glass roll 16 and the protective roll 20 or by interposing a tension roller 21 as illustrated between the glass roll 16 and the protective roll 20. Is granted.
  • the non-contact surface substantially free of micro-scratches is located on the outer peripheral surface side of the glass film G on which a force that causes micro-scratches to develop is applied. Can be reliably reduced.
  • the contact support surface is set on the same side as the contact support surface in the main winding step S4. Has been.
  • this invention is not limited to said 1st Embodiment, It can implement with a various form.
  • the cutting step may be executed also in the main winding step S4. Specifically, a glass film G (specifically, an effective portion Ga) unwound from the original glass roll 14 is cut in the width direction and divided into a plurality (two in the illustrated example) of glass films G having a desired width.
  • a plurality of glass rolls 16 may be manufactured at the same time by overlaying the protective film F2 on each glass film G and winding it around the core 18.
  • the surface located in the inner peripheral surface side in the state of the original glass roll 14 was demonstrated as a contact support surface of the glass film G at the time of conveyance, as shown in FIG. It is good also considering the surface located in the outer peripheral surface side in the state of the original glass roll 14 as a contact support surface of the glass film G at the time of conveyance.
  • the case where the contact support surface is wound so as to be positioned on the inner peripheral surface side of the glass roll 16 has been described.
  • the winding is performed so as to be positioned on the outer peripheral surface side of the glass roll 16. You may be made to do.
  • the glass film G that has been unwound from the original glass roll 14 is guided while being rotated in a substantially circumferential shape and then wound is described, FIG. As shown, the glass film G unwound from the original glass roll 14 may be linearly guided and wound up.
  • this 2nd Embodiment can be implemented by the same aspect shown in FIG. 1, and the point which performs temporary winding process S3 as a final winding process which manufactures the glass roll used as a final product is different.
  • the protective film F1 was piled up on the outer peripheral side of the shape
  • the glass roll used as a final product is manufactured by winding in roll shape, providing the tension
  • tensile_strength of the winding direction larger than the glass film G is provided to the protective film F1 in the state by which the glass roll manufactured in this way was wound up.
  • tensile_strength provided to the glass film G are the tension
  • the present invention can be suitably used for glass substrates used in flat panel displays such as liquid crystal displays and organic EL displays, devices such as solar cells, and cover glasses such as organic EL lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Buffer Packaging (AREA)
  • Packaging Frangible Articles (AREA)
  • Glass Compositions (AREA)

Abstract

 ダウンドロー法によってガラスフィルムGを連続成形しながら搬送する成形工程S1と、成形工程S1の搬送経路の下流端でガラスフィルムGに保護フィルムF1を重ねてロール状に巻き取り、元ガラスロール14を製造する仮巻き取り工程S3と、元ガラスロール14からガラスフィルムGを巻き出しながら下流側に搬送するとともに、その搬送経路の下流端で、ガラスフィルムGに保護フィルムF2を重ねてロール状に巻き直し、ガラスロール16を製造する本巻き取り工程S4とを含む。そして、仮巻き取り工程S3よりも本巻き取り工程S4でガラスフィルムGに作用する巻き取り方向の張力を大きくする。

Description

ガラスロールの製造方法
 本発明は、ダウンドロー法により成形されたガラスフィルムをロール状に巻き取ったガラスロールの製造技術の改良に関する。
 周知のように、近年における映像表示装置は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイなどに代表されるフラットパネルディスプレイ(FPD)が主流となっている。これらのFPDの基板には、気密性・平坦性・耐熱性・透光性・絶縁性などの各種要求特性を確保するためにガラス基板が使用される。当該FPDに使用されるガラス基板は、軽量化の観点から薄板化の一途を辿っているのが実情である。特に有機ELディスプレイなどのFPDにおいては、表示画面を曲げて使用する用途も考えられることから、可撓性を付与すべくガラス基板の薄板化が要求されている。
 また、有機ELは、ディスプレイのように微細な三原色をTFTにより明滅させずに、単色(例えば白色)のみで発光させて屋内照明の光源などの平面光源として利用されつつある。有機ELの照明装置は、ガラス基板が可撓性を有すれば、自由に発光面を変形させることが可能となり、使用用途が大幅に広がるという利点がある。そのため、この種の照明装置に使用されるガラス基板においても、十分な可撓性を確保する観点から薄板化が推進されている。
 さらに、タッチパネルは、人の指などで表面を擦って操作することから、その表面の堅牢性を確保するためにガラス基板が用いられることが多い。この種のタッチパネルを搭載したモバイル端末の普及に伴って、タッチパネル用のガラス基板にも軽量化のために薄板化が求められている。
 そして、このような薄板化の要求を受けて、フィルム状(例えば、厚みが300μm以下)まで薄板化が図られたガラスフィルムが開発されるに至っている。このガラスフィルムは、適度な可撓性を有するため、保護フィルムと重ねて一緒に巻芯の周りにロール状に巻き取られ、いわゆるガラスロールの状態で収容される場合がある(例えば、特許文献1参照)。このようにすれば、ガラスフィルムの収容スペースが大幅に小さくなることから、輸送効率の向上を図ることができる。また、ロール・トゥー・ロール(Roll to Roll)装置で、上流側のガラスロールから巻き出したガラスフィルムに対して、切断や成膜などの各種処理を連続的に施すことができ、生産効率の大幅な向上を図ることが可能となる。
特開2010-132350号公報
 ところで、ガラスフィルムは、ダウンドロー法によって成形されることが多い。そのため、ガラスロールの状態で収容しようとした場合、ダウンドロー法を実行する成形体から連続的に成形されてくるガラスフィルムを巻芯の周りに直接巻き取る必要が生じる。
 しかしながら、この場合には、巻き取り時にガラスフィルムに張力をかけすぎると(例えば、幅1mのガラスフィルムに対して100N程度)、成形体付近の軟化状態のガラスフィルムに対して過度な張力が作用し、ガラスフィルムの厚みが安定しなくなったり、反りやうねりが生じたり、場合によっては成形体の下方部で断裂するという致命的な問題が生じる。
 したがって、ガラスフィルムに十分な張力をかけて巻き取ることが実用上難しく、例えば巻き取られたガラスフィルムが事後的に幅方向に移動するなどして巻きズレが生じ易くなる。また、ガラスフィルムに適度な張力をかけて巻き取らなければ、ガラスロールの状態で、ガラスフィルムが巻芯から浮き上がり、ガラスフィルムの相互間に不当な隙間が形成され得る。そして、このようにガラスフィルムに巻きズレや浮き上がり(径方向隙間)が生じていると、ガラスフィルムが破損し易くなって取り扱いが非常に面倒になる。更に、この場合には、ガラスフィルムが不規則に巻き取られた状態となることから、ガラスロールの外観も非常に悪くなって製品価値を低下させる要因ともなり得る。
 以上の実情に鑑み、本発明は、ダウンドロー法により連続的に成形されるガラスフィルムをガラスロールの状態で収容する際に、そのガラスロールに含まれるガラスフィルムに巻きズレや浮き上がりが生じるのを可及的に低減することを技術的課題とする。
 上記の課題を解決するために創案された第1の発明は、ダウンドロー法を実行する成形装置によってガラスフィルムを連続的に成形しながら下流側に搬送する成形工程と、前記成形工程の搬送経路の下流端で前記ガラスフィルムに第1保護フィルムを重ねてロール状に巻き取り、元ガラスロールを製造する第1巻き取り工程と、前記元ガラスロールから前記ガラスフィルムを巻き出しながら下流側に搬送するとともに、その搬送経路の下流端で、前記ガラスフィルムに第2保護フィルムを重ねてロール状に巻き直し、ガラスロールを製造する第2巻き取り工程とを含み、前記第2巻き取り工程で前記ガラスフィルムに作用する巻き取り方向の張力を、前記第1巻き取り工程で前記ガラスフィルムに作用する張力よりも大きくしたことに特徴づけられる。
 このような方法によれば、第1巻き取り工程で巻き取られたガラスフィルムが、第2巻き取り工程で、第1巻き取り工程よりも巻き取り方向(ガラスフィルムの搬送方向)に大きな張力を作用させた状態で巻き直される。そのため、成形装置で成形されたガラスフィルムを直接的に巻き取る第1巻き取り工程において、ガラスフィルムに過度に張力をかけて巻き取る必要がない。付言すれば、第1巻き取り工程では、成形装置で成形されるガラスフィルムの厚みが不当に変動するなどの悪影響を与えない範囲でガラスフィルムに張力を作用させればよく、この結果、仮にガラスフィルムに巻きズレや浮き上がりが生じたとしても、第2巻き取り工程において修正することができる。すなわち、第2巻き取り工程では、大きな張力をガラスフィルムに作用させても、ガラスフィルムの成形には悪影響を与えることがないので、ガラスフィルムに巻きズレや浮き上がりが生じない程度の十分な張力を与えながら、ガラスフィルムを巻き直してガラスロールを製造することができる。
 上記の方法で、前記第1巻き取り工程において、前記第1保護フィルムに作用する巻き取り方向の張力を、前記ガラスフィルムに作用する巻き取り方向の張力よりも大きくすることが好ましい。
 このようにすれば、ガラスフィルムに直接的に大きな張力を作用させなくても、第1保護フィルムによってガラスフィルムの移動を押え付けることができる。すなわち、ガラスフィルムに直接的に張力を作用させた場合と同等の効果を得ることができる。そのため、第1巻き取り工程で生じるガラスフィルムの巻きズレや浮き上がりを最小限の範囲に抑えることができる。また、元ガラスロールの状態で、ガラスフィルムが第1保護フィルムによって確実に押え付けられているので、第2巻き取り工程で元ガラスロールからガラスフィルを巻き出す際に、元ガラスロール中のガラスフィルムが不当に巻き締まるという事態が生じ難い。なお、ガラスフィルムが巻き締まると、ガラスフィルムと保護フィルムとの間で擦れ合いが生じるため、ガラスフィルムの表面に微小傷が形成されるおそれがある。
 上記の方法において、前記第2巻き取り工程で、前記ガラスフィルムに作用する巻き取り方向の張力を、前記第2保護フィルムに作用する巻き取り方向の張力より大きくしてもよい。
 このようにすれば、第2巻き取り工程で製造されるガラスロール、すなわち、製品となるガラスロールにおいて、ガラスフィルム自体に作用する張力によって、ガラスフィルムに事後的に巻きズレや浮き上がりが生じるという事態を確実に防止することができる。付言すれば、第2保護フィルムによって強制的に押え付けられてガラスフィルムが矯正されることがないので、ガラスフィルムに不当な応力が作用し難くなり、安定した梱包状態を維持し得る。
 上記の方法で、前記第2巻き取り工程において、前記ガラスフィルムの一方側の表面のみを接触支持しながら搬送することが好ましい。
 このようにすれば、ガラスフィルムの他方側の表面が非接触面となる。そのため、この非接触面となるガラスフィルムの表面には、搬送に起因する微小傷が形成され難くなる。したがって、このガラスフィルムから有機ELディスプレイなどのFPD用のガラス基板を製作する場合には、ガラスフィルムの非接触面となる側に素子や配線を形成すれば、微小傷による素子や配線の形成不良が生じ難く、信頼性の高いFPDを提供することが可能となる。
 上記の方法で、前記第2巻き取り工程において、前記ガラスフィルムの前記接触支持面が、前記ガラスロールの内周面側に位置するように巻き取られることが好ましい。
 このようにすれば、仮に、ガラスフィルムの接触支持面に微小傷が生じたとしも、この接触支持面がガラスロールの内周面側に位置するように巻き取られるため、接触支持面には圧縮応力のみが作用する。したがって、接触支持面に微小傷が生じていても、その微小傷が進展するような力が作用し難い。換言すれば、微小傷が進展するような力が作用するガラスフィルムの外周面側の面には、微小傷が実質的にない非接触面が位置することになるので、ガラスフィルムの破損を確実に低減することが可能となる。
 上記の方法において、前記第1巻き取り工程と前記第2巻き取り工程の少なくとも一方で、前記ガラスフィルムをレーザー切断により所定の幅に切断してから巻き取ってもよい。ここで、レーザー切断には、レーザー割断及びレーザー溶断が含まれる。レーザー割断は、レーザーの加熱作用による膨張と、冷媒の冷却作用による収縮とによって生じる熱応力を利用して、初期クラックを進展させてガラスフィルムを切断する方法である。一方、レーザー溶断は、レーザーエネルギーによる加熱でガラスを軟化・溶融した部分に高圧ガスを噴射して切断する方法である。
 このようにすれば、例えばオーバーフローダウンドロー法で成形した場合などに、ガラスフィルムの幅方向両端部に形成される相対的に厚肉となる非有効部(耳部)を切断除去してから、巻き取ることができる。また、ガラスフィルムを所望の幅に変更してから巻き取ることも可能となる。そして、これらのガラスフィルムをレーザー切断により切断することから、ガラスフィルムの切断端面に破損原因となるマイクロクラックが形成され難いという利点を享受できる。
 上記の方法において、前記ダウンドロー法が、オーバーフローダウンドロー法であることが好ましい。
 このようにすれば、成形後にガラスフィルムの表面に対して別途加工を施さなくても、ガラスフィルムの表面に表面粗さの小さい優れた平滑性を付与することができる。
 上記の方法において、前記ガラスフィルムの厚みが、1μm以上300μm以下であることが好ましい。
 このようにすれば、ガラスフィルムに十分な可撓性を付与することができるため、ガラスフィルムを巻き取った際に、ガラスフィルムに不当な応力が作用するという事態を軽減することができ、ガラスフィルムの破損防止にも繋がる。
 上記の課題を解決するために創案された第2の発明は、ダウンドロー法によってガラスフィルムを成形すると共に、その成形したガラスフィルムを保護フィルムに重ねてロール状に巻き取るガラスロールの製造方法であって、前記保護フィルムに、前記ガラスフィルムよりも大きな巻き取り方向の張力を付与しながら、前記ガラスフィルムと前記保護フィルムとを巻き取ることに特徴づけられる。
 このような方法によれば、ガラスフィルムに大きな巻き取り方向の張力を付与しなくても、保護フィルムに付与された相対的に大きな巻き取り方向の張力によってガラスフィルムを締め付けることができるため、巻き取りに緩みのないガラスロールを製造することができる。また、ガラスフィルム巻き取り時にガラスフィルムには巻き取り方向の張力が付与されていないか或いはその張力が小さいことから、湾曲領域でガラスフィルムを略水平方向に沿うように湾曲させてから巻き取る場合であっても、湾曲領域の曲率が変化することを防止することができ、ガラスフィルムの成形が安定し、反りやうねり、板厚の変化のないガラスフィルムを巻き取ることができる。
 上記の方法において、ロール状にガラスフィルムを巻き取るまでの段階で、前記ガラスフィルムの幅方向両端部に形成される非有効部(耳部)をレーザー切断するようにしてもよい。ここで、レーザー切断には、レーザー割断及びレーザー溶断が含まれる。レーザー割断は、レーザーの加熱作用による膨張と、冷媒の冷却作用による収縮とによって生じる熱応力を利用して、初期クラックを進展させてガラスフィルムを切断する方法である。一方、レーザー溶断は、レーザーエネルギーによる加熱でガラスを軟化・溶融した部分に高圧ガスを噴射して切断する方法である。
 このようにすれば、研磨等の後加工を施すことなく、ガラスフィルムの幅方向の両端面を構成する切断面に適度な平滑性を容易に付与することができる。また、保護フィルムには相対的に大きな巻き取り方向の張力が付与されているため、ガラスフィルムの端面と保護フィルムが接触し易いが、接触した場合でも、ガラスフィルムの端面の平滑化によって当該端面が保護フィルムに噛み込むことがなく、ガラスフィルムと保護フィルムとの分離性を良好に維持できる。更に、ガラスフィルムをロール状に巻き取る際に、ガラスフィルムの両端面に微細な傷が生じ難くなる。これにより、ガラスフィルムの端面の微細な傷に起因する欠けにより発生するガラス粉を低減できることから、ガラスフィルムの表裏面の清浄性を確保する上でも非常に有利となる。
 上記の方法において、前記保護フィルムが最外層にある状態に維持されるように、前記ガラスフィルムの外周面側に前記保護フィルムを重ねながら、前記ガラスフィルムと前記保護フィルムとを巻き取ることが好ましい。
 このようにすれば、保護フィルムによってガラスフィルムを容易に締め付けることができ、緩みのないガラスロールを確実に製造することができる。
 上記の方法において、前記ダウンドロー法が、オーバーフローダウンドロー法であることが好ましい。
 このようにすれば、成形後に別途加工を施すことなく表面の平滑性に優れたガラスフィルムを成形することができることから、表面精度の優れたガラスロールを容易に製造することが可能となる。
 上記の課題を解決するために創案された第3の発明は、ダウンドロー法によって成形されたガラスフィルムを、保護フィルムに重ねてロール状に巻き取ったガラスロールであって、前記保護フィルムは、前記ガラスフィルムよりも大きな巻き取り方向の張力が付与されていることに特徴づけられる。
 このような構成によれば、反りやうねり、板厚の変化のないガラスフィルムを緩みなく巻き取ったガラスロールとすることができる。
 上記の構成において、前記ガラスフィルムの厚みが、1μm以上300μm以下であることが好ましい。
 このようにすれば、ガラスフィルムに適切な可撓性を付与することができる。そのため、ガラスフィルムを巻き取った際にガラスフィルムに作用する不当な応力を軽減することができ、破損を防止することができる。
 上記の構成において、前記ガラスフィルムの幅方向の両端面の算術平均粗さRaが、0.1μm以下であるこが好ましい。
 このようにすれば、ガラスフィルムの幅方向の両端面に適切な平滑性を付与することができる。保護フィルムには相対的に大きな巻き取り方向の張力が付与されているため、ガラスフィルムの端面と保護フィルムが接触し易いが、接触した場合でも、ガラスフィルムの端面の平滑化によって当該端面が保護フィルムに噛み込むことがなく、ガラスフィルムと保護フィルムとの分離性を良好に維持できる。
 上記の構成において、前記保護フィルムが、前記ガラスフィルムの幅方向両側から食み出していることが好ましい。
 このようにすれば、ガラスフィルムの幅方向両端面を保護フィルムで保護することが可能となる。また、ガラスフィルムの幅方向両端が保護フィルムによって覆われるので、外部からの異物の侵入を防止することもできる。
 以上のような第1の発明によれば、ダウンドロー法により連続的に成形されるガラスフィルムを第1巻き取り工程で巻き取った後、第2巻き取り工程において、そのガラスフィルムが第1巻き取り工程よりも巻き取り方向に大きな張力を作用させた状態で巻き直される。そのため、ダウンドロー法によりガラスフィルムを連続的に成形する場合であっても、これら第1巻き取り工程と第2巻き取り工程を経ることでガラスフィルムに適度な張力が付与され、巻きズレや浮き上がりの生じ難いガラスロールを製造することが可能となる。
 また、以上のような第2及び第3の発明によれば、ガラスフィルムに大きな巻き取り方向の張力を付与しなくても、保護フィルムに付与された相対的に大きな巻き取り方向の張力によって、ガラスフィルムを締め付けることができるので、巻きズレや浮き上がりの生じ難いガラスロールを製造することができる。
本発明の実施形態に係るガラスロールの製造方法のフローチャートである。 本実施形態に係るガラスロールの製造方法に含まれる成形工程、切断工程、及び仮巻き取り工程の実施状況を説明するための図である。 本実施形態に係るガラスロールの製造方法に含まれる本巻き取り工程の実施状況を説明するための図である。 本実施形態に係るガラスロールの製造方法に含まれる本巻き取り工程の別の実施状況を説明するための図である。 本実施形態に係るガラスロールの製造方法に含まれる本巻き取り工程の別の実施状況を説明するための図である。
 以下、本発明の実施形態を図面を参照して説明する。
 図1は、本発明の第1実施形態に係るガラスロールの製造方法のフローチャートである。このガラスロールの製造方法は、成形工程S1と、切断工程S2と、仮巻き取り工程(第1巻き取り工程)S3と、本巻き取り工程(第2巻き取り工程)S4とを含む。
 成形工程S1は、この実施形態では、図2に示すように、オーバーフローダウンドロー法を実行する成形装置1により行われる。この成形装置1は、上方から順に、成形ゾーン2、徐冷(アニール)ゾーン3、及び冷却ゾーン4を有している。なお、成形装置1は、スロットダウンドロー法や、リドロー法などの他のダウンドロー法を実行するものであってもよい。
 成形ゾーン2では、楔状の断面形状を有する成形体5に溶融ガラスGmを供給するとともに、この成形体5の頂部から両側方に溢れ出た溶融ガラスGmをその下端部で融合させて流下させることで、溶融ガラスGmから板状のガラスフィルムGを成形する。このガラスフィルムGは、下方に移動するに伴って次第に粘度が高くなり、形状を維持できる十分な粘度に達した後、徐冷ゾーン3で除歪され、更に冷却ゾーン4で室温付近まで冷却される。
 徐冷ゾーン3と冷却ゾーン4には、ガラスフィルムGの搬送経路の上流側から下流側に至る複数個所に、一対のローラを有するローラ群6が配置されており、ガラスフィルムGの幅方向両端部を下方側に案内するようになっている。なお、この実施形態では、成形装置1内の成形ゾーン2の最上部に配設されたローラが、ガラスフィルムGの幅方向両端部を冷却する冷却ローラとして機能すると共に、ガラスフィルムGを下方に引き出すための駆動ローラとしても機能している。一方、成形装置1内の残りのローラは、空転ローラおよび引張りローラ等としてガラスフィルムGを下方に案内する機能を果たしている。
 この成形工程S1で成形されるガラスフィルムGは、厚み1~600μm(好ましくは1~300μm、更に好ましくは10~200μm)の長尺体であって、例えば、液晶ディスプレイ・プラズマディスプレイ・有機ELディスプレイ等のFPD、太陽電池、リチウムイオン電池、デジタルサイネージ、タッチパネル、電子ペーパー等のデバイスのガラス基板や、有機EL照明等のカバーガラス、医療品のガラス容器、窓板ガラス、積層軽量窓ガラスなどに利用される。
 また、ガラスフィルムGの幅は、100mm以上であることが好ましく、300mm以上であることがより好ましく、500mm以上であることが更に好ましい。なお、ガラスフィルムGは、小型の携帯電話用等の小画面ディスプレイから大型のテレビ受像機等の大画面ディスプレイに至るまで、多岐に亘るデバイスに使用される。そのため、ガラスフィルムGの幅は、最終的には、使用されるデバイスの基板の大きさに応じて適宜選択することが好ましい。
 さらに、ガラスフィルムGのガラス組成としては、シリカガラスやホウケイ酸ガラスなどのケイ酸塩ガラスなどの種々のガラス組成を使用することができるが、無アルカリガラスであることが好ましい。これは、ガラスフィルムGにアルカリ成分が含有されていると、所謂ソーダ吹きと称される現象が生じて構造的に粗となり、ガラスフィルムGを湾曲させた場合に、経年劣化により構造的に粗となった部分から破損が生じるおそれがあるためである。なお、ここでいう無アルカリガラスとは、アルカリ成分を実質的に含有していないガラスのことであって、具体的には、アルカリ金属酸化物が1000ppm以下(好ましくは500ppm以下、より好ましくは300ppm以下)であることをいう。この条件を満足するガラスとしては、例えば、日本電気硝子株式会社製のOA-10Gが挙げられる。
 そして、以上のような成形工程S1で成形されたガラスフィルムGは、成形装置1の下方位置でガラスフィルムGを下方から支持する複数のローラを有する姿勢変換ローラ群7によって略水平方向に湾曲された後、その姿勢を維持したまま切断工程S2へと送られる。なお、この姿勢変換ローラ群7は、適宜省略してもよい。
 切断工程S2では、成形工程S1でガラスフィルムGの幅方向両端部に形成された非有効部(耳部)Gxを切断装置8によって切断除去する。この非有効部Gxは、ガラスフィルムGの幅方向中央部の有効部Gaに比して相対的に厚肉となる。
 詳細には、切断装置8は、レーザー割断を実行するものであって、成形装置1で連続的に成形されるガラスフィルムGを略水平姿勢のまま下流側に搬送する搬送手段9と、この搬送手段9上に載置されたガラスフィルムGに表面側からレーザービームLを照射して局部加熱を施す局部加熱手段10と、この局部加熱手段10により加熱された加熱領域に表面側から冷却水Wを噴射する冷却手段11とを備えている。このようにレーザー割断によってガラスフィルムGを切断すれば、研磨等の後加工を施すことなく、ガラスフィルムGの幅方向の両端面を構成する切断面に適度な平滑性を容易に付与することができる。そのため、ガラスフィルムGの端面が保護フィルムF1に噛み込むことがなく、ガラスフィルムGと保護フィルムF1との分離性を良好に維持できるという利点がある。また、ガラスフィルムGをロール状に巻き取る際に、ガラスフィルムGの両端面に微細な傷に起因する欠けが生じ難くなるという利点もある。ここで、以上のような利点をより確実に享受する観点からは、ガラスフィルムGの幅方向両端面の算術平均粗さRaは、0.1μm以下であることが好ましく、0.05μm以下であることがより好ましい。
 この実施形態では、局部加熱手段10として、炭酸ガスレーザーが使用されているが、電熱線や熱風噴射などの他の局部加熱を行い得る手段であってもよい。また、冷却手段11は、エアー圧等により冷却水Wを冷媒として噴射するものであるが、この冷媒は、冷却水以外の冷却液、またはエアーや不活性ガス等の気体、若しくは気体と液体を混合したもの、更にはドライアイスや氷等の固体と前記気体及び/又は前記液体とを混合したもの等であってもよい。なお、切断装置8は、ダイヤモンドカッターを利用してスクライブ線に沿って折り割りを実行するものや、レーザー溶断を実行するものであってもよい。
 搬送手段9でガラスフィルムGを下流側に送ることにより、局部加熱手段10の加熱領域が冷却手段11の冷却領域に先立ってガラスフィルムGの長手方向に沿って延びる割断予定線(有効部Gaと、非有効部Gxとの境界部)上を一端部側から走査していく。これにより、加熱作用による膨張と、冷媒の冷却作用による収縮とによって熱応力が生じ、割断予定線の先端部に予め形成された初期クラック(不図示)が割断予定線に沿って進展し、ガラスフィルムGが連続的にフルボディ割断される。
 そして、切断されたガラスフィルムGの非有効部Gxは、下方に折り曲げられて有効部Gaと分離された後、廃棄処分される。一方、ガラスフィルムGの有効部Gaは、仮巻き取り工程S3へと送られる。
 仮巻き取り工程S3では、保護フィルムF1が最外層にある状態に維持されるように、ガラスフィルムG(詳しくは、有効部Ga)の外周面側に、保護ロール12から巻き出した保護フィルムF1を重ねながら巻芯13の周りに所定長さ巻き取った後、図示しない切断装置によりガラスフィルムGと保護フィルムF1を幅方向に切断し、元ガラスロール14を製造する。この際、ガラスフィルムGに張力をかけすぎると、成形体5付近の軟化状態のガラスフィルムGに対して過度な張力が作用し、ガラスフィルムGの厚みが安定しなくなったり、場合によっては成形体5の下方部で断裂するという致命的な問題が生じ得る。そこで、仮巻き取り工程S3では、ガラスフィルムGの成形に悪影響を与えない範囲で、ガラスフィルムGに巻き取り方向に沿って張力(例えば、ガラスフィルムGに幅方向0~20(未満)N/m)を作用させながら巻芯13の周りに巻き取る。ここで、仮巻き取り工程S3では、ガラスフィルムGに積極的に張力を作用させる必要はなく、ガラスフィルムGを巻き取る際に自然に作用する最小限の張力を作用させるだけであってもよい。
 また、この実施形態では、仮巻き取り工程S3において、ガラスフィルムGよりも保護フィルムF1に大きな巻き取り方向の張力を作用させている。具体的には、例えば、保護フィルムF1に幅方向0.8~400N/mの張力を作用させる。この保護フィルムF1の張力は、例えば、元ガラスロール14と保護ロール12との間に回転速度差を設けたり、元ガラスロール14と保護ロール12の間に図示のようなテンションローラ15を介在させることで付与される。このようにすれば、ガラスフィルムGに直接的に大きな張力を作用させなくても、保護フィルムF1によってガラスフィルムGの移動を押え付けることができる。すなわち、ガラスフィルムGに直接的に張力を作用させた場合と同等の効果を得ることができる。そのため、仮巻き取り工程S3で生じるガラスフィルムGの巻きズレや浮き上がりを最小限の範囲に抑えることができる。また、元ガラスロール14の状態で、ガラスフィルムGが保護フィルムF1によって確実に押え付けられているので、後述する本巻き取り工程S4で元ガラスロール14からガラスフィルムGを巻き出す際に、元ガラスロール14中のガラスフィルムGが不当に巻き締まるという事態が生じ難い。
 元ガラスロール14用の保護フィルムF1の厚みは、20~1000μm(より好ましくは25~500μm)であることが好ましい。また、保護フィルムF1の幅は、ガラスフィルムGの幅方向両端面を種々の接触から保護するためにガラスフィルムGの有効部Gaの幅よりも大きいことが好ましい。すなわち、ガラスフィルムGの有効部Gaの幅方向両側に、保護フィルムF1が食み出すようにすることが好ましい。
 また、仮巻き取り工程S3を実行する段階で、ガラスフィルムGの温度が50℃以上である場合もあるため、保護フィルムF1は100℃前後で軟化等変質しないことが好ましい。
 保護フィルムF1は、弾性フィルムを使用することが好ましい。これにより、保護フィルムF1に適切な巻き取り方向の張力を付与させつつ、緩みのない元ガラスロール14を作製することができる。ここで、保護フィルムF1の引張弾性率は、1~5GPaであることが好ましい。
 保護フィルムF1には、導電性が付与されていることが好ましい。このようにすれば、元ガラスロール14からガラスフィルムGを取り出す際に、ガラスフィルムGと保護フィルムF1との間に剥離帯電が生じ難くなるため、ガラスフィルムGから保護フィルムF1を容易に剥離できるという利点を享受し得る。保護フィルムF1に導電性を付与する方法としては、例えば、保護フィルムF1が樹脂製の場合には、保護フィルムF1中にポリエチレングリコール等の導電性を付与する成分を添加することが挙げられる。また、保護フィルムF1が合紙の場合には、合紙中に導電性繊維を抄き込むことが挙げられる。更に、保護フィルムF1の表面にITO等の導電膜を成膜することによっても、保護フィルムF1に導電性を付与することが可能である。
 具体的には、保護フィルムF1としては、例えば、アイオノマーフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスチレンフィルム、ポリアクリロニトリルフィルム、エチレン酢酸ビニル共重合体フィルム、エチレン-ビニルアルコール共重合体フィルム、エチレン-メタクリル酸共重合体フィルム、ポリアミドフィルム、ポリイミドフィルム、セロファンなどの有機樹脂フィルム(合成樹脂フィルム)などの樹脂フィルムを使用することができる。また、緩衝性能を確保する観点からは、保護フィルムF1として、ポリエチレン発泡樹脂製フィルムなどの発泡樹脂フィルムや、上記の樹脂フィルムに発泡樹脂フィルムを積層した複合材などを使用することができる。更に、上記の樹脂フィルムに、ガラスフィルムGとの間の滑りを良好にするシリカなどの滑剤を分散させてもよい。このようにすれば、ガラスフィルムGと保護フィルムF1の僅かな巻き取り径の差によって生じる両者の巻き取り長さのズレを、保護フィルムF1の滑り性によって吸収できる。なお、後述するガラスロール16用の保護フィルムF2についても同様とする。
 なお、上記の保護フィルムF1に関する事項は、後述するガラスロール16用の保護フィルムF2についても同様とする。
 そして、以上のような仮巻き取り工程S3で製造された元ガラスロール14は、本巻き取り工程S4へと送られて巻き直される。
 本巻き取り工程S4では、図3に示すように、ロール・トゥー・ロール(Roll to Roll)装置によって、元ガラスロール14から巻き出したガラスフィルムG(詳しくは有効部Ga)を再び巻き取って、製品となるガラスロール16を製造する。
 詳細には、この実施形態では、巻き出し位置P1で元ガラスロール14から巻き出されたガラスフィルムGを、複数のローラからなるローラ群17によって遠回りさせながら略円周状に案内した後、巻き取り位置P2で再び巻芯18の周りに巻き取り、ガラスロール16を製造する。このようにガラスフィルムGを案内すれば、ローラ群17の各ローラ間においても、ガラスフィルムGに適度な張力を作用させやすくなる。
 この際、巻き出し位置P1では、ガラスフィルムGから保護フィルムF1が引き剥がされるとともに、その保護フィルムF1が保護ロール19として巻き取られる。一方、巻き取り位置P2では、保護フィルムF2が最外層にある状態を維持されるように、ガラスフィルムGの外周面側に、新たに別の保護ロール20から巻き出した保護フィルムF2を重ねながら巻芯18の周りに巻き取られる。そして、ガラスフィルムGに保護フィルムF1を重ねて巻芯18の周りに所定長さ巻き取った後、図示しない切断装置により保護フィルムF2(又はガラスフィルムGと保護フィルムF2)を幅方向に切断し、ガラスロール16を製造する。この実施形態では、保護フィルムF2は、仮巻き取り工程S3で使用した保護フィルムF1と同種とする。
 そして、この本巻き取り工程S4では、図1に示すように、ガラスフィルムGに作用する巻き取り方向の張力bを、仮巻き取り工程S3でガラスフィルムGに作用する張力aよりも大きくしている。具体的には、例えば、ガラスフィルムGに幅方向10~500N/mの張力を作用させる。このガラスフィルムGの張力は、例えば、元ガラスロール14とガラスロール16との間に回転速度差を設けることによって付与される。このようにすれば、仮に、仮巻き取り工程S3で製造された元ガラスロール14に含まれるガラスフィルムGに巻きズレや浮き上がりが生じたとしても、本巻き取り工程S4でガラスフィルムGに十分な張力を作用させ、これらの巻きズレ等を修正して巻き直すことができる。
 なお、この本巻き取り工程S4において、保護フィルムF2よりもガラスフィルムGに大きな巻き取り方向の張力を作用させてもよい。具体的には、例えば、保護フィルムF2に幅方向0.8~400N/mの張力を作用させることが好ましい。この保護フィルムF2の張力は、例えば、ガラスロール16と保護ロール20との間に回転速度差を設けたり、ガラスロール16と保護ロール20の間に図示のようなテンションローラ21を介在させることで付与される。この場合、本巻き取り工程S4で保護フィルムF2に作用する巻き取り方向の張力と、仮巻き取り工程S3で保護フィルムF1に作用する巻き取り方向の張力との大小関係は、特に限定されるものではなく、種々の要件を加味して適宜設定(F1の張力<F2の張力、F1の張力=F2の張力,F1の張力>F2の張力)することができる。
 また、本巻き取り工程S4では、図3に示すように、ガラスフィルムGの一方側の表面のみを接触支持しながら搬送するとともに、その接触支持面がガラスロール16の内周面側に位置するように、ガラスフィルムGを巻き取っている。このようにすれば、ガラスフィルムGの接触支持面に微小傷が生じたとしも、この接触支持面がガラスロール16の内周面側に位置するように巻き取られる。ガラスロール16中では、ガラスフィルムGの内周面側の面には圧縮応力のみが作用するため、接触支持面に微細傷が生じていても、その微小傷が進展するような力が作用し難い。換言すれば、微小傷が進展するような力が作用するガラスフィルムGの外周面側の面には、微小傷が実質的にない非接触面が位置することになるので、ガラスフィルムGの破損を確実に低減することが可能となる。なお、この実施形態では、仮巻き取り工程S3においても、ガラスフィルムGの一方側の表面のみを接触支持しており、その接触支持面が本巻き取り工程S4の接触支持面と同じ側に設定されている。
 なお、本発明は、上記の第1実施形態に限定されるものではなく、種々の形態で実施することができる。例えば、図4に示すように、本巻き取り工程S4においても、切断工程を実行するようにしてもよい。詳細には、元ガラスロール14から巻き出されたガラスフィルムG(詳しくは有効部Ga)を幅方向に切断し、所望の幅を有する複数(図示例は2つ)のガラスフィルムGに分割し、それぞれのガラスフィルムGに保護フィルムF2を重ねて巻芯18の周りに巻き取り、複数のガラスロール16を同時に製造するようにしてもよい。
 また、上記の実施形態では、元ガラスロール14の状態で内周面側に位置する面を、搬送時のガラスフィルムGの接触支持面とする場合を説明したが、図4に示すように、元ガラスロール14の状態で外周面側に位置する面を、搬送時のガラスフィルムGの接触支持面としてもよい。また、上記の実施形態では、この接触支持面が、ガラスロール16の内周面側に位置するように巻き取られる場合を説明したが、ガラスロール16の外周面側に位置するように巻き取られるようにしてもよい。
 更に、上記の実施形態では、本巻き取り工程S4において、元ガラスロール14から巻き出したガラスフィルムGを略円周状に遠回りさせながら誘導した後に、巻き取る場合を説明したが、図5に示すように、元ガラスロール14から巻き出したガラスフィルムGを直線状に誘導した後に、巻き取るようにしてもよい。
 また、上記の実施形態では、仮巻き取り工程S3の後に、本巻き取り工程S4を1回だけ行う場合を説明したが、本巻き取り工程S4の後に、更にガラスフィルムGの巻き直しを行う工程が1乃至複数回含まれていてもよい。
 次に、本発明の第2実施形態に係るガラスロールの製造方法について説明する。なお、この第2実施形態は、図1に示した同様の態様で実施でき、仮巻き取り工程S3を最終製品となるガラスロールを製造する本巻き取り工程として実行する点が相違する。
 詳細には、この第2実施形態では、図1に示したように、ダウンドロー法によってガラスフィルムGを成形すると共に、その成形したガラスフィルムGの外周側に保護フィルムF1を重ねて、ガラスフィルムGよりも保護フィルムF1に大きな巻き取り方向の張力を付与しながらロール状に巻き取ることによって、最終製品となるガラスロールを製造する。そして、このように製造されたガラスロールは、巻き取られた状態で、保護フィルムF1に、ガラスフィルムGよりも大きな巻き取り方向の張力が付与される。
 ここで、保護フィルムF1に付与される張力、及びガラスフィルムGに付与される張力は、上記の第1実施形態で説明した仮巻き取り工程S3で説明した張力(例えば、ガラスフィルムGに幅方向0~20(未満)N/m、保護フィルムF1に幅方向0.8~400N/m)と同様とする。
 本発明は、液晶ディスプレイや有機ELディスプレイ等のフラットパネルディスプレイや太陽電池等のデバイスに使用されるガラス基板、及び有機EL照明等のカバーガラスに好適に使用することができる。
1     成形装置
2     成形ゾーン
3     徐冷ゾーン
4     冷却ゾーン
5     成形体
7     姿勢変換ローラ群
8     切断装置
9     搬送手段
10    局部加熱手段
11    冷却手段
14    元ガラスロール
16    ガラスロール
F1,F2 保護フィルム
G     ガラスフィルム

Claims (16)

  1.  ダウンドロー法を実行する成形装置によってガラスフィルムを連続的に成形しながら下流側に搬送する成形工程と、
     前記成形工程の搬送経路の下流端で前記ガラスフィルムに第1保護フィルムを重ねてロール状に巻き取り、元ガラスロールを製造する第1巻き取り工程と、
     前記元ガラスロールから前記ガラスフィルムを巻き出しながら下流側に搬送するとともに、その搬送経路の下流端で、前記ガラスフィルムに第2保護フィルムを重ねてロール状に巻き直し、ガラスロールを製造する第2巻き取り工程とを含み、
     前記第2巻き取り工程で前記ガラスフィルムに作用する巻き取り方向の張力を、前記第1巻き取り工程で前記ガラスフィルムに作用する張力よりも大きくしたことを特徴とするガラスロールの製造方法。
  2.  前記第1巻き取り工程において、前記第1保護フィルムに作用する巻き取り方向の張力を、前記ガラスフィルムに作用する巻き取り方向の張力よりも大きくしたことを特徴とする請求項1に記載のガラスロールの製造方法。
  3.  前記第2巻き取り工程において、前記ガラスフィルムに作用する巻き取り方向の張力を、前記第2保護フィルムに作用する巻き取り方向の張力よりも大きくしたことを特徴とする請求項1又は2に記載のガラスロールの製造方法。
  4.  前記第2巻き取り工程において、前記ガラスフィルムの一方側の表面のみを接触支持しながら搬送することを特徴とする請求項1~3のいずれか1項に記載のガラスロールの製造方法。
  5.  前記第2巻き取り工程において、前記ガラスフィルムの前記接触支持面が、前記ガラスロールの内周面側に位置するように巻き取られることを特徴とする請求項4に記載のガラスロールの製造方法。
  6.  前記第1巻き取り工程と前記第2巻き取り工程の少なくとも一方で、前記ガラスフィルムをレーザー切断により所定の幅に切断してから巻き取ることを特徴とする請求項1~5のいずれか1項に記載のガラスロールの製造方法。
  7.  前記ダウンドロー法が、オーバーフローダウンドロー法であることを特徴とする請求項1~6のいずれか1項に記載のガラスロールの製造方法。
  8.  前記ガラスフィルムの厚みが、1μm以上300μm以下であることを特徴とする請求項1~7のいずれか1項に記載のガラスロールの製造方法。
  9.  ダウンドロー法によってガラスフィルムを成形すると共に、その成形したガラスフィルムを保護フィルムに重ねてロール状に巻き取るガラスロールの製造方法であって、
     前記保護フィルムに、前記ガラスフィルムよりも大きな巻き取り方向の張力を付与しながら、前記ガラスフィルムと前記保護フィルムとを巻き取ることを特徴とするガラスロールの製造方法。
  10.  ロール状にガラスフィルムを巻き取るまでの段階で、前記ガラスフィルムの幅方向両端部に形成される非有効部をレーザー切断することを特徴とする請求項9に記載のガラスロールの製造方法。
  11.  前記保護フィルムが最外層にある状態に維持されるように、前記ガラスフィルムの外周面側に前記保護フィルムを重ねながら、前記ガラスフィルムと前記保護フィルムとを巻き取ることを特徴とする請求項9又は10に記載のガラスロールの製造方法。
  12.  前記ダウンドロー法が、オーバーフローダウンドロー法である請求項9~11のいずれか1項に記載のガラスロールの製造方法。
  13.  ダウンドロー法によって成形されたガラスフィルムを、保護フィルムに重ねてロール状に巻き取ったガラスロールであって、
     前記保護フィルムに、前記ガラスフィルムよりも大きな巻き取り方向の張力が付与されていることを特徴とするガラスロール。
  14.  前記ガラスフィルムの厚みが、1μm以上300μm以下であることを特徴とする請求項13に記載のガラスロール。
  15.  前記ガラスフィルムの幅方向の両端面の算術平均粗さRaが、0.1μm以下であることを特徴とする請求項13又は14に記載のガラスロール。
  16.  前記保護フィルムが、前記ガラスフィルムの幅方向両側から食み出していることを特徴とする請求項13~15のいずれか1項に記載のガラスロール。
PCT/JP2012/066252 2010-03-03 2012-06-26 ガラスロールの製造方法 WO2013002210A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137025967A KR101904794B1 (ko) 2011-06-30 2012-06-26 유리 롤의 제조방법
CN201280028010.5A CN103596890B (zh) 2011-06-30 2012-06-26 玻璃辊的制造方法
US13/724,353 US9656901B2 (en) 2010-03-03 2012-12-21 Method of manufacturing a glass roll
US15/444,908 US10189736B2 (en) 2010-03-03 2017-02-28 Method of manufacturing a glass roll

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011146123A JP5742082B2 (ja) 2011-06-30 2011-06-30 ガラスロールの製造方法
JP2011-146123 2011-06-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/038,747 Continuation-In-Part US20110217521A1 (en) 2010-03-03 2011-03-02 Glass roll, and method of manufacturing glass roll

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/724,353 Continuation-In-Part US9656901B2 (en) 2010-03-03 2012-12-21 Method of manufacturing a glass roll

Publications (1)

Publication Number Publication Date
WO2013002210A1 true WO2013002210A1 (ja) 2013-01-03

Family

ID=47424102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066252 WO2013002210A1 (ja) 2010-03-03 2012-06-26 ガラスロールの製造方法

Country Status (5)

Country Link
JP (1) JP5742082B2 (ja)
KR (1) KR101904794B1 (ja)
CN (1) CN103596890B (ja)
TW (1) TWI576295B (ja)
WO (1) WO2013002210A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187144A1 (ja) * 2020-03-17 2021-09-23 日本電気硝子株式会社 帯状ガラスフィルムの製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160033100A (ko) * 2013-07-18 2016-03-25 아사히 가라스 가부시키가이샤 유리 롤 제조 방법 및 유리 롤
KR101515807B1 (ko) * 2013-11-04 2015-05-07 코닝정밀소재 주식회사 롤 제조방법 및 제조장치
KR101515806B1 (ko) * 2013-11-04 2015-05-04 코닝정밀소재 주식회사 시트 제조방법 및 제조장치
JP6500439B2 (ja) * 2013-12-18 2019-04-17 日本電気硝子株式会社 ガラスロール
JP2015174744A (ja) * 2014-03-17 2015-10-05 日本電気硝子株式会社 ガラスロールの製造方法
WO2016132985A1 (ja) * 2015-02-18 2016-08-25 コニカミノルタ株式会社 光学素子及び結像素子の製造方法
JP6614833B2 (ja) * 2015-07-15 2019-12-04 日東電工株式会社 光学積層体の製造方法
JP6614834B2 (ja) * 2015-07-15 2019-12-04 日東電工株式会社 光学積層体の製造方法
JP6579374B2 (ja) * 2015-10-21 2019-09-25 日本電気硝子株式会社 ガラスロールの製造方法及びガラスロール
JP6872894B2 (ja) * 2015-12-22 2021-05-19 住友化学株式会社 フィルム製造方法
JP6875116B2 (ja) * 2015-12-22 2021-05-19 住友化学株式会社 フィルム製造方法およびフィルム巻出方法
JP6748920B2 (ja) * 2017-03-13 2020-09-02 日本電気硝子株式会社 ガラスフィルムの製造方法
JP6839419B2 (ja) 2017-07-31 2021-03-10 日本電気硝子株式会社 ガラスフィルムの製造方法
JP6909403B2 (ja) * 2017-07-31 2021-07-28 日本電気硝子株式会社 ガラスフィルムの製造方法
JP6883282B2 (ja) * 2017-11-27 2021-06-09 日本電気硝子株式会社 ガラスロールの製造方法
JP6729770B2 (ja) * 2019-07-05 2020-07-22 日本電気硝子株式会社 ガラスロール
KR20230109175A (ko) * 2020-11-24 2023-07-19 코닝 인코포레이티드 유리 리본을 제조하기 위한 시스템 및 방법들

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097733A (ja) * 1999-09-29 2001-04-10 Mitsubishi Plastics Ind Ltd ガラスフィルムの取扱い方法及びガラス積層体
WO2010038760A1 (ja) * 2008-10-01 2010-04-08 日本電気硝子株式会社 ガラスロール
WO2011108564A1 (ja) * 2010-03-03 2011-09-09 日本電気硝子株式会社 ガラスロール、及びガラスロールの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040640C2 (de) * 2000-08-16 2002-11-21 Schott Glas Verfahren und Vorrichtung zur Herstellung von Einzelglasscheiben
US7231786B2 (en) * 2004-07-29 2007-06-19 Corning Incorporated Process and device for manufacturing glass sheet
JP5691148B2 (ja) * 2008-10-01 2015-04-01 日本電気硝子株式会社 ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法
CN102471128B (zh) * 2009-08-07 2014-05-07 旭硝子株式会社 超薄板玻璃基板的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001097733A (ja) * 1999-09-29 2001-04-10 Mitsubishi Plastics Ind Ltd ガラスフィルムの取扱い方法及びガラス積層体
WO2010038760A1 (ja) * 2008-10-01 2010-04-08 日本電気硝子株式会社 ガラスロール
WO2011108564A1 (ja) * 2010-03-03 2011-09-09 日本電気硝子株式会社 ガラスロール、及びガラスロールの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187144A1 (ja) * 2020-03-17 2021-09-23 日本電気硝子株式会社 帯状ガラスフィルムの製造方法
JP7486044B2 (ja) 2020-03-17 2024-05-17 日本電気硝子株式会社 帯状ガラスフィルムの製造方法

Also Published As

Publication number Publication date
JP2013014441A (ja) 2013-01-24
KR20140039173A (ko) 2014-04-01
TWI576295B (zh) 2017-04-01
CN103596890A (zh) 2014-02-19
TW201305029A (zh) 2013-02-01
JP5742082B2 (ja) 2015-07-01
KR101904794B1 (ko) 2018-10-05
CN103596890B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5742082B2 (ja) ガラスロールの製造方法
JP5720885B2 (ja) ガラスロール、及びガラスロールの製造方法
US10189736B2 (en) Method of manufacturing a glass roll
JP5783443B2 (ja) ガラスロール及びガラスロールの製造方法
US11999133B2 (en) Manufacturing method for glass film with resin tape, and manufacturing method for glass film
JP5532506B2 (ja) ガラスロール
US9931816B2 (en) Glass roll, device for producing glass roll, and process for producing glass roll
EP3224209B1 (en) Thin glass sheet and system and method for forming the same
TWI547449B (zh) 玻璃-樹脂積層體及將其捲繞的玻璃捲以及玻璃捲的製造方法
WO2010038757A1 (ja) ガラスロール、ガラスロールの製造装置、及びガラスロールの製造方法
JP2011207721A (ja) ガラスフィルムの切断方法及びガラスロールの製造方法
KR102267241B1 (ko) 유리 필름 적층체 및 액정 패널의 제조 방법
JP2010194874A (ja) ガラスフィルム積層体、及び該積層体のガラスロール
JPWO2012090693A1 (ja) ガラスロールの処理装置及び処理方法
JP6327580B2 (ja) ガラスフィルム積層体および電子デバイスの製造方法
WO2014178405A1 (ja) ガラスフィルム積層体および電子デバイスの製造方法
JP2016060135A (ja) ガラスフィルム積層体、及び、電子デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025967

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804002

Country of ref document: EP

Kind code of ref document: A1