WO2012176757A1 - 液化ガスタンク - Google Patents

液化ガスタンク Download PDF

Info

Publication number
WO2012176757A1
WO2012176757A1 PCT/JP2012/065598 JP2012065598W WO2012176757A1 WO 2012176757 A1 WO2012176757 A1 WO 2012176757A1 JP 2012065598 W JP2012065598 W JP 2012065598W WO 2012176757 A1 WO2012176757 A1 WO 2012176757A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
liquefied gas
tub
inner tank
gas tank
Prior art date
Application number
PCT/JP2012/065598
Other languages
English (en)
French (fr)
Inventor
栄治 青木
Original Assignee
株式会社アイ・エイチ・アイ マリンユナイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイ・エイチ・アイ マリンユナイテッド filed Critical 株式会社アイ・エイチ・アイ マリンユナイテッド
Priority to ES12802710T priority Critical patent/ES2729576T3/es
Priority to EP12802710.9A priority patent/EP2725282B1/en
Priority to BR112013033173A priority patent/BR112013033173A2/pt
Priority to PL12802710T priority patent/PL2725282T3/pl
Priority to US14/127,681 priority patent/US9181013B2/en
Priority to CN201280031337.8A priority patent/CN103814249B/zh
Priority to KR1020147000471A priority patent/KR101565881B1/ko
Publication of WO2012176757A1 publication Critical patent/WO2012176757A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/037Handling leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground

Definitions

  • the present invention relates to a liquefied gas tank that stores liquefied gas, and more particularly, to a liquefied gas tank suitable for storing a low-temperature liquid such as LNG (liquefied natural gas).
  • LNG liquefied natural gas
  • transport vessels tunnelers
  • floating storage facilities floating storage facilities
  • aboveground storage facilities underground storage facilities, etc.
  • LPG liquefied petroleum gas
  • Patent Document 1 discloses a liquefied gas carrier ship having an outer tank constituting a hull and a tank (inner tank) arranged in a self-standing manner in the outer tank.
  • Patent Document 2 discloses a ground-type LNG tank having an outer tank disposed on the ground and an inner tank disposed in a self-standing state in the outer tank. In this way, the inner tank that accommodates the liquid cargo is made independent of the outer tank, so that the inner tank can be expanded and contracted (thermal expansion and contraction) with the temperature change of the liquid cargo while the inner tank is kept in the external environment. Can be protected from.
  • the present invention was devised in view of the above-described problems, and an object thereof is to provide a liquefied gas tank capable of storing liquefied gas with a simple structure and a small installation area.
  • the inner tank that stores the liquefied gas and is arranged so as to be able to stand on its own from the floor, and the upper surface portion of the inner tank that is covered with the inner tank.
  • An outer tub that is supported, and the outer tub is slidable on the upper surface of the inner tub according to the expansion and contraction of the inner tub in the horizontal direction, and according to the vertical expansion and contraction of the inner tub.
  • a liquefied gas tank characterized by being configured to be movable.
  • the outer tub may have an expansion / contraction mechanism disposed along the outer periphery of the lower portion, or the wall surface itself may be formed in a structure that can be expanded and contracted.
  • the said inner tank and the said outer tank may be comprised so that attachment or detachment is possible from the said floor surface, and the said inner tank or the said outer tank may be comprised so that replacement
  • a base portion that supports the inner tub may be disposed on the floor surface, and a support block may be disposed between the base portion and the inner tub. Furthermore, a dam-like structure may be disposed on the floor surface so as to surround the base portion, and the outer tub may be connected to the dam-like structure.
  • the outer tank may have a penetrating part through which a fitting is inserted into the inner tank, and a lid member may be disposed in the penetrating part.
  • the fittings inserted in the said inner tank may be arrange
  • an inert gas may be filled between the inner tank and the outer tank.
  • the inner tank can be configured to be self-supporting with respect to the floor surface, and by supporting the outer tank to the inner tank, the structure of the outer tank can be simplified, The installation area can be reduced and the cost can be reduced.
  • the outer tub by configuring the outer tub so that it can move horizontally and vertically, even when a low-temperature liquid such as LNG is stored in the inner tub, the inner tub expands or contracts (thermal expansion or contraction).
  • the inner tank can be protected from the external environment while allowing
  • the simple structure enables easy installation and replacement of the liquefied gas tank, and even when liquid cargo is used as fuel, fuel can be replenished quickly.
  • the schematic sectional drawing of the liquefied gas tank concerning a first embodiment of the present invention is shown.
  • the top view of the liquefied gas tank concerning a first embodiment of the present invention is shown.
  • the A section enlarged view of the liquefied gas tank shown in Drawing 1A is shown.
  • the A section enlarged view in the 1st modification of the liquefied gas tank shown to FIG. 1A is shown.
  • the B section enlarged view of the liquefied gas tank shown to FIG. 1B is shown.
  • the B section enlarged view in the 1st modification of the liquefied gas tank shown to FIG. 1B is shown.
  • the B section enlarged view in the 2nd modification of the liquefied gas tank shown to FIG. 1B is shown.
  • the B section enlarged view in the 3rd modification of the liquefied gas tank shown to FIG. 1B is shown.
  • the schematic sectional drawing of the liquefied gas tank concerning 2nd embodiment of this invention is shown.
  • the top view of the liquefied gas tank concerning a second embodiment of the present invention is shown.
  • the A section enlarged view of the liquefied gas tank concerning a second embodiment shown in Drawing 4A is shown.
  • the A section enlarged view in the 1st modification of the liquefied gas tank concerning 2nd embodiment shown to FIG. 4A is shown.
  • the A section enlarged view in the 2nd modification of the liquefied gas tank concerning 2nd embodiment shown to FIG. 4A is shown.
  • the schematic sectional drawing of the liquefied gas tank concerning 3rd embodiment of this invention is shown.
  • the 1st modification of the liquefied gas tank concerning a third embodiment of the present invention is shown. It is a figure which shows the installation method of the liquefied gas tank shown to FIG. 4A and B, and has shown the foundation construction process. It is a figure which shows the installation method of the liquefied gas tank shown to FIG. 4A and B, and has shown the inner tank installation process. It is a figure which shows the installation method of the liquefied gas tank shown to FIG. 4A and B, and has shown the outer tank installation process. It is a figure which shows the modification of the installation method of a liquefied gas tank, and has shown the foundation construction process.
  • FIG. 1 It is a figure which shows the modification of the installation method of a liquefied gas tank, and has shown the inner and outer tank installation process.
  • the schematic sectional drawing of the liquefied gas tank concerning 7th embodiment of this invention is shown.
  • the outer tank wall surface block diagram of the liquefied gas tank which concerns on 7th embodiment of this invention is shown.
  • the 1st modification of the outer tank wall surface structure in the liquefied gas tank which concerns on 7th embodiment of this invention is shown.
  • the 2nd modification of the outer tank wall surface structure in the liquefied gas tank which concerns on 7th embodiment of this invention is shown.
  • the schematic sectional drawing of the liquefied gas tank concerning 8th embodiment of this invention is shown.
  • the side view of the liquefied gas tank concerning an eighth embodiment of the present invention is shown.
  • FIG. 1 is a configuration diagram of the liquefied gas tank according to the first embodiment of the present invention
  • FIG. 1A is a schematic cross-sectional view
  • FIG. 1B is a top view
  • 2 is an enlarged view of a portion A of the liquefied gas tank shown in FIG. 1
  • FIG. 2A shows the first embodiment
  • FIG. 2B shows a first modification
  • 3 is an enlarged view of part B of the liquefied gas tank shown in FIG. 1
  • FIG. 3A is the first embodiment
  • FIG. 3B is a first modification
  • FIG. 3C is a second modification
  • FIG. 3D is a third modification.
  • the liquefied gas tank 1 stores the liquefied gas and covers the inner tub 2 and the inner tub 2 that are arranged so as to be able to stand on their own from the floor F. And an outer tub 3 that is covered and supported by the upper surface portion 2 a of the inner tub 2.
  • the outer tub 3 is configured to be able to slide on the upper surface portion 2a of the inner tub 2 according to the horizontal expansion and contraction of the inner tub 2, and to be movable according to the vertical expansion and contraction of the inner tub 2.
  • the inner tank 2 has, for example, a box structure, and stores therein a liquefied gas such as LNG (liquefied natural gas) or LPG (liquefied petroleum gas). These liquid cargoes are often low temperature (for example, extremely low temperature or ultra low temperature), and the wall surface of the inner tank 2 may have a heat insulating structure. Generally, the heat insulating material (refer FIG. 2) is affixed on the outer surface of the inner tank 2.
  • LNG liquefied natural gas
  • LPG liquefied petroleum gas
  • a base portion 4 that supports the inner tub 2 is disposed on the floor surface F, and a support block 5 is disposed between the base portion 4 and the inner tub 2.
  • the base part 4 is a metal part fixed to a predetermined position on the floor surface F.
  • the support block 5 has a function of thermally blocking the floor surface F and the inner tub 2, and is configured by, for example, square wood and is fitted by being pushed into a frame body portion formed in the inner tub 2. Combined and locked. Further, the support block 5 is configured to be slidable on the base portion 4 and configured to be movable according to the horizontal expansion and contraction of the inner tank 2.
  • an anti-rolling chock or anti-pitching chock is placed along the center line of the hull, and the inner tank 2 is moved laterally or longitudinally by rolling or pitching the hull. You may make it support the horizontal load at the time of swinging.
  • the same support block used in the conventional LNG tank can be used as appropriate, and for example, the support block 5 is made of a material having low elastic conductivity such as rubber or resin. A thing which fixed these materials to the surface of a square member may be used, and you may make it fix to a frame body part with a fixture.
  • a locking portion (not shown) for locking the side surface portion of the support block 5 may be disposed on the base portion 4 disposed at the substantially central portion of the bottom surface of the inner tank 2. By disposing such a locking portion, it is possible to form a fixed point G whose position does not change in the horizontal direction when the inner tub 2 is expanded and contracted.
  • the locking portion is, for example, a frame body that is disposed on the central base portion 4 and surrounds all side portions of the support block 5.
  • a plurality of base portions arranged along the X axis direction of the inner tank 2 4, at least a pair of base portions 4 arranged in a substantially central portion is formed with a locking portion that restricts movement in the Y-axis direction while allowing movement in the X-axis direction.
  • at least a pair of base portions 4 arranged in a substantially central portion allows movement in the Y-axis direction while allowing movement in the Y-axis direction.
  • a locking portion for restricting movement is formed.
  • the fixed point G may be formed at the intersection of the X-axis direction row and the Y-axis direction row where the locking portions are arranged.
  • a through portion 22 for inserting a fitting 21 such as a pipe is formed in a substantially central portion of the upper surface portion 2a of the inner tank 2, and the fitting 21 is inside the inner tank 2 or outside the inner tank 2. It is supported by a support member (not shown) disposed in the. Moreover, the penetration part 22 is formed above the fixed point G as shown in FIG. By disposing the penetrating portion 22 of the fitting 21 such as piping on the fixed point G, even when the inner tub 2 is thermally expanded and contracted in the horizontal direction, the horizontal movement of the fitting 21 is effectively suppressed. can do.
  • the outer tub 3 is a cover for protecting the inner tub 2 (including the heat insulating material 24) from intrusion of moisture into the inside, contact with or collision with foreign substances (people, wind and rain, flying objects, vehicles, etc.). In addition, measures against ultraviolet rays and salt damage may be taken. Further, in order to exert these functions, the outer tub 3 may have a multilayer structure, may be surface-coated (painted, etc.), and a panel or tape is attached to the inner surface or the outer surface. May be.
  • the outer tub 3 is made of, for example, a thin metal plate such as an aluminum alloy plate, a stainless steel plate, or a color steel plate, and has a box structure substantially similar to that of the inner tub 2 and surrounds the outer surface of the inner tub 2. At this time, the weight of the outer tub 3 is supported by being placed on the upper surface portion 2 a of the inner tub 2.
  • the outer tub 3 has a through portion 30 through which the fitting 21 is inserted into the inner tub 2.
  • the penetrating part 22 and the penetrating part 30 are arranged on the fixed point G, the relative movement amount between the penetrating part 22 and the outer tub 3 is not large. It can be joined by welding or the like.
  • the equipment 21 may be thermally contracted or thermally expanded depending on the amount of liquefied gas stored in the inner tank 2 and the usage situation, and the intervals of the plurality of equipment 21 may be shifted.
  • the outer tub 3 around the penetrating portion 30 may be formed with a stretchable rimple structure around the fitting 21.
  • a rimple structure is formed in a part of the outer tub 3 around the penetrating portion 30 is illustrated, the entire outer tub 3 around the penetrating portion 30 may have a rimple structure, A concavo-convex structure capable of expanding and contracting other than the illustrated rimple structure may be used.
  • the ceiling part 3a mounted in the upper surface part 2a of the inner tank 2 of the outer tank 3 is not fixed to the upper surface part 2a of the inner tank 2, and the inner tank 2 and the outer tank 3 are relatively It is configured to be slidable (slidable) in the horizontal direction. Since the cryogenic liquefied gas is stored in the inner tank 2, the inner tank 2 is thermally contracted or thermally expanded depending on the storage amount of the liquefied gas. On the other hand, since the outer tub 3 is exposed to a room temperature environment, a thermal contraction difference is generated between the inner tub 2 and the outer tub 3.
  • the horizontal expansion / contraction amount of 2 can be absorbed.
  • the size of the gap ⁇ D is appropriately set according to the expansion / contraction amount of the inner tank 2 determined by conditions such as the capacity and shape of the inner tank 2, the type of stored liquefied gas, the structure of the outer tank 3, and the like. For example, in the operational state of the liquefied gas tank 1, when the size of the inner tank 2 is maximized at room temperature, the size of the outer tank 3 is set so that the outer tank 3 is disposed in the inner tank 2 without a gap at room temperature. Should be set.
  • the first modification shown in FIG. 2B is obtained by separating the through portion 30 from the outer tub 3.
  • the outer tub 3 has an opening 31 through which the fitting 21 is inserted into the inner tub 2, a lid member 32 is disposed in the opening 31, and the penetrating portion 30 is disposed in the lid member 32.
  • the through portion 30 of the fitting 21 in the lid member 32 is connected in an airtight manner by welding or the like.
  • a seal member may be arranged.
  • the equipment 21 may be thermally contracted or thermally expanded depending on the amount of liquefied gas stored in the inner tank 2 and the usage situation, and the intervals of the plurality of equipment 21 may be shifted. Therefore, the lid member 32 may be formed with a stretchable rimple structure around the outfitting 21.
  • the rimple structure is formed in a part of the lid member 32 is illustrated, but the entire lid member 32 may have the rimple structure, or may be a stretchable uneven structure other than the illustrated rimple structure. There may be.
  • a weir-like structure 6 is disposed on the floor surface F so as to surround the base part 4, and the lower end of the outer tub 3 is connected to the weir-like structure 6.
  • the outer tank 3 has the expansion-contraction mechanism part 33 arrange
  • the dam-like structure 6 is a metal part erected on the floor surface F, and is fixed to the floor surface F by means such as welding or bolts.
  • a thick part 34 is formed at the lower end of the outer tub 3, and an expansion / contraction mechanism part 33 is connected between the weir-like structure 6 and the thick part 34.
  • the thick portion 34 is a component that compensates for the distortion of the thin plate constituting the outer tub 3, and has a function of maintaining sufficient tightening and airtightness with the expansion / contraction mechanism portion 33.
  • the expansion / contraction mechanism 33 is a flexible component that absorbs the amount of movement of the outer tub 3 due to thermal expansion and contraction in the vertical direction (vertical direction or standing direction) and the horizontal direction of the inner tub 2.
  • the inner tank 2 is configured to thermally contract or expand in the horizontal direction and the vertical direction depending on the storage amount of the liquefied gas, and the outer tank 3 is configured to be able to move following this.
  • the outer tub 3 needs to be connected to a dam-like structure 6 fixed to the floor surface F in order to maintain airtightness. Therefore, the outer tub 3 moves relative to the weir-like structure 6 in the horizontal direction and the vertical direction.
  • the expansion / contraction mechanism 33 is a component for absorbing this relative movement.
  • Such an expansion / contraction mechanism 33 is made of an airtight material and structure, and for example, a flexible structure in which chloroprene rubber, natural rubber, or the like is shaped into a curved shape is employed.
  • the telescopic mechanism 33 is fixed to the weir-like structure 6 and the thick portion 34 by a fastener such as a bolt via an O-ring 33a that maintains airtightness.
  • the expansion / contraction mechanism 33 is not limited to the configuration illustrated in FIG. 3A, and may be configured as, for example, the modified examples illustrated in FIGS. 3B to 3D.
  • the expansion / contraction mechanism 33 is constituted by an urging member 33b.
  • the urging member 33 b that can be pressed from the inner side to the outer side of the outer tub 3 is fixed to the dam-like structure 6, and the urging member 33 b and the thick portion 34 are in contact with each other.
  • the outer tub 3 can be slid in the vertical direction by pressure and can be kept airtight.
  • the urging member 33b is configured by, for example, a curved metal leaf spring member.
  • the contact portion may be coated with a coating that improves slidability and wear resistance.
  • the expansion / contraction mechanism 33 is constituted by a bellows member 33c.
  • the second modification has a configuration in which a bellows member 33 c formed of a metal plate in a bellows shape is connected to the weir structure 6 and the thick portion 34.
  • an O-ring may be sandwiched as in the embodiment shown in FIG. 3A.
  • the expansion / contraction mechanism 33 is configured by a leaf spring member 33d.
  • the third modified example has a configuration in which the end surface of a leaf spring member 33d formed by bending a metal plate is connected to the weir structure 6 and the thick portion 34. In the connection portion, an O-ring may be sandwiched as in the embodiment shown in FIG. 3A.
  • the leaf spring member 33d may be molded from chloroprene rubber or natural rubber instead of the metal plate.
  • the dam-like structure 6 and the thick portion 34 are formed in an L shape and have a connection surface facing the end surface of the leaf spring member 33d.
  • an inert gas such as nitrogen gas may be filled between the inner tank 2 and the outer tank 3.
  • the inert gas introduction pipe 61 is connected to the weir-like structure 6 and the inert gas discharge pipe 35 is connected to the outer tank 3 to fill the gap between the inner tank 2 and the outer tank 3 with the inert gas. can do.
  • This inert gas has a function as a carrier gas for extruding moisture and air existing in the gap between the inner tank 2 and the outer tank 3, and removes air from the periphery of the inner tank 2 that stores the liquefied gas. Even if the liquefied gas leaks from the inner tank 2 after being discharged, it plays the role of preventing the occurrence of explosion.
  • the introduction of the inert gas may be performed only when the liquefied gas tank 1 is installed or may be performed constantly.
  • an inert gas is sealed in the gap between the inner tank 2 and the outer tank 3, and the pressure in the outer tank 3 is set slightly higher than the pressure in the external environment of the outer tank 3 (for example, atmospheric pressure). Further, it is possible to effectively suppress internal intrusion of moisture and air.
  • tube 61 and the inert gas discharge pipe 35 is not limited to what was illustrated, You may arrange
  • the inert gas introduction pipe 61 may be disposed in the outer tub 3.
  • FIG. 4 is a configuration diagram of the liquefied gas tank according to the second embodiment of the present invention
  • FIG. 4A is a schematic cross-sectional view
  • FIG. 4B is a top view
  • 5 is an enlarged view of a part A of the liquefied gas tank shown in FIG. 4,
  • FIG. 5A shows the second embodiment
  • FIG. 5B shows a first modification
  • FIG. 5C shows a second modification.
  • symbol is attached
  • the combing portion 23 is formed in the inner tank 2. Therefore, the connection method of the inner tank 2 and the outer tank 3 becomes a structure different from 1st embodiment. Specifically, a through portion 22 for inserting fittings 21 such as pipes is formed at a substantially central portion of the upper surface portion 2a of the inner tank 2, and as shown in FIG. A combing portion 23 is formed along the outer periphery of the. The combing part 23 is formed so that it may become substantially the same height as the heat insulating material 24 of the inner tank 2, for example.
  • an edge 31 a bent inward is formed in the opening 31 of the outer tub 3, and this edge 31 a is formed on the outer periphery of the penetrating portion 22 of the inner tub 2.
  • the outer tub 3 is positioned by being inserted along the combing portion 23.
  • the edge portion 31a may be inserted into the combing portion 23 without a gap or may be inserted with a certain gap.
  • the penetrating portion 22 and the opening portion 31 are arranged on the fixed point G, the relative movement amount between the combing portion 23 and the outer tub 3 is not large, so that the edge portion 31a and the combing portion 23 are arranged. May be joined by welding or the like.
  • the edge 31a may be omitted.
  • the opening 31 is airtightly connected by welding or the like after the heat insulating material 24 is filled in the space formed by the edge 31a and the lid member 32 is disposed. Moreover, the penetration part 30 of the fitting 21 in the lid member 32 is also airtightly connected by welding or the like. In order to maintain airtightness between the lid member 32 and the outer tub 3 or in the through portion 30 of the lid member 32, a seal member may be arranged.
  • the space between the combing portion 23 and the outer tub 3 (edge portion 31a) is hermetically sealed, and between the inner tub 2 and the outer tub 3 including the heat insulating material 24 and the like.
  • the space formed and the space formed by the opening 31 are separated.
  • the sealing member 31b is disposed between the combing portion 23 and the edge portion 31a, and the combing portion 23 and the outer tub 3 are hermetically sealed by a fastener 31c such as a bolt and a nut.
  • the space between the combing portion 23 and the edge portion 31a may be hermetically sealed by welding or the like.
  • the lid member 32 does not need to be airtight and is fixed to the outer tub 3 by a simple connection method.
  • the 2nd modification shown to FIG. 5C has shown the case where the opening part 31 of the outer tank 3 does not have the edge part 31a.
  • the combing portion 23 has a flange portion 23a whose tip portion is expanded in the horizontal direction, and the outer tub 3 having the opening 31 is disposed on the flange portion 23a.
  • the lid member 32 may be connected to the outer tub 3 in an airtight manner, as in the second embodiment shown in FIG. 5A, or the same as the first modification shown in FIG. 5B.
  • the outer tub 3 and the flange portion 23a may be connected in an airtight manner.
  • FIG. 6 is a figure which shows the liquefied gas tank which concerns on 3rd embodiment of this invention
  • FIG. 6A has shown schematic sectional drawing
  • FIG. 6B has shown the 1st modification.
  • symbol is attached
  • the fitting 21 inserted into the inner tub 2 is arranged on the bottom surface portion 2 c of the inner tub 2. Specifically, as shown in FIG. 6A, a part of the fitting 21 penetrates the weir-like structure 6 and is inserted into the bottom of the inner tub 2 and penetrates the bottom surface 2 c to the inside of the inner tub 2. It is comprised so that it may penetrate.
  • the fitting 21 has an opening / closing valve 21a for opening / closing the fitting 21 (piping), a fixing portion on the inner tub 2 side of the fitting 21 and a fixing portion of the weir-like structure 6 at an intermediate portion thereof.
  • connection part 21b to connect, and the pipe expansion joint 21c which absorbs the movement amount of the fitting 21 accompanying the thermal expansion and contraction of the inner tank 2.
  • the on-off valve 21a, the connecting portion 21b, and the pipe expansion joint 21c are arranged in this order, and are arranged between the inner tank 2 and the outer tank 3. According to this configuration, the length of the fittings 21 such as pipes can be shortened, and it is not necessary for the outer tub 3 to support the fittings 21 and the support structure can be simplified.
  • the fixing portion on the inner tub 2 side of the fitting 21 and the fixing portion of the dam-like structure 6 are These may be connected individually and then connected by the connecting portion 21b.
  • a part of the fitting 21 is inserted into the bottom of the inner tub 2 through the lower part of the expansion / contraction mechanism 33 and penetrates the bottom 2c. And it is comprised so that the inside of the inner tank 2 may be penetrated.
  • the pipe expansion joint 21c, the on-off valve 21a and the connecting portion 21b are arranged in this order, and the pipe expansion joint 21c is arranged between the inner tank 2 and the outer tank 3, and the on-off valve 21a and the connecting section are arranged.
  • 21 b is arranged outside the outer tub 3.
  • the pipe expansion joint 21 c absorbs the movement amount of the fitting 21 accompanying the relative movement between the inner tank 2 and the outer tank 3.
  • the fitting 21 when the fitting 21 is fixed to the telescopic mechanism 33, it may be installed or exchanged together with the construction of the outer tub 3 when the liquefied gas tank 1 is installed or exchanged.
  • the configurations of the on-off valve 21a, the connecting portion 21b, and the pipe expansion joint 21c are not limited to those shown in the drawings, and the number and arrangement of the fittings 21 as necessary. The position, the order of arrangement, etc. can be changed as appropriate. Further, all the fittings 21 may be collected at the bottom of the inner tank 2.
  • the description has been made based on the liquefied gas tank 1 shown in the first embodiment, but the liquefied gas tank 1 according to another embodiment such as the second embodiment also applies. Can be applied.
  • FIG. 7 is a view showing a method of installing the liquefied gas tank according to the second embodiment shown in FIG. 4.
  • FIG. 7A shows a basic construction process
  • FIG. 7B shows an inner tank installation process
  • FIG. 7C shows an outer tank installation process.
  • FIG. 8 is a diagram showing a modified example of the installation method of the liquefied gas tank.
  • FIG. 8A shows a foundation construction process
  • FIG. 8B shows an inner and outer tank installation process.
  • the foundation construction process shown in FIG. 7A is a process of installing the base portion 4 and the weir-like structure 6 on the floor surface F.
  • the inner tank installation process shown in FIG. 7B is a process of arranging the inner tank 2 on the base part 4. Specifically, the support block 5 is locked to the lower surface of the inner tank 2, and the support block 5 is placed on the base portion 4.
  • the outer tank installation step shown in FIG. 7C is a step of covering the inner tank 2 with the outer tank 3 and connecting it to the dam-like structure 6.
  • the outer tub 3 is covered with the inner tub 2 so that the ceiling 3 a of the outer tub 3 is supported by the upper surface 2 a of the inner tub 2, and the thick portion 34 at the lower end of the outer tub 3
  • the outer tub 3 is fixed to the dam-like structure 6 by connecting the expansion / contraction mechanism 33 to the dam-like structure 6.
  • the outfitting 21 is inserted into the inner tub 2 to be installed, and the lid member 32 is inserted into the outfitting 21 and connected to the outer tub 3.
  • a cargo handling facility such as a crane is used for transporting and moving the inner tub 2, the outer tub 3 and the fitting 21.
  • the outfitting of the outfitting 21 may be before the inner tub 2 is placed or before the outer tub 3 is attached.
  • the expansion / contraction mechanism 33 may be installed in the thick part 34 of the outer tub 3 before the outer tub 3 is mounted.
  • the outer tank 3 and the inner tank 2 can be easily moved from the base part 4 by removing the expansion / contraction mechanism part 33. That is, the inner tank 2 and the outer tank 3 are configured to be detachable from the floor surface F, and the inner tank 2 or the outer tank 3 is configured to be replaceable. Therefore, even when the remaining amount of the liquefied gas stored in the inner tank 2 is exhausted, the liquefied gas used as fuel can be replenished by simply replacing the inner tank 2.
  • the liquefied gas can be enclosed in the inner tank 2 in advance at a factory, a storage base or the like and transported by a vehicle or the like, and the liquefied gas tank 1 can be easily installed even at a place away from the storage base. .
  • the foundation construction step shown in FIG. 8A is a step of installing the base portion 4 and the dam-like structure 6 on the floor surface F.
  • FIG. 8B an assembly in which the outer tank 3 is covered with the inner tank 2 in advance at a factory or a storage base and the fittings 21 and the like are connected is placed on the base portion 4.
  • the expansion-contraction mechanism part 33 is connected between the thick part 34 of the outer tank 3, and the dam-like structure 6.
  • the inner tank 2 and the outer tank 3 can be configured to be detachable from the floor surface F.
  • the expansion / contraction mechanism 33 may be installed in the thick portion 34 of the outer tub 3 before the inner / outer tub assembly is placed on the base portion 4.
  • the inner tank 2 is configured to be able to stand on the floor surface F, and the inner tank 2 is supported by the outer tank 3, thereby simplifying the structure of the outer tank 3.
  • the installation area can be reduced and the cost can be reduced.
  • liquefied gas such as LNG
  • the inner tank 2 can be protected from the external environment while allowing expansion and contraction (thermal expansion and contraction) of the inner tank 2.
  • the simple structure allows the liquefied gas tank 1 to be easily installed and replaced, and even when the liquefied gas is used as fuel, the fuel can be replenished quickly.
  • liquefied gas tanks can be installed easily even in remote areas that do not have an LNG receiving base, and in areas (exposed areas) that are not surrounded by the hull structure, such as on the upper deck of ships and floating structures.
  • the liquefied gas can be used as power generation fuel or propulsion fuel.
  • FIG. 9 is a schematic sectional view showing a liquefied gas tank according to another embodiment of the present invention
  • FIG. 9A is a fourth embodiment
  • FIG. 9B is a fifth embodiment
  • FIG. 9C is a sixth embodiment
  • FIG. 10 is a configuration diagram of a liquefied gas tank according to a seventh embodiment of the present invention
  • FIG. 10A is a schematic cross-sectional view
  • FIG. 10B is an outer tank wall surface configuration diagram
  • FIG. 10C is a first modification of the outer tank wall surface configuration
  • FIG. 10D shows a second modification of the outer tank wall surface configuration.
  • FIG. 11 is a configuration diagram of a liquefied gas tank according to an eighth embodiment of the present invention.
  • FIG. 11A is a schematic cross-sectional view
  • FIG. 11B is a side view.
  • symbol is attached
  • the insertion part of the fitting 21 is formed in a dome structure. Specifically, it has a structure in which the combing portion 23 formed in the inner tub 2 protrudes upward from the ceiling portion 3 a of the outer tub 3. As illustrated, the lid member 32 may have a convex portion that covers the opening 31, or may have a flat plate shape that covers only the upper surface portion of the combing portion 23.
  • the insertion portion of the fitting 21 in the inner tub 2 and the outer tub 3 has a configuration similar to that shown in FIGS. 5A to 5C, for example.
  • the illustrated fourth embodiment is based on the second embodiment, a similar configuration can be applied to the first embodiment.
  • the liquefied gas tank 1 according to the fifth embodiment shown in FIG. 9B has an elastic body 7 disposed between the inner tank 2 and the outer tank 3.
  • the elastic body 7 is a component that suppresses the movement of the outer tub 3 by transmitting an external force applied to the outer tub 3 to the inner tub 2 by wind pressure or the like.
  • a plurality of elastic bodies 7 are arranged between the side surface portion 2b of the inner tub 2 and the side surface portion 3b of the outer tub 3, and are configured to urge the outer tub 3 in the horizontal direction.
  • various forms such as a coil spring, a rubber member, and a hydraulic damper can be used.
  • the illustrated fifth embodiment is based on the second embodiment, the same configuration can be applied to the first embodiment.
  • the liquefied gas tank 1 according to the sixth embodiment shown in FIG. 9C is obtained by covering the entire inner tank 2 with the outer tank 3.
  • the bottom surface portion 3 c of the outer tub 3 is configured to cover the bottom surface portion 2 c of the inner tub 2.
  • the bottom surface portion 3 c of the outer tub 3 may be arranged so as to avoid the support block 5 and configured to be slidable in the vertical direction along the support block 5.
  • a seal member may be disposed between the support block 5 and the bottom surface portion 3 c of the outer tub 3, or an inert gas is supplied from the inert gas introduction pipe 61 to the gap between the inner tub 2 and the outer tub 3. You may make it pressurize.
  • the dam-like structure 6 can be omitted.
  • 6th embodiment shown in figure is based on 2nd embodiment, the same structure can also be applied to 1st embodiment.
  • the outer tub 3 may be made of aluminum tape for preventing moisture in place of the metal thin plate. Since such an aluminum tape has adhesiveness, the outer tub 3 is directly attached to the outer surface of the inner tub 2. At this time, it is preferable that the aluminum tape has an appropriate slack so that the aluminum tape can be deformed according to the expansion and contraction of the inner tub 2.
  • the liquefied gas tank 1 according to the seventh embodiment shown in FIG. 10A is obtained by forming the side surface portion 3b and the bottom surface portion 3c of the outer tub 3 in a structure in which the wall surface itself can expand and contract in the sixth embodiment shown in FIG. 9C. It is. Specifically, as shown in FIG. 10B, the wall surfaces constituting the side surface portion 3b and the bottom surface portion 3c of the outer tub 3 have a rimple structure in which a plurality of fine irregularities are continuously formed. 10B to 10D, the upper part shows a plan view and the lower part shows a cross-sectional view.
  • the wall surface which comprises the side part 3b and the bottom face part 3c of the outer tank 3 may be a grid
  • a diamond cut structure in which a concavo-convex surface having a predetermined shape is formed on the entire surface may be used.
  • the wall surfaces constituting the side surface portion 3b and the bottom surface portion 3c of the outer tub 3 can be expanded and contracted in the horizontal direction and the vertical direction, and can absorb the difference in expansion / contraction amount with the inner tub 2. it can.
  • 10B to 10D may also be applied to the ceiling portion 3a of the outer tub 3. Further, the stretchable structure shown in FIGS. 10B to 10D may be applied to the side surface portion 3b of the outer tub 3 and the ceiling portion 3a of the outer tub 3 in the first to fifth embodiments.
  • the liquefied gas tank 1 has an inner tank 2 configured in a cylindrical shape.
  • the inner tank 2 is preferably a rectangular shape as shown in FIG.
  • the pressure resistance performance of the inner tank 2 is emphasized, it may be configured in a cylindrical shape as shown in FIGS. 11A and 11B.
  • the ceiling portion 3 a of the outer tub 3 may be formed in a curved shape along the upper surface portion 2 a of the inner tub 2, and the lid member 32 is also formed on the ceiling portion 3 a of the outer tub 3. What is necessary is just to make it curve along a shape.
  • the cross-sectional shape of the inner tank 2 is not limited to the illustrated circular shape, and may be an elliptical shape.
  • the capacity of the inner tank 2 is, for example, about 500 to 5000 m 3 , and the liquefied gas tank 1 (particularly, the outer tank).
  • the configuration of 3) By making the configuration of 3) a simple structure, space saving can be achieved. Therefore, it can be easily installed in a relatively narrow space such as a part of a factory or on the deck of a hull.
  • the inner tank 2 may be formed into a substantially flat rectangular shape with a short height, or the eighth implementation.
  • the shape of the inner tank 2 and the outer tank 3 is not limited to what was mentioned above, According to an installation area and installation space, it can form in various shapes, such as a polygonal cross-sectional shape and an uneven
  • the present invention is not limited to the above-described embodiments, and the first to eighth embodiments, which can be applied to a liquefied gas (for example, LPG) other than LNG (liquefied natural gas), are used in appropriate combination.
  • a liquefied gas for example, LPG
  • LNG liquefied natural gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

液化ガスを貯蔵するとともに床面Fから自立可能に配置される内槽2と、内槽2に覆い被せられて内槽2の上面部2aにより支持される外槽3と、を有し、外槽3は、内槽2の水平方向の伸縮に応じて内槽2の上面部2aを摺動可能、かつ、内槽2の垂直方向の伸縮に応じて移動可能に構成されている。外槽3の内槽2の上面部2aに載置された天井部3aは、内槽2の上面部2aには固定されておらず、内槽2及び外槽3は相対的に水平方向に摺動(スライド)可能に構成されている。また、外槽3は、下部外周に沿って配置された伸縮機構部33を有している。

Description

液化ガスタンク
 本発明は、液化ガスを貯蔵する液化ガスタンクに関し、特に、LNG(液化天然ガス)等の低温液体の貯蔵に適した液化ガスタンクに関する。
 従来、LNG(液化天然ガス)やLPG(液化石油ガス)等の低温液体の搬送や貯蔵には、輸送船(タンカー)、浮体式貯蔵設備、地上式貯蔵設備、地下式貯蔵設備等が用いられている(例えば、特許文献1及び特許文献2参照)。
 特許文献1には、船体を構成する外槽と、該外槽内に自立した状態で配置されるタンク(内槽)と、を有する液化ガス運搬船が開示されている。また、特許文献2には、地上に配置される外槽と、該外槽内に自立した状態で配置される内槽と、を有する地上式LNGタンクが開示されている。このように液体貨物を収容する内槽を外槽から独立した構成とすることにより、液体貨物の温度変化に伴う内槽の伸縮(熱膨張や熱収縮)を許容しつつ、内槽を外部環境から保護することができる。
特開2011-901号公報 特開2007-278400号公報
 ところで、近年、天然ガスは、石油と比較して、燃焼時の二酸化炭素等の排出量や窒素酸化物が少なく、硫黄酸化物を発生しないことから、環境にやさしいエネルギーとして注目されている。また、天然ガスは、世界各地に豊富に埋蔵されているため、供給安定性が高く、石油代替エネルギーとして導入が検討されている。このように、天然ガスをエネルギー源として使用する場合、天然ガスを液化することによって、体積を1/600にすることができ、貯蔵効率を向上させることができる。したがって、LNG貯蔵設備(液化ガスタンク)として、特許文献1や特許文献2に記載されたような、内槽を外槽から自立させた構造を採用することが容易に考えられる。
 しかしながら、天然ガスをエネルギー源として使用する場合には、従来の輸送船や貯蔵設備と比較して貯蔵量が1/10~1/100程度と少なく、上述した自立構造の液化ガスタンクを採用した場合には、外槽を自立させるために重厚な設備となり、コストが高くなり易く、設置面積も大きくなり易い等の問題があった。また、従来の液化ガスタンクでは、内槽及び外槽により二重壁構造となっているため、液体貨物や配管等の取出口の構造が複雑になり易いという問題もあった。また、液化ガスタンクをエネルギー源として使用する機器や設備の近くに当該液化ガスタンクを配置する必要があり、十分な設置面積を確保できない場合があり得るし、燃料である天然ガスがなくなった場合には迅速に補充もしなければならない。
 本発明は、上述した問題点に鑑み創案されたものであり、簡易な構造かつ少ない設置面積で液化ガスを貯蔵することができる液化ガスタンクを提供することを目的とする。
 本発明によれば、液化ガスを貯蔵する液化ガスタンクにおいて、前記液化ガスを貯蔵するとともに床面から自立可能に配置される内槽と、該内槽に覆い被せられて前記内槽の上面部により支持される外槽と、を有し、前記外槽は、前記内槽の水平方向の伸縮に応じて前記内槽の上面部を摺動可能、かつ、前記内槽の垂直方向の伸縮に応じて移動可能に構成されている、ことを特徴とする液化ガスタンクが提供される。
 前記外槽は、下部外周に沿って配置された伸縮機構部を有していてもよいし、壁面そのものが伸縮可能な構造に形成されていてもよい。また、前記内槽及び前記外槽は前記床面から着脱可能に構成されており、前記内槽又は前記外槽は交換可能に構成されていてもよい。
 前記床面には前記内槽を支持する基盤部が配置され、該基盤部と前記内槽との間に支持ブロックが配置されていてもよい。さらに、前記床面には前記基盤部を囲うように堰状構造体が配置され、該堰状構造体に前記外槽が接続されていてもよい。
 前記外槽は、前記内槽に艤装品を挿通する貫通部を有し、該貫通部には蓋部材が配置されていてもよい。また、前記内槽に挿通される艤装品が、前記内槽の底面部に配置されていてもよい。また、前記内槽と前記外槽との間に不活性ガスが充填されていてもよい。また、前記内槽と前記外槽との間に弾性体を配置してもよい。
 上述した本発明に係る液化ガスタンクによれば、内槽を床面に対して自立可能に構成し、該内槽に外槽を支持させることによって、外槽の構造を簡素化することができ、設置面積を少なくすることができ、コストを低減することができる。また、外槽を水平移動可能かつ垂直方向移動可能に構成することにより、内槽にLNG等の低温液体を貯蔵した場合であっても、それによって生じる内槽の伸縮(熱膨張や熱収縮)を許容しつつ、内槽を外部環境から保護することができる。また、簡易な構造としたことにより、液化ガスタンクの設置や交換を容易に行うことができ、液体貨物を燃料として使用した場合であっても、迅速に燃料の補充を行うことができる。
本発明の第一実施形態に係る液化ガスタンクの概略断面図を示している。 本発明の第一実施形態に係る液化ガスタンクの上面図を示している。 図1Aに示した液化ガスタンクのA部拡大図を示している。 図1Aに示した液化ガスタンクの第一変形例におけるA部拡大図を示している。 図1Bに示した液化ガスタンクのB部拡大図を示している。 図1Bに示した液化ガスタンクの第一変形例におけるB部拡大図を示している。 図1Bに示した液化ガスタンクの第二変形例におけるB部拡大図を示している。 図1Bに示した液化ガスタンクの第三変形例におけるB部拡大図を示している。 本発明の第二実施形態に係る液化ガスタンクの概略断面図を示している。 本発明の第二実施形態に係る液化ガスタンクの上面図を示している。 図4Aに示した第二実施形態に係る液化ガスタンクのA部拡大図を示している。 図4Aに示した第二実施形態に係る液化ガスタンクの第一変形例におけるA部拡大図を示している。 図4Aに示した第二実施形態に係る液化ガスタンクの第二変形例におけるA部拡大図を示している。 本発明の第三実施形態に係る液化ガスタンクの概略断面図を示している。 本発明の第三実施形態に係る液化ガスタンクの第一変形例を示している。 図4A、Bに示した液化ガスタンクの設置方法を示す図であり、基礎構築工程を示している。 図4A、Bに示した液化ガスタンクの設置方法を示す図であり、内槽設置工程を示している。 図4A、Bに示した液化ガスタンクの設置方法を示す図であり、外槽設置工程を示している。 液化ガスタンクの設置方法の変形例を示す図であり、基礎構築工程を示している。 液化ガスタンクの設置方法の変形例を示す図であり、内外槽設置工程を示している。 本発明の第四実施形態に係る液化ガスタンクを示す概略断面図である。 本発明の第五実施形態に係る液化ガスタンクを示す概略断面図である。 本発明の第六実施形態に係る液化ガスタンクを示す概略断面図である。 本発明の第七実施形態に係る液化ガスタンクの概略断面図を示している。 本発明の第七実施形態に係る液化ガスタンクの外槽壁面構成図を示している。 本発明の第七実施形態に係る液化ガスタンクにおける外槽壁面構成の第一変形例を示している。 本発明の第七実施形態に係る液化ガスタンクにおける外槽壁面構成の第二変形例を示している。 本発明の第八実施形態に係る液化ガスタンクの概略断面図を示している。 本発明の第八実施形態に係る液化ガスタンクの側面図を示している。
 以下、本発明の実施形態について、図1~図11を用いて説明する。ここで、図1は、本発明の第一実施形態に係る液化ガスタンクの構成図であり、図1Aは概略断面図、図1Bは上面図、を示している。図2は、図1に示した液化ガスタンクのA部拡大図であり、図2Aは第一実施形態、図2Bは第一変形例、を示している。図3は、図1に示した液化ガスタンクのB部拡大図であり、図3Aは第一実施形態、図3Bは第一変形例、図3Cは第二変形例、図3Dは第三変形例、を示している。
 本発明の第一実施形態に係る液化ガスタンク1は、図1~図3に示すように、液化ガスを貯蔵するとともに床面Fから自立可能に配置される内槽2と、内槽2に覆い被せられて内槽2の上面部2aにより支持される外槽3と、を有している。外槽3は、内槽2の水平方向の伸縮に応じて内槽2の上面部2aを摺動可能、かつ、内槽2の垂直方向の伸縮に応じて移動可能に構成されている。
 前記内槽2は、例えば、箱型構造であり、内部にLNG(液化天然ガス)やLPG(液化石油ガス)等の液化ガスを貯蔵する。これらの液体貨物は低温(例えば、極低温又は超低温)であることが多く、内槽2の壁面は断熱構造を有していてもよい。一般的には、内槽2の外面には、断熱材(図2参照)が貼り付けられている。
 また、床面Fには内槽2を支持する基盤部4が配置され、基盤部4と内槽2との間に支持ブロック5が配置されている。基盤部4は、床面Fの所定位置に固定される金属部品である。支持ブロック5は、床面Fと内槽2とを熱的に遮断する機能を有し、例えば、角型の木材により構成され、内槽2に形成された枠体部に押し込まれることにより嵌合され係止される。また、支持ブロック5は、基盤部4上を摺動可能に構成されており、内槽2の水平方向の伸縮に応じて移動できるように構成されている。なお、床面Fが船体の甲板や船底の場合には、船体の中心線に沿って、アンチローリングチョックやアンチピッチングチョックを配置し、船体のローリングやピッチングにより内槽2が横方向や前後方向に振れた場合の水平荷重を支持するようにしてもよい。
 支持ブロック5には、従来のLNGタンクに使用されている支持ブロックと同様のものを適宜使用することができ、例えば、ゴムや樹脂等の熱伝導率が低く弾性力を有する素材により構成されたものや、これらの素材を角材の表面に固定したものを使用してもよいし、固定金具により枠体部に固定するようにしてもよい。
 また、内槽2底面の略中央部に配置された基盤部4には、支持ブロック5の側面部を係止する係止部(図示せず)を配置するようにしてもよい。かかる係止部を配置することにより、内槽2の伸縮時において水平方向に位置が変化しない不動点Gを形成することができる。係止部は、例えば、中央の基盤部4に配置され、支持ブロック5の全側面部を囲う枠体である。
 また、図1Bに示したように、内槽2の壁面の水平方向に沿った方向にX軸及びY軸を設定した場合、内槽2のX軸方向に沿って配列された複数の基盤部4のうち、略中央部に配置された少なくとも一対の基盤部4にX軸方向の移動を許容しつつY軸方向の移動を規制する係止部を形成する。また、内槽2のY軸方向に沿って配列された複数の基盤部4のうち、略中央部に配置された少なくとも一対の基盤部4にY軸方向の移動を許容しつつX軸方向の移動を規制する係止部を形成する。このようにして、係止部が配置されたX軸方向列及びY軸方向列との交点に不動点Gを形成するようにしてもよい。
 また、内槽2の上面部2aの略中央部には、配管等の艤装品21を挿通するための貫通部22が形成されており、艤装品21は、内槽2内又は内槽2外に配置された支持部材(図示せず)により支持されている。また、貫通部22は、図1Bに示したように、不動点Gの上方に形成される。不動点G上に配管等の艤装品21の貫通部22を配置することにより、内槽2が水平方向に熱伸縮した場合であっても、艤装品21の水平方向の移動を効果的に抑制することができる。
 前記外槽3は、内部への湿気の侵入、異物(人、風雨、飛来物、車両等)との接触や衝突等から内槽2(断熱材24を含む)を保護するためのカバーであり、紫外線対策や塩害対策等が施されていてもよい。また、これらの機能を発揮させるために、外槽3は、多層構造であってもよいし、表面コーティング(塗装等)されていてもよいし、パネルやテープを内面又は外面に貼り付けるようにしてもよい。
 かかる外槽3は、例えば、アルミニウム合金板、ステンレス鋼板、カラー鋼板等の金属薄板で構成され、内槽2と略同様の箱型構造を有し、内槽2の外面を包囲する。このとき外槽3の自重は、内槽2の上面部2aに載置されることによって支持される。また、外槽3は、内槽2に艤装品21を挿通する貫通部30を有している。貫通部22及び貫通部30が不動点G上に配置されている場合には、貫通部22と外槽3との相対的な移動量は大きくないことから、艤装品21と貫通部30とを溶接等により接合することができる。
 また、艤装品21は、内槽2に貯蔵される液化ガスの貯蔵量や使用状況によって、熱収縮したり、熱膨張したり、複数の艤装品21の間隔がずれたりすることがある。そこで、貫通部30の周囲の外槽3には、艤装品21の周囲に伸縮可能なリンプル構造を形成するようにしてもよい。ここでは、貫通部30の周囲の外槽3の一部にリンプル構造を形成した場合を図示したが、貫通部30の周囲の外槽3の全体がリンプル構造を有していてもよいし、図示したリンプル構造以外の伸縮可能な凹凸構造であってもよい。
 また、外槽3の、内槽2の上面部2aに載置された天井部3aは、内槽2の上面部2aには固定されておらず、内槽2及び外槽3は相対的に水平方向に摺動(スライド)可能に構成されている。内槽2には、極低温の液化ガスが貯蔵されることから、液化ガスの貯蔵量によって内槽2が熱収縮したり熱膨張したりすることとなる。一方、外槽3は、常温環境に晒されていることから、内槽2と外槽3との間に熱収縮差を生じることとなる。そこで、外槽3の幅Dcを内槽2(断熱材24を含む)の幅Dtよりも大きく形成し、この内槽2と外槽3との隙間ΔD(=Dc-Dt)によって、内槽2の水平方向の伸縮量を吸収できるようにしている。
 隙間ΔDの大きさは、内槽2の容量、形状、貯蔵される液化ガスの種類、外槽3の構造等の条件によって決まる内槽2の伸縮量に応じて適宜設定される。例えば、液化ガスタンク1の運用状態において、内槽2の大きさが常温時に最大となる場合には、常温時に外槽3が内槽2に隙間なく配置されるように、外槽3の大きさを設定するようにすればよい。
 ここで、貫通部30の変形例について説明する。図2Bに示した第一変形例は、貫通部30を外槽3から分離したものである。具体的には、外槽3は、内槽2に艤装品21を挿通する開口部31を有し、開口部31には蓋部材32が配置されており、蓋部材32に貫通部30が配置されている。このように、貫通部30を外槽3から分離することにより、設置工事やメンテナンス等を容易に行うことができる。蓋部材32における艤装品21の貫通部30は、溶接等により気密に接続される。蓋部材32と外槽3との間や蓋部材32の貫通部30は、気密性を維持するために、シール部材を配置するようにしてもよい。
 また、艤装品21は、内槽2に貯蔵される液化ガスの貯蔵量や使用状況によって、熱収縮したり、熱膨張したり、複数の艤装品21の間隔がずれたりすることがある。そこで、蓋部材32には、艤装品21の周囲に伸縮可能なリンプル構造を形成するようにしてもよい。ここでは、蓋部材32の一部にリンプル構造を形成した場合を図示したが、蓋部材32の全体がリンプル構造を有していてもよいし、図示したリンプル構造以外の伸縮可能な凹凸構造であってもよい。
 また、床面Fには基盤部4を囲うように堰状構造体6が配置され、堰状構造体6に外槽3の下端部が接続されている。また、外槽3は、下部外周に沿って配置された伸縮機構部33を有している。図3Aに示したように、堰状構造体6は、床面Fに立設された金属部品であり、溶接やボルト等の手段によって床面Fに固定されている。また、外槽3の下端部には肉厚部34が形成されており、堰状構造体6及び肉厚部34の間に伸縮機構部33が接続されている。肉厚部34は、外槽3を構成する薄板の歪み易い点を補う部品であり、伸縮機構部33との間で十分な締め付けと気密性を保持する機能を有する。
 伸縮機構部33は、内槽2の垂直方向(鉛直方向又は立設方向)及び水平方向の熱伸縮に伴う、外槽3の移動量を吸収する可撓性を有する部品である。内槽2は、液化ガスの貯蔵量によって、水平方向及び垂直方向に熱収縮又は熱膨張し、外槽3もこれに追従して移動可能に構成されている。一方で、外槽3は、気密性を保持するために、床面Fに固定された堰状構造体6に接続する必要がある。したがって、外槽3は、堰状構造体6に対して、水平方向及び垂直方向に相対移動することとなる。伸縮機構部33は、この相対移動を吸収するための部品である。
 かかる伸縮機構部33は、気密性を有する材料及び構造からなり、例えば、クロロプレンゴムや天然ゴム等を曲線状に整形した可撓構造が採用される。また、伸縮機構部33は、気密性を保持するOリング33aを介して、堰状構造体6及び肉厚部34にボルト等の締結具によって固定されている。なお、伸縮機構部33は、溶接等により堰状構造体6及び肉厚部34に気密に固着するようにしてもよい。伸縮機構部33は、図3Aに示した構成に限定されるものではなく、例えば、図3B~図3Dに示した変形例のような構成であってもよい。
 図3Bに示した第一変形例は、伸縮機構部33を付勢部材33bにより構成したものである。具体的には、第一変形例は、外槽3の内側から外側に向かって押圧可能な付勢部材33bを堰状構造体6に固定し、付勢部材33bと肉厚部34との接触圧によって外槽3を垂直方向にスライド可能かつ気密性を保持可能に構成されている。付勢部材33bは、例えば、湾曲した金属製の板バネ部材により構成される。接触部には、摺動性や耐磨耗性を向上させるコーティングが施されていてもよい。
 図3Cに示した第二変形例は、伸縮機構部33を蛇腹部材33cにより構成したものである。具体的には、第二変形例は、金属板を蛇腹状に形成した蛇腹部材33cを堰状構造体6及び肉厚部34に接続した構成を有している。接続部には、図3Aに示した実施形態と同様にOリングを挟持させるようにしてもよい。
 図3Dに示した第三変形例は、伸縮機構部33を板バネ部材33dにより構成したものである。具体的には、第三変形例は、金属板を屈曲させた板バネ部材33dの端面を堰状構造体6及び肉厚部34に接続した構成を有している。接続部には、図3Aに示した実施形態と同様にOリングを挟持させるようにしてもよい。板バネ部材33dは、金属板に替えて、クロロプレンゴムや天然ゴム等により成型するようにしてもよい。なお、図示したように、堰状構造体6及び肉厚部34は、L字形状に形成されており、板バネ部材33dの端面と対峙する接続面を有している。
 また、内槽2と外槽3との間に窒素ガス等の不活性ガスを充填するようにしてもよい。例えば、堰状構造体6に不活性ガス導入管61を接続し、外槽3に不活性ガス排出管35を接続することにより、内槽2と外槽3との隙間に不活性ガスを充填することができる。この不活性ガスは、内槽2と外槽3との隙間に存在する湿気や空気を外部に押し出すためのキャリアガスとしての機能を有し、液化ガスを貯蔵する内槽2の周囲から空気を排斥し内槽2から液化ガスが漏洩した場合であっても爆発の発生を防止する役割を果たす。
 不活性ガスの導入は、液化ガスタンク1の設置時のみに行ってもよいし、常時行うようにしてもよい。また、内槽2と外槽3との隙間に不活性ガスを封入して、外槽3内の圧力を外槽3の外部環境の圧力(例えば、大気圧)よりも若干高く設定することにより、湿気や空気等の内部侵入を効果的に抑制することもできる。なお、不活性ガス導入管61及び不活性ガス排出管35の配置は、図示したものに限定されるものではなく、不活性ガス排出管35を外槽3の側面部に配置してもよいし、不活性ガス導入管61を外槽3に配置するようにしてもよい。
 次に、本発明の第二実施形態に係る液化ガスタンクについて、図4及び図5を参照しつつ説明する。ここで、図4は、本発明の第二実施形態に係る液化ガスタンクの構成図であり、図4Aは概略断面図、図4Bは上面図、を示している。図5は、図4に示した液化ガスタンクのA部拡大図であり、図5Aは第二実施形態、図5Bは第一変形例、図5Cは第二変形例、を示している。なお、上述した第一実施形態と同じ構成部品については、同じ符号を付して重複した説明を省略する。
 図4及び図5に示した第二実施形態及びその変形例は、内槽2にコーミング部23を形成したものである。したがって、内槽2と外槽3との接続方法が第一実施形態とは異なる構成となる。具体的には、内槽2の上面部2aの略中央部には、配管等の艤装品21を挿通するための貫通部22が形成されており、図5Aに示したように、貫通部22の外周に沿ってコーミング部23が形成されている。コーミング部23は、例えば、内槽2の断熱材24と略同じ高さとなるように形成される。
 また、図5Aに示したように、外槽3の開口部31には内側に屈曲した縁部31aが形成されており、この縁部31aを内槽2の貫通部22の外周に形成されたコーミング部23に沿って挿入することにより、外槽3の位置決めを行うようにしている。この縁部31aは、コーミング部23に隙間なく挿入されてもよいし、一定の隙間を持って挿入されてもよい。また、貫通部22及び開口部31が不動点G上に配置されている場合には、コーミング部23と外槽3との相対的な移動量は大きくないことから、縁部31aとコーミング部23とを溶接等により接合するようにしてもよい。なお、他の構成部品により外槽3を位置決めできる場合には、縁部31aは省略するようにしてもよい。
 開口部31は、縁部31aにより形成された空間に断熱材24が充填された後、蓋部材32が配置されて溶接等により気密に接続される。また、蓋部材32における艤装品21の貫通部30も溶接等により気密に接続される。蓋部材32と外槽3との間や蓋部材32の貫通部30は、気密性を維持するために、シール部材を配置するようにしてもよい。
 ここで、開口部31の変形例について説明する。図5Bに示した第一変形例は、コーミング部23と外槽3(縁部31a)との間を気密にシールして、断熱材24等を含む内槽2と外槽3との間に形成される空間と開口部31により形成される空間とを分離するようにしたものである。具体的には、コーミング部23と縁部31aとの間にシール部材31bを配置し、ボルト・ナット等の締結具31cにより、コーミング部23と外槽3との間を気密にシールしてもよいし、コーミング部23と縁部31aとの間を溶接等により気密にシールしてもよい。この場合、蓋部材32は、気密性を備えている必要はなく、簡易な接続方法により外槽3に固定される。
 また、図5Cに示した第二変形例は、外槽3の開口部31が縁部31aを有しない場合を示している。具体的には、コーミング部23は、先端部が水平方向に拡径したフランジ部23aを有しており、フランジ部23a上に開口部31を有する外槽3が配置される。かかる第二変形例において、図5Aに示した第二実施形態と同様に、蓋部材32を外槽3に気密に接続するようにしてもよいし、図5Bに示した第一変形例と同様に、外槽3とフランジ部23aとの間を気密に接続するようにしてもよい。
 次に、本発明の第三実施形態に係る液化ガスタンクについて、図6を参照しつつ説明する。ここで、図6は、本発明の第三実施形態に係る液化ガスタンクを示す図であり、図6Aは概略断面図、図6Bは第一変形例、を示している。なお、上述した第一実施形態と同じ構成部品については、同じ符号を付して重複した説明を省略する。
 図6A及び図6Bに示した第三実施形態は、内槽2に挿通される艤装品21が、内槽2の底面部2cに配置されているものである。具体的には、図6Aに示したように、艤装品21の一部は、堰状構造体6を貫通して内槽2の底部に挿入され底面部2cを貫通して内槽2の内部に挿通されるように構成されている。また、艤装品21は、その中間部に、艤装品21(配管)の開閉を処理する開閉弁21aと、艤装品21の内槽2側の固定部と堰状構造体6の固定部とを接続する連結部21bと、内槽2の熱伸縮に伴う艤装品21の移動量を吸収する管伸縮継手21cと、を有する。図6Aに示した第三実施形態では、開閉弁21a、連結部21b及び管伸縮継手21cをこの順番に並べて、内槽2と外槽3との間に配置されるように構成されている。かかる構成によれば、配管等の艤装品21の長さを短くすることができ、艤装品21を外槽3が支持する必要がなく支持構造を簡略化することができる。また、艤装品21を堰状構造体6に固定する場合には、液化ガスタンク1の設置時や交換時において、艤装品21の内槽2側の固定部と堰状構造体6の固定部とを個別に接続してから、これらを連結部21bで接続するようにすればよい。
 一方、図6Bに示した第三実施形態の第一変形例では、艤装品21の一部は、伸縮機構部33の下部を貫通して内槽2の底部に挿入され、底面部2cを貫通して内槽2の内部に挿通されるように構成されている。かかる第一変形例では、管伸縮継手21c、開閉弁21a及び連結部21bをこの順番に並べて、管伸縮継手21cを内槽2と外槽3との間に配置し、開閉弁21a及び連結部21bを外槽3の外側に配置するようにしている。この場合、管伸縮継手21cは、内槽2と外槽3との相対移動に伴う艤装品21の移動量を吸収する。また、艤装品21を伸縮機構部33に固定する場合には、液化ガスタンク1の設置時や交換時において、外槽3の工事と一緒に設置又は交換するようにすればよい。
 上述した第三実施形態及び第一変形例において、開閉弁21a、連結部21b及び管伸縮継手21cの構成については、図示したものに限定されず、必要に応じて、個数、艤装品21における配置位置、並び順等を適宜変更することができる。また、全ての艤装品21を内槽2の底部に集約するようにしてもよい。なお、上述した第三実施形態及び第一変形例において、第一実施形態に示した液化ガスタンク1を基準にして説明したが、第二実施形態等、他の実施形態に係る液化ガスタンク1にも適用することができる。
 次に、上述した液化ガスタンク1の設置方法について図7及び図8を参照しつつ説明する。図7は、図4に示した第二実施形態に係る液化ガスタンクの設置方法を示す図であり、図7Aは基礎構築工程、図7Bは内槽設置工程、図7Cは外槽設置工程、を示している。図8は、液化ガスタンクの設置方法の変形例を示す図であり、図8Aは基礎構築工程、図8Bは内外槽設置工程、を示している。
 図7Aに示した基礎構築工程は、床面Fに基盤部4及び堰状構造体6を設置する工程である。図7Bに示した内槽設置工程は、内槽2を基盤部4上に配置する工程である。具体的には、内槽2の下面に支持ブロック5を係止させ、支持ブロック5を基盤部4上に載置する。図7Cに示した外槽設置工程は、内槽2に外槽3を覆い被せて堰状構造体6に接続する工程である。具体的には、外槽3の天井部3aが内槽2の上面部2aに支持されるように、外槽3を内槽2に覆い被せ、外槽3の下端部の肉厚部34と堰状構造体6との間に伸縮機構部33を接続することにより、外槽3を堰状構造体6に固定する。その後、艤装品21を内槽2内に挿通して艤装し、蓋部材32を艤装品21に挿通して外槽3に接続する。内槽2、外槽3及び艤装品21等の搬送及び移動には、クレーン等の荷役設備を使用する。なお、艤装品21の艤装は、内槽2を載置する前であってもよいし、外槽3を装着する前であってもよい。また、伸縮機構部33は外槽3を装着する前に外槽3の肉厚部34に設置しておいてもよい。
 また、伸縮機構部33を取り外すことにより、外槽3及び内槽2を基盤部4から容易に移動させることができる。すなわち、内槽2及び外槽3は床面Fから着脱可能に構成されており、内槽2又は外槽3は交換可能に構成されている。したがって、内槽2に貯蔵された液化ガスの残量がなくなった場合であっても、内槽2を交換するだけで燃料として使用される液化ガスを補充することができる。また、予め工場や貯蔵基地等で液化ガスを内槽2に封入して、車両等で搬送することができ、貯蔵基地から離れた場所であっても液化ガスタンク1を容易に設置することができる。
 図8に示した液化ガスタンク1の設置方法の変形例は、外槽3を予め内槽2に覆い被せた状態にしておいてから、内槽2及び外槽3を基盤部4上に載置するようにしたものである。図8Aに示した基礎構築工程は、床面Fに基盤部4及び堰状構造体6を設置する工程である。図8Bに示した内外槽設置工程は、予め工場や貯蔵基地等で外槽3を内槽2に覆い被せて艤装品21等を接続した組立体を基盤部4上に載置する。そして、外槽3の肉厚部34と堰状構造体6との間に伸縮機構部33を接続するようにしている。かかる方法によっても、内槽2及び外槽3を床面Fから着脱可能に構成することができる。また、伸縮機構部33は内外槽組立体を基盤部4上に載置する前に外槽3の肉厚部34に設置しておいてもよい。
 上述した本実施形態に係る液化ガスタンク1によれば、内槽2を床面Fに対して自立可能に構成し、内槽2に外槽3を支持させることによって、外槽3の構造を簡素化することができ、設置面積を少なくすることができ、コストを低減することができる。また、外槽3を内槽2に対して相対的に水平移動可能かつ垂直方向移動可能に構成することにより、内槽2にLNG等の液化ガスを貯蔵した場合であっても、それによって生じる内槽2の伸縮(熱膨張や熱収縮)を許容しつつ、内槽2を外部環境から保護することができる。また、簡易な構造としたことにより、液化ガスタンク1の設置や交換を容易に行うことができ、液化ガスを燃料として使用した場合であっても、迅速に燃料の補充を行うことができる。
 特に、LNG受け入れ基地を持たない遠隔地や船舶・浮体構造物の上甲板上等のように周囲を船体構造等で囲まれない区画(曝露部)に対しても、容易に液化ガスタンクを設置することができ、液化ガスを発電燃料や推進燃料として使用することができる。
 次に、本発明の他の実施形態に係る液化ガスタンク1について図9~図11を参照しつつ説明する。ここで、図9は、本発明の他の実施形態に係る液化ガスタンクを示す概略断面図であり、図9Aは第四実施形態、図9Bは第五実施形態、図9Cは第六実施形態、を示している。図10は、本発明の第七実施形態に係る液化ガスタンクの構成図であり、図10Aは概略断面図、図10Bは外槽壁面構成図、図10Cは外槽壁面構成の第一変形例、図10Dは外槽壁面構成の第二変形例、を示している。図11は、本発明の第八実施形態に係る液化ガスタンクの構成図であり、図11Aは概略断面図、図11Bは側面図、を示している。なお、上述した第一実施形態又は第二実施形態と同じ構成部品については、同じ符号を付して重複した説明を省略する。
 図9Aに示した第四実施形態に係る液化ガスタンク1は、艤装品21の挿通部をドーム構造に形成したものである。具体的には、内槽2に形成されたコーミング部23を外槽3の天井部3aよりも上方に突出させた構造を有する。蓋部材32は、図示したように、開口部31を覆う凸部を有していてもよいし、コーミング部23の上面部のみを覆う平板状であってもよい。内槽2及び外槽3における艤装品21の挿通部は、例えば、図5A~図5Cに示した構成と同様の構成を有する。なお、図示した第四実施形態は、第二実施形態を基準にしているが、同様の構成を第一実施形態に適用することもできる。
 図9Bに示した第五実施形態に係る液化ガスタンク1は、内槽2と外槽3との間に弾性体7を配置したものである。弾性体7は、風圧等により外槽3に加わる外力を内槽2に伝達することによって外槽3の移動を抑制する部品である。具体的には、内槽2の側面部2bと外槽3の側面部3bとの間に複数の弾性体7が配置されており、外槽3を水平方向に付勢するように構成している。かかる弾性体7には、コイルバネ、ゴム部材、油圧ダンパ等、種々の形態のものを使用することができる。なお、図示した第五実施形態は、第二実施形態を基準にしているが、同様の構成を第一実施形態に適用することもできる。
 図9Cに示した第六実施形態に係る液化ガスタンク1は、内槽2の全面を外槽3により被覆したものである。具体的には、外槽3の底面部3cにより、内槽2の底面部2cを覆うように構成している。このとき、外槽3の底面部3cは、支持ブロック5を避けるように配置され、支持ブロック5に沿って垂直方向に摺動可能に構成されてもよい。支持ブロック5と外槽3の底面部3cとの間には、シール部材が配置されてもよいし、不活性ガス導入管61から内槽2及び外槽3の隙間に不活性ガスを供給して加圧状態にするようにしてもよい。かかる第六実施形態では、堰状構造体6を省略することができる。なお、図示した第六実施形態は、第二実施形態を基準にしているが、同様の構成を第一実施形態に適用することもできる。
 また、外槽3は、金属薄板に替えて、湿気防止用のアルミテープにより構成するようにしてもよい。かかるアルミテープは粘着性を有することから、内槽2の外面に外槽3を直接的に貼り付ける構成となる。このとき、アルミテープが内槽2の伸縮に応じて変形できるように、適度な弛みを持たせておいた方がよい。
 図10Aに示した第七実施形態に係る液化ガスタンク1は、図9Cに示した第六実施形態において、外槽3の側面部3b及び底面部3cを壁面そのものが伸縮可能な構造に形成したものである。具体的には、図10Bに示したように、外槽3の側面部3b及び底面部3cを構成する壁面は、複数の細かい凹凸が連続的に形成されたリンプル構造を有している。なお、図10B~図10Dの各図において、上段は平面図、下段は断面図を示している。
 また、外槽3の側面部3b及び底面部3cを構成する壁面は、図10Cに示したように、一定の間隔で水平方向及び垂直方向に溝部が形成された格子状構造であってもよいし、図10Dに示したように、所定形状の凹凸面が全面に形成されたダイヤカット構造であってもよい。いずれの構成であっても、外槽3の側面部3b及び底面部3cを構成する壁面は、水平方向及び垂直方向に伸縮可能であり、内槽2との伸縮量の差分を吸収することができる。なお、外槽3の天井部3aにも、図10B~図10Dに示した伸縮構造を適用するようにしてもよい。また、第一実施形態~第五実施形態における外槽3の側面部3b及び外槽3の天井部3aに、図10B~図10Dに示した伸縮構造を適用するようにしてもよい。
 図11A及び図11Bに示した第八実施形態に係る液化ガスタンク1は、内槽2を円筒型に構成したものである。内槽2は、貯蔵効率を重視した場合には、図1に示したような角型とすることが好ましい。一方で、内槽2の耐圧性能を重視した場合には、図11A及び図11Bに示したような円筒型に構成してもよい。内槽2を円筒型とした場合には、外槽3の天井部3aを内槽2の上面部2aに沿った曲面状に形成すればよく、蓋部材32も外槽3の天井部3aの形状に沿って湾曲させるようにすればよい。なお、内槽2の断面形状は、図示した円形のものに限定されず、楕円形状であってもよい。
 上述した第一実施形態~第八実施形態において、液化ガスを燃料として使用する場合、内槽2の容量は、例えば、500~5000m程度の大きさであり、液化ガスタンク1(特に、外槽3)の構成を簡易な構造としたことにより、省スペース化を図ることができる。したがって、工場の一部や船体の甲板上等の比較的狭い空間にも容易に設置することができる。特に、船体の甲板上に液化ガスタンク1を設置する場合には、背を高くすると視界を遮ることとなるため、内槽2を背の低い略平板形状の角型に形成したり、第八実施形態のように横倒しにした円筒型に形成したり、円筒型を扁平状に形成したりするようにしてもよい。なお、内槽2及び外槽3の形状は、上述したものに限定されず、設置面積及び設置空間に応じて、多角形断面形状、凹凸断面形状等、種々の形状に形成することができる。
 本発明は上述した実施形態に限定されず、LNG(液化天然ガス)以外の液化ガス(例えば、LPG)にも適用することができる、第一実施形態~第八実施形態を適宜組み合わせて使用することができる等、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。
1 液化ガスタンク
2 内槽
2a 上面部
3 外槽
4 基盤部
5 支持ブロック
6 堰状構造体
7 弾性体
21 艤装品
30 貫通部
31 開口部
32 蓋部材
33 伸縮機構部

Claims (9)

  1.  液化ガスを貯蔵する液化ガスタンクにおいて、
     前記液化ガスを貯蔵するとともに床面から自立可能に配置される内槽と、
     該内槽に覆い被せられて前記内槽の上面部により支持される外槽と、を有し、
     前記外槽は、前記内槽の水平方向の伸縮に応じて前記内槽の上面部を摺動可能、かつ、前記内槽の垂直方向の伸縮に応じて移動可能に構成されている、ことを特徴とする液化ガスタンク。
  2.  前記外槽は、下部外周に沿って配置された伸縮機構部を有する、又は、壁面そのものが伸縮可能な構造に形成されている、ことを特徴とする請求項1に記載の液化ガスタンク。
  3.  前記内槽及び前記外槽は前記床面から着脱可能に構成されており、前記内槽又は前記外槽は交換可能に構成されている、ことを特徴とする請求項1に記載の液化ガスタンク。
  4.  前記床面には前記内槽を支持する基盤部が配置され、該基盤部と前記内槽との間に支持ブロックが配置される、ことを特徴とする請求項1に記載の液化ガスタンク。
  5.  前記床面には前記基盤部を囲うように堰状構造体が配置され、該堰状構造体に前記外槽が接続される、ことを特徴とする請求項4に記載の液化ガスタンク。
  6.  前記外槽は、前記内槽に艤装品を挿通する貫通部を有し、該貫通部には蓋部材が配置される、ことを特徴とする請求項1に記載の液化ガスタンク。
  7.  前記内槽に挿通される艤装品が、前記内槽の底面部に配置されている、ことを特徴とする請求項1に記載の液化ガスタンク。
  8.  前記内槽と前記外槽との間に不活性ガスが充填される、ことを特徴とする請求項1に記載の液化ガスタンク。
  9.  前記内槽と前記外槽との間に弾性体を配置した、ことを特徴とする請求項1に記載の液化ガスタンク。
PCT/JP2012/065598 2011-06-24 2012-06-19 液化ガスタンク WO2012176757A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES12802710T ES2729576T3 (es) 2011-06-24 2012-06-19 Tanque de gas licuado
EP12802710.9A EP2725282B1 (en) 2011-06-24 2012-06-19 Liquefied gas tank
BR112013033173A BR112013033173A2 (pt) 2011-06-24 2012-06-19 tanque de gás liquefeito para armazenar gás liquefeito
PL12802710T PL2725282T3 (pl) 2011-06-24 2012-06-19 Zbiornik na gaz skroplony
US14/127,681 US9181013B2 (en) 2011-06-24 2012-06-19 Liquefied gas tank
CN201280031337.8A CN103814249B (zh) 2011-06-24 2012-06-19 液化气罐
KR1020147000471A KR101565881B1 (ko) 2011-06-24 2012-06-19 액화 가스 탱크

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-140410 2011-06-24
JP2011140410A JP5782305B2 (ja) 2011-06-24 2011-06-24 液化ガスタンク

Publications (1)

Publication Number Publication Date
WO2012176757A1 true WO2012176757A1 (ja) 2012-12-27

Family

ID=47422592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065598 WO2012176757A1 (ja) 2011-06-24 2012-06-19 液化ガスタンク

Country Status (9)

Country Link
US (1) US9181013B2 (ja)
EP (1) EP2725282B1 (ja)
JP (1) JP5782305B2 (ja)
KR (1) KR101565881B1 (ja)
CN (1) CN103814249B (ja)
BR (1) BR112013033173A2 (ja)
ES (1) ES2729576T3 (ja)
PL (1) PL2725282T3 (ja)
WO (1) WO2012176757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068383A1 (ja) * 2013-11-07 2015-05-14 川崎重工業株式会社 液化ガスタンクとそれを備えた水上構造物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190263578A1 (en) * 2018-02-27 2019-08-29 Liquidpower Specialty Products Inc. Storage vessel
JP7161293B2 (ja) * 2018-03-02 2022-10-26 川崎重工業株式会社 二重殻タンクおよび液化ガス運搬船
CN112696607A (zh) * 2020-10-29 2021-04-23 江苏凡煜机械科技有限公司 一种具有平衡稳压结构的高压罐
KR102496597B1 (ko) * 2021-03-02 2023-02-07 (주)동성화인텍 초저온 액화 가스 저장 탱크 목재 지지대용 단열 시스템
CN113829871B (zh) * 2021-10-31 2024-02-13 东风商用车有限公司 一种可调频减震轻量化燃油箱托架
KR102655955B1 (ko) * 2022-03-23 2024-04-09 (주)이노스페이스 발사체용 분리형 2중 겹벽 단열탱크

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027108A (ja) * 1973-07-12 1975-03-20
US3882809A (en) * 1973-11-30 1975-05-13 Chicago Bridge & Iron Co Storage vessel for ship transport of liquefied gas
JPS59160692A (ja) * 1983-02-28 1984-09-11 Hitachi Zosen Corp 低温液化ガス運搬船におけるタンクの支持部防熱構造
JPH0522289U (ja) * 1991-09-04 1993-03-23 三菱重工業株式会社 液化ガス運搬船のタンクカバー
JPH07248097A (ja) * 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd 低温液化ガスタンク
JPH08295394A (ja) * 1995-04-26 1996-11-12 Ishikawajima Harima Heavy Ind Co Ltd 極低温液化ガス用の低温タンク
US20070125789A1 (en) * 2005-12-05 2007-06-07 Abdo Thomas S Propane tank cover
JP2008534371A (ja) * 2005-04-01 2008-08-28 オルカ フェー.オー.エフ. 変形吸収部が設けられた液体輸送タンクを備える船舶

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858136A (en) * 1954-02-23 1958-10-28 Air Reduction Transport container for liquefied gases
US3374641A (en) * 1966-04-25 1968-03-26 Mcmullen John J Arrangement for protecting liquefied gas transporting vehicles
FR2168674A5 (ja) * 1972-01-20 1973-08-31 Worms Engeenering
US3793976A (en) * 1973-01-29 1974-02-26 Phillips Petroleum Co Multilayered, insulated fluid tank and structure
NO743932L (ja) * 1974-10-31 1976-05-03 Moss Rosenberg Verft As
DE2457264C2 (de) * 1974-12-04 1977-01-13 Linde Ag Vakuumisolierter lager- oder transportbehaelter fuer tiefsiedende verfluessigte gase
US3978901A (en) * 1975-06-20 1976-09-07 Jones Walter C Elastic storage tank
JPS5244411U (ja) * 1975-09-25 1977-03-29
CA1319263C (en) * 1989-04-03 1993-06-22 Roy C. Reid Support system for vacuum insulated cylindrical cryogenic vessels
JPH0527108A (ja) 1991-07-18 1993-02-05 Ishikawajima Harima Heavy Ind Co Ltd ラミナーグレーテイングの製造方法
TW261654B (ja) * 1993-05-20 1995-11-01 Ishikawajima Harima Heavy Ind
NL9500149A (nl) * 1995-01-27 1996-09-02 Euro Maintenance Lease Prod Bv Samenvouwbare houder.
US6484899B1 (en) * 2000-10-31 2002-11-26 Snyder Industries, Inc. Fluid tank assembly
EP1487694B1 (en) * 2002-03-28 2005-10-26 Aker Finnyards Oy A method and an arrangement for reducing the weight and optimizing the longitudinal strength of a water-craft
JP2007278400A (ja) 2006-04-07 2007-10-25 Mitsubishi Heavy Ind Ltd Lngタンク
JP2011000901A (ja) 2009-06-16 2011-01-06 Ihi Marine United Inc 液化ガスタンクのドーム構造
JP6155758B2 (ja) * 2013-03-29 2017-07-05 株式会社Ihi 低温液体タンク

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027108A (ja) * 1973-07-12 1975-03-20
US3882809A (en) * 1973-11-30 1975-05-13 Chicago Bridge & Iron Co Storage vessel for ship transport of liquefied gas
JPS59160692A (ja) * 1983-02-28 1984-09-11 Hitachi Zosen Corp 低温液化ガス運搬船におけるタンクの支持部防熱構造
JPH0522289U (ja) * 1991-09-04 1993-03-23 三菱重工業株式会社 液化ガス運搬船のタンクカバー
JPH07248097A (ja) * 1994-03-11 1995-09-26 Ishikawajima Harima Heavy Ind Co Ltd 低温液化ガスタンク
JPH08295394A (ja) * 1995-04-26 1996-11-12 Ishikawajima Harima Heavy Ind Co Ltd 極低温液化ガス用の低温タンク
JP2008534371A (ja) * 2005-04-01 2008-08-28 オルカ フェー.オー.エフ. 変形吸収部が設けられた液体輸送タンクを備える船舶
US20070125789A1 (en) * 2005-12-05 2007-06-07 Abdo Thomas S Propane tank cover

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725282A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068383A1 (ja) * 2013-11-07 2015-05-14 川崎重工業株式会社 液化ガスタンクとそれを備えた水上構造物
CN105683644A (zh) * 2013-11-07 2016-06-15 川崎重工业株式会社 液化气体储罐和具备该液化气体储罐的水上结构物
JPWO2015068383A1 (ja) * 2013-11-07 2017-03-09 川崎重工業株式会社 液化ガスタンクとそれを備えた水上構造物
CN105683644B (zh) * 2013-11-07 2017-07-07 川崎重工业株式会社 液化气体储罐和具备该液化气体储罐的水上结构物
KR101812621B1 (ko) * 2013-11-07 2017-12-27 카와사키 주코교 카부시키 카이샤 액화가스 탱크 및 이를 구비하는 수상구조물
US10259538B2 (en) 2013-11-07 2019-04-16 Kawasaki Jukogyo Kabushiki Kaisha Liquefied gas tank and on-water structure including the same

Also Published As

Publication number Publication date
JP2013006613A (ja) 2013-01-10
EP2725282A4 (en) 2015-07-15
KR20140017702A (ko) 2014-02-11
KR101565881B1 (ko) 2015-11-05
US9181013B2 (en) 2015-11-10
CN103814249A (zh) 2014-05-21
US20140131360A1 (en) 2014-05-15
ES2729576T3 (es) 2019-11-04
JP5782305B2 (ja) 2015-09-24
CN103814249B (zh) 2015-05-20
EP2725282A1 (en) 2014-04-30
EP2725282B1 (en) 2019-03-06
BR112013033173A2 (pt) 2017-03-01
PL2725282T3 (pl) 2019-08-30

Similar Documents

Publication Publication Date Title
JP5782305B2 (ja) 液化ガスタンク
CN107820554B (zh) 配备有波纹金属板的拐角布置的次密封膜的密封隔热罐
KR101959400B1 (ko) 파이프를 포함하는 탱크 벽
KR102293138B1 (ko) 탱크 벽의 제조를 위한 단열 에지 블록
KR100649316B1 (ko) 액화천연가스 저장탱크의 앵커 구조체
CN109416150B (zh) 用于密封隔热罐的气体穹顶构造
CN112313443B (zh) 热绝缘密封罐
JP5688348B2 (ja) 燃料タンク及び浮体構造物
JP7254957B2 (ja) 密閉断熱タンク
CN109073158B (zh) 热隔离密封罐
KR20190045065A (ko) 밀봉 및 단열 탱크
KR101276128B1 (ko) 펌프타워의 베이스 지지대 설치 구조
US20170144733A1 (en) Liquefied natural gas storage tank and insulating wall securing device for liquefied natural gas storage tank
CN110998170B (zh) 低温流体储存罐
US20120145722A1 (en) Fluid Enclosure Apparatus
JP2013238285A (ja) 液体貯蔵タンク
KR101337630B1 (ko) 액화 천연 가스 저장 탱크
CN112424525B (zh) 流体存储设施
KR101359981B1 (ko) 액화천연가스의 저장용기
KR102165068B1 (ko) 액화천연가스 저장탱크 및 액화천연가스 저장 탱크의 단열벽 고정장치
KR100765933B1 (ko) Lng 저장탱크 내에 밀봉벽 및 단열벽을 지지하기 위한지지 구조체
KR20240058875A (ko) 액화 가스를 위한 저장 시설
KR101310967B1 (ko) 펌프타워의 베이스 지지대 설치 구조
KR101766384B1 (ko) 앵커 구조체, 앵커 구조체를 포함하는 액화천연가스 저장탱크 및 액화천연가스 저장탱크 제조 방법
KR101594104B1 (ko) 액화천연가스 저장탱크 및 액화천연가스 저장 탱크의 밀봉벽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802710

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14127681

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147000471

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033173

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033173

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131220