WO2012176475A1 - 磁歪発電薄膜片、その製造方法及び磁歪発電モジュール - Google Patents

磁歪発電薄膜片、その製造方法及び磁歪発電モジュール Download PDF

Info

Publication number
WO2012176475A1
WO2012176475A1 PCT/JP2012/004076 JP2012004076W WO2012176475A1 WO 2012176475 A1 WO2012176475 A1 WO 2012176475A1 JP 2012004076 W JP2012004076 W JP 2012004076W WO 2012176475 A1 WO2012176475 A1 WO 2012176475A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetostrictive
wiring pattern
power generation
thin film
film piece
Prior art date
Application number
PCT/JP2012/004076
Other languages
English (en)
French (fr)
Inventor
上野 敏幸
徳永 博司
宮本 学
哲也 上玉利
利明 西井
Original Assignee
国立大学法人金沢大学
株式会社M.T.C
テセラ・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学, 株式会社M.T.C, テセラ・テクノロジー株式会社 filed Critical 国立大学法人金沢大学
Priority to JP2013521476A priority Critical patent/JP6076250B2/ja
Publication of WO2012176475A1 publication Critical patent/WO2012176475A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/101Magnetostrictive devices with mechanical input and electrical output, e.g. generators, sensors

Definitions

  • the present invention relates to a magnetostrictive power generation thin film piece that generates electric power from vibration using a magnetostrictive material, a manufacturing method thereof, and a magnetostrictive power generation module using the magnetostrictive power generation thin film piece.
  • piezoelectric elements are to generate power by deforming the piezoelectric elements by applying external force to the piezoelectric elements in some way.
  • a method of deforming the piezoelectric element by applying vibration for example, a method of indirectly applying a pressure such as wind pressure or sound pressure, a method of causing an object such as a weight to collide with the piezoelectric element, or an object to be deformed
  • a method of attaching a piezoelectric element for example, there is a method of attaching a piezoelectric element.
  • MEMS Micro Electro Mechanical Systems
  • Patent Document 1 discloses a sound power generation device that generates electric power using a piezoelectric element using air pressure fluctuation caused by sound, and a vibration power generation apparatus that generates electric power using a piezoelectric element using pressure fluctuation caused by vibration. Yes.
  • a bias magnet magnetized in two poles a magnetostrictive material in which the magnetic permeability changes due to an inverse magnetostriction effect by applying an external force, and the flow of magnetic flux changes
  • a magnetostrictive material there is disclosed a power generating element that includes a compression means for periodically compressing a coil in a direction having magnetic anisotropy and a coil means for inducing a current by the periodically changing magnetic flux.
  • the piezoelectric material is a brittle material and is weak against bending and impact. Therefore, there is a problem that an excessive load cannot be applied and it is difficult to apply a large bend or impact in order to increase the amount of power generation.
  • the piezoelectric element is an electrically capacitive load, when a load having a high impedance at a low frequency and having a lower impedance than that of the piezoelectric element is connected, the voltage generated in the load is reduced. There is a disadvantage that the electric power obtained is small and the efficiency of power generation is low.
  • Patent Document 2 the disadvantage of Patent Document 1 can be solved, but the power generation element is not small enough to be mounted on a sensor using MEMS.
  • the assembly work and the equipment related thereto become complicated and precise due to the combination of miniaturized and fine components, there is a problem that the defect rate becomes high, and it is difficult to mass-produce the power generating element.
  • the present invention has been made in view of such a situation, and is to provide a magnetostrictive power generation thin film piece that can be downsized and mass-produced, is resistant to bending and impact, and has a large amount of power generation. Objective.
  • a magnetostrictive power generation thin film piece is a magnetostrictive power generation thin film piece that generates electric power from vibration, and includes a magnetostrictive ribbon made of a magnetostrictive material, A coil composed of a conductive wiring pattern, and an insulating layer interposed between the magnetostrictive ribbon and the wiring pattern, and the thickness including the magnetostrictive ribbon, the coil, and the insulating layer is 500 ⁇ m or less. This has a sheet structure.
  • magnetostrictive power generation thin film pieces This makes it possible to miniaturize and mass-produce magnetostrictive power generation thin film pieces. Further, by using a magnetostrictive ribbon instead of the piezoelectric element, it is possible to provide a magnetostrictive power generation thin film piece that is resistant to bending and impact. Furthermore, by using a magnetostrictive ribbon in a magnetic field, a magnetostrictive power generation thin film piece with a large amount of power generation can be provided.
  • the coil and the insulating layer are composed of an upper surface flexible substrate and a lower surface flexible substrate bonded together with the magnetostrictive ribbon sandwiched therebetween, and the upper surface flexible substrate is the magnetostrictive ribbon of the wiring pattern.
  • the upper surface wiring pattern which is a wiring pattern facing the upper surface of the substrate, is sandwiched between two resin layers, and the lower surface flexible substrate is a wiring pattern facing the lower surface of the magnetostrictive ribbon among the wiring patterns.
  • a certain lower surface wiring pattern may be sandwiched between two resin layers, and the upper surface wiring pattern and the lower surface wiring pattern may constitute the coil.
  • the coil of the magnetostrictive power generation thin film piece is composed of the flexible substrate, the mechanical mechanism is minimized, and the high durability (long life) of the magnetostrictive power generation thin film piece is realized.
  • the flexible substrate is a withered technology for which mass production technology has been established, it is possible to mass-produce magnetostrictive power generation thin film pieces.
  • the magnetostrictive power generation thin film piece can be attached not only to a flat surface but also to a curved surface, thereby realizing easy installation and various applications.
  • the upper surface wiring pattern is composed of a plurality of linear wiring patterns that traverse the upper surface of the magnetostrictive ribbon
  • the lower surface wiring pattern is composed of a plurality of linear wiring patterns that traverse the lower surface of the magnetostrictive ribbon.
  • the plurality of linear wiring patterns constituting the upper surface wiring pattern and the plurality of linear wiring patterns constituting the lower surface wiring pattern are provided at the peripheral portions of the upper surface flexible substrate and the lower surface flexible substrate.
  • Each of the plurality of linear wiring patterns that are electrically connected via a plurality of through-holes and that constitute the upper surface wiring pattern each has a plurality of linear shapes that constitute the lower-surface wiring pattern via two through holes. May be electrically connected to a corresponding one of the wiring patterns.
  • the through hole is doubled, and as a result, the resistance to vibration is enhanced and the durability of the magnetostrictive power generation thin film piece is improved. Further, the contact resistance between the upper surface wiring pattern and the lower surface wiring pattern is lowered, and as a result, the impedance of the coil is lowered, so that a larger voltage is output as the generated voltage.
  • At least one of the upper surface wiring pattern and the lower surface wiring pattern includes a bent portion that bends the traveling direction of the wiring pattern by 90 degrees, and the traveling direction of the wiring pattern is bent by 90 degrees in an arc shape at the bent portion. It may be.
  • R is provided (the wiring pattern is formed in an arc shape), so that the coil wiring is cut when the magnetostrictive power generation thin film piece is vibrated. Is suppressed.
  • the coil is a MEMS device
  • the wiring pattern includes an upper surface wiring pattern provided to face the upper surface of the magnetostrictive ribbon and a lower surface wiring pattern provided to face the lower surface of the magnetostrictive ribbon. Are pasted together.
  • a thin and connected single coil (wiring pattern) can be formed by MEMS technology.
  • Each of the plurality of wiring patterns constituting the upper surface wiring pattern and each of the plurality of wiring patterns constituting the lower surface wiring pattern are joined in the vicinity of the side surface of the magnetostrictive ribbon through a solder material. Preferably it is.
  • the magnetostrictive ribbon and at least one of the upper surface wiring pattern and the lower surface wiring pattern are bonded via the insulating layer.
  • an upper surface substrate and a lower surface substrate are provided so as to sandwich the magnetostrictive ribbon and the coil.
  • the coil can be formed by a MEMS technique using a substrate such as an SOI substrate. And the structure which can attach a magnetostriction electric power generation thin film piece to a structure is completed.
  • At least one of the upper substrate and the lower substrate is provided with a recess on a surface facing the magnetostrictive ribbon.
  • the thickness of the magnetostrictive ribbon can be absorbed, so that the size can be further reduced.
  • the junction part of an upper surface wiring pattern and a lower surface wiring pattern can be enlarged, the quality of joining can also be improved more.
  • a magnetic field generator for applying a magnetic field to the magnetostrictive ribbon is provided.
  • the magnetostrictive material has a rectangular flat plate structure and has an easy axis of magnetization parallel to the longitudinal direction of the flat plate structure.
  • the magnetic field generator includes an N-pole magnet and an S-pole magnet installed so as to apply a magnetic field in the longitudinal direction of the flat plate structure.
  • the amount of power generation can be increased by applying a magnetic field to the easy magnetization axis of the magnetostrictive material.
  • the coil may be formed of an aminda-shaped coil sheet, and the magnetostrictive ribbon may be inserted into the coil sheet so as to be knitted.
  • the coil that circulates the magnetostrictive ribbon is composed of a single coil sheet, so that it is difficult to cause a problem in the contact portion caused by bonding the two coil layers.
  • the copper wire produced by the MEMS technology and the flexible substrate has a high resistance value because impurities are mixed to improve fluidity.
  • pure copper is used for the coil sheet. Since this is possible, the resistance value of the coil can be lowered.
  • the insulating layer is coated with the magnetostrictive ribbon, and the coil is a wiring pattern formed by a direct wiring method on the upper and lower surfaces of the magnetostrictive ribbon coated with the insulating layer. Also good.
  • the wiring pattern is firmly formed on the insulating film.
  • the present invention can also be realized as a method for manufacturing a magnetostrictive power generation thin film piece using a flexible substrate, or as a method for manufacturing a magnetostrictive power generation thin film piece using a MEMS technology.
  • the present invention can also be realized as a magnetostrictive power generation module including the above-described magnetostrictive power generation thin film piece and a power supply circuit that generates a predetermined DC voltage from an AC voltage generated in a coil included in the magnetostrictive power generation thin film piece. it can.
  • the present invention it is possible to provide a magnetostrictive power generation thin film piece that can be miniaturized and mass-produced, is resistant to bending and impact, and has a large amount of power generation.
  • FIG. 1 is a schematic diagram (cross-sectional view) of a power generation system including a magnetostrictive power generation thin film piece according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view (cross-sectional view) of portion A in FIG.
  • FIG. 3 is a diagram showing a power generation principle of a power generation system using the magnetostrictive power generation thin film piece according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an easy axis of magnetization of the magnetostrictive material according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic view (top view) of the magnetostrictive power generation thin film piece according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic diagram (cross-sectional view) of a power generation system including a magnetostrictive power generation thin film piece according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view (cross-sectional view) of portion A in
  • FIG. 6 is a schematic diagram (A-A ′ cross-sectional view in FIG. 5) of the magnetostrictive power generation thin film piece according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram (cross-sectional view along B-B ′ in FIG. 5) of the magnetostrictive power generation thin film piece according to the first embodiment of the present invention.
  • FIG. 8 is a schematic view of the magnetostrictive power generation thin film piece according to the first embodiment of the present invention (a side view seen from the arrow C-C ′ in FIG. 5).
  • FIG. 9 is a schematic diagram (top view) showing the wiring pattern of the coil of the magnetostrictive power generation thin film piece according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram (top view) showing the wiring pattern of the coil of the magnetostrictive power generation thin film piece according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram showing a manufacturing process of the magnetostrictive power generation thin film piece according to Embodiment 1 of the present invention.
  • FIG. 11A is a diagram showing a case where the direction of the magnetic lines of force passing through the magnetostrictive ribbon is different from the case of FIG. 3.
  • FIG. 11B is a diagram illustrating another case relating to a method of applying a bias magnetic field.
  • FIG. 12 is a schematic diagram showing a basic configuration of a magnetostrictive power generation thin film piece according to Embodiment 2 of the present invention.
  • 13 is a cross-sectional view taken along the line AA ′ of the magnetostrictive power generation thin film piece shown in FIG.
  • FIG. 14 is a diagram showing the characteristics of the wiring pattern formed on the flexible substrate.
  • FIG. 11A is a diagram showing a case where the direction of the magnetic lines of force passing through the magnetostrictive ribbon is different from the case of FIG. 3.
  • FIG. 11B is a diagram illustrating another case relating
  • FIG. 15 is a diagram showing an example in which a magnetostrictive power generation thin film piece is used by being attached to a motor casing (curved surface).
  • FIG. 16 is a flowchart showing a method for manufacturing a magnetostrictive power generation thin film piece according to Embodiment 2 of the present invention.
  • FIG. 17 is a diagram showing a basic configuration of a magnetostrictive power generation module using magnetostrictive power generation thin film pieces.
  • FIG. 18 is a diagram illustrating a mounting example of the magnetostrictive power generation module illustrated in FIG. 17.
  • FIG. 19 is a diagram illustrating an installation example of the magnetostrictive power generation module illustrated in FIG. 17.
  • FIG. 20 is a diagram illustrating a system example to which the magnetostrictive power generation module illustrated in FIG. 17 is applied.
  • FIG. 21 is a diagram showing another system example to which the magnetostrictive power generation module shown in FIG. 17 is applied.
  • FIG. 22 is a diagram illustrating another arrangement example of the magnetic field generation units (magnet layers).
  • FIG. 23 is a diagram illustrating a magnetostrictive power generation thin film piece using a coil sheet.
  • FIG. 24 is a diagram for explaining a coil forming method by a direct wiring method.
  • Embodiment 1 First, a power generation system including a magnetostrictive power generation thin film piece according to Embodiment 1 of the present invention will be described.
  • FIG. 1 is a schematic view (cross-sectional view) of a power generation system including a magnetostrictive power generation thin film piece according to Embodiment 1 of the present invention.
  • This power generation system includes a magnetostrictive power generation thin film piece 1, a structure 2, an electrode 3, and a magnet layer (corresponding to a magnetic field generation unit of the present invention) 20.
  • the magnetostrictive power generation thin film piece 1 has a sheet structure having a thickness of 500 ⁇ m or less, a magnetostrictive ribbon 10 that is a film-like magnetostrictive element made of a magnetostrictive material, a substrate 30, and an insulating layer 40. And a coil (corresponding to the wiring pattern of the present invention) 50.
  • the substrate 30 includes an upper substrate 30A and a lower substrate 30B.
  • the coil 50 includes an upper surface wiring pattern 50A and a lower surface wiring pattern 50B.
  • the thickness of the magnetostrictive power generation thin film piece (the thickness including the magnetostrictive ribbon 10, the coil 50, and the insulating layer 40, that is, the upper surface of the upper substrate 30A in FIG.
  • the length is up to 500 ⁇ m, more preferably 300 ⁇ m or less (250 ⁇ m in this embodiment).
  • Such thinning realizes a small and flexible magnetostrictive power generation thin film piece, which can be used by being attached to various vibration sources including not only a flat surface but also a curved surface.
  • the present invention has a feature in the structure of the magnetostrictive power generation thin film piece 1 and will be described in detail later with reference to FIGS.
  • the structure 2 is a vibrating structure (vibrating body) such as a bridge or an automobile, and the magnetostrictive power generation thin film piece 1 is installed on the structure 2. At this time, the magnetostrictive power generation thin film piece 1 is installed so that the lower surface substrate 30B and the structure 2 in the magnetostrictive power generation thin film piece 1 are bonded.
  • the electrode 3 is connected to the coil 50 in the magnetostrictive power generation thin film piece 1 and is an electrode for taking out the electric power generated by the magnetostrictive power generation thin film piece 1.
  • the magnet layer 20 is a neodymium magnet sheet or the like, and is installed on the opposite side to the structure 2 with the magnetostrictive power generation thin film piece 1 interposed therebetween.
  • the magnet layer 20 is formed by alternately arranging N-pole magnets and S-pole magnets that are magnetized on one side in the longitudinal direction of the magnetostrictive power generation thin film pieces 1 as shown in FIG. A magnetic field is applied in the longitudinal direction.
  • the magnetic field should just be applied to the longitudinal direction of the magnetostriction electric power generation thin film piece 1, and the said method of applying a magnetic field to the magnetostriction electric power generation thin film piece 1 is not restricted above.
  • FIG. 3 is a diagram showing a power generation principle of a power generation system using the magnetostrictive power generation thin film piece 1 according to the present embodiment.
  • the principle of power generation of the magnetostrictive power generation thin film piece 1 utilizes the inverse magnetostriction effect of the magnetostrictive material.
  • the inverse magnetostrictive effect is an effect in which magnetization is changed when stress is applied to a magnetized magnetostrictive material. Due to this change in magnetization, an induced voltage (or induced current) is generated in the coil 50 to generate power.
  • power is generated by the following procedure. 1. A magnetic field is applied to the magnetostrictive power generation thin film piece 1 by the magnet layer 20. 2. Due to the vibration of the structure 2, compressive stress is generated in the magnetostrictive power generation thin film piece 1. 3. The inverse magnetostrictive effect reduces the magnetic permeability of the magnetostrictive material. 4). The magnetic flux of the magnetostrictive material is reduced. 5. When the interlinkage magnetic flux of the coil 50 changes, an induced voltage is generated and electric power is generated.
  • the magnetostrictive ribbon 10 has a rectangular flat plate structure, and is made of a magnetostrictive material having an easy axis of magnetization in the longitudinal direction of the flat plate structure.
  • the magnetostrictive ribbon 10 is installed so that the axis of easy magnetization and the magnetic field from the magnet layer 20 are parallel to each other and the magnetic field passes through the magnetostrictive ribbon 10 in order to increase the amount of power generation.
  • the magnetostrictive ribbon 10 has a rectangular parallelepiped (thin film or ribbon) shape having a cross section of 10 mm ⁇ 40 mm and a thickness of 20 ⁇ m.
  • the magnetostrictive material is, for example, an amorphous magnetostrictive ribbon (component example: (Fe 1-x Co x ) 78 B 14 ).
  • Magnetostrictive materials include Metglass (trade name), metallic glass, Fe—Ga alloy and Fe—Co alloy ribbons, Fe—Ga alloy and Fe—Al alloy thin films, and Fe—Si—B alloy thin films.
  • Metglass trade name
  • metallic glass metallic glass
  • Fe—Ga alloy and Fe—Co alloy ribbons Fe—Ga alloy and Fe—Al alloy thin films
  • Fe—Si—B alloy thin films Fe—Si—B alloy thin films.
  • a belt may be used.
  • the substrate 30 includes an upper surface substrate 30 ⁇ / b> A and a lower surface substrate 30 ⁇ / b> B so as to sandwich the magnetostrictive ribbon 10 and the coil 50.
  • Both the upper substrate 30A and the lower substrate 30B have a flaky shape with a planar dimension of 30 mm ⁇ 12 mm and a thickness of 50 ⁇ m.
  • the upper substrate 30A should be as thin as possible.
  • the electrode 3 is attached to the upper substrate 30 ⁇ / b> A in order to take out the electric power generated by the magnetostrictive power generation thin film piece 1.
  • the insulating layer 40 is provided between the magnetostrictive ribbon 10 and the coil 50 in order to prevent the magnetostrictive ribbon 10 and the coil 50 from conducting.
  • the insulating layer 40 is covered, for example, on the surface of the magnetostrictive ribbon 10.
  • the thickness of the insulating layer 40 is 2 ⁇ m, and the material is polyimide.
  • the coil 50 is configured by adhering an upper surface wiring pattern 50 ⁇ / b> A provided facing the upper surface of the magnetostrictive ribbon 10 and a lower surface wiring pattern 50 ⁇ / b> B provided facing the lower surface of the magnetostrictive ribbon 10.
  • the upper surface wiring pattern 50A and the lower surface wiring pattern 50B are arranged in a zigzag manner as shown in FIG.
  • the upper surface wiring pattern 50A is arranged along the concave portion provided in the upper surface substrate 30A in order to avoid the thickness of the magnetostrictive ribbon 10, and the lower surface wiring pattern 50B.
  • the upper surface wiring pattern 50A and the lower surface wiring pattern 50B are formed on the surface facing the magnetostrictive ribbon 10 on the upper surface substrate 30A and the lower surface substrate 30B.
  • the material of the coil 50 is, for example, Cu.
  • the wiring pattern of the coil 50 has a rectangular parallelepiped shape with a cross section of 15 ⁇ m ⁇ 30 ⁇ m, and the spacing between the wiring patterns (the distance between the centers of the wiring patterns) is 30 ⁇ m.
  • Each of the plurality of wiring patterns constituting the upper surface wiring pattern 50A and each of the plurality of wiring patterns constituting the lower surface wiring pattern 50B is made of a magnetostrictive ribbon through a solder material, for example, an Sn—Ag alloy. Bonded in the vicinity of 10 side surfaces.
  • a solder material for example, an Sn—Ag alloy. Bonded in the vicinity of 10 side surfaces.
  • an oxide film layer is formed, so that the bonding quality is deteriorated. Therefore, by using a Sn—Ag alloy, it is possible to prevent the formation of an oxide film layer, so that the quality of bonding can be improved.
  • the lower surface wiring pattern 50B formed on the lower surface substrate 30B bonded to the structure 2 and the magnetostrictive ribbon 10 are firmly bonded via the insulating layer 40.
  • the start point and the end point of the lower surface wiring pattern 50B are connected to the electrode 3 attached to the upper surface substrate 30A by penetrating the upper surface substrate 30A.
  • FIG. 10 is a diagram showing a manufacturing process of the magnetostrictive power generation thin film piece 1 according to the present embodiment.
  • the magnetostrictive power generation thin film piece 1 according to the present embodiment is manufactured by MEMS technology.
  • the top substrate 30A ′ includes a Si crystal layer 30A1, a SiO 2 insulating layer 30A2, and a Si substrate layer 30A3.
  • the lower substrate 30B ′ includes a Si crystal layer 30B1, a SiO 2 insulating layer 30B2, and a Si substrate layer 30B3.
  • the upper substrate 30A ′ and the lower substrate 30B ′ may be made of an organic material such as polyimide.
  • a step of providing a recess in the surface of the upper substrate 30 ⁇ / b> A ′ facing the magnetostrictive ribbon 10 (corresponding to the substrate processing step of the present invention). I do.
  • the thickness of the magnetostrictive ribbon 10 can be absorbed, it can reduce in size.
  • the junction part of 50 A of upper surface wiring patterns and the lower surface wiring pattern 50B can be enlarged, the quality of joining can also be improved more.
  • a step of forming the upper surface wiring pattern 50A on the upper surface substrate 30A 'by a photolithography step in a semiconductor process (S10: corresponding to the upper surface wiring pattern forming step of the present invention) is performed.
  • a step of forming a lower surface wiring pattern 50B on the lower surface substrate 30B 'by a photolithography step in a semiconductor process (S11: corresponding to the lower surface wiring pattern step of the present invention) is performed.
  • a step (S12) is performed in which the surface of the magnetostrictive ribbon 10 is covered with the insulating layer 40 by deposition (deposition) or coating.
  • S10, S11, and S12 do not need to be manufactured in the order of S10, S11, and S12.
  • a part or all of S10, S11, and S12 may be manufactured simultaneously (parallel).
  • S20 is performed according to the following procedure. 1. An Sn—Ag alloy as a solder material is applied to each contact portion of the plurality of wiring patterns constituting the lower surface wiring pattern 50B (near the side surface of the magnetostrictive ribbon 10 where the upper surface wiring pattern 50A and the lower surface wiring pattern 50B are joined) For example, it is formed by a plating method. 2. The Sn—Ag alloy is melted and bonded at a high temperature while the contact portions of each of the plurality of wiring patterns constituting the upper surface wiring pattern 50A and each of the plurality of wiring patterns constituting the lower surface wiring pattern 50B are pressed. . At this time, the upper surface wiring pattern 50A and the lower surface wiring pattern 50B are arranged in a zigzag as shown in FIG.
  • the upper substrate 30A and the lower substrate 30B are formed by melting the Si substrate layers 30A3 and 30B3 by etching or removing them by polishing (S30), and the magnetostrictive power generation thin film piece 1 is manufactured.
  • the magnetostriction power generation thin film piece 1 can be thinned by removing the Si substrate layers 30A3 and 30B3. Further, by exposing the SiO 2 insulating layers 30A2 and 30B2 to the surface, it is possible to attach the magnetostrictive power generation thin film piece 1 even if the structure 2 is a conductor.
  • the magnetostrictive power generation thin film piece can be miniaturized and mass-produced by MEMS technology. Further, by using a magnetostrictive ribbon instead of the piezoelectric element, it is possible to provide a magnetostrictive power generation thin film piece that is resistant to bending and impact. Furthermore, by using a magnetostrictive ribbon in a magnetic field, a magnetostrictive power generation thin film piece with a large amount of power generation can be provided.
  • the magnetostrictive power generation thin film piece and the manufacturing method thereof according to Embodiment 1 of the present invention have been described above, but the present invention is not limited to this embodiment.
  • the magnetostrictive power generation thin film piece 1 is installed so that the lower surface substrate 30B and the structure 2 are bonded to each other.
  • the magnetostrictive power generation thin film piece 1 includes the upper surface substrate 30A and the structure 2. And may be installed so as to be bonded.
  • the upper substrate 30A is provided with a recess on the surface facing the magnetostrictive ribbon 10.
  • the lower substrate 30B or both the upper substrate 30A and the lower substrate 30B are recessed on the surface facing the magnetostrictive ribbon 10. May be provided.
  • the upper surface wiring pattern 50A or both the upper surface wiring pattern 50A and the lower surface wiring pattern 50B and the magnetostrictive ribbon 10 may be firmly bonded via the insulating layer 40.
  • an underfill material may be filled in a space surrounded by the lower surface wiring pattern 50B, the lower surface substrate 30B, and the insulating layer 40.
  • the insulating layer 40 may be coated on the surface of the upper surface wiring pattern 50A and the lower surface wiring pattern 50B that faces the magnetostrictive ribbon 10.
  • step S12 is omitted in FIG. 10, and instead, deposition (deposition) is performed on the surface of the upper surface wiring pattern 50A and the lower surface wiring pattern 50B facing the magnetostrictive ribbon 10 before step S20.
  • a step of covering the insulating layer 40 by coating is performed.
  • the magnetostrictive power generation thin film is formed by laminating the lower surface wiring pattern 50B, the magnetostrictive ribbon 10 covered with the insulating layer 40, the upper surface wiring pattern 50A, and the upper surface substrate 30A in this order, using the lower surface substrate 30B as a base.
  • the piece 1 may be manufactured.
  • steps S10 and S11 are not limited to the photolithography process in the semiconductor process.
  • the configuration of the magnetostrictive power generation thin film piece 1 is for illustrating the present invention specifically, and the magnetostrictive power generation thin film piece according to the present invention is not necessarily provided with all of the above configurations. .
  • the magnetostrictive power generation thin film piece according to the present invention only needs to have a minimum configuration capable of realizing the effects of the present invention.
  • FIG. 10 is for illustrating the present invention specifically, and does not necessarily include all of the above steps. In other words, FIG. 10 only needs to include the minimum number of steps that can realize the effects of the present invention.
  • the magnetic lines of force passing in the plane of the magnetostrictive ribbon 10 are alternately arranged with magnetic lines of force directed to the right and magnetic lines directed to the left as viewed in the drawing. It is not limited to any direction.
  • the mutual positional relationship, and the positional relationship with the magnetostrictive ribbon 10, as shown in FIG. In some cases, lines of magnetic force pass in one direction.
  • the magnetic flux passing in the plane of the magnetostrictive ribbon 10 decreases due to the inverse magnetostrictive effect. Thereby, when the interlinkage magnetic flux of the coil 50 changes, an induced voltage is generated in the coil 50 to generate electric power.
  • the magnetostrictive power generation thin film piece 1 is attached to the structure 2 made of a magnetic material.
  • the motor or the frame of the machine to which the magnetostrictive power generation thin film piece 1 is attached is made of iron.
  • seat magnetized in the surface direction is put on the upper surface of the magnetostriction electric power generation thin film piece 1 as the magnet layer 20.
  • the magnetic field lines of the magnet layer 20 form a loop that exits from one end or side surface of the sheet (magnet layer 20) and returns to the other end side or side surface.
  • the magnetic force line which comes out from a side surface is not described in the figure with a leakage magnetic flux. These lines of magnetic force flow through the magnetostrictive ribbon 10 in one direction in the plane and into the magnetic structure 2.
  • the unidirectional magnetic field lines flowing through the magnetostrictive ribbon 10 have an appropriate bias.
  • the magnetostrictive ribbon 10 and the magnetic body (structure 2) form a closed magnetic circuit, so that the lines of magnetic force of the magnetostrictive ribbon 10 are likely to change.
  • the method shown in FIG. 11B may be used as a method of applying the bias magnetic field.
  • a plate having an appropriate thickness or a ribbon-shaped magnetic body 70 is placed on the upper surface of the magnetostrictive power generation thin film piece 1.
  • the length of the magnetic body 70 is the same as or slightly longer than the length of the magnetostrictive power generation thin film piece 1.
  • Two permanent magnets 71 a and 71 b magnetized in the thickness direction are arranged at both ends of the magnetic body 70.
  • the magnetization directions of the two permanent magnets 71a and 71b are opposite to each other.
  • the lines of magnetic force that flow out from the ends of the permanent magnets 71a and 71b circulate in one direction in the plane of the magnetic body and form a loop that returns to the other end, but the thickness of the magnetic body 70 Because it is thin, some leak.
  • the leakage flux passes through the in-plane direction of the magnetostrictive ribbon 10 in one direction and becomes a bias.
  • the magnetostrictive power generation thin film piece according to the present embodiment is characterized in that two flexible printed boards (FPC, hereinafter simply referred to as “flexible boards”) are bonded to form a coil that circulates around the magnetostrictive ribbon.
  • FPC flexible printed boards
  • FIG. 12 is a schematic diagram showing a basic configuration of the magnetostrictive power generation thin film piece 101 according to the second embodiment of the present invention.
  • a perspective configuration of the magnetostrictive power generation thin film piece 101 as viewed from above, that is, a schematic structure showing the positional relationship between the magnetostrictive ribbon 110 and the coil 150 that goes around the magnetostrictive ribbon 110 is shown.
  • the magnetostrictive ribbon 110 may be the same as the magnetostrictive ribbon 10 in the first embodiment.
  • the coil 150 that circulates around the magnetostrictive ribbon 110 is configured by connecting an upper surface wiring pattern 150A and a lower surface wiring pattern 150B through a through hole 151.
  • the lower surface wiring pattern 150B is a wiring pattern that faces the lower surface of the magnetostrictive ribbon 110 among the wiring patterns constituting the coil 150.
  • the lower surface wiring pattern 150B crosses the lower surface of the magnetostrictive ribbon 110 (that is, a rectangular flat plate). It runs in a direction orthogonal to the longitudinal direction of the magnetostrictive ribbon 110 having a structure) and is composed of a plurality of linear wiring patterns arranged in parallel.
  • the upper surface wiring pattern 150A is a wiring pattern that faces the upper surface of the magnetostrictive ribbon 110 among the wiring patterns constituting the coil 150.
  • the upper surface wiring pattern 150A crosses the upper surface of the magnetostrictive ribbon 110 (that is, a rectangular flat plate). It runs in a direction substantially orthogonal to the longitudinal direction of the magnetostrictive ribbon 110 having a structure) and is composed of a plurality of linear wiring patterns arranged in parallel. As shown in this figure, the direction in which the plurality of linear wiring patterns constituting the upper surface wiring pattern 150A runs slightly deviates from the direction in which the plurality of linear wiring patterns constituting the lower surface wiring pattern 150B runs. (Is crossing diagonally).
  • each of the plurality of linear wiring patterns constituting the upper surface wiring pattern 150A is one of the corresponding two adjacent wiring patterns among the plurality of linear wiring patterns constituting the lower surface wiring pattern 150B.
  • the upper end and the other lower end are electrically connected. Accordingly, the upper surface wiring pattern 150A and the lower surface wiring pattern 150B are connected via the through hole 151, thereby forming the coil 150 that goes around the magnetostrictive ribbon 110.
  • the lower surface wiring pattern 150B is provided with two electrodes 103 for extracting the induced voltage generated in the coil 150.
  • FIG. 13 is a cross-sectional view taken along the line A-A ′ of the magnetostrictive power generation thin film piece 101 shown in FIG. In this figure, the thickness and name of each layer are shown on the right side of the cross-sectional view.
  • the magnetostrictive ribbon 110 includes an upper surface flexible substrate 130A laminated on the upper surface of the magnetostrictive ribbon 110 via an adhesive 105 such as SAFG (halogen-free semi-cured sheet adhesive), and the magnetostriction.
  • a lower surface flexible substrate 130B laminated on the lower surface of the ribbon 110 is bonded together.
  • the thickness of the magnetostrictive power generation thin film piece 101 (the total thickness of all layers shown in FIG. 13) is designed to be 500 ⁇ m or less, more preferably 300 ⁇ m or less (in this embodiment, 278 ⁇ m). Such thinning realizes a small and flexible magnetostrictive power generation thin film piece, which can be used by being attached to various vibration sources including not only a flat surface but also a curved surface.
  • the upper surface flexible substrate 130A has a structure in which the upper surface wiring pattern 150A shown in FIG. 12 is sandwiched between resin layers.
  • the upper surface base polyimide 140A, the upper surface wiring pattern 150A, It is composed of an upper surface coverlay adhesive layer 141A and an upper surface coverlay polyimide 142A.
  • Upper surface wiring pattern 150A has a two-layer structure of copper foil printed on the upper surface of upper surface base polyimide 140A and copper plating covering the upper surface of the copper foil.
  • the lower surface flexible substrate 130B has a structure in which the lower surface wiring pattern 150B shown in FIG. 12 is sandwiched between resin layers.
  • the lower surface base polyimide 140B, the lower surface wiring pattern 150B, The lower cover lay adhesive layer 141B and the lower cover lay polyimide 142B are used.
  • the lower surface wiring pattern 150B has a two-layer structure of a copper foil printed on the lower surface of the lower surface base polyimide 140B and a copper plating covering the lower surface of the copper foil.
  • the plurality of linear wiring patterns constituting the upper surface wiring pattern 150A and the plurality of linear wiring patterns constituting the lower surface wiring pattern 150B are a plurality of provided at the peripheral portions of the upper surface flexible substrate 130A and the lower surface flexible substrate 130B. It is electrically connected through the through hole 151.
  • FIG. 14 is a diagram showing the characteristics of the wiring patterns on the upper surface flexible substrate 130A and the lower surface flexible substrate 130B.
  • the actually manufactured lower surface wiring pattern 150B (the lower surface wiring pattern 150B viewed from the lower surface of the lower surface flexible substrate 130B) is shown.
  • one of the features is that through each of the through holes 151 provided in the peripheral portions of the upper surface flexible substrate 130A and the lower surface flexible substrate 130B, two adjacent through holes (a pair of through holes) are provided.
  • the upper surface wiring pattern 150A and the lower surface wiring pattern 150B are electrically connected (refer to the enlarged view on the lower right in FIG. 14). That is, each of the plurality of linear wiring patterns constituting the upper surface wiring pattern 150A corresponds to one corresponding wiring among the plurality of linear wiring patterns constituting the lower surface wiring pattern 150B via two through holes. It is electrically connected to the pattern.
  • the magnetostrictive power generation thin film piece 101 Due to such a doubled through hole, when the magnetostrictive power generation thin film piece 101 continues to vibrate due to the vibration from the structure 2, the upper surface wiring pattern 150A and the lower surface wiring pattern 150B are prevented from being disconnected. The durability of the magnetostrictive power generation thin film piece 101 can be improved (long life). Further, since the contact resistance between the upper surface wiring pattern 150A and the lower surface wiring pattern 150B is lowered, the effect of lowering the impedance of the magnetostrictive power generation thin film piece 101 (output impedance as a power generation device) is also exhibited.
  • At least one of the upper surface wiring pattern 150A and the lower surface wiring pattern 150B includes a bent portion that bends the traveling direction of the wiring pattern by 90 degrees.
  • the traveling direction of the wiring pattern is bent 90 degrees in an arc shape (that is, with an R) (see an enlarged view on the upper right in FIG. 14).
  • the 90 degree bent wiring with R can reduce the possibility of wiring breakage when it continues to receive vibration, and improves the durability of the magnetostrictive power generation thin film piece 101 (longer life). be able to.
  • the magnetostrictive power generation thin film piece 101 is configured using a flexible substrate, and thus has the following characteristics.
  • the mechanical mechanism can be minimized.
  • the flexible substrate can be repeatedly deformed with a small force, can be bent flexibly and freely, can maintain its electrical characteristics even when deformed, and is thin and light. There is a feature.
  • the magnetostrictive power generation thin film piece 101 in the present embodiment since there are few places where the magnetostriction power generation apparatus having a mechanical structure deteriorates and wears, a longer life can be expected.
  • the magnetostrictive power generation thin film piece 101 is manufactured with a simple structure in which a magnetostrictive ribbon is sandwiched between two flexible substrates.
  • the flexible substrate itself is a withered technology with a long history since it was devised, and mass production technology has been established. And a flexible substrate does not have a mechanical mechanism. Therefore, according to the magnetostrictive power generation thin film piece 101 in the present embodiment, mass production with a simple structure is possible by utilizing a simple power generation principle.
  • the magnetostrictive power generation thin film piece 101 of the present embodiment has a structure in which a magnetostrictive ribbon is sandwiched between two flexible substrates, so that not only a flat surface but also a curved surface is utilized by utilizing the flexibility of the flexible substrate. It is possible to install in close contact with each other, and as a result, minute vibrations can be acquired.
  • the magnetostrictive power generation thin film piece 101 of the present embodiment can be used by being attached to the housing (curved surface) of the motor 60. Therefore, the magnetostrictive power generation thin film piece 101 in the present embodiment is easy to install and has various applications.
  • FIG. 16 is a flowchart showing a method for manufacturing the magnetostrictive power generation thin film piece 101 in the present embodiment.
  • the upper surface flexible substrate 130A is manufactured (first manufacturing step; S100). Specifically, among the wiring patterns constituting the coil 150, the upper surface wiring pattern 150A that is the wiring pattern facing the upper surface of the magnetostrictive ribbon 110 is divided into two resin layers (upper surface base polyimide 140A, upper surface coverlay polyimide 142A), and the like. A top flexible substrate 130A having a structure sandwiched between the two is manufactured.
  • the lower surface flexible substrate 130B is manufactured (second manufacturing step; S102). Specifically, among the wiring patterns constituting the coil 150, the lower surface wiring pattern 150B that is the wiring pattern facing the lower surface of the magnetostrictive ribbon 110 is divided into two resin layers (lower surface base polyimide 140B, lower surface coverlay polyimide 142B), and the like. A bottom flexible substrate 130B having a structure sandwiched between the two is manufactured. Note that step S100 and step S102 may be performed in reverse order or simultaneously (in parallel).
  • the upper surface flexible substrate 130A and the lower surface flexible substrate 130B are bonded together with the magnetostrictive ribbon 110 interposed therebetween (S104).
  • the upper surface wiring pattern 150A and the lower surface wiring pattern 150B are electrically connected through a plurality of through holes 151 provided in the peripheral portions of the upper surface flexible substrate 130A and the lower surface flexible substrate 130B.
  • the upper surface flexible substrate 130A and the lower surface flexible substrate 130B are bonded together.
  • this bonding step (S104) includes a step of forming a positioning hole in the magnetostrictive ribbon 110 (S105), and a magnetostriction thinning for the upper surface flexible substrate 130A and the lower surface flexible substrate 130B using the formed positioning hole.
  • the magnetostrictive power generation thin film piece 101 in the present embodiment is completed by the above manufacturing method.
  • the magnetostrictive power generation thin film piece 101 may be used by being attached to the structure 2 as it is, or the field magnet layer 20 is provided on the upper surface thereof as in the first embodiment. Moreover, you may affix on the structure 2 and use it. In general, a larger voltage can be extracted from the magnetostrictive power generation thin film piece 101 by providing the magnet layer 20, but the magnet layer 20 is not necessarily a necessary component for power generation. Depending on the magnitude of vibration received by the magnetostrictive power generation thin film piece 101 or the specifications of the magnetostrictive thin strip 110 and the coil 150, the magnetostriction power generation thin film piece 101 can generate power without providing the magnet layer 20.
  • the magnetostrictive power generation thin film piece 101 it is essential to use in combination with a power supply circuit or a circuit for application (sensor, wireless circuit, etc.). Since the magnetostrictive power generation thin film piece 101 according to the present embodiment is composed of a flexible substrate, it can be easily integrated (modularized) with various circuits using existing technology. For example, as a connector for connection, a commercial product can be used, or a circuit can be configured by mounting components on a flexible substrate.
  • FIG. 17 is a diagram showing a basic configuration of a magnetostrictive power generation module 200 using the magnetostrictive power generation thin film piece 101 in the present embodiment.
  • the magnetostrictive power generation module 200 includes a magnetostrictive power generation thin film piece 101, a power supply circuit unit 160, and an application circuit unit 170 provided as necessary.
  • the power supply circuit unit 160 is a power supply circuit that generates a predetermined DC voltage from the AC voltage generated by the coil 150 included in the magnetostrictive power generation thin film piece 101, and includes, for example, a booster circuit 161, an AC-DC conversion circuit 162, a storage circuit 163, In addition, at least one circuit of the regulation circuit 164 is included.
  • the booster circuit 161 is a transformer or the like that boosts the AC voltage output from the coil 150 of the magnetostrictive power generation thin film piece 101.
  • the AC-DC conversion circuit 162 is a rectifying / smoothing circuit that converts the AC voltage output from the coil 150 of the magnetostrictive power generation thin film piece 101 or the AC voltage boosted by the booster circuit 161 into a DC voltage.
  • the storage circuit 163 is a storage battery or the like that stores the DC voltage generated by the AC-DC conversion circuit 162.
  • the regulation circuit 164 receives the DC voltage converted by the AC-DC conversion circuit 162 or the DC voltage stored in the power storage circuit 163 as an input, and generates a DC constant voltage required by the application circuit unit 170. It is a constant voltage power supply.
  • Application circuit unit 170 is an application circuit that operates using the magnetostrictive power generation module according to the present embodiment, and is, for example, sensor / wireless module 171.
  • the sensor / wireless module 171 includes, for example, a sensor that detects various physical quantities such as temperature, and a communication circuit that wirelessly transmits information obtained by the sensor.
  • FIG. 18 is a diagram showing a mounting example of the magnetostrictive power generation module 200 shown in FIG.
  • the power supply circuit section 160 is formed on the upper surface flexible substrate 130A or the lower surface flexible substrate 130B included in the magnetostrictive power generation thin film piece 101.
  • the power supply circuit unit 160 is connected to the upper surface flexible substrate 130A and the lower surface flexible substrate 130B (that is, the coil 150) included in the magnetostrictive power generation thin film piece 101 via the connector 180. Formed on the printed circuit board.
  • the power supply circuit unit 160 is attached to the magnetostrictive power generation thin film piece 101, but an application circuit unit 170 may be further attached as shown in FIG.
  • FIG. 19 is a diagram showing an installation example of the magnetostrictive power generation module 200 shown in FIG.
  • a substrate 182 connected via a connector 180 and a magnetostrictive power generation thin film piece 101 attached to a vibrating body 190 is attached to a fixed body 191.
  • a component 181 constituting the power supply circuit unit 160 (and, if necessary, an application circuit unit 170) is mounted on the substrate 182.
  • the connection between the magnetostrictive power generation thin film piece 101 and the substrate 182 is the same as that in FIG. 19A.
  • the substrate 182 is also attached to the vibrating body 190.
  • an elastic material 183 is inserted between the vibrating body 190 and the substrate 182 in order to suppress the vibration of the substrate 182.
  • the component 181 is placed on the flexible substrate (the upper surface flexible substrate 130A, the lower surface flexible substrate 130B, or both) used in the magnetostrictive power generation thin film piece 101.
  • the flexible substrate the upper surface flexible substrate 130A, the lower surface flexible substrate 130B, or both
  • a fixing base material 184 is provided under the flexible substrate on which the component 181 is mounted, and vibration is suppressed under the fixing base material 184.
  • An elastic material 183 is provided.
  • FIG. 20 is a diagram showing a system example to which the magnetostrictive power generation module 200 shown in FIG. 17 is applied.
  • a wireless communication system 205 including a magnetostrictive power generation module 200A to 200D and a PC (personal computer) 203 provided in each of four vibration sources is shown.
  • Each of the magnetostrictive power generation modules 200A to 200D includes, for example, the magnetostrictive power generation module 201 (201A to 201D) and the application circuit unit 170 (170A to 170D) shown in FIG. 18, and information on the temperature detected by the built-in sensor. It transmits to PC203 wirelessly.
  • the PC 203 includes an application circuit unit 170 (170E), receives temperature information transmitted from the four magnetostrictive power generation modules 200A to 200D by the application circuit unit 170E, and records and displays the received information.
  • an application circuit unit 170E receives temperature information transmitted from the four magnetostrictive power generation modules 200A to 200D by the application circuit unit 170E, and records and displays the received information.
  • the application circuit unit (sensor and wireless module) can be operated by the power generated by the magnetostrictive power generation module even in a place where there is no commercial power supply or battery.
  • FIG. 21 is a diagram showing another system example to which the magnetostrictive power generation module 200 shown in FIG. 17 is applied.
  • a radio communication system 215 including a magnetostrictive power generation module 201A to 201C provided in each of three vibration sources, one application circuit unit 170 (170F), and a PC (personal computer) 213 is shown. Has been.
  • Each of the three magnetostrictive power generation modules 201A to 201C is, for example, the magnetostrictive power generation module 201 shown in FIG. 18, and includes the magnetostrictive power generation thin film piece 101 (101A to 101C) and the power supply circuit unit 160 (160A to 160C). The generated power is supplied to the application circuit unit 170F.
  • the application circuit unit 170F operates under the power supplied from the three magnetostrictive power generation modules 201A to 201C, and transmits, for example, temperature information detected by a built-in sensor to the PC 213 wirelessly.
  • the PC 213 includes an application circuit unit 170 (170G), receives temperature information transmitted from the application circuit unit 170F by the application circuit unit 170G, and records and displays the received information.
  • an application circuit unit 170G receives temperature information transmitted from the application circuit unit 170F by the application circuit unit 170G, and records and displays the received information.
  • Such a wireless communication system 215 can operate the application circuit unit (sensor and wireless module) with the power generated by the magnetostrictive power generation module even in a place where there is no commercial power supply or battery.
  • Embodiment 1 As mentioned above, although the magnetostriction electric power generation thin film piece which concerns on this invention, its manufacturing method, and the magnetostriction electric power generation module were demonstrated based on Embodiment 1 and 2, this invention is not limited to these embodiment.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
  • the magnetic field generator (magnet layer 20) is composed of an N-pole magnet and an S-pole magnet arranged side by side in the longitudinal direction of the magnetostrictive ribbon 10, but the configuration of the magnetic field generator is as follows. Is not limited to this.
  • the magnetic field generating part (magnet layer 20A) is arranged in the N pole arranged side by side in the direction orthogonal to the upper and lower surfaces of the magnetostrictive ribbon 110 (the direction perpendicular to the plane of the magnetostrictive ribbon 110). You may be comprised from a magnet and a south pole magnet.
  • the lower layer in the direction perpendicular to the magnetostrictive ribbon 110, the lower layer is an N pole and the upper layer is an S pole magnet, and conversely, the lower layer is the S pole and the upper layer is N.
  • Polar magnets are alternately arranged in the longitudinal direction of the magnetostrictive ribbon 110. In this case, the direction of the magnetic flux fielded by the magnetostrictive ribbon 110 is reversed in units of a pair of magnets constituting the magnet layer 20A, as shown in FIG.
  • the magnetic pole is magnetized in the thickness direction of the magnetostrictive ribbon 110, and the direction is changed at intervals of several millimeters (magnetic pole pitch interval) in the plane direction (longitudinal direction).
  • the lines of magnetic force emitted from the N-pole magnet have a high magnetic permeability between the coil 150 (which can be regarded as a magnetic gap) and the magnetostrictive ribbon 110. From the difference, it bends and enters the magnetostrictive ribbon 110, leaks through the in-plane direction of the magnetostrictive ribbon 110, and enters the adjacent S-pole magnet.
  • the thickness of the magnetostrictive ribbon 110 is very thin with respect to the cross-sectional area of the magnet layer 20 ⁇ / b> A, a sufficient bias magnetic flux passes through the magnetostrictive ribbon 110.
  • FIG. 22 is a figure which shows the winding direction of the coil 150 used for such a magnetostriction electric power generation thin film piece.
  • the coil 150 changes the manner of connection at equal intervals (magnetic pole pitch intervals) and switches the winding direction of the coil 150 as the field direction is reversed.
  • the winding direction of the coil 150 is reversed as the field direction is reversed, and an induced voltage (or induced current) in the same direction is generated in the coil 150. That is, by reversing the direction of the winding of the coil 150 at the magnetic pole pitch interval, it can be added as a voltage in the same direction, and power can be taken out by the coil 150 of the entire magnetostrictive power generation thin film piece 101.
  • the field magnet layer is not provided.
  • the N-pole and the S-pole are arranged in the longitudinal direction of the magnetostrictive ribbon 110.
  • the structure shown in FIG. 23C or E may be used as a magnetostrictive power generation thin film piece with more reliable contact between two separated coil layers (wiring patterns).
  • the magnetostrictive power generation thin film piece 310 shown in FIG. 23C includes a magnetostrictive ribbon 10 (FIG. 23A) and a meander (or zigzag) coil sheet 301 (FIG. b)) (however, the generation part of the bias magnetic field is omitted here).
  • the magnetostrictive ribbon 10 is knitted into the coil sheet 301 as shown in FIG.
  • the coil sheet 301 is a copper ribbon or a thin plate, and is cut in opposite directions (in a meander shape).
  • One or both of the magnetostrictive ribbon 10 and the coil sheet 301 are coated with an insulator.
  • the coating with an insulator here may be an adhesive having an insulating property. Insert the magnetostrictive ribbons 10 so that they are knitted in the vertical direction into the slits in the coil sheet 301 (the coil sheet 301 and the magnetostrictive ribbons 10 are staggered next to each other for each slit). Are joined (for example, the adhesive is melted and solidified). As a result, a coil is formed so as to wind the magnetostrictive ribbon 10, and the magnetostrictive power generation thin film piece 310 is completed.
  • the magnetostrictive power generation thin film piece 310 having such a structure, since the coil that circulates the magnetostrictive ribbon 10 is composed of one coil sheet, a contact portion that is generated by bonding two coil layers together. It is difficult to cause problems. Moreover, since the copper wire produced by the MEMS technology and the flexible substrate is mixed with impurities in order to improve fluidity, the resistance value is high. However, in this magnetostrictive power generation thin film piece 310, pure copper is used for the coil sheet 301. Since this is possible, the resistance value of the coil can be lowered.
  • the cutting direction of the coil sheet 302 is opposite to that of the coil sheet 301.
  • the increase in thickness can be suppressed by arrange
  • the voltage taken out from the terminals 301a and 301b of the coil sheet 301 and the direction of the voltage taken out from the terminals 302a and 302b of the coil sheet 302 are opposite, but are formed by these two coil sheets 301 and 302. By connecting two coils in series and reversely, a double voltage can be taken out.
  • the method of forming the coil is not limited to the above-described embodiment, but is formed by a so-called direct wiring method, that is, the wiring is directly formed on the upper and lower surfaces of the magnetostrictive ribbon 10 coated with the insulating film (insulating layer 40).
  • a pattern (50A, 50B) may be formed.
  • the wiring pattern is firmly formed on the insulating film. Since the insulating film interposed between the wiring pattern and the magnetostrictive ribbon 10 is thin, the vibration of the vibration source can be transmitted more directly to the magnetostrictive ribbon 10 and the power generation efficiency is improved.
  • the insulating film below and on the wiring is formed as thin as possible within a range in which insulation can be ensured (for example, an insulating film having a thickness of 5 ⁇ m is formed using parylene, epoxy resin, or the like). Thereby, the vibration of the vibration source is faithfully transmitted to the magnetostrictive ribbon 10.
  • an alignment mark 720 is formed on the insulating film.
  • the width of the insulating film is made wider than the width of the magnetostrictive ribbon 10.
  • the method for forming the wiring is not limited. Any method such as electroplating, electroless plating, screen printing, ink jet printing, and metal mask may be used. Which method is to be used may be selected according to the application and size of the magnetostrictive power generation thin film piece 320 completed in this way.
  • the following method can be considered as the contact of the wiring pattern at the edge.
  • Three-dimensional pattern formation by spray coating of resist (plating method)
  • Use pattern transfer technology (3) Connect the front and back wiring with conductive paste in a spot manner by nozzle injection
  • FIG. 24 Note that the dimensions shown in FIG. 24 are merely examples, and the present invention is not limited to these.
  • the coil that circulates the magnetostrictive ribbon is a single layer, but it may be composed of multiple layers in order to increase the number of turns.
  • an insulating film is formed on the first layer coil, and a contact window is formed on the insulating film to connect the first layer coil and the second layer coil.
  • a second layer coil wiring pattern
  • a multilayer coil in which the first layer coil and the second layer coil are connected in series can be formed. it can.
  • a multilayer coil having three or more layers can be formed.
  • a magnetostrictive power generation thin film piece that generates a larger power generation amount (voltage / current) even when subjected to the same vibration is realized.
  • the present invention is used as a magnetostrictive power generation thin film piece and a magnetostrictive power generation module that can be used as a power source for a sensor by generating electric power from vibration by being attached to a structure such as a bridge or an automobile integrally with a sensor, for example. can do.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

小型化、量産が可能であり、かつ、曲げや衝撃にも強く、発電量が多い磁歪発電薄膜片を提供する。磁歪発電薄膜片は、振動から電力を生成する磁歪発電薄膜片(1)であって、磁歪材料からなる磁歪薄帯(10)と、磁歪薄帯(10)を周回する導電性の配線パターンから構成されるコイル(50)と、磁歪薄帯(10)と配線パターンとの間に介在する絶縁層(40)とを備え、磁歪薄帯(10)、コイル(50)及び絶縁層(40)を含む厚みが500μm以下のシート構造を有する。

Description

磁歪発電薄膜片、その製造方法及び磁歪発電モジュール
 本発明は、磁歪材料を用いて振動から電力を生成する磁歪発電薄膜片、その製造方法、及び、磁歪発電薄膜片を応用した磁歪発電モジュールに関する。
 従来、身近な振動から発電を行うための技術の開発が盛んに行われており、その技術の1つとして圧電素子を用いた発電方法が知られている。
 圧電素子を利用した発電方法の多くは、圧電素子に何らかの方法で外部から力を加えることにより、圧電素子を変形させて発電するものである。圧電素子を変形させるには、例えば、圧電素子に振動を加えて変形させる方法、風圧や音圧などの圧力を間接的に与える方法、錘などの物体を圧電素子に衝突させる方法、変形する物体に圧電素子を取り付ける方法などがある。
 また、近年、MEMS(Micro Electro Mechanical Systems)によるセンサの小型化、省電力化が進んでおり、発電素子にもMEMS技術による小型化が求められている。
 例えば、特許文献1では、音による空気の圧力変動を利用して圧電素子により発電する音力発電装置、および、振動による圧力変動を利用して圧電素子により発電する振動力発電装置が開示されている。
 また、例えば、特許文献2では、2極に着磁されたバイアス磁石と、外部からの力を加えることで逆磁歪効果により透磁率が変化して磁束の流れが変化する磁歪材料と、磁歪材料を磁気的な異方性を有する方向に周期的に圧縮する圧縮手段と、この周期的に変化する磁束により電流を誘起するコイル手段とを備えた発電素子が開示されている。
特開2006-166694号公報 特開2008-72862号公報
 しかしながら、特許文献1では、圧電材料は、脆性材料であり、曲げや衝撃に対して弱い材料である。そのため、過度な負荷を加えることができず、発電量を増加するために大きな曲げや衝撃を加えることが難しいという問題がある。また、圧電素子は、電気的に容量性の負荷であるため、低周波数でインピーダンスが高く、圧電素子より低いインピーダンスを有する負荷を繋いだときに、負荷に発生する電圧が小さくなるため、発電により得られる電力が小さくなり、発電の効率が低いという欠点を有している。
 また、特許文献2では、上記特許文献1の欠点は解消できるが、当該発電素子は、MEMSによるセンサに搭載できるほど小型ではない。また、小型化で微細な部品の組み合わせにより、組立て作業やそれに関する設備が煩雑で緻密になることから、不良率が高くなる問題があるため、当該発電素子を量産することは困難である。
 そこで、本発明は、このような状況に鑑みてなされたものであり、小型化、量産が可能であり、かつ、曲げや衝撃にも強く、発電量が多い磁歪発電薄膜片を提供することを目的とする。
 上記目的を達成するために、本発明の一形態に係る磁歪発電薄膜片は、振動から電力を生成する磁歪発電薄膜片であって、磁歪材料からなる磁歪薄帯と、前記磁歪薄帯を周回する導電性の配線パターンから構成されるコイルと、前記磁歪薄帯と前記配線パターンとの間に介在する絶縁層とを備え、前記磁歪薄帯、前記コイル及び前記絶縁層を含む厚みが500μm以下のシート構造を有する。
 これにより、磁歪発電薄膜片の小型化、量産が可能となる。また、圧電素子の代わりに磁歪薄帯を用いることによって、曲げや衝撃にも強い磁歪発電薄膜片を提供することができる。さらに、磁界中で磁歪薄帯を用いることによって、発電量が多い磁歪発電薄膜片を提供することができる。
 ここで、前記コイルと前記絶縁層とは、前記磁歪薄帯を挟んで貼り合わされた上面フレキシブル基板と下面フレキシブル基板とから構成され、前記上面フレキシブル基板は、前記配線パターンのうち、前記磁歪薄帯の上面に対向する配線パターンである上面配線パターンを、2つの樹脂層で挟んだ構造を有し、前記下面フレキシブル基板は、前記配線パターンのうち、前記磁歪薄帯の下面に対向する配線パターンである下面配線パターンを、2つの樹脂層で挟んだ構造を有し、前記上面配線パターンと前記下面配線パターンとで前記コイルが構成されていてもよい。
 これにより、磁歪発電薄膜片のコイルがフレキシブル基板で構成されるので、機械的な機構が最小化され、磁歪発電薄膜片の高耐久性(長寿命化)が実現される。また、フレキシブル基板は量産技術が確立された枯れた技術であるため、磁歪発電薄膜片の量産化が可能となる。さらに、フレキシブル基板の柔軟性を活かして、平面だけでなく、曲面に対しても磁歪発電薄膜片を取り付けることができ、設置の容易性と多様な応用性が実現される。
 また、前記上面配線パターンは、前記磁歪薄帯の上面を横切る複数の直線状の配線パターンから構成され、前記下面配線パターンは、前記磁歪薄帯の下面を横切る複数の直線状の配線パターンから構成され、前記上面配線パターンを構成する複数の直線状の配線パターンと前記下面配線パターンを構成する複数の直線状の配線パターンとは、前記上面フレキシブル基板及び前記下面フレキシブル基板の周縁部に設けられた複数のスルーホールを介して電気的に接続され、前記上面配線パターンを構成する複数の直線状の配線パターンのそれぞれは、2つのスルーホールを介して、前記下面配線パターンを構成する複数の直線状の配線パターンのうちの対応する一つの配線パターンと電気的に接続されていてもよい。
 これにより、スルーホールが二重化され、その結果、振動に対する耐性が強化され、磁歪発電薄膜片の耐久性が向上される。また、上面配線パターンと下面配線パターンとの接触抵抗が下がり、その結果、コイルのインピーダンスが下がるので、発電される電圧として、より大きな電圧が出力される。
 また、前記上面配線パターン及び前記下面配線パターンの少なくとも一方には、配線パターンの走行方向を90度曲げる屈曲箇所が含まれ、前記屈曲箇所では、円弧状に配線パターンの走行方向が90度曲げられていてもよい。
 これにより、コイルを形成する配線パターンにおける90度曲げ配線では、Rが設けられる(円弧形状に配線パターンが形成される)ので、磁歪発電薄膜片が振動を受けたときにコイルの配線が切れてしまうことが抑制される。
 また、前記コイルは、MEMSデバイスであり、前記配線パターンは、前記磁歪薄帯の上面に対向して設けられた上面配線パターンと、前記磁歪薄帯の下面に対向して設けられた下面配線パターンとが貼り合わされて構成されている。
 これにより、MEMS技術によって、薄型の連結された一本のコイル(配線パターン)を構成することができる。
 また、前記上面配線パターンを構成する複数の配線パターンのそれぞれと、前記下面配線パターンを構成する複数の配線パターンのそれぞれとが、半田材料を介して、前記磁歪薄帯の側面近傍で接合されていることが好ましい。
 これにより、上面配線パターンと下面配線パターンとの接合の品質を向上させることができ、振動に対する耐久性が確保される。
 また、前記磁歪薄帯と、前記上面配線パターン及び前記下面配線パターンのうち少なくとも一方とが、前記絶縁層を介して接着されていることが好ましい。
 これにより、構造体からの振動に対する感受性を向上させることできるので、磁歪薄帯の変形能を向上させることができ、発電量を増加させることができる。
 さらに、前記磁歪薄帯及び前記コイルを挟むように、上面基板と下面基板とを備える。
 これにより、SOI基板等の基板を用いたMEMS技術によってコイルを形成することができる。そして、構造体に磁歪発電薄膜片を取り付けることができる構造が完成される。
 また、前記上面基板及び前記下面基板のうち少なくとも一方には、前記磁歪薄帯に対向する面に凹部が設けられていることが好ましい。
 これにより、磁歪薄帯の厚みを吸収することができるので、より小型化することができる。また、上面配線パターンと下面配線パターンとの接合部を大きくすることができるので、接合の品質をより向上させることもできる。
 さらに、前記磁歪薄帯に磁界を印加する磁界発生部を備える。
 これにより、磁歪薄帯に磁界を印加することができ、磁歪発電薄膜片から、より大きな電力が発電され得る。
 また、前記磁歪材料は、長方形の平板構造を有し、前記平板構造の長手方向に平行な磁化容易軸を有することが好ましい。
 また、前記磁界発生部は、前記平板構造の長手方向に磁界を印加するように設置されたN極磁石とS極磁石とを備えることが好ましい。
 上記により、磁歪材料の磁化容易軸に磁界を印加することにより、発電量を増加させることができる。
 また、前記コイルは、アミンダ状のコイルシートで形成されており、前記磁歪薄帯は、前記コイルシートに、編み込まれるように挿入されていてもよい。
 これにより、磁歪薄帯を周回するコイルが、1枚のコイルシートで構成されるため、2枚のコイル層を貼り合わせることで生じるコンタクト部の不具合が生じにくい。また、MEMS技術及びフレキシブル基板で作成する銅線は、流動性をあげるために不純物が混じっているために抵抗値が高いが、このような磁歪発電薄膜片では、コイルシートに純銅を用いることができるので、コイルの抵抗値を下げることができる。
 また、前記絶縁層は、前記磁歪薄帯をコーティングしており、前記コイルは、前記絶縁層でコーティングされた前記磁歪薄帯の上面及び下面に、直配線方式で形成された配線パターンであってもよい。
 これにより、配線パターンは絶縁膜上に強固に形成される。
 なお、本発明は、フレキシブル基板を用いた磁歪発電薄膜片の製造方法として実現したり、MEMS技術を用いた磁歪発電薄膜片の製造方法として実現したりすることもできる。また、本発明は、上述のような磁歪発電薄膜片と、その磁歪発電薄膜片が備えるコイルで発生した交流電圧から所定の直流電圧を生成する電源回路とを備える磁歪発電モジュールとして実現することもできる。
 本発明によって、小型化、量産が可能であり、かつ、曲げや衝撃にも強く、発電量が多い磁歪発電薄膜片を提供することができる。
図1は、本発明の実施の形態1に係る磁歪発電薄膜片を含む発電システムの概略図(断面図)である。 図2は、図1のA部分を拡大した図(断面図)である。 図3は、本発明の実施の形態1に係る磁歪発電薄膜片を用いた発電システムの発電原理を示した図である。 図4は、本発明の実施の形態1に係る磁歪材料の磁化容易軸を示す図である。 図5は、本発明の実施の形態1に係る磁歪発電薄膜片の概略図(上面図)である。 図6は、本発明の実施の形態1に係る磁歪発電薄膜片の概略図(図5におけるA-A’断面図)である。 図7は、本発明の実施の形態1に係る磁歪発電薄膜片の概略図(図5におけるB-B’断面図)である。 図8は、本発明の実施の形態1に係る磁歪発電薄膜片の概略図(図5における矢視C-C’から見た側面図)である。 図9は、本発明の実施の形態1に係る磁歪発電薄膜片のコイルの配線パターンを示す概略図(上面図)である。 図10は、本発明の実施の形態1に係る磁歪発電薄膜片の製造工程を示す図である。 図11Aは、磁歪薄帯を通過する磁力線の向きが図3のケースと異なるケースを示す図である。 図11Bは、バイアス磁界の加え方に関する他のケースを示す図である。 図12は、本発明の実施の形態2に係る磁歪発電薄膜片の基本構成を示す摸式図である。 図13は、図12に示された磁歪発電薄膜片のA-A'線における断面図である。 図14は、フレキシブル基板に形成された配線パターンの特徴を示す図である。 図15は、磁歪発電薄膜片をモーターの筐体(曲面)に貼り付けて使用する例を示す図である。 図16は、本発明の実施の形態2における磁歪発電薄膜片の製造方法を示すフローチャートである。 図17は、磁歪発電薄膜片を用いた磁歪発電モジュールの基本構成を示す図である。 図18は、図17に示された磁歪発電モジュールの実装例を示す図である。 図19は、図17に示された磁歪発電モジュールの設置例を示す図である。 図20は、図17に示された磁歪発電モジュールを応用したシステム例を示す図である。 図21は、図17に示された磁歪発電モジュールを応用した別のシステム例を示す図である。 図22は、磁界発生部(磁石層)の別の配置例を示す図である。 図23は、コイルシートを用いた磁歪発電薄膜片を説明する図である。 図24は、直配線方式によるコイルの形成方法を説明する図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 まず、本発明の実施の形態1に係る磁歪発電薄膜片を含む発電システムについて説明する。
 図1は、本発明の実施の形態1に係る磁歪発電薄膜片を含む発電システムの概略図(断面図)である。この発電システムは、磁歪発電薄膜片1と、構造体2と、電極3と、磁石層(本発明の磁界発生部にも相当する)20とを備えている。
 磁歪発電薄膜片1は、図2に示されるように、厚みが500μm以下のシート構造を有し、磁歪材料からなる膜状の磁歪素子である磁歪薄帯10と、基板30と、絶縁層40と、コイル(本発明の配線パターンにも相当する)50とを備えている。また、基板30は、上面基板30Aと下面基板30Bとを備えている。さらに、コイル50は、上面配線パターン50Aと下面配線パターン50Bとを備えている。ここで、本実施の形態では、磁歪発電薄膜片の厚さ(磁歪薄帯10、コイル50及び絶縁層40を含む厚さ、つまり、図2における、上面基板30Aの上面から下面基板30Bの下面までの長さ)は、500μm以下、より好ましくは300μm以下(本実施の形態では、250μm)である。このような薄膜化によって、小型で柔軟な磁歪発電薄膜片が実現され、平面だけでなく、曲面を含む様々な振動源に貼り付けて使用することが可能となる。なお、本発明は、磁歪発電薄膜片1の構造に特徴を有しており、後で図4~図9を用いて詳細に説明する。
 構造体2は、例えば、橋や自動車などの振動する構造物(振動体)であり、磁歪発電薄膜片1は、構造体2に設置される。このとき、磁歪発電薄膜片1は、磁歪発電薄膜片1中の下面基板30Bと構造体2とが接着されるように設置される。
 電極3は、磁歪発電薄膜片1中のコイル50と接続されており、磁歪発電薄膜片1によって発電された電力を取り出すための電極である。
 磁石層20は、ネオジム磁石シート等であり、磁歪発電薄膜片1を挟んで、構造体2とは反対側に設置される。磁石層20は、例えば、片側着磁であるN極磁石とS極磁石とが図2に示すように磁歪発電薄膜片1の長手方向に、交互に設置されることにより、磁歪発電薄膜片1の長手方向に磁界を印加している。なお、磁歪発電薄膜片1の長手方向に磁界が印加されていればよく、磁歪発電薄膜片1に磁界を印加する上記方法は、上記のものに限られない。
 図3は、本実施の形態に係る磁歪発電薄膜片1を用いた発電システムの発電原理を示した図である。
 磁歪発電薄膜片1の発電の原理は、磁歪材料の逆磁歪効果を利用している。ここで、逆磁歪効果とは、磁化している磁歪材料に応力を加えると、磁化が変化する効果である。この磁化の変化により、コイル50に誘導電圧(または誘導電流)が発生し、発電される。
 具体的には、以下の手順により、発電される。
1.磁歪発電薄膜片1に磁石層20によって磁界が印加されている。
2.構造体2の振動により、磁歪発電薄膜片1に圧縮応力が生じる。
3.逆磁歪効果により、磁歪材料の透磁率が減少する。
4.磁歪材料の磁束が減少する。
5.コイル50の鎖交磁束が変化することにより、誘導電圧が発生し、発電される。
 次に、本実施の形態に係る磁歪発電薄膜片1の構造について、図4~図9を用いて説明する。
 磁歪薄帯10は、図4に示すように、長方形の平板構造を有しており、平板構造の長手方向に磁化容易軸を有する磁歪材料からなる。磁歪薄帯10は、発電量を増加させるため、磁化容易軸と磁石層20からの磁界とが平行になり、かつ、磁界が磁歪薄帯10の中を通過するように設置される。また、磁歪薄帯10は、断面が10mm×40mmで、厚さ20μmの直方体(薄膜または薄帯)状の形状を有している。磁歪材料は、例えば、アモルファス系の磁歪薄帯(成分例:(Fe1-xCo7814)である。なお、磁歪材料は、Metglass(商品名)や金属ガラス、Fe-Ga合金やFe-Co合金の薄帯、あるいは、Fe-Ga合金やFe-Al合金の薄膜、Fe-Si-B合金の薄帯でもよい。
 基板30は、図6に示すように、磁歪薄帯10及びコイル50を挟むように、上面基板30Aと下面基板30Bとを備えている。上面基板30A及び下面基板30Bは共に、平面寸法が30mm×12mmで、厚さが50μmの薄片状の形状を有している。なお、磁歪薄帯10に効果的に磁石層20からの磁界を印加するため、上面基板30Aは、できるだけ薄いほうがよい。また、図5及び図7に示すように、磁歪発電薄膜片1によって発電された電力を取り出すために、上面基板30Aには電極3が取り付けられている。さらに、磁歪薄帯10の厚みを吸収し、また、後に説明する上面配線パターン50Aと下面配線パターン50Bとの接合部を大きくするため、図8に示すように、上面基板30Aは、磁歪薄帯10に対向する面に凹部が設けられている。なお、上面基板30A及び下面基板30Bの材料に関しては、後で図10を用いて詳細に説明する。
 絶縁層40は、磁歪薄帯10とコイル50とが導通するのを防ぐため、磁歪薄帯10とコイル50との間に設けられている。絶縁層40は、例えば、磁歪薄帯10の表面に被覆されている。絶縁層40の厚さは2μmであり、材料はポリイミドである。
 コイル50は、磁歪薄帯10の上面に対向して設けられた上面配線パターン50Aと、磁歪薄帯10の下面に対向して設けられた下面配線パターン50Bとが貼り合わされて構成されている。上面配線パターン50A及び下面配線パターン50Bは、上面から見ると、図9に示すようにジグザグに配置されている。また、図8に示すように、側面から見ると、上面配線パターン50Aは、磁歪薄帯10の厚みを避けるため、上面基板30Aに設けられた凹部に沿って配置されており、下面配線パターン50Bは、下面基板30Bに沿って配置されている。さらに、図6に示すように、上面配線パターン50A及び下面配線パターン50Bは、上面基板30A及び下面基板30B上における、磁歪薄帯10に対向する面に形成されている。
 さらに、コイル50の材料は、例えば、Cuである。コイル50の配線パターンは、断面が15μm×30μmの直方体状の形状であり、配線パターンの間隔(各配線パターンの中心間の距離)は30μmである。
 そして、上面配線パターン50Aを構成する複数の配線パターンのそれぞれと、下面配線パターン50Bを構成する複数の配線パターンのそれぞれとは、半田材料、例えば、Sn-Ag系合金を介して、磁歪薄帯10の側面近傍で接合されている。上面配線パターン50Aと下面配線パターン50Bとが直接接合される場合、酸化膜層ができるため、接合の品質が悪くなる。したがって、Sn-Ag系合金を用いることにより、酸化膜層ができるのを防ぐことができるため、接合の品質を向上させることができる。
 さらに、構造体2に接着されている下面基板30Bに形成されている下面配線パターン50Bと磁歪薄帯10とが、絶縁層40を介して強固に接着されている。これにより、構造体2からの振動に対する感受性を向上させることできるので、磁歪薄帯10の変形能を向上させることができ、発電量を増加させることができる。
 そして、図5及び図7に示すように、下面配線パターン50Bの始点及び終点は、上面基板30Aを貫通させることにより、上面基板30Aに取り付けられている電極3に接続されている。
 次に、以上のように構成された本実施の形態に係る磁歪発電薄膜片1の製造方法について図10を用いて説明する。
 図10は、本実施の形態に係る磁歪発電薄膜片1の製造工程を示す図である。本実施の形態に係る磁歪発電薄膜片1は、MEMS技術によって製造されている。
 まず、SOI(Silicon On Insulator)基板2組(30A’及び30B’)及び磁歪薄帯10(アモルファス系の磁歪薄帯)を用意する。ここで、上面基板30A’は、Si結晶層30A1とSiO絶縁層30A2とSi基板層30A3とを備えている。また、下面基板30B’は、Si結晶層30B1とSiO絶縁層30B2とSi基板層30B3とを備えている。また、上面基板30A’及び下面基板30B’は、例えばポリイミドのような有機材料でもよい。
 次に、図10には図示していないが、図8に示すように、上面基板30A’における、磁歪薄帯10に対向する面に凹部を設ける工程(本発明の基板加工工程に相当する)を行う。これにより、磁歪薄帯10の厚みを吸収することができるので、より小型化することができる。また、上面配線パターン50Aと下面配線パターン50Bとの接合部を大きくすることができるので、接合の品質をより向上させることもできる。
 次に、半導体プロセスにおける、フォトリソグラフィー工程によって、上面基板30A’上に上面配線パターン50Aを形成する工程(S10:本発明の上面配線パターン形成工程に相当する)を行う。同様に、半導体プロセスにおける、フォトリソグラフィー工程によって、下面基板30B’上に下面配線パターン50Bを形成する工程(S11:本発明の下面配線パターン工程に相当する)を行う。また、磁歪薄帯10の表面に、堆積(デポジション)又は塗布によって絶縁層40が被覆される工程(S12)を行う。なお、S10、S11及びS12は、S10、S11、S12の順に製造される必要はない。また、S10、S11及びS12の一部又は全てが、同時(並列)に製造されてもよい。
 次に、上面配線パターン50Aと下面配線パターン50Bとが内側になるように、上面基板30A’と下面基板30B’とで、絶縁層40が被覆された磁歪薄帯10を挟み込む工程(S20:本発明の挟込工程に相当する)を行う。
 具体的には、以下の手順により、S20が行われる。
1.下面配線パターン50Bを構成する複数の配線パターンのそれぞれのコンタクト部(上面配線パターン50Aと下面配線パターン50Bとが接合される磁歪薄帯10の側面近傍)に半田材料であるSn-Ag系合金を、例えばメッキ法で形成する。
2.上面配線パターン50Aを構成する複数の配線パターンのそれぞれと、下面配線パターン50Bを構成する複数の配線パターンのそれぞれとのコンタクト部を圧接しながら、高温下でSn-Ag系合金を溶かして接合する。このとき、上面配線パターン50A及び下面配線パターン50Bは、上面から見ると、図9に示すようにジグザグに配置されるようにする。
 最後に、エッチングによりSi基板層30A3及び30B3を溶かし、または研磨により除去する工程(S30)を行うことで、上面基板30A及び下面基板30Bが形成され、磁歪発電薄膜片1が製造される。このように、Si基板層30A3及び30B3を除去することにより、磁歪発電薄膜片1を薄くすることができる。また、SiO絶縁層30A2及び30B2を表面に露出させることによって、構造体2が導電体であっても磁歪発電薄膜片1の取り付けが可能となる。
 以上より、MEMS技術によって、磁歪発電薄膜片の小型化、量産が可能となる。また、圧電素子の代わりに磁歪薄帯を用いることによって、曲げや衝撃にも強い磁歪発電薄膜片を提供することができる。さらに、磁界中で磁歪薄帯を用いることによって、発電量が多い磁歪発電薄膜片を提供することができる。
 以上、本発明の実施の形態1に係る磁歪発電薄膜片及びその製造方法について説明したが、本発明は、この実施の形態に限定されるものではない。
 例えば、上記実施の形態は、磁歪発電薄膜片1は、下面基板30Bと構造体2とが接着されるように設置されるとしていたが、磁歪発電薄膜片1は、上面基板30Aと構造体2とが接着されるように設置されてもよい。
 また、上面基板30Aは、磁歪薄帯10に対向する面に凹部が設けられていたが、下面基板30Bまたは上面基板30Aと下面基板30Bとの両方が、磁歪薄帯10に対向する面に凹部が設けられていてもよい。
 また、上面配線パターン50Aまたは上面配線パターン50Aと下面配線パターン50Bとの両方と、磁歪薄帯10とが、絶縁層40を介して強固に接着されていてもよい。
 また、下面配線パターン50Bと下面基板30Bと絶縁層40とで囲まれた空間にアンダーフィル材を充填してもよい。これにより、下面配線の腐食防止と磁歪薄帯の強固な接着と、安定的な電気的コンタクトの確保が得られる。
 また、上面配線パターン50A及び下面配線パターン50Bにおける、磁歪薄帯10に対向する面に、絶縁層40が被覆されていてもよい。この場合には、図10において、ステップS12は省略され、代わりに、ステップS20の前に、上面配線パターン50A及び下面配線パターン50Bにおける、磁歪薄帯10に対向する面に、堆積(デポジション)又は塗布によって絶縁層40が被覆される工程(本発明の絶縁層被覆工程に相当する)を行う。
 また、図10において、下面基板30Bを土台として、下面配線パターン50B、絶縁層40が被覆された磁歪薄帯10、上面配線パターン50A,上面基板30Aの順に積層していくことによって、磁歪発電薄膜片1を製造してもよい。
 また、ステップS10及びS11における、基板上にコイルを形成する工程は、半導体プロセスにおける、フォトリソグラフィー工程には限定されない。
 また、上記記載寸法は、一例であり、これには限られない。
 また、上記磁歪発電薄膜片1の構成は、本発明を具体的に説明するために例示するためのものであり、本発明に係る磁歪発電薄膜片は、上記構成の全てを必ずしも備える必要はない。言い換えると、本発明に係る磁歪発電薄膜片は、本発明の効果を実現できる最小限の構成のみを備えればよい。
 同様に、図10は、本発明を具体的に説明するために例示するためのものであり、上記工程の全てを必ずしも含む必要はない。言い換えると、図10は、本発明の効果を実現できる最小限の工程のみを含めばよい。
 また、図3では、磁歪薄帯10の面内を通る磁力線として、図面に向かって右方向に向かう磁力線と左方向に向かう磁力線とが交互に並んでいたが、磁力線の方向としては、このような方向に限られない。磁石層20を構成するN極磁石及びS極磁石のサイズ、相互の位置関係、及び、磁歪薄帯10との位置関係によっては、図11Aに示されるように、磁歪薄帯10の面内を一方向に磁力線が通る場合もある。この場合には、構造体2の振動により磁歪発電薄膜片1に圧縮応力が生じると、逆磁歪効果により、磁歪薄帯10の面内を通過する磁束が減少する。これにより、コイル50の鎖交磁束が変化することにより、コイル50に誘導電圧が発生し、発電される。
 より具体的には、図11Aに示される発電システムを作成するために、磁歪発電薄膜片1を磁性体で構成された構造体2に貼り付ける。なお、磁歪発電薄膜片1を貼り付けるモーターや機械のフレームなどは鉄で構成されていることが多い。また、磁歪発電薄膜片1の上面に、磁石層20として、面方向に着磁されたシート上の永久磁石を被せる。磁石層20の磁力線はシート(磁石層20)の一方の端部もしくは側面から出てもう一方の端部もしく側面へ戻るループを形成している。なお、側面から出る磁力線は漏れ磁束で図中には記述していない。これらの磁力線は、磁歪薄帯10を面内一方向、及び、磁性体の構造体2に分岐して流れる。磁歪薄帯10に流れる一方向の磁力線は適度なバイアスになる。
 ここで、構造体2が振動し、変形すると、たとえば収縮すると、磁歪薄帯10には面内方向に圧縮応力が付加される。このとき、逆磁歪効果で磁力線が減少する。この磁力線の時間変化によりコイル50に電圧が発生する。このように、図11Aに示される発電システムでは、磁歪薄帯10と磁性体(構造体2)が閉磁気回路を構成していることで、磁歪薄帯10の磁力線の変化が発生しやすい。
 なお、バイアス磁界の加え方として、図11Bに示される方式であってもよい。図11Bに示される発電システムでは、磁歪発電薄膜片1の上面に適度な厚みの板、もしくは、薄帯状の磁性体70を被せる。磁性体70の長さは、磁歪発電薄膜片1の長さと同じか、若干長くする。磁性体70の両端に、厚み方向に着磁された2個の永久磁石71a及び71bを配置する。2個の永久磁石71a及び71bの着磁方向は互いに逆である。このような構成とすることで、永久磁石71a及び71bの端部から流れ出る磁力線は、磁性体の面内一方向を環流し、他方の端部に戻るループを形成するが、磁性体70の厚みが薄いため、一部は漏れる。この漏れ磁束は、磁歪薄帯10の面内方向を一方向に通り、バイアスとなる。
 (実施の形態2)
 次に、本発明の実施の形態2に係る磁歪発電薄膜片について説明する。本実施の形態における磁歪発電薄膜片は、2枚のフレキシブルプリント基板(FPC、以下、単に「フレキシブル基板」という。)が貼り合わされて、磁歪薄帯を周回するコイルを形成している点に特徴を有する。
 図12は、本発明の実施の形態2に係る磁歪発電薄膜片101の基本構成を示す摸式図である。ここでは、磁歪発電薄膜片101を上面から見た透視的な構成、つまり、磁歪薄帯110と、その磁歪薄帯110を周回するコイル150との位置関係を示す摸式的な構造が示されている。なお、磁歪薄帯110は、実施の形態1における磁歪薄帯10と同一物であってもよい。
 本図に示されるように、磁歪薄帯110を周回するコイル150は、上面配線パターン150Aと下面配線パターン150Bとがスルーホール151を介して接続されて構成されている。
 下面配線パターン150Bは、コイル150を構成する配線パターンのうち、磁歪薄帯110の下面に対向する配線パターンであり、本実施の形態では、磁歪薄帯110の下面を横切る(つまり、長方形の平板構造をもつ磁歪薄帯110の長手方向に対して直交する方向に走る)、平行に配置された複数の直線状の配線パターンから構成される。
 上面配線パターン150Aは、コイル150を構成する配線パターンのうち、磁歪薄帯110の上面に対向する配線パターンであり、本実施の形態では、磁歪薄帯110の上面を横切る(つまり、長方形の平板構造をもつ磁歪薄帯110の長手方向に対してほぼ直交する方向に走る)、平行に配置された複数の直線状の配線パターンから構成される。本図に示されるように、上面配線パターン150Aを構成する複数の直線状の配線パターンが走る方向は、下面配線パターン150Bを構成する複数の直線状の配線パターンが走る方向に対してわずかにずれている(斜めに交差している)。その結果、上面配線パターン150Aを構成する複数の直線状の配線パターンのそれぞれは、下面配線パターン150Bを構成する複数の直線状の配線パターンのうちの対応する2本の隣接する配線パターンの一方の上端と他方の下端とを電気的に接続している。これにより、上面配線パターン150Aと下面配線パターン150Bとは、スルーホール151を介して接続されることで、磁歪薄帯110を周回するコイル150を形成している。
 なお、本実施の形態では、図12に示されるように、下面配線パターン150Bには、コイル150で発生した誘導電圧を取り出すための2つの電極103が設けられている。
 図13は、図12に示された磁歪発電薄膜片101のA-A’線における断面図である。なお、本図では、断面図の右横に、各層ごとの厚みと名称が示されている。
 本図に示されるように、磁歪薄帯110は、SAFG(ハロゲンフリー半硬化シート接着剤)等の接着剤105を介して、磁歪薄帯110の上面に積層される上面フレキシブル基板130Aと、磁歪薄帯110の下面に積層される下面フレキシブル基板130Bとが貼り合わされている。磁歪発電薄膜片101の厚み(図13に示される全ての層の厚みの合計)は、500μm以下、より好ましくは300μm以下(本実施の形態では、278μm)に設計されている。このような薄膜化によって、小型で柔軟な磁歪発電薄膜片が実現され、平面だけでなく、曲面を含む様々な振動源に貼り付けて使用することが可能となる。
 上面フレキシブル基板130Aは、図12に示される上面配線パターン150Aを樹脂層で挟んだ構造を有し、本実施の形態では、下層から上層に向けて順に、上面ベースポリイミド140A、上面配線パターン150A、上面カバーレイ接着層141A及び上面カバーレイポリイミド142Aから構成される。上面配線パターン150Aは、上面ベースポリイミド140Aの上面に印刷された銅箔とその銅箔の上面を覆う銅めっきとの2層構造からなる。
 下面フレキシブル基板130Bは、図12に示される下面配線パターン150Bを樹脂層で挟んだ構造を有し、本実施の形態では、上層から下層に向けて順に、下面ベースポリイミド140B、下面配線パターン150B、下面カバーレイ接着層141B及び下面カバーレイポリイミド142Bから構成される。下面配線パターン150Bは、下面ベースポリイミド140Bの下面に印刷された銅箔とその銅箔の下面を覆う銅めっきとの2層構造からなる。
 上面配線パターン150Aを構成する複数の直線状の配線パターンと下面配線パターン150Bを構成する複数の直線状の配線パターンとは、上面フレキシブル基板130A及び下面フレキシブル基板130Bの周縁部に設けられた複数のスルーホール151を介して電気的に接続されている。
 このように、本実施の形態では、実施の形態1においてコイル50と絶縁層40とで構成されたものが、これらに代えて、磁歪薄帯110を挟んで貼り合わされた上面フレキシブル基板130Aと下面フレキシブル基板130Bとで構成されている。つまり、上面フレキシブル基板130Aに形成された上面配線パターン150Aと下面フレキシブル基板130Bに形成された下面配線パターン150Bとがスルーホール151を介して電気的に接続されることで、薄型のコイル150が形成されている。
 図14は、上面フレキシブル基板130A及び下面フレキシブル基板130Bにおける配線パターンの特徴を示す図である。ここでは、現実に製作された下面配線パターン150B(下面フレキシブル基板130Bの下面から見た下面配線パターン150B)が示されている。
 ここで、特徴の一つは、上面フレキシブル基板130A及び下面フレキシブル基板130Bの周縁部に設けられたスルーホール151のそれぞれにおいて、隣接して配置した2つのスルーホール(スルーホールの対)を介して、上面配線パターン150Aと下面配線パターン150Bとが電気的に接続されている点である(図14における右下の拡大図参照)。つまり、上面配線パターン150Aを構成する複数の直線状の配線パターンのそれぞれは、2つのスルーホールを介して、下面配線パターン150Bを構成する複数の直線状の配線パターンのうちの対応する一つの配線パターンと電気的に接続されている。
 このようなスルーホールの二重化により、構造体2からの振動を受けて磁歪発電薄膜片101が振動し続けた場合に、上面配線パターン150Aと下面配線パターン150Bとが断線してしまうことが回避され、磁歪発電薄膜片101の耐久性を向上(長寿命化)させることができる。また、上面配線パターン150Aと下面配線パターン150Bとの接触抵抗が下がるので、磁歪発電薄膜片101のインピーダンス(発電装置としての出力インピーダンス)が下がるという効果も発揮される。
 また、特徴の他の一つは、上面配線パターン150A及び下面配線パターン150Bの少なくとも一方(本実施の形態では、下面配線パターン150B)には、配線パターンの走行方向を90度曲げる屈曲箇所が含まれ、その屈曲箇所では、円弧状に(つまり、Rをつけて)配線パターンの走行方向が90度曲げられている(図14における右上の拡大図参照)。
 このように、Rをつけた90度の曲げ配線により、振動を受け続けた場合における配線切れの可能性を低減することができ、磁歪発電薄膜片101の耐久性を向上(長寿命化)させることができる。
 以上のように、本実施の形態では、フレキシブル基板を用いて磁歪発電薄膜片101が構成されているので、以下の特徴がある。
 (1)高耐久性、長寿命
 磁歪材料を用いた発電では、磁歪材料をコア材とするコイルに振動を伝える必要がある。従来のカンチレバー方式等の発電方法では、機械的な構造を必要とするために、耐久性及び長寿命化において問題がある。
 それに対し、本実施の形態では、フレキシブル基板の柔軟性を利用してコイルそのものを振動させることで発電するため、機械的な機構を最小にできる。つまり、フレキシブル基板は、小さい力で繰り返し変形させることが可能であり、柔軟で自在に曲げることができ、また、変形した場合にもその電気的特性を維持することができ、さらに、薄くて軽いという特徴がある。
 よって、本実施の形態における磁歪発電薄膜片101によれば、機械的な構造を有する磁歪発電装置に比べ、劣化及び摩耗する箇所が少ないため、長寿命化が期待できる。
 (2)量産性
 大量に安価に生産するにあたり、従来の磁歪材料を用いた発電方式では、簡素な発電原理であるにも拘らず、振動伝達機構が複雑となり、量産性向上の妨げになっている。
 これに対し、本実施の形態では、磁歪薄帯を2枚のフレキシブル基板で挟むという簡素な構造で磁歪発電薄膜片101が製作される。フレキシブル基板自体は、考案されてから長い歴史をもつ枯れた技術であり、量産技術が確立している。そして、フレキシブル基板は、機械的な機構をもたない。よって、本実施の形態における磁歪発電薄膜片101によれば、簡素な発電原理を活かし、単純な構造での量産が可能になる。
 (3)設置の容易性と多様な応用性
 世の中には多様な振動源が存在するが、それらの振動を実際の発電に応用するのに、機械的な振動伝達機構を用いたのでは、応用可能な振動源が限られてしまう。
 これに対し、本実施の形態の磁歪発電薄膜片101は、磁歪薄帯が2枚のフレキシブル基板で挟まれた構造を有するので、フレキシブル基板の柔軟性を活かして、平面だけでなく、曲面に対しても密着した設置が可能であり、その結果、微小の振動を取得することができる。たとえば、図15に示されるように、本実施の形態の磁歪発電薄膜片101を、モーター60の筐体(曲面)に貼りつけて使用することができる。よって、本実施の形態における磁歪発電薄膜片101は、設置が容易であり、多様な応用性をもっている。
 次に、以上のように構成された本実施の形態における磁歪発電薄膜片101の製造方法について説明する。図16は、本実施の形態における磁歪発電薄膜片101の製造方法を示すフローチャートである。
 まず、上面フレキシブル基板130Aを製作する(第1製作工程;S100)。具体的には、コイル150を構成する配線パターンのうち、磁歪薄帯110の上面に対向する配線パターンである上面配線パターン150Aを2つの樹脂層(上面ベースポリイミド140A、上面カバーレイポリイミド142A)等で挟んだ構造を有する上面フレキシブル基板130Aを製作する。
 次に、下面フレキシブル基板130Bを製作する(第2製作工程;S102)。具体的には、コイル150を構成する配線パターンのうち、磁歪薄帯110の下面に対向する配線パターンである下面配線パターン150Bを2つの樹脂層(下面ベースポリイミド140B、下面カバーレイポリイミド142B)等で挟んだ構造を有する下面フレキシブル基板130Bを製作する。なお、ステップS100とステップS102とは、逆の順序でもよいし、同時(並行)であってもよい。
 最後に、磁歪薄帯110を挟んで、上面フレキシブル基板130Aと下面フレキシブル基板130Bとを貼り合わせる(S104)。具体的には、上面配線パターン150Aと下面配線パターン150Bとが、上面フレキシブル基板130A及び下面フレキシブル基板130Bの周縁部に設けられた複数のスルーホール151を介して電気的に接続されるように、上面フレキシブル基板130Aと下面フレキシブル基板130Bとを貼り合わせる。
 より詳しくは、この貼り合わせ工程(S104)は、磁歪薄帯110に位置決め用穴を形成する工程(S105)と、形成した位置決め用穴を用いて上面フレキシブル基板130A及び下面フレキシブル基板130Bに対する磁歪薄帯110の位置決めを行い、上面フレキシブル基板130Aと下面フレキシブル基板130Bとを圧着して貼り合わせる工程(S106)とを含む。
 以上の製造方法により、本実施の形態における磁歪発電薄膜片101が完成される。
 なお、本実施の形態における磁歪発電薄膜片101は、そのまま、構造体2に貼り付けて使用してもよいし、実施の形態1と同様に、その上面に界磁用の磁石層20を設けたうえで構造体2に貼り付けて使用してもよい。一般に、磁石層20を設けることで磁歪発電薄膜片101からより大きな電圧を取り出せるが、磁石層20は、発電のために必ずしも必要な構成要素というわけではない。磁歪発電薄膜片101が受ける振動の大きさ、あるいは、磁歪薄帯110及びコイル150の仕様等によっては、磁石層20を設けることなく、磁歪発電薄膜片101だけで発電し得る。
 次に、本実施の形態における磁歪発電薄膜片101を用いたモジュール(磁歪発電モジュール)について、説明する。
 磁歪発電薄膜片101は、電源回路や応用のための回路(センサ、無線回路等)と組み合わせて使用することが必須となる。本実施の形態における磁歪発電薄膜片101であれば、フレキシブル基板で構成されているので、既存の技術を用いて、各種回路と一体化(モジュール化)することが容易である。たとえば、接続用コネクタとして、市販品を使用したり、フレキシブル基板上に部品を実装することで回路を構成することもできる。
 図17は、本実施の形態における磁歪発電薄膜片101を用いた磁歪発電モジュール200の基本構成を示す図である。
 この磁歪発電モジュール200は、磁歪発電薄膜片101と、電源回路部160と、必要に応じて設けられるアプリケーション回路部170とを備える。
 電源回路部160は、磁歪発電薄膜片101が備えるコイル150で発生した交流電圧から所定の直流電圧を生成する電源回路であり、例えば、昇圧回路161、AC-DC変換回路162、蓄電回路163、及び、レギュレーション回路164の少なくとも一つの回路を含む。
 昇圧回路161は、磁歪発電薄膜片101のコイル150から出力される交流電圧を昇圧するトランス等である。AC-DC変換回路162は、磁歪発電薄膜片101のコイル150から出力される交流電圧、または、昇圧回路161で昇圧された交流電圧を直流電圧に変換する整流平滑化回路等である。蓄電回路163は、AC-DC変換回路162で生成された直流電圧を蓄電する蓄電池等である。レギュレーション回路164は、AC-DC変換回路162で変換された直流電圧、または、蓄電回路163で蓄電されている直流電圧を入力とし、アプリケーション回路部170で必要とされる直流の定電圧を生成する定電圧電源である。
 アプリケーション回路部170は、本実施の形態における磁歪発電モジュールを用いて動作する応用回路であり、例えば、センサ/無線モジュール171である。センサ/無線モジュール171は、例えば、温度等の各種物理量を検知するセンサと、センサで得られた情報を無線で送信する通信回路とを有する。
 図18は、図17に示された磁歪発電モジュール200の実装例を示す図である。図18の(a)に示される磁歪発電モジュール201では、電源回路部160は、磁歪発電薄膜片101が備える上面フレキシブル基板130Aまたは下面フレキシブル基板130Bの上に形成されている。図18の(b)に示される磁歪発電モジュール202では、電源回路部160は、磁歪発電薄膜片101が備える上面フレキシブル基板130A及び下面フレキシブル基板130B(つまり、コイル150)とコネクタ180を介して接続された回路基板上に形成されている。なお、本図では、磁歪発電薄膜片101に、電源回路部160だけが付随しているが、図17に示したように、さらに、アプリケーション回路部170が付随してもよい。
 図19は、図17に示された磁歪発電モジュール200の設置例を示す図である。
 図19の(a)に示される磁歪発電モジュール201では、振動体190に貼り付けられた磁歪発電薄膜片101とコネクタ180を介して接続された基板182が固定体191に取り付けられている。基板182には、電源回路部160(必要に応じて、さらに、アプリケーション回路部170)を構成する部品181が実装されている。
 図19の(b)に示される磁歪発電モジュール201では、磁歪発電薄膜片101と基板182との接続は図19の(a)と同じであるが、ここでは、磁歪発電薄膜片101だけでなく、基板182も、振動体190に取り付けられている。ただし、この例では、基板182の振動を抑えるために、振動体190と基板182との間に弾性材料183が挿入されている。
 図19の(c)に示される磁歪発電モジュール202では、部品181は、磁歪発電薄膜片101に用いられているフレキシブル基板(上面フレキシブル基板130Aまたは下面フレキシブル基板130B、あるいは、その両方)の上に実装されている。この例では、部品181の実装を確実にするために、部品181を実装するフレキシブル基板の下には固定用基材184が設けられ、その固定用基材184の下には、振動を抑制するための弾性材料183が設けられている。
 図20は、図17に示された磁歪発電モジュール200を応用したシステム例を示す図である。ここでは、4箇所の振動源のそれぞれに設けられた磁歪発電モジュール200A~200DとPC(パーソナルコンピュータ)203とから構成される無線通信システム205が示されている。
 磁歪発電モジュール200A~200Dのそれぞれは、例えば、図18に示される磁歪発電モジュール201(201A~201D)とアプリケーション回路部170(170A~170D)とを備え、内蔵のセンサで検知した温度の情報を無線でPC203に送信する。
 PC203は、アプリケーション回路部170(170E)を備え、4つの磁歪発電モジュール200A~200Dから送信されてくる温度の情報をアプリケーション回路部170Eで受信し、受信した情報を記録して表示する。
 このような無線通信システム205により、商用電源やバッテリーがない箇所であっても、磁歪発電モジュールで生成された電源によってアプリケーション回路部(センサと無線モジュール)を動作させることができる。
 図21は、図17に示された磁歪発電モジュール200を応用した別のシステム例を示す図である。ここでは、3箇所の振動源のそれぞれに設けられた磁歪発電モジュール201A~201Cと、一つのアプリケーション回路部170(170F)と、PC(パーソナルコンピュータ)213とから構成される無線通信システム215が示されている。
 3つの磁歪発電モジュール201A~201Cのそれぞれは、例えば、図18に示される磁歪発電モジュール201であり、磁歪発電薄膜片101(101A~101C)と電源回路部160(160A~160C)とを備え、発電した電力をアプリケーション回路部170Fに供給する。
 アプリケーション回路部170Fは、3つの磁歪発電モジュール201A~201Cから供給される電力の下で動作し、例えば、内蔵のセンサで検知した温度の情報を無線でPC213に送信する。
 PC213は、アプリケーション回路部170(170G)を備え、アプリケーション回路部170Fから送信されてくる温度の情報をアプリケーション回路部170Gで受信し、受信した情報を記録して表示する。
 このような無線通信システム215により、商用電源やバッテリーがない箇所であっても、磁歪発電モジュールで生成された電源によってアプリケーション回路部(センサと無線モジュール)を動作させることができる。
 以上、本発明に係る磁歪発電薄膜片、その製造方法及び磁歪発電モジュールについて、実施の形態1及び2に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 たとえば、上記実施の形態では、磁界発生部(磁石層20)は、磁歪薄帯10の長手方向に並べて設置されたN極磁石とS極磁石とから構成されたが、磁界発生部の構成としては、これに限られない。図22の(a)に示すように、磁界発生部(磁石層20A)が、磁歪薄帯110の上面及び下面と直交する方向(磁歪薄帯110の面直方向)に並べて設置されたN極磁石とS極磁石とから構成されてもよい。図22の(a)に示される磁石層20Aでは、磁歪薄帯110の面直方向に、下層がN極で上層がS極の磁石と、それとは逆に、下層がS極で上層がN極の磁石とが、磁歪薄帯110の長手方向に、交互に並べて配置されている。このケースでは、磁歪薄帯110に界磁される磁束の向きは、図22の(a)に示されるように、磁石層20Aを構成する一対の磁石の単位で、磁束の向きが反転する。
 つまり、このような磁石層20Aによれば、磁歪薄帯110の厚み方向に磁極が着磁されており、面方向(長手方向)に数ミリ間隔(磁極ピッチ間隔)でその向きが替わる。このように、磁石層20Aを磁歪薄帯110の上に配置することで、例えばN極磁石から出た磁力線は、コイル150(磁気的に空隙と見なせる)と磁歪薄帯110の高い透磁率の差から、屈曲して磁歪薄帯110入り、磁歪薄帯110の面内方向を通って漏洩し、隣り合うS極磁石に入る。これにより、磁石層20Aの断面積に対して磁歪薄帯110の厚さが非常に薄いので、磁歪薄帯110には十分なバイアス磁束が通る。
 図22の(b)は、このような磁歪発電薄膜片に用いられるコイル150の巻き線方向を示す図である。コイル150は、界磁の向きの反転に伴って、等間隔(磁極ピッチ間隔)で結線の仕方を変え、コイル150の巻き線方向を切り替えている。これによって、界磁の向きの反転に伴ってコイル150の巻き線方向が反転され、コイル150には、同一方向の誘導電圧(あるいは、誘導電流)が発生する。つまり、磁極ピッチ間隔でコイル150の巻き線の向きを逆転しておくことで、同方向の電圧として加算し、磁歪発電薄膜片101全体のコイル150で電力を取り出すことができる。
 また、実施の形態2における磁歪発電薄膜片101では、界磁用の磁石層が設けられていなかったが、実施の形態1と同様に、磁歪薄帯110の長手方向にN極とS極とが並ぶ磁石層20、あるいは、図22に示されたように、磁歪薄帯110の面直方向にN極とS極とが並ぶ磁石層20Aを設けてもよい。
 また、2枚の分離したコイル層(配線パターン)間でのコンタクトをより確実にした磁歪発電薄膜片として、図23の(c)又は(e)に示される構造であってもよい。
 図23の(c)に示される磁歪発電薄膜片310は、磁歪薄帯10(図23の(a))と、ミアンダ状(あるいは、ジグザグ状)の一枚のコイルシート301(図23の(b))とから構成される(ただし、ここでは、バイアス磁界の発生部を省略している)。このような磁歪発電薄膜片310を製造するには、図23の(c)に示されるように、コイルシート301に、磁歪薄帯10を編み込む。コイルシート301は、図23の(b)に示されるように、銅の薄帯、もしくは、薄い板で、互いに逆方向に切れ込みが入っている(ミアンダ状になっている)。また、磁歪薄帯10もしくはコイルシート301の一方もしくは両方は、絶縁体でコーティングされている。なお、ここでの絶縁体によるコーティングは、絶縁性を有する接着剤でもよい。磁歪薄帯10をコイルシート301の切れ込みに垂直方向に編み込むように(コイルシート301と磁歪薄帯10とが、各切れ込みごとに、隣どうしで上下関係が互い違いになるように)挿入し、それらを接合(例えば、接着剤を融解し固化)する。その結果、磁歪薄帯10を巻くようにコイルが形成され、磁歪発電薄膜片310が完成される。
 このような構造をもつ磁歪発電薄膜片310の長所として、磁歪薄帯10を周回するコイルが、1枚のコイルシートで構成されているため、2枚のコイル層を貼り合わせることで生じるコンタクト部の不具合が生じにくい。また、MEMS技術及びフレキシブル基板で作成する銅線は、流動性をあげるために不純物が混じっているため、抵抗値が高いが、この磁歪発電薄膜片310では、コイルシート301に純銅を用いることができるので、コイルの抵抗値を下げることができる。
 なお、このような磁歪発電薄膜片310では、磁歪薄帯10の半分の領域において、コイルが巻かれていない部分が生じる。しかしながら、この磁歪発電薄膜片310を、図223の(d)に示される別のコイルシート302の中に編み込むことで、図23の(e)に示されるように、磁歪薄帯10の全面にコイルが形成された磁歪発電薄膜片311が完成する。
 ここで、コイルシート302の切れ込みの方向は、コイルシート301と逆にしておく。また、コイルシート301が巻かれていない磁歪薄帯10の箇所にコイルシート302を配置することで、厚みの増加を抑えることができる。さらに、コイルシート301の端子301a及び301bから取り出す電圧と、コイルシート302の端子302a及び302bから取り出す電圧の向きとは、逆になるが、これらの2枚のコイルシート301及び302で形成される2つのコイルを直列に、かつ、逆に結線することで、2倍の電圧を取り出すことができる。
 また、コイルの形成方法としては、上記実施の形態に限られず、いわゆる直配線方式で形成、つまり、絶縁膜(絶縁層40)でコーティングされた磁歪薄帯10の上面及び下面に、直接、配線パターン(50A、50B)を形成してもよい。これにより、配線パターンは絶縁膜上に強固に形成される。そして、配線パターンと磁歪薄帯10との間に介在する絶縁膜が薄いため、振動源の振動をより直接的に磁歪薄帯10に伝達することができ、発電効率が向上される。つまり、配線下及び配線上の絶縁膜は、絶縁が確保できる範囲で、可能な限り薄く形成する(例えば、パリレン、エポキシ樹脂等で、5μmの厚みをもつ絶縁膜を形成する)。これにより、振動源の振動が忠実に磁歪薄帯10に伝わる。
 なお、このような直配線においては、磁歪薄帯10に位置合せマークを予め加工しておくことが、位置合せ精度を上げる上で重要である。ただし、コストを優先する場合は、位置合せ形成のための磁歪薄帯10への加工を避けてもよい。その場合、図24に示すように、位置合せマーク720を絶縁膜に形成する。そのために、絶縁膜の幅は磁歪薄帯10の幅より広くしておく。
 また、配線の形成方法については、手法を問わない。電界メッキ、無電界メッキ、スクリーン印刷、インクジェット印刷、メタルマスクなどのいずれの手法であってもよい。いずれの方法にするかは、このようにして完成される磁歪発電薄膜片320の用途やサイズに応じて選択すればよい。
 また、エッジにおける配線パターンのコンタクトとして、以下の方法が考えられる。
(1)レジストのスプレーコートによる立体パターン形成(メッキ法)
(2)パターン転写技術を用いる
(3)ノズル噴射により、導電性ペーストでスポット的に表裏の配線をつなぐ
 なお、図24に示される寸法は、一例であり、これに限定されるものではない。
 また、上記実施の形態では、磁歪薄帯を周回するコイルは、1層であったが、ターン数を上げるために、多層で構成してもよい。たとえば、1層目のコイル上に絶縁膜を形成し、その絶縁膜に、1層目のコイルと2層目のコイルとを接続するためにコンタクト窓を形成する。そして、その絶縁膜上及びコンタクト窓に2層目のコイル(配線パターン)を形成することで、1層目のコイルと2層目のコイルとが直列に接続された多層コイルを形成することができる。さらに、このような工程を繰り返すことで、3層以上の多層コイルを形成することができる。これにより、同じ振動を受けた場合であっても、より大きな発電量(電圧/電流)を発生する磁歪発電薄膜片が実現される。
 本発明は、例えば、橋や自動車などの構造体に、センサと一体化して取り付けることにより、振動から電力を生成し、センサ用電源として使用することができる磁歪発電薄膜片及び磁歪発電モジュールとして利用することができる。
 1 磁歪発電薄膜片
 2 構造体
 3 電極
 10 磁歪薄帯
 20、20A 磁石層
 30 基板
 30A、30A’上面基板
 30B、30B’下面基板
 30A1、30B1 Si結晶層
 30A2、30B2 SiO絶縁層
 30A3、30B3 Si基板層
 40 絶縁層
 50 コイル
 50A 上面配線パターン
 50B 下面配線パターン
 60 モーター
 70 磁性体
 71a、71b 永久磁石
 101 磁歪発電薄膜片
 103 電極
 105 接着剤
 110 磁歪薄帯
 130A 上面フレキシブル基板
 130B 下面フレキシブル基板
 140A 上面ベースポリイミド
 140B 下面ベースポリイミド
 141A 上面カバーレイ接着層
 141B 下面カバーレイ接着層
 142A 上面カバーレイポリイミド
 142B 下面カバーレイポリイミド
 150 コイル
 150A 上面配線パターン
 150B 下面配線パターン
 151 スルーホール
 160、160A~160C 電源回路部
 161 昇圧回路
 162 AC-DC変換回路
 163 蓄電回路
 164 レギュレーション回路
 170、170A~170F アプリケーション回路部
 171 センサ/無線モジュール
 180 コネクタ
 181 部品
 182 基板
 183 弾性材料
 184 固定用基材
 190 振動体
 191 固定体
 200、201、201A~201D、202 磁歪発電モジュール
 203、213 PC
 205、215 無線通信システム
 301、302 コイルシート
 301a、301b、302a、302b 端子
 310、311、320 磁歪発電薄膜片

Claims (23)

  1.  振動から電力を生成する磁歪発電薄膜片であって、
     磁歪材料からなる膜状の磁歪素子である磁歪薄帯と、
     前記磁歪薄帯を周回する導電性の配線パターンから構成されるコイルと、
     前記磁歪薄帯と前記配線パターンとの間に介在する絶縁層とを備え、
     前記磁歪薄帯、前記コイル及び前記絶縁層を含む厚みが500μm以下のシート構造を有する
     磁歪発電薄膜片。
  2.  前記コイルと前記絶縁層とは、前記磁歪薄帯を挟んで貼り合わされた上面フレキシブル基板と下面フレキシブル基板とから構成され、
     前記上面フレキシブル基板は、前記配線パターンのうち、前記磁歪薄帯の上面に対向する配線パターンである上面配線パターンを、2つの樹脂層で挟んだ構造を有し、
     前記下面フレキシブル基板は、前記配線パターンのうち、前記磁歪薄帯の下面に対向する配線パターンである下面配線パターンを、2つの樹脂層で挟んだ構造を有し、
     前記上面配線パターンと前記下面配線パターンとで前記コイルが構成されている
     請求項1に記載の磁歪発電薄膜片。
  3.  前記上面配線パターンは、前記磁歪薄帯の上面を横切る複数の直線状の配線パターンから構成され、
     前記下面配線パターンは、前記磁歪薄帯の下面を横切る複数の直線状の配線パターンから構成され、
     前記上面配線パターンを構成する複数の直線状の配線パターンと前記下面配線パターンを構成する複数の直線状の配線パターンとは、前記上面フレキシブル基板及び前記下面フレキシブル基板の周縁部に設けられた複数のスルーホールを介して電気的に接続され、
     前記上面配線パターンを構成する複数の直線状の配線パターンのそれぞれは、2つのスルーホールを介して、前記下面配線パターンを構成する複数の直線状の配線パターンのうちの対応する一つの配線パターンと電気的に接続されている
     請求項2に記載の磁歪発電薄膜片。
  4.  前記上面配線パターン及び前記下面配線パターンの少なくとも一方には、配線パターンの走行方向を90度曲げる屈曲箇所が含まれ、
     前記屈曲箇所では、円弧状に配線パターンの走行方向が90度曲げられている
     請求項2または3に記載の磁歪発電薄膜片。
  5.  前記コイルは、MEMSデバイスであり、
     前記配線パターンは、前記磁歪薄帯の上面に対向して設けられた上面配線パターンと、前記磁歪薄帯の下面に対向して設けられた下面配線パターンとが貼り合わされて構成されている
     請求項1に記載の磁歪発電薄膜片。
  6.  前記上面配線パターンを構成する複数の配線パターンのそれぞれと、前記下面配線パターンを構成する複数の配線パターンのそれぞれとが、半田材料を介して、前記磁歪薄帯の側面近傍で接合されている
     請求項5に記載の磁歪発電薄膜片。
  7.  前記磁歪薄帯と、前記上面配線パターン及び前記下面配線パターンのうち少なくとも一方とが、前記絶縁層を介して接着されている
     請求項5または6に記載の磁歪発電薄膜片。
  8.  さらに、
     前記磁歪薄帯及び前記コイルを挟むように、上面基板と下面基板とを備える
     請求項5~7のうちいずれか1項に記載の磁歪発電薄膜片。
  9.  前記上面基板及び前記下面基板のうち少なくとも一方には、前記磁歪薄帯に対向する面に凹部が設けられている
     請求項8に記載の磁歪発電薄膜片。
  10.  前記磁歪薄帯は、長方形の平板構造を有し、前記平板構造の長手方向に平行な磁化容易軸を有する
     請求項1~9のうちいずれか1項に記載の磁歪発電薄膜片。
  11.  さらに、
     前記磁歪薄帯の面内方向に磁界を印加する磁界発生部を備える
     請求項10に記載の磁歪発電薄膜片。
  12.  前記磁界発生部は、前記平板構造の長手方向に並べて設置されたN極磁石とS極磁石とを備える
     請求項11に記載の磁歪発電薄膜片。
  13.  前記磁界発生部は、前記磁歪薄帯の上面及び下面と直交する方向に並べて設置されたN極磁石とS極磁石とを備える
     請求項11に記載の磁歪発電薄膜片。
  14.  前記コイルは、アミンダ状のコイルシートで形成されており、
     前記磁歪薄帯は、前記コイルシートに、編み込まれるように挿入されている
     請求項1に記載の磁歪発電薄膜片。
  15.  前記絶縁層は、前記磁歪薄帯をコーティングしており、
     前記コイルは、前記絶縁層でコーティングされた前記磁歪薄帯の上面及び下面に、直配線方式で形成された配線パターンである
     請求項1に記載の磁歪発電薄膜片。
  16.  振動から電力を生成する磁歪発電薄膜片の製造方法であって、
     磁歪薄帯を周回するコイルを構成する配線パターンのうち、前記磁歪薄帯の上面に対向する配線パターンである上面配線パターンを2つの樹脂層で挟んだ構造を有する上面フレキシブル基板を製作する第1製作工程と、
     前記コイルを構成する配線パターンのうち、前記磁歪薄帯の下面に対向する配線パターンである下面配線パターンを2つの樹脂層で挟んだ構造を有する下面フレキシブル基板を製作する第2製作工程と、
     前記磁歪薄帯を挟んで、前記上面フレキシブル基板と前記下面フレキシブル基板とを貼り合わせる貼り合わせ工程とを含み、
     前記貼り合わせ工程では、前記上面配線パターンと前記下面配線パターンとが、前記上面フレキシブル基板及び前記下面フレキシブル基板の周縁部に設けられた複数のスルーホールを介して電気的に接続されるように、前記上面フレキシブル基板と前記下面フレキシブル基板とを貼り合わせる
     磁歪発電薄膜片の製造方法。
  17.  前記貼り合わせ工程は、
     前記磁歪薄帯に位置決め用穴を形成する工程と、
     前記位置決め用穴を用いて、前記上面フレキシブル基板及び前記下面フレキシブル基板に対する前記磁歪薄帯の位置決めを行い、前記上面フレキシブル基板と前記下面フレキシブル基板とを貼り合わせる工程とを含む
     請求項16に記載の磁歪発電薄膜片の製造方法。
  18.  振動から電力を生成する磁歪発電薄膜片の製造方法であって、
     上面基板上に、平行に走る複数の配線パターンから構成される上面配線パターンを形成する上面配線パターン形成工程と、
     下面基板上に、平行に走る複数の配線パターンから構成される下面配線パターンを形成する下面配線パターン形成工程と、
     前記上面配線パターンと前記下面配線パターンとが内側になるように、前記上面基板と前記下面基板とで磁歪材料からなる磁歪薄帯の挟み込みを行う挟込工程とを含み、
     前記挟込工程では、前記上面配線パターンを構成する複数の配線パターンのそれぞれと、前記下面配線パターンを構成する複数の配線パターンのそれぞれとが、前記磁歪薄帯の側面近傍で接合されるように前記挟み込みを行う
     磁歪発電薄膜片の製造方法。
  19.  さらに、
     前記挟込工程の前に、前記上面配線パターン及び前記下面配線パターンにおける、前記磁歪薄帯に対向する面に、絶縁層を被覆する絶縁層被覆工程を含む
     請求項18に記載の磁歪発電薄膜片の製造方法。
  20.  さらに、
     前記上面配線パターン形成工程または前記下面配線パターン形成工程の前に、前記上面基板及び前記下面基板のうち少なくとも一方に、前記磁歪薄帯に対向する面に凹部を設ける基板加工工程を含む
     請求項18または19に記載の磁歪発電薄膜片の製造方法。
  21.  請求項2~4のいずれか1項に記載の磁歪発電薄膜片と、
     前記磁歪発電薄膜片が備える前記コイルで発生した交流電圧から所定の直流電圧を生成する電源回路と
     を備える磁歪発電モジュール。
  22.  前記電源回路は、前記磁歪発電薄膜片が備える前記上面フレキシブル基板または前記下面フレキシブル基板の上に形成されている
     請求項21に記載の磁歪発電モジュール。
  23.  前記電源回路は、前記磁歪発電薄膜片が備える前記上面フレキシブル基板及び前記下面フレキシブル基板とコネクタを介して接続された回路基板上に形成されている
     請求項21に記載の磁歪発電モジュール。
PCT/JP2012/004076 2011-06-24 2012-06-22 磁歪発電薄膜片、その製造方法及び磁歪発電モジュール WO2012176475A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013521476A JP6076250B2 (ja) 2011-06-24 2012-06-22 磁歪発電薄膜片の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-141123 2011-06-24
JP2011141123 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176475A1 true WO2012176475A1 (ja) 2012-12-27

Family

ID=47422329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004076 WO2012176475A1 (ja) 2011-06-24 2012-06-22 磁歪発電薄膜片、その製造方法及び磁歪発電モジュール

Country Status (2)

Country Link
JP (1) JP6076250B2 (ja)
WO (1) WO2012176475A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072707A (ja) * 2019-10-31 2021-05-06 一般財団法人電力中央研究所 振動発電装置
JP7450919B2 (ja) 2019-03-25 2024-03-18 国立大学法人信州大学 発電素子およびセンサ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111006A (en) * 1980-12-27 1982-07-10 Sony Corp Inductance element
JPS58137206A (ja) * 1982-02-09 1983-08-15 Sony Corp インダクタンス素子
JPS6423132A (en) * 1987-07-17 1989-01-25 Matsushita Electric Ind Co Ltd Stress sensor
JPH01148928A (ja) * 1987-12-04 1989-06-12 Matsushita Electric Ind Co Ltd 応力センサ
JPH05291063A (ja) * 1992-04-09 1993-11-05 Fuji Electric Co Ltd 磁気誘導素子
JPH06221936A (ja) * 1992-10-21 1994-08-12 Matsushita Electric Ind Co Ltd 力学量センサ
JPH08255714A (ja) * 1995-03-16 1996-10-01 Toshiba Corp インダクタおよびその製造方法
JP2004061329A (ja) * 2002-07-30 2004-02-26 Keisoku Kenkyusho:Kk 磁束検出方法、磁束検出装置、磁束センサおよび電流検出方法、電流検出装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111006A (en) * 1980-12-27 1982-07-10 Sony Corp Inductance element
JPS58137206A (ja) * 1982-02-09 1983-08-15 Sony Corp インダクタンス素子
JPS6423132A (en) * 1987-07-17 1989-01-25 Matsushita Electric Ind Co Ltd Stress sensor
JPH01148928A (ja) * 1987-12-04 1989-06-12 Matsushita Electric Ind Co Ltd 応力センサ
JPH05291063A (ja) * 1992-04-09 1993-11-05 Fuji Electric Co Ltd 磁気誘導素子
JPH06221936A (ja) * 1992-10-21 1994-08-12 Matsushita Electric Ind Co Ltd 力学量センサ
JPH08255714A (ja) * 1995-03-16 1996-10-01 Toshiba Corp インダクタおよびその製造方法
JP2004061329A (ja) * 2002-07-30 2004-02-26 Keisoku Kenkyusho:Kk 磁束検出方法、磁束検出装置、磁束センサおよび電流検出方法、電流検出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450919B2 (ja) 2019-03-25 2024-03-18 国立大学法人信州大学 発電素子およびセンサ
JP2021072707A (ja) * 2019-10-31 2021-05-06 一般財団法人電力中央研究所 振動発電装置

Also Published As

Publication number Publication date
JP6076250B2 (ja) 2017-02-08
JPWO2012176475A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP4500426B2 (ja) 面駆動型電気音響変換器
JP5776867B1 (ja) 電磁石、カメラレンズ駆動装置及び電磁石の製造方法
US9544694B2 (en) Piezoelectric element, piezoelectric vibration module, and methods of manufacturing the same
US8362751B2 (en) Harnessing power through electromagnetic induction utilizing printed coils
CN210575405U (zh) 电子部件、振动板以及电子设备
JP6256820B2 (ja) フレキシブルプリント配線板及び該フレキシブルプリント配線板の製造方法
WO2003036665A1 (fr) Transformateur extra-plat et procede de fabrication
CN103680319A (zh) 显示装置及其制造方法
CN102098600A (zh) 音响装置
CN106791290B (zh) 电磁驱动模组及应用该电磁驱动模组的相机装置
JP2013505698A (ja) 多極電磁発電機
JP2006287924A (ja) 平面スピーカ用振動板及び平面スピーカ
WO2007123300A1 (en) Packaging structure of mems microphone
JP2000269059A (ja) 磁性部品およびその製造方法
CN111130296A (zh) 一种电磁式振动能量收集器及制作方法
WO2004108306A1 (ja) 振動発生装置及び電子機器
JP6076250B2 (ja) 磁歪発電薄膜片の製造方法
TW201352015A (zh) 壓電振動零件及行動終端
JP2013126337A (ja) 発電装置
KR100828070B1 (ko) 스피커 및 그 제조방법
WO2010103831A1 (ja) 振動モータ及び携帯機器
JP6255994B2 (ja) エネルギー変換装置
JP7083985B2 (ja) 振動発電素子及びその製造方法
CN210609673U (zh) 电声转换器
CN209949597U (zh) 多层基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521476

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802609

Country of ref document: EP

Kind code of ref document: A1