WO2012176238A1 - ソレノイドバルブ - Google Patents

ソレノイドバルブ Download PDF

Info

Publication number
WO2012176238A1
WO2012176238A1 PCT/JP2011/003592 JP2011003592W WO2012176238A1 WO 2012176238 A1 WO2012176238 A1 WO 2012176238A1 JP 2011003592 W JP2011003592 W JP 2011003592W WO 2012176238 A1 WO2012176238 A1 WO 2012176238A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
solenoid valve
inflow port
fluid
port
Prior art date
Application number
PCT/JP2011/003592
Other languages
English (en)
French (fr)
Inventor
雅俊 上田
伊藤 貴幸
睦 武藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013521301A priority Critical patent/JP5507013B2/ja
Priority to PCT/JP2011/003592 priority patent/WO2012176238A1/ja
Publication of WO2012176238A1 publication Critical patent/WO2012176238A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/029Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M2025/0845Electromagnetic valves

Definitions

  • the present invention relates to a solenoid valve that performs purge control of vaporized fuel supplied from a canister to an engine.
  • vaporized fuel volatilized in the fuel tank 1 is temporarily collected in the canister 2 and the negative pressure generated in the engine 3 downstream of the throttle valve 6 is used. Then, the vaporized fuel is drawn from the canister 2 to the engine 3 and recombusted.
  • a solenoid valve (so-called purge valve) 10 is disposed in the pipe 4 connecting the canister 2 and the engine 3 to control the flow rate of the vaporized fuel.
  • the fuel tank 1 and the canister 2 are arranged at the rear of the vehicle, and the engine 3, the intake pipe 5 and the solenoid valve 10 are arranged at the front of the vehicle.
  • the solenoid valve 10 is duty-controlled at a carrier frequency of 10 Hz (period 100 ms) as shown in FIG. 11A, the pipe 4 is opened (ON) as shown in FIG. It becomes negative pressure.
  • the valve is closed (OFF), a pressure change occurs due to the inertia of the fluid, and once becomes positive pressure, then returns to atmospheric pressure. Pressure pulsation occurred in the pipe 4 due to this sudden pressure fluctuation ⁇ P.
  • Patent Document 1 Since Patent Document 1 is configured as described above, pressure pulsation can be reduced without increasing the product size when the flow rate of the solenoid valve integrated with the chamber is increased, thereby solving the above-described problems. This is an effective method.
  • the present invention was also made to solve the above-described problems.
  • An object of the present invention is to provide a solenoid valve capable of reducing the above.
  • the solenoid valve of the present invention is provided with a plate-like member for branching the fluid in the inflow port.
  • the pressure pulsation is reduced without increasing the product size even when the control flow rate is increased by disassembling the pressure wave generated when the valve body is opened and closed by the plate-like member. Can do.
  • FIG. 6 is a cross-sectional view showing a modification of the plate-like member of the solenoid valve according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a modification of the plate-like member of the solenoid valve according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a modification of the plate-like member of the solenoid valve according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a modification of the plate-like member of the solenoid valve according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a modification of the plate-like member of the solenoid valve according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a modification of the plate-like member of the solenoid valve according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing a modification of the plate-like member of the solenoid valve according to the first embodiment. It is a figure which shows the structure of the general vaporization fuel discharge
  • FIG. 1 A solenoid valve 10 shown in FIG. 1 is used for the solenoid valve 10 of the vaporized fuel discharge suppression system shown in FIG.
  • the solenoid valve 10 is connected to a pipe 4 on the canister 2 side and connected to an inlet port 11 on the atmosphere introduction side for receiving vaporized fuel (hereinafter simply referred to as fluid), and an intake pipe 5 on the engine 3 side for fluid flow.
  • the solenoid part is formed by integrally molding a resin member 16, a coil 17 formed by winding a conductive wire around a bobbin, a power supply terminal 18 energizing the coil 17, a core 19 excited by energizing the coil 17, 19 is a sheet metal member yoke 20 and plate 21 that constitutes a magnetic circuit together with the pin 19, a pin 15 that is partly projected from one end axis of the core 19, a plunger 24 attracted by the core 19, and the plunger 24 as a core. And a spring 22 biased in a direction opposite to the suction direction of 19.
  • the solenoid valve 10 is fixed to the vehicle side by a bolt 23.
  • a drive signal having a predetermined frequency (for example, 10 to 20 Hz) is input from the engine control unit (ECU) for controlling the operation of the engine 3 or a dedicated control device to the power supply terminal 18, the coil 17 is energized to turn the plunger 24 on. It is moved to open and close the flow path 25 to flow a flow rate corresponding to the duty ratio of the drive signal.
  • ECU engine control unit
  • a pressure fluctuation ⁇ P corresponding to the opening / closing of the plunger 24 occurs in the pipe 4 and the flow path 25 communicating from the canister 2 to the plunger 24 as shown in FIG.
  • This pressure fluctuation ⁇ P is repeatedly generated, resulting in pressure pulsation, causing the pipe 4 to vibrate. Therefore, in the first embodiment, a plate-like member 26 for bifurcating the fluid is provided inside the inflow port 11, and the pressure wave of the fluid flowing into the chamber 13 from the inflow port 11 is decomposed to dispose the pipe 4. Reduce pressure pulsation.
  • FIG. 2 is an enlarged view of the inside of the round frame shown in FIG. 1 and shows an installation portion of the plate member 26.
  • FIG. 3 is a view of the inflow port 11 as seen from the entrance side through which the fluid flows.
  • a plate-like member 26 is provided on the outlet side of the inflow port 11 and immediately before the chamber 13 at a position where the central axis X of the inflow port 11 passes.
  • FIG. 4 shows measurement results when the plate-like member 26 is provided on the solenoid valve 10 with a fluid flow rate of 90 L / min and when it is not provided.
  • FIG. 4A is a graph showing the result of measuring the pressure pulsation generated in the pipe 4. Assuming that the pressure pulsation [kPa] when the plate-like member 26 is not provided is 100%, the pressure pulsation [kPa] is reduced to 79% when the plate-like member 26 is provided.
  • FIG. 4B is a graph showing the result of measuring the vibration transmitted to the canister 2. Assuming that the transmission vibration [m / s 2 ] of the canister 2 when the plate-like member 26 is not provided is 100%, it is reduced to 61% when the plate-like member 26 is provided.
  • the solenoid valve 10 can be downsized by reducing the capacity of the chamber 13 within the allowable range of the pressure pulsation.
  • the chamber 13 is formed integrally with the solenoid valve 10.
  • the present invention is not limited to this, and the chamber 13 separate from the solenoid valve 10 may be installed in the pipe 4.
  • the plate-like member 26 may be formed separately and attached to the inflow port 11, or may be simultaneously formed when the inflow port 11, the outflow port 12 and the housing 14 are integrally formed of resin.
  • a cylindrical mold for forming the inflow port 11, a cylindrical mold for forming the outflow port 12, and the chamber 13 are formed in a mold simulating the outer shape of the housing 14.
  • a cylindrical mold for each is installed and filled with resin.
  • a concave portion for forming the plate-like member 26 is formed on the end face of the cylindrical mold for forming the inflow port 11. After filling the resin, each cylindrical mold is pulled out, and a lid 14 a is welded to the opening of the housing 14.
  • the plate member 26 may have the same length as the inflow port 11, it is not preferable because the vicinity of the concave portion of the cylindrical mold for forming the inflow port 11 is easily worn and deformed. Therefore, in the illustrated example, a short plate-like member 26 is formed. Thus, if the plate-like member 26 is formed integrally with the inflow port 11, the number of parts does not increase and manufacturing is easy, so there is no concern about an increase in cost.
  • the plate member 26 when formed separately, the plate member 26 may have the same length as the inflow port 11 because there is no restriction on the mold.
  • the plate-like member 26 is provided on the outlet side of the inflow port 11 and immediately before the chamber 13.
  • the plate-like member 26 may be attached at any position within the inflow port 11.
  • the end face of the plate-like member 26 on the inlet port 11 entrance side preferably has a planar shape rather than a curved shape, and the end face edge portion preferably has no rounded corners.
  • the plate-like member 26 is not limited to the configuration shown in FIGS. Hereinafter, modified examples will be described.
  • the plate-like member 26a shown in FIG. 5 has a shape in which the end surface S2 on the outlet side (chamber 13 side) of the inflow port 11 is relatively larger than the end surface S1 on the inlet side of the inflow port 11. Moreover, you may make it the shape which made end surface S1 relatively larger than end surface S2, like the plate-shaped member 26b shown in FIG.
  • the pressure wave is decomposed at the end surface S1, and the pressure easily enters the chamber 13 and does not easily escape to the inflow port 11 side. Therefore, the effect of reducing pressure pulsation in the pipe 4 is large. Become.
  • the plate-like members 26, 26a, and 26b are arranged at positions where the central axis X of the inflow port 11 passes, but they may be arranged in a shifted manner.
  • FIG. 7 by providing the plate-like member 26c at a position shifted from the central axis X of the inflow port 11, the length of the bifurcated flow path is different, so that the phase of pressure pulsation is likely to shift.
  • the pulsation is easily canceled.
  • the side surface is inclined with respect to the central axis X as shown in the plate-like member 26d shown in FIG. 8, or the plate-like member 26e is arranged obliquely with respect to the central axis X as shown in FIG. You may enlarge the difference of the flow path length which branches. Further, in the case where the difference in flow path length is configured to be the half wavelength of the pressure pulsation, the pulsation can be canceled when the chambers 13 merge.
  • the plate-like members 26, 26a to 26e are provided in the inflow port 11, the flow path is narrowed, so that the inflow flow rate is reduced accordingly. Therefore, the plate thickness of the plate member 26 is appropriately determined so that the maximum flow rate of the solenoid valve 10 can be secured.
  • the diameter ⁇ (shown in FIG. 1) of the flow path 25 among the flow paths formed in the solenoid valve 10 including the inflow port 11 and the outflow port 12 is the smallest. If the thickness of the port 11 is equal to or larger than the opening area of the portion having the diameter ⁇ , the flow rate does not decrease and the pulsation reducing effect can be obtained.
  • the solenoid valve 10 opens and closes the inflow port 11 through which the fluid flows, the outflow port 12 through which the fluid flows out, and the flow path 25 that communicates with the inflow port 11 and the outflow port 12.
  • the plate-like member 26 is formed integrally with the inflow port 11, the manufacturing cost does not increase.
  • the plate-like members 26c to 26e are arranged at positions shifted from the central axis X of the inflow port 11, or the plate-like members 26b and 26c are arranged on the central axis X of the inflow port 11.
  • the pressure pulsation can be reduced even in this configuration.
  • the plate-like member 26 has a plate thickness such that the inflow flow rate flowing from the inflow port 11 to the flow channel is equal to or greater than the flow rate flowing through the flow channel 25 which is the narrowest part of the flow channel. I tried to do it. For this reason, even if the plate-like member 26 is provided, the maximum flow rate of the solenoid valve 10 can be secured.
  • the effect of reducing pressure pulsation can be enhanced by making the end surface S1 facing the inlet side of the inflow port 11 of the plate-like member 26b larger than the end surface S2 facing the outlet side. it can.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • a purge valve that performs purge flow rate control is shown as an example of a solenoid valve.
  • the present invention may be applied to a solenoid valve for other applications.
  • the solenoid valve according to the present invention can suppress pressure pulsation even when the flow rate is increased, it is suitable for a purge valve used in a vaporized fuel discharge suppression system for automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

 流体が流入する流入ポート11に、流入流体を二手に分岐させる板状部材26を設け、弁体24の開閉により発生する流入流体の圧力波を分解して、圧力脈動を低減する。 これにより、制御流量を大流量化しても、製品サイズを大型化することなく、圧力脈動を低減することができる。

Description

ソレノイドバルブ
 この発明は、キャニスタからエンジンへ供給する気化燃料のパージ制御を行うソレノイドバルブに関する。
 図10に示すような自動車の気化燃料排出抑止システムにおいて、燃料タンク1内で揮発した気化燃料をキャニスタ2内で一時的に回収し、スロットルバルブ6下流のエンジン3内に発生する負圧を利用してキャニスタ2からエンジン3へ気化燃料を引き込んで再燃焼させる。キャニスタ2とエンジン3をつなぐ配管4にはソレノイドバルブ(いわゆるパージバルブ)10が配設され、気化燃料の流量制御を行う。一般に、燃料タンク1およびキャニスタ2は車両後方、エンジン3、吸気管5およびソレノイドバルブ10は車両前方に配置されており、車両後方から前方へ配管4を這わせることが多い。
 ソレノイドバルブ10を例えば図11(a)に示すようにキャリア周波数10Hz(周期100ms)でDuty制御した場合、図11(b)のように、配管4は開弁(ON)するとエンジン3側に吸引されて負圧になる。閉弁(OFF)すると、流体の慣性により圧力変化が生じていったん正圧になり、その後に大気圧に戻る。この急激な圧力変動ΔPに起因して配管4内に圧力脈動が発生していた。
 近年、自動車のHEV(Hybrid Electric Vehicle)化に起因したエンジン作動頻度の低下などにより、負圧発生時にキャニスタ2からエンジン3へ供給する気化燃料の流量が増大する傾向にある。この大流量化に伴って、配管4の圧力脈動が増加し、配管4の留め点を通じて車体へ伝達する振動も増加するなどの弊害が生じていた。単純に、配管4に接続したチャンバまたはソレノイドバルブ10に一体のチャンバの容量を増加させて、伝播する圧力脈動を低減することはできるが、この場合には車両配管側でレイアウト変更が必要となるためコストが上昇したり、チャンバ容量に応じて製品サイズが大きくなったりするなどの課題がある。
 そのため、パージ制御流量の大流量化にあたり、製品サイズを大型化することなく圧力脈動を低減することが求められている。一例として、特許文献1に係るソレノイドバルブでは、ソレノイドバルブに一体に形成されたチャンバ内に、圧力脈動を低減するための柱部材を設けている。これにより、閉弁時にチャンバ内から入力ポートに向かう圧力波が柱部材に阻害されるので、入力ポートへ侵入する脈動を低減できる。
特開2008-291916号公報
 上記特許文献1は以上のように構成されているので、チャンバを一体化したソレノイドバルブの大流量化にあたり、製品サイズを大型化することなく圧力脈動を低減でき、上記のような課題を解決する上で有効な方法といえる。
 この発明も上記のような課題を解決するためになされたもので、特許文献1とは異なるアプローチで圧力脈動を低減させることにより、大流量化しても、製品サイズを大型化することなく圧力脈動を低減できるソレノイドバルブを提供することを目的とする。
 この発明のソレノイドバルブは、流入ポート内に流体を分岐させる板状部材を設けたものである。
 この発明によれば、弁体の開閉に伴って発生する圧力波を板状部材で分解することにより、制御流量を大流量化しても、製品サイズを大型化することなく圧力脈動を低減することができる。
この発明の実施の形態1に係るソレノイドバルブの構成を示す断面図である。 図1の丸枠内を拡大した図である。 流入ポートを入り口側から見た図である。 ソレノイドバルブに板状部材を設けた場合と設けない場合の実測結果を示すグラフである。 実施の形態1に係るソレノイドバルブの、板状部材の変形例を示す断面図である。 実施の形態1に係るソレノイドバルブの、板状部材の変形例を示す断面図である。 実施の形態1に係るソレノイドバルブの、板状部材の変形例を示す断面図である。 実施の形態1に係るソレノイドバルブの、板状部材の変形例を示す断面図である。 実施の形態1に係るソレノイドバルブの、板状部材の変形例を示す断面図である。 一般的な、自動車の気化燃料排出抑止システムの構成を示す図である。 ソレノイドバルブの開閉に伴って生じる配管内の圧力変動を示すグラフである。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1に示すソレノイドバルブ10は、先立って説明した図10の気化燃料排出抑止システムのソレノイドバルブ10に用いるものである。このソレノイドバルブ10は、キャニスタ2側の配管4に連結して気化燃料(以下、単に流体と称す)を流入する大気導入側の流入ポート11と、エンジン3側の吸気管5に連結して流体を流出する負圧印加側の流出ポート12と、これらのポートに連通するチャンバ13を形成するハウジング14と、プランジャ(弁体)24を可動させて流路25を開閉するソレノイド部とを備える。
 ソレノイド部は、樹脂部材16を一体成形してなり、ボビンに導線を巻回してなるコイル17と、コイル17へ通電する給電端子18と、コイル17への通電により励磁されるコア19と、コア19と共に磁気回路を構成する板金部材のヨーク20およびプレート21と、コア19の一端軸心に一部を突出させて取り付けたピン15と、コア19に吸引されるプランジャ24と、プランジャ24をコア19の吸引方向とは反対の方向へ付勢するスプリング22とを備える。
 このソレノイドバルブ10は、ボルト23により車両側に固定される。
 エンジン3の動作制御を行うエンジンコントロールユニット(ECU)または専用の制御装置から給電端子18へ、所定周波数(例えば10~20Hz)の駆動信号が入力されると、コイル17に通電してプランジャ24を可動させて流路25を開閉し、駆動信号のDuty比に応じた流量を流す。
 ソレノイドバルブ10をDuty制御する場合、先立って説明した図11に示すように、キャニスタ2からプランジャ24までを連通する配管4と流路25に、プランジャ24の開閉に応じた圧力変動ΔPが生じる。この圧力変動ΔPが繰り返し生じて圧力脈動となり、配管4を振動させることになる。そこで、本実施の形態1では、流入ポート11の内部に、流体を二手に分岐させる板状部材26を設け、流入ポート11からチャンバ13へ流入する流体の圧力波を分解させることにより配管4の圧力脈動を低減させる。
 図2は、図1に示す丸枠内を拡大した図であり、板状部材26の設置部分を示す。また、図3は、流入ポート11を流体が流入してくる入り口側から見た図である。図示例では、流入ポート11の出口側であってチャンバ13の直前に、流入ポート11の中心軸Xが通る位置に板状部材26を設けている。開弁すると、流出ポート12側の負圧により流入ポート11内へ吸引された流体は、板状部材26に当たって二方向に分割され、チャンバ13で合流し、流路25を通って流出ポート12へ流れる。このとき、プランジャ24の開閉に伴う圧力変動ΔPの圧力波を板状部材26が分解するので、配管4の圧力脈動が低減する。
 図4に、流体流量90L/minのソレノイドバルブ10に板状部材26を設けた場合と設けない場合の実測結果を示す。
 図4(a)は、配管4に生じた圧力脈動を測定した結果を示すグラフである。板状部材26を設けない場合の圧力脈動[kPa]を100%とすると、板状部材26を設けた場合は79%に減少した。
 図4(b)は、キャニスタ2に伝達した振動を測定した結果を示すグラフである。板状部材26を設けない場合のキャニスタ2の伝達振動[m/s]を100%とすると、板状部材26を設けた場合は61%に減少した。
 このように、流入ポート11に板状部材26を設けることで、車両配管に生じる圧力脈動を低減することができる。そのため、ソレノイドバルブ10の大流量化に際し、圧力脈動を低減するためにチャンバ13を大容量化する必要がなく、よってソレノイドバルブ10が大型化することもない。また、圧力脈動を低減できるので、圧力脈動の許容範囲内でチャンバ13の容量を小さくして、ソレノイドバルブ10の小型化を図ることも可能となる。また、図示例ではチャンバ13をソレノイドバルブ10と一体に形成したが、これに限定されるものではなく、ソレノイドバルブ10とは別体のチャンバ13を配管4に設置してもよい。
 なお、板状部材26で流入流体を分岐させる構成に代えて、流入ポート11を並列に二個形成して二方向から流入させることも考えられるが、この構成にした場合はソレノイドバルブ10の大型化を招き、また、配管4を二手に分岐させるなど車両配管側でのレイアウトの変更が必要なためコスト上昇を招くことになる。
 この板状部材26は、別体で形成して流入ポート11に取り付けてもよいし、あるいは流入ポート11、流出ポート12およびハウジング14を樹脂にて一体成形するときに同時に成形してもよい。
 一体成形する場合は、ハウジング14の外形を模った金型内に、流入ポート11を形成するための円柱状金型、流出ポート12を形成するための円柱状金型、チャンバ13を形成するための円柱状金型をそれぞれ設置して樹脂を充填する。ただし、流入ポート11を形成するための円柱状金型の端面には、板状部材26を形成するための凹部が形成されているものとする。樹脂充填後、各円柱状金型を抜き、ハウジング14の開口部に蓋体14aを溶着する。なお、板状部材26を流入ポート11と同じ長さにしてもよいが、流入ポート11を形成するための円柱状金型の凹部付近が磨耗および変形しやすくなるため好ましくない。そのため、図示例では短い板状部材26を形成している。このように、板状部材26を流入ポート11と一体に成形すれば部品点数が増えず、製造も容易なため、コスト上昇の懸念がない。
 一方、別体で形成する場合には、金型の制約はないので、板状部材26を流入ポート11と同じ長さにしてもよい。また、図示例では板状部材26を流入ポート11の出口側、チャンバ13の直前に設けているが、別体の場合は流入ポート11内であればどの位置に取り付けてもよい。
 なお、圧力波を分解しやすくするために、板状部材26の流入ポート11入り口側の端面は曲面形状より平面形状が好ましく、また、端面縁部は角を丸めないほうが好ましい。
 この板状部材26は、図1~図3に示す構成に限定されるものではない。以下、変形例を説明する。
 図5に示す板状部材26aは、流入ポート11の入り口側の端面S1に比べ、流入ポート11の出口側(チャンバ13側)の端面S2を相対的に大きくした形状である。
 また、図6に示す板状部材26bのように、端面S2より端面S1を相対的に大きくした形状にしてもよい。端面S1を大きくすることにより圧力波がこの端面S1で分解されることに加え、圧力がチャンバ13へ入りやすく、流入ポート11側へ逃げにくくなるため、配管4での圧力脈動の低減効果が大きくなる。
 また、図1~図6の構成例では板状部材26,26a,26bを流入ポート11の中心軸Xが通る位置に配置したが、ずらして配置してもよい。
 図7に示すように、板状部材26cを、流入ポート11の中心軸Xからずれた位置に設けることにより、二手に分岐した流路の長さが異なるので、圧力脈動の位相がずれやすくなり、チャンバ13で合流した際に脈動が相殺されやすくなる。
 さらに、図8に示す板状部材26dのように側面を中心軸Xに対して斜めにしたり、図9に示すように中心軸Xに対して板状部材26eを斜めに配置したりして、分岐する流路長の差を大きくしてもよい。さらに流路長の差が圧力脈動の半波長分になるよう構成した場合には、チャンバ13で合流した際に脈動を相殺できる。
 このように、図5~図9に示すような板状部材26a~26eでも、ソレノイドバルブ10を大型化することなく、車両配管に生じる圧力脈動を低減することができる。
 なお、流入ポート11に板状部材26,26a~26eを設けると流路が狭まるため、その分、流入流量が低下することになる。そこで、板状部材26の板厚を適切に決定して、ソレノイドバルブ10の最大流量を確保できるようにする。
 例えば、本実施の形態1では、流入ポート11および流出ポート12を含め、ソレノイドバルブ10内に形成された各流路のうち流路25の直径φ(図1に示す)が最も小さいので、流入ポート11の開口面積がこの直径φの部分の開口面積と同じかそれ以上になるような板厚にすれば、流量の低下もなく、脈動低減効果が得られる。
 以上より、実施の形態1によれば、ソレノイドバルブ10は、流体が流入する流入ポート11と、この流体が流出する流出ポート12と、流入ポート11と流出ポート12に連通した流路25を開閉するプランジャ24と、流入ポート11からプランジャ24までの流路に形成したチャンバ13と、流入ポート11内の中心軸Xを通る位置に配置されて流体を二手に分岐させる板状部材26とを備えるように構成した。このため、プランジャ24の開閉に起因して生じる圧力波を板状部材26で分解することにより、ソレノイドバルブ10を大流量化しても、製品サイズを大型化することなく圧力脈動を低減することができる。また、車両配管側でのレイアウトの変更なども不要なため、コスト上昇等の懸念もない。
 また、実施の形態1によれば、板状部材26を流入ポート11と一体に成形するようにしたので、製造コストが上昇しない。
 また、実施の形態1によれば、板状部材26c~26eを流入ポート11の中心軸Xからずれた位置に配置したり、あるいは、板状部材26b,26cを流入ポート11の中心軸Xに対して斜めに配置したりしてもよく、この構成の場合にも圧力脈動を低減できる。
 また、実施の形態1によれば、板状部材26を、流入ポート11から流路へ流れる流入流量が、この流路の最も細くなる部分である流路25を流れる流量以上になる板厚にするようにした。このため、板状部材26を設けても、ソレノイドバルブ10の最大流量を確保できる。
 また、実施の形態1によれば、板状部材26bの流入ポート11の入り口側を向いた端面S1を、出口側を向いた端面S2より大きくすることにより、圧力脈動の低減効果を高めることができる。
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。また、上記説明ではソレノイドバルブの一例として、パージ流量制御を行うパージバルブを示したが、他の用途のソレノイドバルブに本発明を適用してもよい。
 以上のように、この発明に係るソレノイドバルブは、大流量化しても圧力脈動を抑制することができるので、自動車の気化燃料排出抑止システムに用いるパージバルブなどに適している。
 1 燃料タンク、2 キャニスタ、3 エンジン、4 配管、5 吸気管、6 スロットルバルブ、10 ソレノイドバルブ、11 流入ポート、12 流出ポート、13 チャンバ、14 ハウジング、14a 蓋体、15 ピン、16 樹脂部材、17 コイル、18 給電端子、19 コア、20 ヨーク、21 プレート、22 スプリング、23 ボルト、24 プランジャ、25 流路、26,26a~26e 板状部材。

Claims (8)

  1.  流体が流入する流入ポートと、当該流体が流出する流出ポートと、前記流入ポートと前記流出ポートに連通した流路を開閉する弁体とを備え、
     前記流入ポート内に、流体を分岐させる板状部材を設けることを特徴とするソレノイドバルブ。
  2.  板状部材は、流入ポートと一体に成形されたことを特徴とする請求項1記載のソレノイドバルブ。
  3.  板状部材は、流入ポートの中心軸を通る位置に配置されたことを特徴とする請求項1記載のソレノイドバルブ。
  4.  板状部材は、流入ポートの中心軸からずれた位置に配置されたことを特徴とする請求項1記載のソレノイドバルブ。
  5.  板状部材は、流入ポートの中心軸に対して斜めに配置されたことを特徴とする請求項1記載のソレノイドバルブ。
  6.  板状部材は、流入ポートから流路へ流れる流入流量が、当該流路の最も細くなる部分を流れる流量以上になる板厚であることを特徴とする請求項1記載のソレノイドバルブ。
  7.  板状部材は、流入ポートの流体が流入してくる入り口側を向いた端面が、当該流入ポートの流体が流出していく出口側を向いた端面より大きいことを特徴とする請求項1記載のソレノイドバルブ。
  8.  流入ポートから弁体までの間の流路にチャンバを形成したことを特徴とする請求項1記載のソレノイドバルブ。
PCT/JP2011/003592 2011-06-23 2011-06-23 ソレノイドバルブ WO2012176238A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013521301A JP5507013B2 (ja) 2011-06-23 2011-06-23 ソレノイドバルブ
PCT/JP2011/003592 WO2012176238A1 (ja) 2011-06-23 2011-06-23 ソレノイドバルブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003592 WO2012176238A1 (ja) 2011-06-23 2011-06-23 ソレノイドバルブ

Publications (1)

Publication Number Publication Date
WO2012176238A1 true WO2012176238A1 (ja) 2012-12-27

Family

ID=47422123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003592 WO2012176238A1 (ja) 2011-06-23 2011-06-23 ソレノイドバルブ

Country Status (2)

Country Link
JP (1) JP5507013B2 (ja)
WO (1) WO2012176238A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160061156A1 (en) * 2014-08-27 2016-03-03 Hyundai Motor Company Chamber for reducing operating noise of purge control solenoid valve for evaporative emission control system
JP2019060277A (ja) * 2017-09-26 2019-04-18 浜名湖電装株式会社 流量調整装置
WO2022009283A1 (ja) * 2020-07-06 2022-01-13 三菱電機株式会社 パージソレノイドバルブ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295960A (ja) * 2000-04-17 2001-10-26 Toyota Motor Corp 電磁弁
JP2004019756A (ja) * 2002-06-14 2004-01-22 Smc Corp 流量制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275993A (ja) * 1988-04-25 1989-11-06 Hitachi Ltd 先端が閉じられた分岐管を有する配管系
JPH08135881A (ja) * 1994-11-08 1996-05-31 Tokyo Gas Co Ltd 圧力変動抑制装置
JPH08193687A (ja) * 1995-01-17 1996-07-30 Kubota Corp 流体制御弁の騒音防止構造
JP2002286153A (ja) * 2001-03-26 2002-10-03 Aisin Seiki Co Ltd 電磁弁
JP2003049607A (ja) * 2001-08-03 2003-02-21 Mitsubishi Heavy Ind Ltd 流体導通管
JP2003301811A (ja) * 2003-04-07 2003-10-24 Sharp Corp 整流装置
US6701963B1 (en) * 2003-05-12 2004-03-09 Horiba Instruments, Inc. Flow conditioner
JP4375436B2 (ja) * 2007-05-24 2009-12-02 株式会社デンソー バルブ装置
JP2010223783A (ja) * 2009-03-24 2010-10-07 Yamatake Corp 流体計測器および流体整流器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295960A (ja) * 2000-04-17 2001-10-26 Toyota Motor Corp 電磁弁
JP2004019756A (ja) * 2002-06-14 2004-01-22 Smc Corp 流量制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160061156A1 (en) * 2014-08-27 2016-03-03 Hyundai Motor Company Chamber for reducing operating noise of purge control solenoid valve for evaporative emission control system
US9951722B2 (en) * 2014-08-27 2018-04-24 Hyundai Motor Company Chamber for reducing operating noise of purge control solenoid valve for evaporative emission control system
JP2019060277A (ja) * 2017-09-26 2019-04-18 浜名湖電装株式会社 流量調整装置
WO2022009283A1 (ja) * 2020-07-06 2022-01-13 三菱電機株式会社 パージソレノイドバルブ

Also Published As

Publication number Publication date
JPWO2012176238A1 (ja) 2015-02-23
JP5507013B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
US9068667B2 (en) Electromagnetic valve
JP4375436B2 (ja) バルブ装置
JP5717876B2 (ja) 流量制御装置
US9346351B2 (en) Valve device
JP4735468B2 (ja) バルブユニット
US9103302B2 (en) Dual electromagnetic valve and evaporated gas treatment system
WO2012176238A1 (ja) ソレノイドバルブ
JP5689983B2 (ja) 電磁弁
WO2017115318A1 (en) A dual path dual purge valve system and valve assembly for turbo boosted engine
JP2011226513A (ja) 電磁弁装置
JP2000170948A (ja) ソレノイドバルブおよび燃料蒸発ガス排出抑止装置
JP2019143531A (ja) 内燃機関の流体制御装置
JP4071272B2 (ja) ソレノイドバルブ
JP3808491B2 (ja) ソレノイドバルブ
JP4071275B2 (ja) ソレノイドバルブ
JP4071273B2 (ja) ソレノイドバルブ
JP2001324045A (ja) 電磁弁
JP2001304068A (ja) 電磁弁
JP5991930B2 (ja) 三方電磁弁
JP4071274B2 (ja) ソレノイドバルブ
JP2002130516A (ja) 電磁弁
JP2014020447A (ja) 電磁弁及び電磁弁の製造法
JP2007170677A (ja) ソレノイドバルブおよび燃料蒸発ガス排出抑止装置
JP2014181584A (ja) 燃料タンクモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868118

Country of ref document: EP

Kind code of ref document: A1