WO2012173370A2 - 신규한 화합물 및 이를 이용한 유기 전자 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 전자 소자 Download PDF

Info

Publication number
WO2012173370A2
WO2012173370A2 PCT/KR2012/004628 KR2012004628W WO2012173370A2 WO 2012173370 A2 WO2012173370 A2 WO 2012173370A2 KR 2012004628 W KR2012004628 W KR 2012004628W WO 2012173370 A2 WO2012173370 A2 WO 2012173370A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
organic
layer
Prior art date
Application number
PCT/KR2012/004628
Other languages
English (en)
French (fr)
Other versions
WO2012173370A3 (ko
Inventor
신창환
장준기
이동훈
김공겸
이형진
이상빈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/125,539 priority Critical patent/US9543524B2/en
Priority to JP2014515721A priority patent/JP5805862B2/ja
Priority to EP12800449.6A priority patent/EP2719743B1/en
Priority to CN201280028973.5A priority patent/CN103608429B/zh
Publication of WO2012173370A2 publication Critical patent/WO2012173370A2/ko
Publication of WO2012173370A3 publication Critical patent/WO2012173370A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to a novel compound and an organic electronic device using the same.
  • an organic electronic device is an electronic device using an organic semiconductor material, and requires an exchange of holes and / or electrons between an electrode and an organic semiconductor material.
  • the organic electronic device can be divided into two types according to the operating principle. First, an exciton is formed in the organic layer by photons introduced into the device from an external light source, and the exciton is separated into electrons and holes, and these electrons and holes are transferred to different electrodes to be used as current sources (voltage sources). It is an electronic device of the form.
  • the second type is an electronic device in which holes and / or electrons are injected into the organic semiconductor material layer that interfaces with the electrodes by applying voltage or current to two or more electrodes, and is operated by the injected electrons and holes.
  • organic electronic devices include organic light emitting devices, organic solar cells, organic photoconductor (OPC) drums, and organic transistors, all of which are electron / hole injection materials, electron / hole extraction materials, and electron / hole transport materials for driving the devices. Materials or luminescent materials are required.
  • OPC organic photoconductor
  • organic transistors all of which are electron / hole injection materials, electron / hole extraction materials, and electron / hole transport materials for driving the devices. Materials or luminescent materials are required.
  • OPC organic photoconductor
  • organic transistors all of which are electron / hole injection materials, electron / hole extraction materials, and electron / hole transport materials for driving the devices. Materials or luminescent materials are required.
  • OPC organic photoconductor
  • organic transistors all of which are electron / hole injection materials, electron / hole extraction materials, and electron / hole transport materials for driving the devices. Materials or luminescent materials are required.
  • the organic light emitting device will be described in detail.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode and an organic material layer therebetween.
  • the organic material layer is often formed of a multilayer structure composed of different materials to increase the efficiency and stability of the organic light emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • organic light emitting devices When the voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer at the anode and electrons are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet, and the excitons are at the bottom. When it falls to the state, it becomes light.
  • Such organic light emitting devices are known to have characteristics such as self-luminous, high brightness, high efficiency, low driving voltage, wide viewing angle, high contrast, and high speed response.
  • Materials used as the organic material layer in the organic light emitting device may be classified into light emitting materials and charge transport materials such as hole injection materials, hole transport materials, electron transport materials, electron injection materials and the like depending on their functions.
  • the luminescent material includes blue, green, and red luminescent materials and yellow and orange luminescent materials necessary to realize better natural colors depending on the emission color.
  • a host / dopant system may be used as the light emitting material. The principle is that when a small amount of dopant having a smaller energy band gap and excellent luminous efficiency than the host mainly constituting the light emitting layer is mixed in the light emitting layer, excitons generated in the host are transported to the dopant to produce high efficiency light. At this time, since the wavelength of the host shifts to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant to be used.
  • a material forming the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc., is supported by a stable and efficient material.
  • a stable and efficient organic material layer for an organic light emitting device has not been sufficiently achieved, and therefore, the development of new materials is continuously required.
  • an object of the present invention is to provide a novel compound and an organic electronic device using the same.
  • the present invention provides a compound represented by the following formula (1).
  • R1 is a naphthyl group or a biphenyl group
  • R2 to R10 is represented by the formula (2), the remainder is hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or unsubstituted alkylamine group; A substituted or unsubstituted alky
  • L is a direct bond; Substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group containing one or more of N, O, S atoms,
  • Ar1 and Ar2 are each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroring group including one or more of N, O, S atoms;
  • A is O, S or Se.
  • the present invention is an organic electrical device comprising a first electrode, a second electrode, and at least one organic layer disposed between the first electrode and the second electrode, at least one of the organic layer is represented by the formula (1) It provides an organic electronic device comprising a compound to be.
  • novel compounds according to the present invention can be used as organic material layers of organic electronic devices, including organic light emitting devices, by introducing various functional groups.
  • the organic electronic device including the organic light emitting device using the compound represented by Chemical Formula 1 according to the present invention as a material of the organic material layer exhibits excellent characteristics in efficiency, driving voltage, lifetime, and the like.
  • FIG. 1 illustrates an organic light emitting device structure in which an anode 102, a light emitting layer 105, and a cathode 107 are sequentially stacked on a substrate 101.
  • FIG. 2 illustrates an organic light emitting device structure in which an anode 102, a hole injection / hole transport and light emitting layer 105, an electron transport layer 106, and a cathode 107 are sequentially stacked on a substrate 101.
  • FIG. 3 is an example of an organic light emitting device structure in which a substrate 101, an anode 102, a hole injection layer 103, a hole transport and light emitting layer 105, an electron transport layer 106 and a cathode 107 are sequentially stacked. .
  • FIG. 4 is an example of an organic light emitting device structure in which a substrate 101, an anode 102, a hole injection layer 103, a hole transport layer 104, an electron transporting and emitting layer 105, and a cathode 107 are sequentially stacked. .
  • the novel compound according to the present invention is characterized by represented by the formula (1).
  • R6 or R8 may be represented by Formula 2, but is not limited thereto.
  • the alkyl group may be straight or branched chain, carbon number is not particularly limited, but is preferably 1 to 12. Specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl, heptyl, and the like.
  • the alkenyl group may be linear or branched, and the carbon number is not particularly limited, but is preferably 2 to 12. Specific examples thereof include alkenyl groups in which aryl groups such as stylbenyl and styrenyl are connected, but are not limited thereto.
  • the alkynyl group may be linear or branched, and the carbon number is not particularly limited, but is preferably 2 to 12. Specific examples thereof include an ethynyl group and a propynyl group, but are not limited thereto.
  • the cycloalkyl group does not give a steric hindrance of 3 to 12 carbon atoms.
  • Specific examples include a cyclopentyl group and a cyclohexyl group, but are not limited thereto.
  • the cycloalkenyl group preferably has 3 to 12 carbon atoms, and more particularly, a cyclic compound having ethenylene in a pentagonal or hexagonal ring, and the like, but is not limited thereto.
  • the alkoxy group preferably has 1 to 12 carbon atoms, more specifically methoxy, ethoxy, isopropyloxy, and the like, but is not limited thereto.
  • the aryloxy group preferably has 6 to 20 carbon atoms, and more specifically, phenyloxy, cyclohexyloxy, naphthyloxy, diphenyloxy, etc. may be mentioned, but is not limited thereto.
  • the alkylamine group preferably has 1 to 30 carbon atoms, and more specifically, methylamine group, dimethylamine group, ethylamine group, diethylamine group, etc. may be mentioned, but is not limited thereto.
  • the said arylamine group has 5 to 30 carbon atoms. More specifically, a phenylamine group, a naphthylamine group, a biphenylamine group, anthracenylamine group, 3-methyl- phenylamine group, 4-methyl- naphthylamine group, 2-methyl- biphenylamine group, 9- And methyl-anthracenylamine groups, diphenylamine groups, phenylnaphthyl amine groups, ditolylamine groups, phenyltolylamine groups, and triphenylamine groups. It is not limited to these.
  • the aryl group may be monocyclic or polycyclic, and the carbon number is not particularly limited, but is preferably 6 to 40.
  • Examples of the monocyclic aryl group include phenyl group, biphenyl group, terphenyl group, stilbene, and the like.
  • Examples of the polycyclic aryl group include naphthyl group, anthracenyl group, phenanthrene group, pyrenyl group, perrylenyl group and cry But may be exemplified, but is not limited thereto.
  • the heteroaryl group is a ring group containing O, N, S or P as a hetero atom, and the number of carbon atoms is not particularly limited, but is preferably 3 to 30 carbon atoms.
  • the heterocyclic group include a carbazole group, a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a pyridazine group, a quinolinyl group, an isoquinoline group
  • there is an acrydyl group and the like compounds such as the following structural formula is preferable, but is not limited thereto.
  • halogen group examples include fluorine, chlorine, bromine and iodine, but are not limited thereto.
  • arylene group may include, but are not limited to, a phenylene group, a biphenylene group, a naphthalenyl group, a binaphthalene group, an anthracenylene group, a fluorenylene group, a chrysenylene group, a phenanthrenylene group, and the like. .
  • heterocycloalkyl group examples include ring groups containing heteroatoms such as N, S or O.
  • substituted or unsubstituted is deuterium, halogen, alkyl, alkenyl, alkoxy, silyl, arylalkenyl, aryl, heteroaryl, carbazole, arylamine, aryl It means that it is substituted with one or more substituents selected from the group consisting of a fluorenyl group and a nitrile group unsubstituted or substituted with a group or does not have any substituent.
  • R1 to R10, L, Ar1, Ar2, and A of Formula 1 may be further substituted with additional substituents, and examples thereof include halogen, alkyl, alkenyl, alkoxy, silyl, arylalkenyl, and aryl groups. , A heteroaryl group, a carbazole group, an arylamine group, a fluorenyl group unsubstituted or substituted with an aryl group, a nitrile group, and the like, but are not limited thereto.
  • Preferred specific examples of the compound represented by Formula 1 include the following compounds, but are not limited thereto.
  • the compound represented by Chemical Formula 1 may be prepared using a common method known in the art, such as a condensation reaction and a Suzuki coupling reaction.
  • Compounds represented by Formula 1 may have properties suitable for use as an organic material layer used in an organic light emitting device by introducing various substituents in the core structure represented by the formula.
  • the compound represented by Chemical Formula 1 may exhibit properties in any layer of the organic light emitting device, but may exhibit the following properties in particular.
  • the conjugation length of the compound and the energy bandgap are closely related. Specifically, the longer the conjugation length of the compound, the smaller the energy bandgap. As described above, since the cores of the compounds represented by Formula 1 include limited conjugation, they have properties ranging from small energy band gaps to large properties.
  • the compound which has the intrinsic property of the introduced substituent can be synthesize
  • the hole injection layer material and the hole transport layer material used in manufacturing the organic light emitting device have an energy level sufficient to transfer holes along the HOMO, and an energy level sufficient to block electrons passing along the LUMO from the light emitting layer.
  • It may be a compound which may have.
  • the core structure of the compound exhibits stable properties to the electrons and may contribute to improving the life of the device.
  • Derivatives made by introducing substituents to be used in the light emitting layer and the electron transport layer material may be manufactured to have an appropriate energy band gap in various arylamine dopants, aryl dopants, metal dopants, and the like.
  • the compounds represented by Formula 1 have a high glass transition temperature (Tg) is excellent in thermal stability. This increase in thermal stability is an important factor in providing drive stability to the device.
  • the organic electronic device according to the present invention is an organic electronic device comprising a first electrode, a second electrode, and at least one organic layer disposed between the first electrode and the second electrode, one or more of the organic layer It is characterized by including a compound represented by the formula (1).
  • the organic electronic device of the present invention may be manufactured by a conventional method and material for manufacturing an organic electronic device, except that at least one organic material layer is formed using the above-described compounds.
  • the compound of Chemical Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method in manufacturing an organic electronic device.
  • the solution coating method means spin coating, dip coating, inkjet printing, screen printing, spraying method, roll coating and the like, but is not limited thereto.
  • the organic material layer of the organic electronic device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic electronic device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer.
  • the structure of the organic electronic device is not limited thereto and may include a smaller number of organic material layers.
  • the organic material layer may include at least one of a hole injection layer, a hole transport layer, and a layer for simultaneously injecting holes and transporting holes, wherein at least one of the layers is represented by Chemical Formula 1 It may include a compound represented by.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include a compound represented by Chemical Formula 1.
  • the organic material layer may include one or more layers of an electron transport layer, an electron injection layer, and a layer for simultaneously transporting and transporting electrons, and one or more of the layers may include a compound represented by Formula 1 above. have.
  • the compound of Formula 1 may be included in a light emitting layer, a layer for simultaneously injecting / holes transporting and emitting light, a layer for simultaneously transporting holes and emitting light, or a layer for simultaneously transporting electrons and emitting light.
  • the structure of the organic light emitting device of the present invention may have a structure as shown in Figs. 1 to 4, but is not limited thereto.
  • FIG. 1 illustrates a structure of an organic light emitting device in which an anode 102, a light emitting layer 105, and a cathode 107 are sequentially stacked on a substrate 101.
  • the compound of Formula 1 may be included in the light emitting layer 105.
  • FIG. 2 illustrates a structure of an organic light emitting device in which an anode 102, a hole injection / hole transport and light emitting layer 105, an electron transport layer 106, and a cathode 107 are sequentially stacked on a substrate 101.
  • the compound of Formula 1 may be included in the hole injection / hole transport and the light emitting layer 105.
  • FIG. 3 illustrates a structure of an organic light emitting device in which a substrate 101, an anode 102, a hole injection layer 103, a hole transport and emission layer 105, an electron transport layer 106, and a cathode 107 are sequentially stacked. It is.
  • the compound of Formula 1 may be included in the hole injection / hole transport and the light emitting layer 105.
  • FIG. 4 illustrates a structure of an organic light emitting device in which a substrate 101, an anode 102, a hole injection layer 103, a hole transport layer 104, an electron transport and light emitting layer 105, and a cathode 107 are sequentially stacked. It is.
  • the compound of Formula 1 may be included in the electron transport and emission layer 105.
  • the compound represented by the formula (1) is more preferably included in the electron transport layer, or a layer that simultaneously performs electron transport and electron injection.
  • the organic light emitting device uses a metal vapor deposition (PVD) method such as sputtering or e-beam evaporation, and has a metal oxide or a metal oxide or an alloy thereof on a substrate. It can be prepared by depositing an anode to form an anode, an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • PVD metal vapor deposition
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the organic layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, but is not limited thereto and may have a single layer structure.
  • the organic material layer may be formed by using a variety of polymer materials, and by using a method such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer method, rather than a deposition method. It can be prepared in layers.
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); A combination of a metal and an oxide such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methyl compound), poly [3,4- (ethylene-1,2-dioxy) compound] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection material is a material capable of well injecting holes from the anode at a low voltage, and the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • the hole injection material include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene-based organics, quinacridone-based organics, and perylene-based Organic compounds, anthraquinones and polyaniline and poly-compounds of conductive polymers, and the like, but are not limited thereto.
  • the hole transporting material a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the electron transporting material is a material capable of injecting electrons well from the cathode and transferring the electrons to the light emitting layer.
  • a material having high mobility to electrons is suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • the compound according to the present invention may also operate on a principle similar to that applied to organic light emitting devices in organic electronic devices including organic solar cells, organic photoconductors, organic transistors, and the like.
  • the organic electronic device may be selected from the group consisting of an organic light emitting device, an organic phosphorescent device, an organic solar cell, an organic photoconductor (OPC), and an organic transistor.
  • Structural Formula A1 (20 g, 58 mmol) in trichloromethane (200 ml)
  • hydrogen peroxide solution (20 ml) was added and stirred for 12 hours.
  • MgSO 4 The mixture was stirred to remove water, filtered, concentrated, and recrystallized with hexane to obtain Structural Formula A (18 g, yield 85%).
  • Structural formula B1 was obtained by the same method as the preparation method of structural formula A1, except that 2,6-dibromonaphthalene was used instead of 1,4-dibromobenzene.
  • Structural formula B was obtained by the same method as the manufacturing method of structural formula A, except that structural formula B1 was used instead of structural formula A1.
  • Structural formula C1 (4.1 g, 10.8 mmol), bis (pinacolato) diboron (2.75 g, 10.8 mmol) and potassium acetate (2.89 g, 29.4 mmol) were suspended in dioxane (50 mL). Palladium (diphenylphosphinoferrocene) chloride (0.24 g, 0.3 mmol) was added to the suspension. The resulting mixture was stirred at 80 ° C. for about 6 hours and cooled to room temperature. The mixture was diluted with water (50 mL) and extracted with dichloromethane (3 x 50 mL). The organic extract was dried over magnesium sulfate and concentrated in vacuo. The product was washed with ethanol and dried in vacuo to prepare the compound of formula C (3.7 g, yield 67%) which is a boronate.
  • Structural formula D was obtained by the same method as the preparation method of structural formula C, except that structural formula D1 was used instead of structural formula C1.
  • Structural formula E was obtained by the same method as the preparation method of structural formula C, except that structural formula E1 was used instead of structural formula C1.
  • Structural Formula F was obtained by the same method as the preparation method of Structural Formula C, except that Structural Formula F1 was used instead of Structural Formula C1.
  • Structural Formula A (9.6 g, 22.4 mmol) and Structural Formula C (8 g, 22.4 mmol) were completely dissolved in tetrahydrofuran (200 ml), and then 100 ml of 2M potassium carbonate solution was added thereto, and Pd (PPh 3 ) 4 (0.26 g, 0.22 mmol) and stirred for 12 hours. After cooling to room temperature, the water layer was removed and the resulting solid was filtered. The filtered solid was recrystallized with tetrahydrofuran and acetone to obtain the formula 1-2 (8g, 62% yield).
  • Structural formula 1-3 was obtained by the same method as the preparation method of structural formula 1-2 except that structural formula F was used instead of structural formula C.
  • Structural formula 1-4 was obtained by the same method as the preparation method of structural formula 1-2 except that structural formula E was used instead of structural formula C.
  • Structural formula 1-5 was obtained by the same method as the preparation method of structural formula 1-2 except that structural formula D was used instead of structural formula C.
  • Structural Formula 1-8 was obtained by the same method as the preparation method of Structural Formula 1-7, except that Structural Formula E was used instead of Structural Formula C.
  • Structural Formula 1-9 was obtained by the same method as the preparation method of Structural Formula 1-7, except that Structural Formula D was used instead of Structural Formula C.
  • Structural formula 1-10 was obtained by the same method as the preparation method of structural formula 1-7, except that structural formula F was used instead of structural formula C.
  • a glass substrate (corning 7059 glass) coated with a thin film of ITO (Indium Tin Oxide) at a thickness of 1,000 kPa was put in distilled water in which a dispersant was dissolved and washed with ultrasonic waves.
  • Fischer Co.'s product was used as a detergent, and distilled water was used as a filter of Millipore Co.'s filter.
  • ITO Indium Tin Oxide
  • Fischer Co.'s product was used as a detergent
  • distilled water was used as a filter of Millipore Co.'s filter.
  • ultrasonic washing was performed twice with distilled water for 10 minutes.
  • ultrasonic washing was performed in order of isopropyl alcohol, acetone and methanol, followed by drying.
  • Hexanitrile hexaazatriphenylene was thermally vacuum deposited to a thickness of 500 kPa on the prepared ITO transparent electrode to form a hole injection layer.
  • NPB 400 kPa
  • the host H1 and the dopant D1 compound were vacuum deposited to a thickness of 300 kPa as a light emitting layer.
  • a compound of formula 1-2 synthesized in Preparation Example 7 and LiQ (200 kPa) were thermally vacuum deposited to an electron injection and transport layer.
  • An organic light-emitting device was manufactured by sequentially depositing lithium quinolate (LiQ) having a thickness of 12 kPa and aluminum having a thickness of 2,000 kPa on the electron transport layer.
  • E1 was used as a comparative example of the electron transport layer.
  • the deposition rate of the organic material was maintained at 1 ⁇ / sec
  • the lithium quinolate was 0.2 ⁇ / sec
  • the aluminum was maintained at a deposition rate of 3 to 7 ⁇ / sec.
  • Table 1 shows the results of experimenting with the organic light emitting device manufactured by using each compound as the hole transporting material as in the above embodiment.
  • the novel compound according to the present invention may be used as an organic material layer material of an organic electronic device including an organic light emitting device by introducing various substituents and the like.
  • the organic electronic device including the organic light emitting device using the compound represented by Chemical Formula 1 according to the present invention as a material of the organic material layer exhibits excellent characteristics in efficiency, driving voltage, lifetime, and the like.

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기 전자 소자를 제공한다. 본 발명에 따른 화합물은 유기 발광 소자를 비롯한 유기 전자 소자에서 정공 주입, 정공 수송, 전자 주입 및 수송, 발광 물질 역할 등을 할 수 있으며, 본 발명에 따른 유기 전자 소자는 효율, 구동전압 및 수명 면에서 우수한 특성을 나타낸다.

Description

신규한 화합물 및 이를 이용한 유기 전자 소자
본 출원은 2011년 6월 13일에 한국특허청에 제출된 한국 특허 출원 제10-2011-0056777호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 신규한 화합물 및 이를 이용한 유기 전자 소자에 관한 것이다.
본 명세서에서, 유기 전자 소자란 유기 반도체 물질을 이용한 전자 소자로서, 전극과 유기 반도체 물질 사이에서의 정공 및/또는 전자의 교류를 필요로 한다. 유기 전자 소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exiton)이 형성되고, 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 전자 소자이다. 둘째는 2개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기 반도체 물질층에 정공 및/또는 전자를 주입하고, 주입된 전자와 정공에 의하여 작동하는 형태의 전자 소자이다.
유기 전자 소자의 예로는 유기 발광 소자, 유기 태양 전지, 유기 감광체(OPC) 드럼, 유기 트랜지스터 등이 있으며, 이들은 모두 소자의 구동을 위하여 전자/정공 주입 물질, 전자/정공 추출 물질, 전자/정공 수송 물질 또는 발광 물질을 필요로 한다. 이하에서는 주로 유기 발광 소자에 대하여 구체적으로 설명하지만, 상기 유기 전자 소자들에서는 전자/정공 주입 물질, 전자/정공 추출 물질, 전자/정공 수송 물질 또는 발광 물질이 모두 유사한 원리로 작용한다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함할 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층으로 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동 전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다.
유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다. 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높은 빛을 내는 것이다. 이 때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정하고 효율적인 유기 발광 소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이며, 따라서 새로운 재료의 개발이 계속 요구되고 있다.
본 발명자들은 신규한 구조를 갖는 화합물을 밝혀내었다. 또한, 상기 신규한 화합물을 이용하여 유기 전자 소자의 유기물층을 형성하는 경우 소자의 효율 상승, 구동 전압 하강 및 안정성 상승 등의 효과를 나타낼 수 있다는 사실을 밝혀내었다.
이에 본 발명은 신규한 화합물 및 이를 이용한 유기 전자 소자를 제공하는 것을 목적으로 한다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2012004628-appb-I000001
상기 화학식 1에 있어서,
R1은 나프틸기 또는 비페닐기이고,
R2 내지 R10 중 적어도 하나는 하기 화학식 2로 표시되고, 나머지는 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 또는 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기이고;
[화학식 2]
Figure PCTKR2012004628-appb-I000002
상기 화학식 2에 있어서,
L은 직접결합; 치환 또는 비치환된 아릴렌기; 또는 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로아릴렌기이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기이고;
A는 O, S 또는 Se 이다.
또한, 본 발명은 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층을 포함하는 유기 전기 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전자 소자를 제공한다.
본 발명에 따른 신규한 화합물은 다양한 작용기들을 도입하여, 유기 발광 소자를 비롯한 유기 전자 소자의 유기물층 재료로서 사용될 수 있다. 상기 본 발명에 따른 화학식 1로 표시되는 화합물을 유기물층의 재료로서 이용한 유기 발광 소자를 비롯한 유기 전자 소자는 효율, 구동전압, 수명 등에서 우수한 특성을 나타낸다.
도 1은 기판(101) 위에 양극(102), 발광층(105) 및 음극(107)이 순차적으로 적층된 유기 발광 소자 구조의 예시이다.
도 2는 기판(101) 위에 양극(102), 정공 주입/정공 수송 및 발광층(105), 전자 수송층(106) 및 음극(107)이 순차적으로 적층된 유기 발광 소자 구조의 예시이다.
도 3은 기판(101), 양극(102), 정공 주입층(103), 정공 수송 및 발광층(105), 전자 수송층(106) 및 음극(107)이 순차적으로 적층된 유기 발광 소자 구조의 예시이다.
도 4는 기판(101), 양극(102), 정공 주입층(103), 정공 수송층(104), 전자 수송 및 발광층(105) 및 음극(107)이 순차적으로 적층된 유기 발광 소자 구조의 예시이다.
이하 본 발명을 더욱 구체적으로 설명한다.
본 발명에 따른 신규한 화합물은 상기 화학식 1로 표시되는 것을 특징으로 한다.
상기 화학식 1에 있어서, R6 또는 R8이 상기 화학식 2로 표시될 수 있으나, 이에만 한정되는 것은 아니다.
본 발명에 따른 화합물에 있어서, 상기 화학식 1의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 12인 것이 바람직하다. 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, t-부틸기, 펜틸기, 헥실기, 헵틸기 등이 있으나, 이에만 한정되는 것은 아니다.
상기 알케닐기는 직쇄 또는 분지쇄일 수 있으며, 탄소수는 특별히 한정되지 않으나 2 내지 12인 것이 바람직하다. 구체적인 예로는 스틸베닐기(stylbenyl), 스티레닐기(styrenyl) 등의 아릴기가 연결된 알케닐기가 있으나, 이에만 한정되는 것은 아니다.
상기 알키닐기는 직쇄 또는 분지쇄일 수 있으며, 탄소수는 특별히 한정되지 않으나 2 내지 12인 것이 바람직하다. 구체적인 예로는 에티닐기, 프로피닐기 등이 있으나, 이에만 한정되는 것은 아니다.
상기 시클로알킬기는 탄소수 3 내지 12의 입체적 방해를 주지 않는 것이 바람직하다. 구체적인 예로는 시클로펜틸기, 시클로헥실기 등이 있으나, 이에만 한정되는 것은 아니다.
상기 시클로알케닐기는 탄소수 3 내지 12인 것이 바람직하고, 보다 구체적으로는 오각형 또는 육각형 고리 내에 에테닐렌을 갖는 고리 화합물 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 알콕시기는 탄소수 1 내지 12인 것이 바람직하고, 보다 구체적으로 메톡시, 에톡시, 이소프로필옥시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 아릴옥시기는 탄소수 6 내지 20인 것이 바람직하고, 보다 구체적으로 페닐옥시, 시클로헥실옥시, 나프틸옥시, 디페닐옥시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 알킬아민기는 탄소수 1 내지 30인 것이 바람직하고, 보다 구체적으로 메틸아민기, 디메틸아민기, 에틸아민기, 디에틸아민기 등을 들 수 있으나 이에만 한정되는 것은 아니다.
상기 아릴아민기는 탄소수 5 내지 30인 것이 바람직하고. 보다 구체적으로 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 3-메틸-페닐아민기, 4-메틸-나프틸아민기, 2-메틸-비페닐아민기, 9-메틸-안트라세닐아민기, 디페닐아민기, 페닐나프틸 아민기, 디톨릴아민기, 페닐톨릴아민기, 트리페닐아민기 등이 있으나. 이들에 한정되는 것은 아니다.
상기 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 특별히 한정되지 않으나 6 내지 40인 것이 바람직하다. 단환식 아릴기의 예로는 페닐기, 바이페닐기, 터페닐기, 스틸벤 등을 들 수 있고, 다환식 아릴기의 예로는 나프틸기, 안트라세닐기, 페나트렌기, 파이레닐기, 페릴레닐기, 크라이세닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 헤테로아릴기는 이종 원자로 O, N, S 또는 P를 포함하는 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 3 내지 30인 것이 바람직하다. 헤테로고리기의 예로는 카바졸기, 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 피라다진기, 퀴놀리닐기, 이소퀴놀린기, 아크리딜기 등이 있으며, 하기 구조식과 같은 화합물들이 바람직하나, 이에만 한정되는 것은 아니다.
Figure PCTKR2012004628-appb-I000003
상기 할로겐기로는 불소, 염소, 브롬, 요오드 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 아릴렌기의 구체적인 예로는 페닐렌기, 비페닐렌기, 나프탈렌닐기, 바이나프탈렌기, 안트라세닐렌기, 플루오레닐렌기, 크라이세닐렌기, 페난트레닐렌기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 헤테로시클로알킬기로는 N, S 또는 O와 같은 이종원소를 포함하는 고리기를 들 수 있다.
또한, 본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소, 할로겐기, 알킬기, 알케닐기, 알콕시기, 실릴기, 아릴알케닐기, 아릴기, 헤테로아릴기, 카바졸기, 아릴아민기, 아릴기로 치환 또는 비치환된 플루오레닐기 및 니트릴기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환되었거나 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
상기 화학식 1의 R1 내지 R10, L, Ar1, Ar2 및 A는 추가의 치환기로 더 치환될 수 있고, 이들의 예로는 할로겐기, 알킬기, 알케닐기, 알콕시기, 실릴기, 아릴알케닐기, 아릴기, 헤테로아릴기, 카바졸기, 아릴아민기, 아릴기로 치환 또는 비치환된 플루오레닐기, 니트릴기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 화학식 1로 표시되는 화합물의 바람직한 구체적인 예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다.
Figure PCTKR2012004628-appb-I000004
Figure PCTKR2012004628-appb-I000005
Figure PCTKR2012004628-appb-I000006
Figure PCTKR2012004628-appb-I000007
Figure PCTKR2012004628-appb-I000008
이하, 상기 화학식 1로 표시되는 화합물의 제조방법에 대하여 설명한다.
상기 화학식 1로 표시되는 화합물은 축합반응, 스즈끼 결합 반응 등의 당 기술분야에 알려져 있는 일반적인 방법을 이용하여 제조될 수 있다.
상기 화학식 1로 표시되는 화합물들은 상기 화학식에 표시된 코어 구조에 다양한 치환체를 도입함으로써 유기 발광 소자에서 사용되는 유기물층으로 사용되기에 적합한 특성을 가질 수 있다. 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 어느 층에 사용해도 특성을 나타낼 수 있으나, 특히 다음과 같은 특성을 띨 수 있다.
치환 또는 비치환된 아릴아민기가 도입된 화합물들은 발광층, 정공 주입 및 정공 수송층 물질로 적합하며, N을 포함하는 헤테로고리기가 도입된 화합물들은 전자 주입, 전자 전달 층 및 홀 저지층 물질로 적합하다.
화합물의 컨쥬게이션 길이와 에너지 밴드갭은 밀접한 관계가 있다. 구체적으로, 화합물의 컨쥬게이션 길이가 길수록 에너지 밴드갭이 작아진다. 전술한 바와 같이, 상기 화학식 1로 표시되는 화합물들의 코어는 제한된 컨쥬게이션을 포함하고 있으므로, 이는 에너지 밴드갭이 작은 성질에서부터 큰 성질을 갖는다.
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송층 물질들은 HOMO를 따라 정공을 전달해 줄 수 있을 만큼의 에너지 준위를 갖게 하며, 발광층으로부터 LUMO를 따라 넘어오는 전자를 막아 줄 정도의 에너지 준위를 가질 수 있는 화합물이 될 수 있다. 특히, 본 화합물의 코어 구조는 전자에 안정적인 특성을 보여 소자의 수명 향상에 기여할 수 있다. 발광층 및 전자 수송층 물질에 사용되도록 치환체들을 도입하여 이루어진 유도체들은 다양한 아릴아민계 도펀트, 아릴계 도펀트, 금속을 함유한 도펀트 등에 적당한 에너지 밴드갭을 갖도록 제조가 가능하다.
또한, 상기 코어 구조에 다양한 치환기를 도입함으로써 에너지 밴드갭을 미세하게 조절이 가능하게 하며, 한편으로 유기물 사이에서의 계면에서의 특성을 향상되게 하며 물질의 용도를 다양하게 할 수 있다.
한편, 상기 화학식 1로 표시되는 화합물들은 유리 전이 온도(Tg)가 높아 열적 안정성이 우수하다. 이러한 열적 안정성의 증가는 소자에 구동 안정성을 제공하는 중요한 요인이 된다.
또한, 본 발명에 따른 유기 전자 소자는 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층을 포함하는 유기 전자 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 한다.
본 발명의 유기 전자 소자는 전술한 화합물들을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 전자 소자의 제조 방법 및 재료에 의하여 제조될 수 있다.
상기 화학식 1의 화합물은 유기 전자 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 전자 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 전자 소자는 유기물층으로서 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 전자 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다.
따라서, 본 발명의 유기 전자 소자에서, 상기 유기물층은 정공 주입층, 정공 수송층, 및 정공 주입 및 정공 수송을 동시에 하는 층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 상기 유기물층은 발광층을 포함할 수 있고, 상기 발광층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또한, 상기 유기물층은 전자 수송층, 전자 주입층, 및 전자 수송 및 전자 주입을 동시에 하는 층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
이와 같은 다층 구조의 유기물층에서 상기 화학식 1의 화합물은 발광층, 정공 주입/정공 수송과 발광을 동시에 하는 층, 정공 수송과 발광을 동시에 하는 층, 또는 전자 수송과 발광을 동시에 하는 층 등에 포함될 수 있다.
예컨대, 본 발명의 유기 발광 소자의 구조는 도 1 내지 도 4에 나타낸 것과 같은 구조를 가질 수 있으나, 이들에만 한정되는 것은 아니다.
도 1에는 기판(101) 위에 양극(102), 발광층(105) 및 음극(107)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화학식 1의 화합물은 상기 발광층(105)에 포함될 수 있다.
도 2에는 기판(101) 위에 양극(102), 정공 주입/정공 수송 및 발광층(105), 전자 수송층(106) 및 음극(107)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화학식 1의 화합물은 정공 주입/정공 수송 및 발광층(105)에 포함될 수 있다.
도 3에는 기판(101), 양극(102), 정공 주입층(103), 정공 수송 및 발광층(105), 전자 수송층(106) 및 음극(107)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 상기 화학식 1의 화합물은 정공 주입/정공 수송 및 발광층(105)에 포함될 수 있다.
도 4에는 기판(101), 양극(102), 정공 주입층(103), 정공 수송층(104), 전자 수송 및 발광층(105) 및 음극(107)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화학식 1의 화합물은 전자 수송 및 발광층(105)에 포함될 수 있다.
본 발명의 유기 전자 소자에서, 상기 화학식 1로 표시되는 화합물은 전자 수송층, 또는 전자 수송 및 전자 주입을 동시에 하는 층 내에 포함되는 것이 보다 바람직하다.
예컨대, 본 발명에 따른 유기 발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.
상기 유기물층은 정공 주입층, 정공 수송층, 발광층 및 전자 수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸화합물의), 폴리[3,4-(에틸렌-1,2-디옥시)화합물의](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리화합물의 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 발명에 따른 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기 전자 소자에서도 유기 발광 소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
따라서, 상기 유기 전자 소자는 유기 발광 소자, 유기 인광 소자, 유기 태양 전지, 유기 감광체(OPC) 및 유기 트랜지스터로 이루어진 군에서 선택될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나, 하기의 실시예는 본 발명을 예시하기 위한 것이며, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
<실시예>
<제조예 1> 하기 구조식 A 화합물의 합성
Figure PCTKR2012004628-appb-I000009
구조식 A1의 제조
디브로모벤젠(20g, 85mmol)을 테트라하이드로퓨란(100ml)에 녹인 후, -78℃로 냉각시켰다. n-BuLi(2.5M, 37ml, 93mmol)를 천천히 적가한 후 30분 동안 교반하였다. 클로로디페닐포스핀(17g, 76mmol)을 천천히 적가한 후 3시간 동안 교반한 후 상온으로 올린 후 물(100ml)를 가하고, 테트라하이드로퓨란으로 추출하였다. 유기층을 농축시키고 헥산으로 재결정하여 구조식 A1(20g, 수율 70%)를 얻었다.
MS: [M+H]+ = 342
구조식 A의 제조
구조식 A1(20g, 58mmol)을 트리클로로메탄(200ml)에 녹인 후, 과산화수소수(20ml)를 첨가한 후 12시간 교반하였다. MgSO4로 넣고 교반하여 물을 제거한 후 여과하여 농축시키고 헥산으로 재결정하여 구조식 A(18g, 수율 85%)를 얻었다.
<제조예 2> 하기 구조식 B 화합물의 합성
Figure PCTKR2012004628-appb-I000010
구조식 B1의 제조
1,4-디브로모벤젠 대신 2,6-디브로모나프탈렌을 사용한 것을 제외하고, 구조식 A1의 제조방법과 동일한 방법으로 구조식 B1을 얻었다.
MS: [M+H]+ = 392
구조식 B의 제조
구조식 A1 대신 구조식 B1을 사용한 것을 제외하고, 구조식 A의 제조방법과 동일한 방법으로 구조식 B를 얻었다.
MS: [M+H]+ = 408
<제조예 3> 하기 구조식 C 화합물의 합성
Figure PCTKR2012004628-appb-I000011
구조식 C의 제조
구조식 C1(4.1g, 10.8mmol), 비스(피나콜라토)디보론(2.75g, 10.8mmol) 및 아세트산 칼륨(2.89g, 29.4mmol)을 디옥산(50mL)에 현탁시켰다. 상기 현탁액에 팔라듐(디페닐포스피노페로센)클로라이드(0.24g, 0.3mmol)를 가하였다. 얻어진 혼합물을 약 6시간 동안 80℃에서 교반하고, 실온으로 냉각하였다. 상기 혼합물을 물(50mL)로 희석하고 디클로로메탄(3 × 50 mL)으로 추출하였다. 유기 추출물을 황산 마그네슘 상에서 건조하고 진공내 농축하였다. 생성물을 에탄올로 세척하고 진공내 건조하여 보로네이트인 상기 화학식 C의 화합물(3.7g, 수율 67%)을 제조하였다.
MS : [M+H]+= 431
<제조예 4> 하기 구조식 D 화합물의 합성
Figure PCTKR2012004628-appb-I000012
구조식 D의 제조
구조식 C1 대신 구조식 D1을 사용한 것을 제외하고, 구조식 C의 제조방법과 동일한 방법으로 구조식 D를 얻었다.
MS: [M+H]+ = 457
<제조예 5> 하기 구조식 E 화합물의 합성
Figure PCTKR2012004628-appb-I000013
구조식 E의 제조
구조식 C1 대신 구조식 E1을 사용한 것을 제외하고, 구조식 C의 제조방법과 동일한 방법으로 구조식 E를 얻었다.
MS: [M+H]+ = 431
<제조예 6> 하기 구조식 F 화합물의 합성
Figure PCTKR2012004628-appb-I000014
구조식 F의 제조
구조식 C1 대신 구조식 F1을 사용한 것을 제외하고, 구조식 C의 제조방법과 동일한 방법으로 구조식 F를 얻었다.
MS: [M+H]+ = 557
<제조예 7> 구조식 1-2 화합물의 합성
Figure PCTKR2012004628-appb-I000015
구조식 1-2의 제조
구조식 A(9.6g, 22.4mmol)와 구조식 C(8g, 22.4mmol)를 테트라하이드로퓨란(200ml)에 가열하여 완전히 녹인 후, 2M 탄산칼륨 수용액 100ml를 첨가하고 Pd(PPh3)4 (0.26g, 0.22mmol)을 넣고 12시간 교반하였다. 상온으로 낮춘 후 물층을 제거하고 생성된 고체를 여과하였다. 여과된 고체를 테트라하이드로퓨란과 아세톤으로 재결정하여 화학식 1-2(8g, 수율 62%)를 얻었다.
MS: [M+H]+ = 581
<제조예 8> 구조식 1-3 화합물의 합성
Figure PCTKR2012004628-appb-I000016
구조식 1-3의 제조
구조식 C 대신 구조식 F를 사용한 것을 제외하고, 구조식 1-2의 제조방법과 동일한 방법으로 구조식 1-3을 얻었다.
MS: [M+H]+ = 707
<제조예 9> 구조식 1-4 화합물의 합성
Figure PCTKR2012004628-appb-I000017
구조식 1-4의 제조
구조식 C 대신 구조식 E를 사용한 것을 제외하고, 구조식 1-2의 제조방법과 동일한 방법으로 구조식 1-4을 얻었다.
MS: [M+H]+ = 581
<제조예 10> 구조식 1-5 화합물의 합성
Figure PCTKR2012004628-appb-I000018
구조식 1-5의 제조
구조식 C대신 구조식 D를 사용한 것을 제외하고, 구조식 1-2의 제조방법과 동일한 방법으로 구조식 1-5를 얻었다.
MS: [M+H]+ = 607
<제조예 11> 구조식 1-7 화합물의 합성
Figure PCTKR2012004628-appb-I000019
구조식 1-7의 제조
구조식 A(9.6g, 22.4mmol)와 구조식 B(9.1g, 22.4mmol)를 테트라하이드로퓨란(200ml)에 가열하여 완전히 녹인 후, 2M 탄산칼륨 수용액 100ml를 첨가하고 Pd(PPh3)4 (0.26g, 0.22mmol)을 넣고 12시간 교반하였다. 상온으로 낮춘 후 물층을 제거하고 생성된 고체를 여과하였다. 여과된 고체를 테트라하이드로퓨란과 아세톤으로 재결정하여 화학식 1-7(9g, 수율 62%)를 얻었다.
MS: [M+H]+ = 631
<제조예 12> 구조식 1-8 화합물의 합성
Figure PCTKR2012004628-appb-I000020
구조식 1-8의 제조
구조식 C 대신 구조식 E를 사용한 것을 제외하고, 구조식 1-7의 제조방법과 동일한 방법으로 구조식 1-8을 얻었다.
MS: [M+H]+ = 631
<제조예 13> 구조식 1-9 화합물의 합성
Figure PCTKR2012004628-appb-I000021
구조식 1-9의 제조
구조식 C대신 구조식 D를 사용한 것을 제외하고, 구조식 1-7의 제조방법과 동일한 방법으로 구조식 1-9를 얻었다.
MS: [M+H]+ = 657
<제조예 14> 구조식 1-10 화합물의 합성
Figure PCTKR2012004628-appb-I000022
구조식 1-10의 제조
구조식 C 대신 구조식 F를 사용한 것을 제외하고, 구조식 1-7의 제조방법과 동일한 방법으로 구조식 1-10을 얻었다.
MS: [M+H]+ = 757
<실시예 1>
ITO(인듐 주석 산화물)가 1,000Å의 두께로 박막 코팅된 유리 기판(corning 7059 glass)을, 분산제를 녹인 증류수에 넣고 초음파로 세척하였다. 세제는 피셔(Fischer Co.) 사의 제품을 사용하였으며, 증류수는 밀리포어(Millipore Co.) 사 제품의 필터(Filter)로 2차 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제 순서로 초음파 세척을 하고 건조시켰다.
이렇게 준비된 ITO 투명 전극 위에 헥사니트릴 헥사아자트리페닐렌(hexanitrile hexaazatriphenylene)를 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 그 위에 정공을 수송하는 물질인 NPB(400Å)를 진공 증착한 후 발광층으로 호스트 H1과 도판트 D1 화합물을 300Å의 두께로 진공 증착하였다. 그 다음에 상기 제조예 7에서 합성한 화학식 1-2 화합물과 LiQ를 함께 (200Å)을 전자 주입 및 수송층으로 열 진공 증착하였다. 상기 전자 수송층 위에 순차적으로 12Å 두께의 리튬 퀴놀레이트(LiQ)와 2,000Å 두께의 알루미늄을 증착하여 음극을 형성하여, 유기 발광 소자를 제조하였다.
상기 전자 수송층의 비교예로 E1을 사용하였다.
상기의 과정에서 유기물의 증착 속도는 1 Å/sec를 유지하였고, 리튬퀴놀레이트는 0.2 Å/sec, 알루미늄은 3 ~ 7 Å/sec의 증착 속도를 유지하였다.
Figure PCTKR2012004628-appb-I000023
<실시예 2>
상기 실시예 1에서 전자 수송층으로 화학식 1-2 대신 화학식 1-3을 사용한 것을 제외하고는 동일하게 실험하였다.
<실시예 3>
상기 실시예 1에서 전자 수송층으로 화학식 1-2 대신 화학식 1-5를 사용한 것을 제외하고는 동일하게 실험하였다.
<실시예 4>
상기 실시예 1에서 전자 수송층으로 화학식 1-2 대신 화학식 1-6을 사용한 것을 제외하고는 동일하게 실험하였다.
<비교예 1>
상기 실시예 1에서 전자 수송층으로 화학식 1-2 대신 E1을 사용한 것을 제외하고는 동일하게 실험하였다.
상기 실시예와 같이 각각의 화합물을 정공 수송층 물질로 사용하여 제조한 유기 발광 소자를 실험한 결과를 표 1에 나타내었다.
[표 1]
Figure PCTKR2012004628-appb-I000024
상기 결과와 같이, 본 발명에 따른 신규한 화합물은 다양한 치환기 등을 도입하여, 유기 발광 소자를 비롯한 유기 전자 소자의 유기물층 재료로서 사용될 수 있다. 상기 본 발명에 따른 화학식 1로 표시되는 화합물을 유기물층의 재료로서 이용한 유기 발광 소자를 비롯한 유기 전자 소자는 효율, 구동전압, 수명 등에서 우수한 특성을 나타낸다.

Claims (8)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2012004628-appb-I000025
    상기 화학식 1에 있어서,
    R1은 나프틸기 또는 비페닐기이고,
    R2 내지 R10 중 적어도 하나는 하기 화학식 2로 표시되고, 나머지는 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 알킬아민기; 치환 또는 비치환된 아랄킬아민기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 헤테로아릴아민기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 플루오레닐기; 치환 또는 비치환된 카바졸기; 또는 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기이고;
    [화학식 2]
    Figure PCTKR2012004628-appb-I000026
    상기 화학식 2에 있어서,
    L은 직접결합; 치환 또는 비치환된 아릴렌기; 또는 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로아릴렌기이고,
    Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 N, O, S 원자 중 1개 이상을 포함하는 치환 또는 비치환된 헤테로고리기이고;
    A는 O, S 또는 Se 이다.
  2. 청구항 1에 있어서, 상기 화학식 1의 R6 또는 R8이 상기 화학식 2로 표시되는 것을 특징으로 하는 화합물.
  3. 청구항 1에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 중 어느 하나로 표시되는 것을 특징으로 하는 화합물:
    Figure PCTKR2012004628-appb-I000027
    Figure PCTKR2012004628-appb-I000028
    Figure PCTKR2012004628-appb-I000029
    Figure PCTKR2012004628-appb-I000030
    Figure PCTKR2012004628-appb-I000031
  4. 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층을 포함하는 유기 전자 소자로서, 상기 유기물층 중 1층 이상은 청구항 1 내지 청구항 3 중 어느 한 항에 기재된 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전자 소자.
  5. 청구항 4에 있어서, 상기 유기물층은 정공 주입층, 정공 수송층, 및 정공 주입 및 정공 수송을 동시에 하는 층 중 1층 이상을 포함하고, 상기 층들 중 1층 이상이 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전자 소자.
  6. 청구항 4에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층이 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전자 소자.
  7. 청구항 4에 있어서, 상기 유기물층은 전자 수송층, 전자 주입층, 및 전자 수송 및 전자 주입을 동시에 하는 층 중 1층 이상을 포함하고, 상기 층들 중 1층 이상이 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전자 소자.
  8. 청구항 4에 있어서, 상기 유기 전자 소자는 유기 발광 소자, 유기 인광 소자, 유기 태양 전지, 유기 감광체(OPC) 및 유기 트랜지스터로 이루어진 군에서 선택되는 것을 특징으로 하는 유기 전자 소자.
PCT/KR2012/004628 2011-06-13 2012-06-12 신규한 화합물 및 이를 이용한 유기 전자 소자 WO2012173370A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/125,539 US9543524B2 (en) 2011-06-13 2012-06-12 Compounds and organic electronic device using same
JP2014515721A JP5805862B2 (ja) 2011-06-13 2012-06-12 新規な化合物およびこれを用いた有機電子素子
EP12800449.6A EP2719743B1 (en) 2011-06-13 2012-06-12 Novel compounds and organic electronic device using same
CN201280028973.5A CN103608429B (zh) 2011-06-13 2012-06-12 化合物及使用所述化合物的有机电子器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0056777 2011-06-13
KR20110056777 2011-06-13

Publications (2)

Publication Number Publication Date
WO2012173370A2 true WO2012173370A2 (ko) 2012-12-20
WO2012173370A3 WO2012173370A3 (ko) 2013-04-04

Family

ID=47357583

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2012/004627 WO2012173369A2 (ko) 2011-06-13 2012-06-12 신규한 화합물 및 이를 이용한 유기 전자 소자
PCT/KR2012/004628 WO2012173370A2 (ko) 2011-06-13 2012-06-12 신규한 화합물 및 이를 이용한 유기 전자 소자
PCT/KR2012/004629 WO2012173371A2 (ko) 2011-06-13 2012-06-12 신규한 화합물 및 이를 이용한 유기 전자 소자

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004627 WO2012173369A2 (ko) 2011-06-13 2012-06-12 신규한 화합물 및 이를 이용한 유기 전자 소자

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004629 WO2012173371A2 (ko) 2011-06-13 2012-06-12 신규한 화합물 및 이를 이용한 유기 전자 소자

Country Status (6)

Country Link
US (3) US9972784B2 (ko)
EP (3) EP2719742B1 (ko)
JP (3) JP5808857B2 (ko)
KR (3) KR101412437B1 (ko)
CN (3) CN103597053B (ko)
WO (3) WO2012173369A2 (ko)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860782A1 (en) 2013-10-09 2015-04-15 Novaled GmbH Semiconducting material comprising a phosphine oxide matrix and metal salt
EP2887416A1 (en) 2013-12-23 2015-06-24 Novaled GmbH N-doped semiconducting material comprising phosphine oxide matrix and metal dopant
WO2015115532A1 (ja) * 2014-01-31 2015-08-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2015115530A1 (ja) * 2014-01-31 2015-08-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2015115529A1 (ja) * 2014-01-31 2015-08-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
EP2963697A1 (en) 2014-06-30 2016-01-06 Novaled GmbH Electrically doped organic semiconducting material and organic light emitting device comprising it
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
EP3059776A1 (en) 2015-02-18 2016-08-24 Novaled GmbH Semiconducting material and naphtofurane matrix compound for it
EP3079179A1 (en) 2015-04-08 2016-10-12 Novaled GmbH Semiconducting material comprising a phosphine oxide matrix and metal salt
EP3109919A1 (en) 2015-06-23 2016-12-28 Novaled GmbH N-doped semiconducting material comprising polar matrix and metal dopant
EP3109915A1 (en) 2015-06-23 2016-12-28 Novaled GmbH Organic light emitting device comprising polar matrix and metal dopant
EP3109916A1 (en) 2015-06-23 2016-12-28 Novaled GmbH Organic light emitting device comprising polar matrix, metal dopant and silver cathode
WO2016207228A1 (en) 2015-06-23 2016-12-29 Novaled Gmbh N-doped semiconducting material comprising polar matrix and metal dopant
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9972784B2 (en) 2011-06-13 2018-05-15 Lg Chem, Ltd. Compounds and organic electronic device using same
KR101644688B1 (ko) * 2013-04-29 2016-08-01 주식회사 엘지화학 방향족 화합물 및 이를 이용한 유기 전자 소자
CN103374040B (zh) * 2013-07-02 2016-01-06 华南理工大学 一类含有三芳基磷氧及氮杂环功能基团的醇溶性阴极缓冲层分子型材料及其合成方法与应用
KR101695063B1 (ko) * 2013-09-30 2017-01-10 주식회사 엘지화학 유기 발광 소자 및 이의 제조방법
KR101542714B1 (ko) 2014-04-04 2015-08-12 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR101537500B1 (ko) * 2014-04-04 2015-07-20 주식회사 엘지화학 유기 발광 소자
KR20150115622A (ko) 2014-04-04 2015-10-14 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR101772746B1 (ko) * 2014-08-12 2017-08-30 주식회사 엘지화학 유기 발광 소자
KR102285381B1 (ko) 2014-10-22 2021-08-04 삼성디스플레이 주식회사 화합물 및 이를 포함한 유기 발광 소자
US9951270B2 (en) * 2014-10-30 2018-04-24 Lg Chem, Ltd. Multicyclic compound and organic electronic device using the same
EP3214085B1 (en) * 2014-10-31 2020-01-29 Heesung Material Ltd. Heterocyclic compound and organic light-emitting element using same
KR20160067034A (ko) * 2014-12-03 2016-06-13 주식회사 엘지화학 유기 발광 소자
KR102369595B1 (ko) * 2014-12-08 2022-03-04 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 표시 장치
TWI609024B (zh) * 2015-03-05 2017-12-21 Lg 化學股份有限公司 雜環化合物及含有其的有機發光元件
WO2016140549A2 (ko) * 2015-03-05 2016-09-09 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN111312912B (zh) * 2015-03-16 2023-01-06 株式会社Lg化学 有机发光器件
KR102364221B1 (ko) 2015-03-23 2022-02-18 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR101778446B1 (ko) * 2015-06-05 2017-09-14 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
WO2016204453A1 (ko) * 2015-06-19 2016-12-22 주식회사 엘지화학 유기 발광 소자
KR101883665B1 (ko) * 2015-09-03 2018-07-31 성균관대학교산학협력단 유기 발광 화합물, 이의 제조 방법 및 이를 포함하는 유기 전계 발광 소자
EP3330265B1 (en) 2015-09-24 2020-04-15 LG Chem, Ltd. Compound and organic light-emitting element comprising same
KR102494453B1 (ko) * 2015-10-05 2023-02-02 삼성디스플레이 주식회사 유기 전계 발광 소자 및 이를 포함하는 표시 장치
KR102458684B1 (ko) 2015-10-08 2022-10-26 삼성디스플레이 주식회사 유기 발광 소자
KR102541452B1 (ko) * 2015-11-04 2023-06-09 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
EP3171418A1 (en) * 2015-11-23 2017-05-24 Novaled GmbH Organic semiconductive layer comprising phosphine oxide compounds
CN105367603B (zh) * 2015-12-04 2017-03-22 河南省科学院化学研究所有限公司 一种基于蒽的双膦杂六元环有机电致发光化合物、合成方法及其应用
KR102547685B1 (ko) 2016-02-22 2023-06-27 삼성디스플레이 주식회사 유기 발광 소자
EP3232490B1 (en) 2016-04-12 2021-03-17 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
KR101947622B1 (ko) 2016-11-30 2019-02-14 엘티소재주식회사 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR102536248B1 (ko) 2017-06-21 2023-05-25 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
KR102415376B1 (ko) 2017-08-04 2022-07-01 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102380125B1 (ko) * 2017-08-22 2022-03-29 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자
JP7418323B2 (ja) 2017-08-24 2024-01-19 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ 遠赤および近ir範囲におけるシアニンフルオロフォアの配座の束縛
KR102599414B1 (ko) * 2017-09-21 2023-11-08 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN111406060B (zh) * 2018-02-02 2023-02-03 株式会社Lg化学 杂环化合物和包含其的有机发光元件
KR20190141053A (ko) 2018-06-12 2019-12-23 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
CN109020969B (zh) * 2018-08-20 2020-04-21 浙江工业大学 咪唑类衍生物及其制备方法与应用
KR102254303B1 (ko) * 2018-09-11 2021-05-21 주식회사 엘지화학 유기 발광 소자
CN109384786B (zh) * 2018-11-12 2020-05-22 浙江工业大学 基于咪唑的同分异构体发光分子及其制备方法与应用
CN112239479B (zh) * 2019-07-17 2021-07-02 华中科技大学 一种有机光电材料、制备方法及其应用与相应器件
CN115340547A (zh) * 2021-05-15 2022-11-15 石家庄诚志永华显示材料有限公司 氨基环状化合物、有机电致发光器件、有机电致发光装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103442B2 (ja) * 2002-04-25 2008-06-18 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子および表示装置
JP2004095221A (ja) 2002-08-29 2004-03-25 Toray Ind Inc 発光素子
JP4254231B2 (ja) * 2002-12-26 2009-04-15 東レ株式会社 発光素子用材料およびそれを用いた発光素子
KR100617457B1 (ko) * 2003-10-17 2006-09-01 주식회사 진웅산업 아릴포스핀 옥사이드 화합물 및 이를 이용한유기전계발광소자
US7147937B2 (en) * 2003-12-05 2006-12-12 Eastman Kodak Company Organic element for electroluminescent devices
DE102004008304A1 (de) * 2004-02-20 2005-09-08 Covion Organic Semiconductors Gmbh Organische elektronische Vorrichtungen
US9040170B2 (en) * 2004-09-20 2015-05-26 Global Oled Technology Llc Electroluminescent device with quinazoline complex emitter
TWI299053B (en) * 2004-09-24 2008-07-21 Lg Chemical Ltd New compound and organic light emitting device using the same (5)
KR100707482B1 (ko) * 2005-04-15 2007-04-13 주식회사 진웅산업 아릴 포스핀 옥사이드계 화합물, 아릴포스핀 설파이드계화합물 또는 아릴포스핀 셀레나이드계 화합물 및 이를이용한 유기전계발광소자
US7419728B2 (en) 2005-05-31 2008-09-02 Eastman Kodak Company Light-emitting device containing bis-phosphineoxide compound
JP2007109988A (ja) 2005-10-17 2007-04-26 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子
US8053762B2 (en) 2005-12-13 2011-11-08 Lg Chem, Ltd. Imidazoquinazoline derivative, process for preparing the same, and organic electronic device using the same
CN103254240B (zh) 2006-02-10 2016-06-22 通用显示公司 包含磷光性金属络合物的化合物和包含所述化合物的oled器件
KR100813676B1 (ko) 2006-03-20 2008-03-18 주식회사 진웅산업 새로운 전자주입층 물질 및 이를 포함하는유기전계발광소자
CN101516856B (zh) * 2006-09-14 2013-01-02 西巴控股有限公司 杂环桥联联苯及其在场致发光装置中的应用
KR100852987B1 (ko) 2007-04-03 2008-08-19 주식회사 진웅산업 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR101812441B1 (ko) * 2008-02-12 2017-12-26 유디씨 아일랜드 리미티드 디벤조[f,h]퀴녹살린과의 전계발광 금속 착물
WO2010062065A2 (ko) * 2008-11-03 2010-06-03 주식회사 엘지화학 새로운 함질소 헤테로환 화합물 및 이를 이용한 유기전자소자
KR101104546B1 (ko) * 2008-11-03 2012-01-11 주식회사 엘지화학 새로운 함질소 헤테로환 화합물 및 이를 이용한 유기전자소자
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
JP5495578B2 (ja) * 2009-02-13 2014-05-21 ケミプロ化成株式会社 新規なトリアリールホスフィンオキシド誘導体、それよりなるホスト材料およびそれを含む有機エレクトロルミネッセンス素子
KR101092170B1 (ko) * 2009-05-27 2011-12-13 단국대학교 산학협력단 카바졸계 포스핀 옥사이드 화합물 및 이를 포함하는 유기 전계 발광 소자
JP5674182B2 (ja) * 2009-06-01 2015-02-25 大電株式会社 有機電子輸送材料、有機電子材料形成用組成物及び有機電界発光素子
KR20110008784A (ko) * 2009-07-21 2011-01-27 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN102668156B (zh) 2009-08-18 2016-01-13 大电株式会社 有机电致发光元件及新型的醇可溶性磷光发光材料
TWI567075B (zh) * 2010-06-15 2017-01-21 國立清華大學 6H-吲哚〔3,2-b〕喹喔啉衍生物及其有機發光二極體
US9972784B2 (en) 2011-06-13 2018-05-15 Lg Chem, Ltd. Compounds and organic electronic device using same
CN103764789B (zh) * 2011-07-08 2016-05-25 株式会社Lg化学 新的化合物和使用该新的化合物的有机电子器件
EP2750214B1 (en) * 2011-10-05 2020-06-17 LG Chem, Ltd. Organic light-emitting device and method for manufacturing same
WO2013133224A1 (ja) * 2012-03-05 2013-09-12 東レ株式会社 発光素子
KR101653212B1 (ko) * 2012-05-31 2016-09-01 엘지디스플레이 주식회사 유기발광소자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2719743A4

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
EP2860782A1 (en) 2013-10-09 2015-04-15 Novaled GmbH Semiconducting material comprising a phosphine oxide matrix and metal salt
CN113563379A (zh) * 2013-10-09 2021-10-29 诺瓦尔德股份有限公司 包含膦氧化物基质和金属盐的半导体材料
WO2015052284A1 (en) 2013-10-09 2015-04-16 Novaled Gmbh Semiconducting material comprising a phosphine oxide matrix and metal salt
EP2887416A1 (en) 2013-12-23 2015-06-24 Novaled GmbH N-doped semiconducting material comprising phosphine oxide matrix and metal dopant
US10211404B2 (en) 2014-01-31 2019-02-19 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element and electronic device
WO2015115532A1 (ja) * 2014-01-31 2015-08-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN105473600A (zh) * 2014-01-31 2016-04-06 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
US10297757B2 (en) 2014-01-31 2019-05-21 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element and electronic device
WO2015115530A1 (ja) * 2014-01-31 2015-08-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN105473600B (zh) * 2014-01-31 2019-03-15 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
CN105431441B (zh) * 2014-01-31 2019-03-12 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
WO2015115529A1 (ja) * 2014-01-31 2015-08-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
CN105431441A (zh) * 2014-01-31 2016-03-23 出光兴产株式会社 化合物、有机电致发光元件用材料、有机电致发光元件和电子设备
EP2963697A1 (en) 2014-06-30 2016-01-06 Novaled GmbH Electrically doped organic semiconducting material and organic light emitting device comprising it
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
EP3059776A1 (en) 2015-02-18 2016-08-24 Novaled GmbH Semiconducting material and naphtofurane matrix compound for it
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
WO2016162440A1 (en) 2015-04-08 2016-10-13 Novaled Gmbh Semiconducting material comprising a phosphine oxide matrix and metal salt
US20180114914A1 (en) * 2015-04-08 2018-04-26 Novaled Gmbh Semiconducting Material Comprising a Phosphine Oxide Matrix and Metal Salt
EP3079179A1 (en) 2015-04-08 2016-10-12 Novaled GmbH Semiconducting material comprising a phosphine oxide matrix and metal salt
US11309495B2 (en) * 2015-04-08 2022-04-19 Novaled Gmbh Semiconducting material comprising a phosphine oxide matrix and metal salt
EP3109919A1 (en) 2015-06-23 2016-12-28 Novaled GmbH N-doped semiconducting material comprising polar matrix and metal dopant
WO2016207228A1 (en) 2015-06-23 2016-12-29 Novaled Gmbh N-doped semiconducting material comprising polar matrix and metal dopant
EP3109915A1 (en) 2015-06-23 2016-12-28 Novaled GmbH Organic light emitting device comprising polar matrix and metal dopant
EP3109916A1 (en) 2015-06-23 2016-12-28 Novaled GmbH Organic light emitting device comprising polar matrix, metal dopant and silver cathode
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors

Also Published As

Publication number Publication date
EP2719742A4 (en) 2015-02-18
CN103619989A (zh) 2014-03-05
EP2719742A2 (en) 2014-04-16
JP5805862B2 (ja) 2015-11-10
US20140103325A1 (en) 2014-04-17
US20140138659A1 (en) 2014-05-22
US9543524B2 (en) 2017-01-10
CN103619989B (zh) 2016-09-14
WO2012173371A2 (ko) 2012-12-20
US8999530B2 (en) 2015-04-07
EP2719743B1 (en) 2018-08-01
EP2719741A4 (en) 2015-02-18
CN103597053B (zh) 2016-09-21
CN103608429A (zh) 2014-02-26
JP5808857B2 (ja) 2015-11-10
EP2719742B1 (en) 2016-04-27
KR20120138671A (ko) 2012-12-26
JP2014523876A (ja) 2014-09-18
WO2012173369A3 (ko) 2013-04-04
WO2012173371A3 (ko) 2013-04-04
CN103597053A (zh) 2014-02-19
KR20120138673A (ko) 2012-12-26
KR20120138672A (ko) 2012-12-26
US20140110694A1 (en) 2014-04-24
EP2719741B1 (en) 2016-04-13
EP2719743A2 (en) 2014-04-16
CN103608429B (zh) 2017-03-08
JP2014523875A (ja) 2014-09-18
EP2719743A4 (en) 2015-02-18
JP2014523877A (ja) 2014-09-18
KR101417285B1 (ko) 2014-07-09
US9972784B2 (en) 2018-05-15
WO2012173369A2 (ko) 2012-12-20
EP2719741A2 (en) 2014-04-16
JP5922766B2 (ja) 2016-05-24
KR101412437B1 (ko) 2014-06-26
WO2012173370A3 (ko) 2013-04-04
KR101412246B1 (ko) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2012173370A2 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2012091428A2 (ko) 새로운 화합물 및 이를 이용한 유기 발광 소자
WO2013129836A1 (ko) 유기 발광 소자
WO2020027389A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2013051875A2 (ko) 유기 발광 소자 및 이의 제조방법
WO2010131855A2 (ko) 오원자 헤테로고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2010114267A2 (ko) 유기전기소자 및 그 화합물, 단말
WO2011059271A2 (ko) 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
WO2011037429A2 (ko) 아릴 고리가 축합된 복소환 5원자고리 유도체를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2013129835A1 (ko) 유기 발광 소자
WO2011019173A2 (ko) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2013036044A2 (ko) 유기 발광 소자 재료 및 이를 이용한 유기 발광 소자
WO2011081431A2 (ko) 유기발광 화합물 및 이를 포함한 유기 전계 발광 소자
WO2011155742A2 (ko) 카바졸과 방향족 아민 유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011021803A2 (ko) 티안트렌 구조를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2010005266A2 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기 전자 소자
WO2011108902A2 (ko) 2개 이상의 오원자 헤테로고리를 포함하는 화합물이 2개 이상 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2012099376A2 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2010071362A2 (ko) 중수소화된 안트라센 유도체 및 이를 포함하는 유기 발광 소자
WO2011081429A2 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014123369A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2010005268A2 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기 전자 소자
WO2015009102A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014084612A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2011149284A2 (ko) 헤테로 원자를 포함하는 카바졸과 플루오렌이 융합된 화합물 및 이를 이용한 유기전기소자, 그 단말

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800449

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14125539

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014515721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE