WO2012165758A1 - 리튬 이차전지 - Google Patents

리튬 이차전지 Download PDF

Info

Publication number
WO2012165758A1
WO2012165758A1 PCT/KR2012/002334 KR2012002334W WO2012165758A1 WO 2012165758 A1 WO2012165758 A1 WO 2012165758A1 KR 2012002334 W KR2012002334 W KR 2012002334W WO 2012165758 A1 WO2012165758 A1 WO 2012165758A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
secondary battery
lithium secondary
carbon
Prior art date
Application number
PCT/KR2012/002334
Other languages
English (en)
French (fr)
Inventor
홍지준
황인범
고성태
허윤정
Original Assignee
주식회사 코캄
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코캄 filed Critical 주식회사 코캄
Priority to CN201280033285.8A priority Critical patent/CN103650229A/zh
Priority to EP12793734.0A priority patent/EP2717375B1/en
Priority to JP2014513419A priority patent/JP6203709B2/ja
Publication of WO2012165758A1 publication Critical patent/WO2012165758A1/ko
Priority to US14/094,265 priority patent/US9252413B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium secondary battery. More specifically, the present invention relates to a lithium secondary battery having improved cycle life and improved safety.
  • the small lithium secondary battery, a secondary battery, a field of development of such alternative energy is a power source capable of driving portable electronic communication devices such as camcorders, mobile phones, laptop PCs, etc., and is almost replaced by lithium secondary batteries for portable devices requiring high performance. It occupies a firm position as a power supply.
  • the development of medium and large size lithium secondary batteries such as a hybrid vehicle (HEV) and an electric vehicle (EV) using such high power characteristics has been actively performed.
  • HEV hybrid vehicle
  • R & D is actively conducted in Korea, Japan, Europe, and the US in relation to various application fields. It is becoming.
  • Lithium secondary batteries are filled with an organic electrolyte or polymer electrolyte containing lithium salt in an assembly having a porous separator electrically insulating the cathode between the positive electrode and the negative electrode on which the active material capable of inserting and removing lithium ions is applied to the current collector. It consists of a structure.
  • Lithium metal oxide having a high average voltage eg, LiCoO 2 , LiNiO 2 , LiNi x Co y Al z O 2, LiNi x Co y Mn z O 2 , LiMn 2 O 4, etc.
  • a metal or nonmetal oxide having a low average potential is used, and a porous sheet manufactured using a polyolefin-based polymer (PE, PP, etc.) is mainly used as a separator.
  • the surface transition metal deficient layer is formed due to the decomposition reaction of the electrolyte, which interferes with lithium ions and electron transfer, thus affecting high rate discharge and side reaction with the electrolyte. Due to this, there is a problem in that gas inside the battery is generated and metal dissolution occurs, thereby deteriorating cycle characteristics due to a structural change. In addition, oxygen generation due to an increase in the temperature of the battery due to abnormal operation of the battery is a risk of thermal runaway. There is a problem that the safety is weak.
  • the lithium ion inserted into the layered structure during initial charge and discharge shows 5 to 25% of irreversible capacity.
  • This irreversible capacity consumes lithium ions to completely charge or discharge at least one active material.
  • the decomposition reaction of the electrolyte on the surface of the active material forms a protective film (passivating lyaer or solid electrolyte interface) on the surface of the active material, if the protective film is formed unevenly or excessively thick, the high rate characteristic degradation due to increased resistance Cause.
  • the lithium compound is formed on the surface of the negative electrode, which results in a decrease in capacity due to loss of lithium and a decrease in output characteristics.
  • the polyolefin-based separator Since the polyolefin-based separator has a safety melting point of 200 ° C. or less, it is inevitable to use a porous separator having a shutdown function in terms of safety. In addition, shape retention is an important factor if the temperature rise continues after shutdown.
  • commonly used olefin separators have a short circuit caused by internal or external factors, and when overcurrent flows, they cause short circuit of electrodes due to heat shrinkage and melting of the membrane due to heat generation, circuit abnormality, or external temperature rise. Cause.
  • an object of the present invention is to provide a lithium secondary battery having improved safety while maintaining excellent basic performance.
  • a lithium secondary battery having a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode according to the present invention
  • the separator is a polyolefin porous membrane having an aramid coating layer
  • the positive electrode is an olivine type
  • a cathode active material which is a lithium metal oxide having a lithium iron phosphate coating layer is provided, or the anode comprises a cathode active material which is a carbon material having a spinel type lithium titanium oxide coating layer.
  • the positive electrode may include a positive electrode active material which is a lithium composite metal oxide having an olivine-type iron phosphate coating layer
  • the negative electrode may include a negative electrode active material which is a carbon material having a lithium titanium oxide coating layer
  • the thickness of the polyolefin porous membrane may be 10 ⁇ m (micrometer) to 30 ⁇ m (micrometer).
  • the thickness of the aramid coating layer may be 2 ⁇ m (micrometer) to 10 ⁇ m (micrometer).
  • the content of the olivine-type lithium iron phosphate may be 1 part by weight to 3 parts by weight relative to 100 parts by weight of the lithium metal oxide.
  • the content of the spinel-type lithium titanium oxide may be 1.5 parts by weight to 2.5 parts by weight relative to 100 parts by weight of the carbon material.
  • Lithium secondary battery of the present invention by using the electrode active material and the separator coated with a specific material at the same time, to minimize the decomposition reaction with the electrolyte solution to improve the electrical performance and long-term cycle characteristics as well as to improve the safety of the battery most effectively. have.
  • Example 2 is a graph showing the high rate discharge characteristics of the lithium secondary battery prepared according to Example 1 (a) and Comparative Example 1 (b).
  • Example 3 is a graph showing the life characteristics at room temperature of the lithium secondary battery prepared according to Example 1 and Comparative Example 1.
  • Example 4 is a graph showing battery behavior and surface temperature change according to the overcharge test at 12V of the lithium secondary battery prepared according to Example 1 (a) and Comparative Example 1 (b).
  • FIG. 5 is a graph illustrating battery behavior and temperature change according to a 150 ° C. heating test of lithium secondary batteries prepared according to Example 1 (a) and Comparative Example 1 (b).
  • FIG. 6 is a graph showing battery behavior and surface temperature changes according to nail penetration tests of lithium secondary batteries manufactured according to Example 1 (a), Comparative Example 1 (b), and Comparative Example 3 (c).
  • the lithium secondary battery of the present invention is characterized in that the separator is a polyolefin porous membrane having an aramid coating layer.
  • the olefin-based separator used is melted at 200 ° C. or lower, and thus has a shutdown function to block the movement of ions and electrons. Since the aramid organic compound has a safe melting point of 400 ° C. or higher, the membrane can maintain a sheet form even at high temperatures. As a result, the internal short circuit, which is the cause of secondary ignition, can be prevented and safety can be secured, and a lithium secondary battery having a low self discharge rate can be provided by crossing fine pores having a predetermined rule.
  • the polyolefin porous membrane usable in the present invention is not particularly limited as long as it is a polyolefin porous membrane usable as a separator in the art, for example, polyethylene (PE), polypropylene (PP), polybutene (PB), polymethylpentene ( TPX) and copolymers thereof, but may be a porous membrane of a polymer selected from the group consisting of, but is not limited thereto.
  • the thickness of the polyolefin porous membrane is preferably 10 ⁇ m (micrometer) to 30 ⁇ m (micrometer). If the thickness is less than 10 ⁇ m, it is difficult to secure sufficient tensile strength or elongation of the substrate, and thus, it is difficult to manufacture. If the thickness is more than 30 ⁇ m, the thickness of the cell is increased, and as a result, the energy density is lowered. Do.
  • the polyolefin porous membrane has air permeability of 300 sec / 100 ml or less, porosity of 40 to 55%, breaking strength of 1,000 kgf / cm 2 or more, more preferably 1,200 kgf / cm 2 or more, It is not limited.
  • the air permeability and porosity of the polyolefin porous membrane are not greatly reduced by further providing an aramid coating layer.
  • the aramid coating layer of the present invention is not a film layer for attaching the aramid polymer film to the polyolefin porous membrane, but is a coating layer formed by applying an aramid solution to the polyolefin porous membrane in a thin thickness and drying, so that the pores of the polyolefin porous membrane are not blocked.
  • the aramid used as the coating material of the polyolefin porous membrane is para-aramid (for example, poly (para-phenylene terephthalamide)), meta-aramid (for example, poly (meta-phenylene isophtalamide)) or these Mixtures of may be used.
  • Aramid is dissolved in a suitable solvent and coated on at least one side of the polyolefin porous membrane.
  • the thickness of the aramid coating layer is preferably 2 ⁇ m (micrometer) to 10 ⁇ m (micrometer). If the thickness is less than 2 ⁇ m it is difficult to ensure the uniformity of the coating, it is difficult to ensure the safety because it is difficult to suppress the thermal deformation of the substrate, and if it exceeds 10 ⁇ m the thickness of the entire separator increases, so this also Increasing the thickness will result in a decrease in energy density.
  • the coated aramid may be separated from the substrate during cell manufacture and act as a resistor, which may be a factor of deteriorating stability.
  • the air permeability of the porous separator after the aramid is coated does not decrease by more than 35% compared to the air permeability of the polyolefin porous membrane.
  • the air permeability of the aramid-coated porous separator is preferably 400 sec / 100ml or less.
  • the upper limit value of the air permeability is greater than 400 sec / 100ml, since the output characteristics are lowered, it is difficult to be applied for high output because the performance of the battery is reduced.
  • the lower limit of air permeability is so preferable that it is low, it does not specifically limit in this invention.
  • it may be 100 sec / 100ml or more, but is not limited thereto.
  • the breaking strength of the aramid-coated porous membrane is not to be reduced by more than 50% compared to the breaking strength of the polyolefin itself, more preferably should not be reduced by more than 30%.
  • stretching occurs a little due to the tension applied to the separator.
  • the breaking strength of the prepared separator is less than 500 kgf / cm 2, unreacted parts inside the battery are generated due to wrinkles during battery manufacturing. This can worsen the safety of the battery. Further, the higher the breaking strength is, the more preferable.
  • the upper limit of the breaking strength is not particularly limited.
  • the breaking strength of the aramid-coated porous separator may be 2,000 kgf / cm 2 or less, but is not limited thereto.
  • the lithium secondary battery of the present invention is characterized in that the positive electrode includes a positive electrode active material which is a lithium metal oxide having an olivine-type lithium phosphate coating layer, or the negative electrode includes a negative electrode active material which is a carbon material having a spinel type lithium titanium oxide coating layer. It is done.
  • an olivine-type lithium phosphate on the surface of the positive electrode active material for lithium secondary batteries to suppress side reactions with the electrolyte and to control the rate of movement of lithium ions and electrons transferred from the negative electrode to the positive electrode during the internal short circuit to overcurrent
  • the thermal runaway phenomenon can be prevented and the spinel-type lithium titanium oxide is coated on the surface of the negative electrode active material to control the formation of excessively thick SEI film on the surface of the negative electrode.
  • the electrochemical characteristics and safety of the battery can be improved.
  • when used together with the separator according to the present invention can exhibit a synergistic effect on the safety of the battery.
  • the positive electrode may include a positive electrode active material which is a lithium composite metal oxide having an olivine-type iron phosphate coating layer, and at the same time, the negative electrode may include a negative electrode active material which is a carbon material having a lithium titanium oxide coating layer.
  • the coated positive electrode active material and the coated negative electrode active material are used together, not only the above-mentioned effects can be obtained at the same time, but also more improved effects in terms of safety can be obtained.
  • any lithium metal oxide used as a cathode active material of a lithium secondary battery in the art may be used without limitation.
  • the average particle diameter of the lithium metal oxide, which is the core of the positive electrode active material may be appropriately selected by those skilled in the art. For example, it is preferably 6 to 16 ⁇ m (micrometer), but is not limited thereto.
  • the olivine-type lithium iron phosphate is used as the shell portion forming material of the positive electrode active material.
  • the content of lithium olivine-type iron phosphate is preferably 1 part by weight to 3 parts by weight with respect to 100 parts by weight of lithium metal oxide. When the content is less than 1 part by weight, it is impossible to cover all the surfaces of the core lithium metal oxide, thereby causing side reaction with the electrolyte solution. If not exceeding 3 parts by weight, the excess olivine-type lithium iron phosphate fine powder acts as a resistor, resulting in deterioration of the battery performance, and also causing side reactions in the low voltage range, which causes deterioration of safety. do.
  • the average particle diameter of the olivine-type iron phosphate according to the present invention is not particularly limited as long as it can be coated on a lithium metal oxide core, but may be, for example, 1 ⁇ m or less, but is not limited thereto.
  • any carbon material used as a negative electrode active material of a lithium secondary battery in the art may be used without limitation.
  • usable carbon materials include both low crystalline carbon and high crystalline carbon.
  • low crystalline carbon include soft carbon and hard carbon, and high crystalline carbon.
  • Natural graphite, Kish graphite, pyrolytic carbon, liquid phase pitch based carbon fiber, meso-carbon microbeads, liquid phase pitches and petroleum High-temperature calcined carbon such as petroleum or coal tar pitch derived cokes is typical.
  • the average particle diameter of the carbon material which is the core of the negative electrode active material, may be appropriately selected by those skilled in the art.
  • the average particle diameter is preferably 15 to 30 ⁇ m (micrometer), but is not limited thereto.
  • spinel type lithium titanium oxide is used as the shell portion forming material of the negative electrode active material.
  • the content of the spinel lithium titanium oxide is preferably 1.5 parts by weight to 2.5 parts by weight with respect to 100 parts by weight of the carbon material. If the content is less than 1.5 parts by weight, the carbon material core part may not be completely wrapped and a more non-uniform SEI film may be formed. As a result, the cycle life may be reduced and the SEI film may be easily broken to cause thermal runaway. If the content exceeds 2.5 parts by weight, the carbon material core may be coated and the remaining particles may act as a resistor to reduce stability.
  • the average particle diameter of the spinel-type lithium titanium oxide according to the present invention is not particularly limited as long as it can be coated on the carbon core, for example, may be 1 ⁇ m or less, but is not limited thereto.
  • a metal oxide may be further included to improve coating property on the shell portion of the positive electrode active material and / or the negative electrode active material.
  • Titanium dioxide, aluminum oxide, zirconium oxide, hafnium oxide, thallium oxide, or the like may be used as the metal oxide, and more preferably titanium dioxide.
  • the shell portion of the positive electrode active material and / or the negative electrode active material may further include conductive carbon to improve conductivity.
  • conductive carbon super-P, Ketjen black, graphite, acetylene black, carbon nanotubes, activated carbon and the like can be used.
  • the method of coating the shell forming material on the electrode active material core may be a wet coating or a dry coating, which is well known in the art, and the wet coating sprays a negative electrode active material with a dispersion or a dispersion of the coating material or a solution in which the coating material is dissolved. Or drying after impregnation.
  • the dry coating method is a method of mechanically coating a coating material corresponding to the shell part on the surface of the core part. Shear force, impact force, compressive force, etc. are expressed, so that the spherical effect and the disintegration effect of the core material may occur at the same time to improve the powder characteristics of the electrode active material.
  • a dry coating can be adopted.
  • a lithium secondary battery may be manufactured according to a conventional method therefrom.
  • an electrode active material layer is formed on an electrical power collector using the electrode composition containing an electrode active material, a binder, a solvent, and optionally a conductive material.
  • the method of forming the electrode active material layer is a method of directly coating the electrode active material composition on the current collector, or by coating the electrode active material composition on a separate support and dried, and peeling from the support, the film obtained on the current collector There is a way to laminate.
  • the support may be used as long as it can support the active material layer, and specific examples thereof include a mylar film and a polyethylene terephthalate (PET) film.
  • the binder As the binder, the conductive material, and the solvent, all of those conventionally used in manufacturing a lithium secondary battery may be used.
  • the binder may be vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, and the like. Mixtures can be used. Carbon black or acetylene black is typical of the conductive material, and acetone and N-methylpyrrolidone are typical of the solvent.
  • the electrode When the electrode is manufactured according to the method as described above, a separator is inserted between the positive electrode plate and the negative electrode plate to make an electrode assembly. Subsequently, the prepared electrode assembly is placed in a case, and the lithium secondary battery of the present invention is completed by injecting the electrolyte solution for the lithium secondary battery.
  • lithium titanium oxide Li 4 Ti 5 O 12
  • MGP mesophase graphite powder
  • NOB-130 Hosokawa Micron, Japan
  • TiO 2 was used to increase the coating properties
  • Super-P was used to enhance the conductivity.
  • a positive electrode active material prepared as described above, conductive carbon as a conductive material, PVdF (polyvinylidenfluoride) as a binder was mixed at a ratio of 93/3/4, and an appropriate amount of NMP (N-methyl pyrrolidone) was added to obtain a slurry having a suitable viscosity. It was coated on an aluminum thin film, dried and rolled to obtain a positive electrode.
  • the negative electrode active material prepared as described above conductive carbon as a conductive material, PVdF (polyvinylidenfluoride) as a binder is mixed at a ratio of 85/8/7 and an appropriate amount of NMP (N-methyl pyrrolidone) is added to the slurry of a suitable viscosity It was obtained, which was coated on a copper thin film, dried and then rolled to obtain a cathode.
  • PVdF polyvinylidenfluoride
  • NMP N-methyl pyrrolidone
  • a slurry is prepared by mixing 45 parts by weight of meta-aramid (poly (meta-phenylene isophthalamide)) and 55 parts by weight of dimethylacetamide (N, N-Dimethylacetamide).
  • the prepared slurry was coated with a die coater on each side of a polyethylene (PE) porous membrane (thickness: 16 ⁇ m) to have a thickness of 3 ⁇ m, thereby preparing a composite porous membrane having a total thickness of 22 ⁇ m.
  • PE polyethylene
  • FIG. 1 SEM photographs before and after coating the positive electrode active material, the negative electrode active material, and the separator are shown in FIG. 1 (a: positive electrode active material, b: negative electrode active material, c: separator).
  • the cell size was 10 mm thick x 216 mm wide x 216 mm long, and the design capacity was 40 Ah.
  • a battery was manufactured in the same manner as in Example 1, except that mesophase graphite powder having an average particle diameter of 20 ⁇ m was used as the negative electrode active material.
  • a battery was manufactured in the same manner as in Example 1, except that LiNi 5 Co 2 Mn 3 O 2 having an average particle diameter of 10 ⁇ m was used as the cathode active material.
  • LiNi 4 Co 3 Mn 3 O 2 having an average particle diameter of 9 ⁇ m was used as the positive electrode active material
  • mesoface graphite powder having an average particle diameter of 20 ⁇ m was used as the negative electrode active material
  • a polyethylene porous membrane was used as the separator.
  • a battery was prepared in the same manner as in Example 1.
  • a battery was prepared in the same manner as in Example 1, except that LiNi 4 Co 3 Mn 3 O 2 having an average particle diameter of 9 ⁇ m was used as the positive electrode active material, and mesoface graphite powder having an average particle diameter of 20 ⁇ m was used as the negative electrode active material. Prepared.
  • a battery was manufactured in the same manner as in Example 1, except for using a polyethylene porous membrane coated with ceramic on both sides as a separator.
  • Test Example 1 High rate discharge characteristic and room temperature cycle characteristic
  • Lithium secondary batteries prepared according to the above Examples and Comparative Examples evaluated the discharge characteristics and cycle characteristics at room temperature using a charge-discharge cycle apparatus.
  • the discharge characteristics according to the current density were rested for 20 minutes after charging under the conditions of charging current 0.5C (20A), charging voltage 4.2V, and CC-CV under 25 ° C, and discharged to 2.7V at the discharge current of 0.5C to 12.0C.
  • the battery was charged and discharged at 1C / 1C at room temperature, and the cycle characteristics were evaluated by the 1000th discharge capacity compared to the first discharge capacity, and are shown in Table 2.
  • the electrolyte is decomposed to form a polymer film on the surface of the positive electrode active material to increase the contact resistance and as the cycle progresses, loss of lithium ions occurs during the lithium ion deinsertion process, resulting in structural change of the active material. This results in a dose reduction.
  • the cycle characteristics of Comparative Examples 1 and 2 and the cycle characteristics of Examples, which are not coated on the active material it is determined that the decomposition reaction with the electrolyte is reduced through the surface coating of the positive electrode and the negative electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 리튬 이차전지에 관한 것이다. 보다 상세하게는, 본 발명에 따른 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 구비하는 리튬 이차전지는, 상기 분리막이 아라미드 코팅층을 구비한 폴리올레핀 다공성막이며, 상기 양극이 올리빈형 인산철 리튬 코팅층을 구비한 리튬 금속 산화물인 양극활물질을 구비하거나, 상기 음극이 스피넬형 리튬 티탄 산화물 코팅층을 구비한 탄소재인 음극 활물질을 구비하는 것을 특징으로 한다. 본 발명의 리튬 이차전지는 기본적인 전기적 성능이 우수하면서도 향상된 안전성을 갖는다.

Description

리튬 이차전지
본 발명은 리튬 이차전지에 관한 것이다. 보다 상세하게는, 사이클 수명이 향상되고 안전성이 개선된 리튬 이차전지에 관한 것이다.
본 출원은 2011년 5월 31일에 출원된 한국특허출원 제10-2011-0051886호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 환경보호와 공해 문제가 심각해짐에 따라 이의 해결을 위하여 세계적으로 대체 에너지 개발이 이루어지고 있다. 이러한 대체 에너지 개발의 한 분야인 이차전지인 소형 리튬 이차 전지로는 캠코더, 휴대폰, 노트북PC 등과 같은 휴대용 전자통신 기기들을 구동할 수 있는 동력원으로서 고성능을 요구하는 휴대용 기기에는 거의 리튬 이차 전지로 대체되고 있으며 전원장치로 확고한 위치를 점유하고 있다. 또한 최근에는 이러한 고출력 특성을 이용하는 하이브리드자동차(HEV)와 전기자동차(EV)등 중대형 리륨 이차 전지의 개발이 활발히 이루어지고 있다. 뿐만 아니라 친환경 동력원으로서 무정전 전원장치, 전동공구, 선박, 인공위성 및 군용 무전기와 무기체계 등의 전원장치로서 산업 전반의 다양한 응용 분야와 관련하여 국내는 물론 일본, 유럽 및 미국 등지에서 연구개발이 활발히 진행되고 있다.
리튬 이차 전지는 집전체에 리튬 이온의 탈삽입이 가능 한 활물질이 도포되어 있는 양극과 음극 사이에 이들을 전기적으로 절연시키는 다공성 분리막이 개재된 조립체에 리튬염을 포함 한 유기 전해액 혹은 폴리머 전해액이 충전되어 있는 구조로 이루어져있다. 양극 활물질로는 평균 전압이 높은 리튬 금속 산화물(예, LiCoO2, LiNiO2, LiNixCoyAlzO2, LiNixCoyMnzO2, LiMn2O4 등), 음극 활물질로는 탄소재 혹은 평균 전위가 낮은 금속 혹은 비금속 산화물이 사용되며, 분리막으로는 폴리올레핀계 폴리머(PE, PP 등)를 이용하여 제조된 다공질 시트가 주로 사용되고 있다.
하지만, 상기와 같은 양극 활물질을 사용하는 경우에는 전해액의 분해 반응으로 인한 표면 전이 금속 부족 층을 형성하게 되고, 이는 리튬 이온 및 전자 이동을 방해하게 되므로 고율 방전에 영향을 미치게 되며, 전해액과의 부반응으로 인해 전지 내부의 가스가 발생하게 되고, 금속 용출이 발생하게 됨으로써 구조 변화로 인한 사이클 특성 저하가 초래되는 문제점이 있으며, 또한, 전지의 이상 작동으로 전지 내부 온도 증가로 인한 산소 발생은 열 폭주 위험이 있어 안전성이 취약한 문제가 있다.
탄소계 음극 활물질을 사용할 경우에는 초기 충방전시 층상 구조내에 삽입 된 리튬 이온에서 5~25%의 비가역 용량을 나타내며, 이러한 비가역 용량은 리튬 이온을 소모시켜 최소 1개 이상의 활물질을 완전히 충전 또는 방전하지 못하게 함으로써, 전지의 에너지 밀도가 저하되는 문제점이 있다. 또한, 활물질 표면에서 전해액의 분해 반응은 활물질 표면에 보호 피막(passivating lyaer 또는 solid electrolyte interface)을 형성하게 되는데 상기 보호 피막이 불균일하게 형성 되거나, 과도하게 두껍게 형성될 경우에는 저항 증가로 인한 고율 특성 저하의 원인이 된다. 또한, 음극 표면에 리튬 화합물이 생성됨으로써 리튬의 손실로 인한 용량 감소와 출력 특성 저하 장기적으로는 사이클 특성 열화가 발생한다.
폴리올레핀계 분리막은 안전 융점이 200℃이하로서, 안전성 측면에서 셧다운 기능을 갖는 다공성 분리막의 사용은 불가피하다. 또한 셧다운 이후 온도 상승이 지속될 경우에서 형상 유지는 중요한 요소이다. 그러나 일반적으로 사용되는 올레핀계 분리막은 내부 혹은 외부 요인에 의해 단락이 발생하여 과전류가 흘렀을 경우에는 발열, 회로 이상 혹은 외부 온도 상승으로 인한 분리막의 열 수축, 용융으로 인해 전극의 단락을 초래하여 발화의 원인이 된다.
따라서 본 발명이 해결하고자 하는 과제는, 기본적인 성능을 우수하게 유지하면서도 안전성이 향상된 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명에 따른 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 구비하는 리튬 이차전지는, 상기 분리막이 아라미드 코팅층을 구비한 폴리올레핀 다공성막이며, 상기 양극이 올리빈형 인산철 리튬 코팅층을 구비한 리튬 금속 산화물인 양극활물질을 구비하거나, 상기 음극이 스피넬형 리튬 티탄 산화물 코팅층을 구비한 탄소재인 음극 활물질을 구비하는 것을 특징으로 한다.
본 발명의 다른 측면에서는, 상기 양극이 올리빈형 인산철 코팅층을 구비한 리튬 복합금속 산화물인 양극활물질을 구비하고, 상기 음극이 리튬 티탄 산화물 코팅층을 구비한 탄소재인 음극 활물질을 구비할 수 있다.
본 발명에 있어서, 상기 폴리올레핀 다공성막의 두께는 10 ㎛(micrometer) 내지 30 ㎛(micrometer)일 수 있다.
본 발명에 있어서, 상기 아라미드 코팅층의 두께는 2 ㎛(micrometer) 내지 10 ㎛(micrometer)일 수 있다.
본 발명에 있어서, 상기 올리빈형 인산철 리튬의 함량은 리튬 금속 산화물 100 중량부 대비 1 중량부 내지 3 중량부일 수 있다.
본 발명에 있어서, 상기 스피넬형 리튬 티탄 산화물의 함량은 탄소재 100 중량부 대비 1.5 중량부 내지 2.5 중량부일 수 있다.
본 발명의 리튬 이차전지는 각각 특정한 물질로 코팅된 전극 활물질과 분리막을 동시에 사용하여, 전해액과의 분해 반응을 최소화 하여 전기적 성능 및 장기 사이클 특성을 향상시킬 뿐만 아니라 전지의 안전성을 가장 효과적으로 개선시킬 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안 된다.
도 1은 각 재료에 대한 코팅 전·후의 SEM 사진이다(a: 정극 활물질, b: 부극 활물질, c: 분리막).
도 2는 실시예 1(a) 및 비교예 1(b)에 따라 제조된 리튬 이차 전지의 고율 방전특성을 도시한 그래프이다.
도 3은 실시예 1 및 비교예 1에 따라 제조된 리튬 이차 전지의 상온에서 수명특성을 도시한 그래프이다.
도 4는 실시예 1(a) 및 비교예 1(b)에 따라 제조된 리튬 이차 전지의 12V에서의 과충전 시험에 따른 전지 거동 및 표면 온도 변화를 도시한 그래프이다.
도 5는 실시예 1(a) 및 비교예 1(b)에 따라 제조된 리튬 이차 전지의 150℃ 가열 시험에 따른 전지 거동 및 온도 변화를 도시한 그래프이다.
도 6은 실시예 1(a), 비교예 1(b) 및 비교예 3(c)에 따라 제조된 리튬 이차 전지의 못 관통 시험에 따른 전지 거동 및 표면 온도 변화를 도시한 그래프이다.
이하, 본 발명을 도면을 참조하여 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 리튬 이차전지는 분리막이 아라미드 코팅층을 구비한 폴리올레핀 다공성막인 것을 특징으로 한다.
일반적으로 사용되는 올레핀계 분리막의 경우 200℃ 이하에서 용융되므로 이온 및 전자의 이동을 차단할 수 있는 셧다운 기능을 가지며, 아라미드 유기 화합물은 안전융점이 400℃이상이므로 고온에서도 분리막이 시트 형태를 유지할 수 있도록 함으로써 2차 발화의 원인인 내부 단락을 방지하여 안전성을 확보할 수 있을 뿐만 아니라 일정한 규칙을 가지고 있는 미세 기공을 교차시켜줌으로써 자가 방전율이 낮은 리튬 이차 전지를 제공할 수 있다.
본 발명에서 사용가능한 폴리올레핀 다공성막은 당분야에서 분리막으로 사용가능한 폴리 올레핀 다공성막이라면 특별한 제한은 없으며, 예를 들면 폴리 에틸렌(PE), 폴리 프로필렌(PP), 폴리부텐(PB), 폴리메틸펜텐(TPX) 및 이들의 공중합체로 이루어진 군에서 선택되는 고분자의 다공성막일 수 있으나, 이에 한정되는 것은 아니다. 또한 상기 폴리올레핀 다공성막의 두께는 10 ㎛(micrometer) 내지 30 ㎛(micrometer)인 것이 바람직하다. 두께가 10 ㎛ 미만이면 기재의 인장강도 혹은 연신율을 충분히 확보 하기 어려우므로 제조에 어려움이 있고, 30 ㎛를 초과하면 셀의 두께 증가 요인이 되며 결과적으로는 에너지 밀도를 저하시키므로 분리막으로 사용하기에 부적절하다.
또한, 폴리올레핀 다공성막은 통기도(Air permeability)는 300sec/100ml이하, 기공도(porosity)는 40~55%, 파단강도는 1,000kgf/㎠이상, 보다 바람직하게는 1,200kgf/㎠ 이상이 바람직하나, 이에 한정하는 것은 아니다. 폴리올레핀 다공성막의 통기도나 기공도는 아라미드 코팅층을 더 구비한다고 해서 크게 저하되지 않는다. 본 발명의 아라미드 코팅층은, 아라미드 고분자 필름을 폴리올레핀 다공성막에 부착하는 필름층이 아니라, 아라미드 용액을 폴리올레핀 다공성막에 얇은 두께로 도포하고 건조하여 형성되는 코팅층이므로 폴리올레핀 다공성막의 기공을 폐색시키지는 않는다.
본 발명에 있어서, 폴리올레핀 다공성막의 코팅 물질로 사용되는 아라미드는 파라-아라미드(예를 들면, poly(para-phenylene terephthalamide)), 메타-아라미드(예를 들면, poly(meta-phenylene isophtalamide)) 또는 이들의 혼합물이 사용될 수 있다.
아라미드는 적절한 용매에 용해되어 폴리올레핀 다공성막의 적어도 일면에 코팅된다. 아라미드 코팅층의 두께는 2 ㎛(micrometer) 내지 10 ㎛(micrometer)인 것이 바람직하다. 두께가 2 ㎛ 미만이면 코팅의 균일성을 확보 하기 어려우며, 기재의 열 변형을 억제 하는데 어려움이 있어 안전성을 확보 하기 어려울 수 있고, 10 ㎛를 초과하면 전체 분리막의 두께가 증가하게 되므로 이 역시 셀의 두께 증가로 인한 에너지 밀도 저하를 초래하게 된다. 또한 코팅된 아라미드가 셀 제조 시 기재에서 분리되어 저항체로 작용할 수 있고 이로 인해 안정성을 저하시키는 요인이 될 수 있다.
본 발명에 있어서 아라미드가 코팅된 후 다공성 분리막의 통기도는 폴리올레핀 다공성막의 통기도 대비 35 %를 초과하여 감소하지 않는 것이 바람직하다. 예를 들면, 아라미드가 코팅된 다공성 분리막의 통기도는 400 sec/100ml 이하인 것이 바람직하다. 통기도의 기준의 상한 값이 400 sec/100ml 보다 크게 되면, 출력 특성이 저하되므로 전지의 성능을 저하시키기 때문에 고출력용으로 적용되기는 어려움이 있다. 통기도의 하한은 낮을수록 바람직하므로, 본 발명에서는 특별히 제한하지 않는다. 예를 들어 100 sec/100ml 이상일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서 아라미드가 코팅된 다공성 분리막의 파단강도는 폴리올레핀 자체의 파단강도에 비해 50 %이상 감소하여서는 아니 되며, 보다 바람직하게는 30 %이상 감소하여서는 아니 된다. 기재에 아라미드를 코팅하는 제조과정에서 분리막에 가해지는 장력으로 인해 다소 연신이 발생하게 되는데 제조되는 분리막의 파단강도가 500 kgf/㎠ 미만이 되면 전지 제조 시 주름 발생으로 인해 전지 내부의 미 반응부가 발생하게 되고 이로 인해 전지의 안전성을 더 악화시킬 수 있다. 또한, 파단강도는 높을수록 바람직하므로, 본 발명에서는 파단강도의 상한은 특별히 제한하지 않는다. 예를 들어, 아라미드가 코팅된 다공성 분리막의 파단강도는 2,000 kgf/㎠ 이하일 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명의 리튬 이차전지는 양극이 올리빈형 인산철 리튬 코팅층을 구비한 리튬 금속 산화물인 양극활물질을 구비하거나, 음극이 스피넬형 리튬 티탄 산화물 코팅층을 구비한 탄소재인 음극 활물질을 구비하는 것을 특징으로 한다.
보다 상세하게는, 리튬 이차전지용 양극 활물질의 표면에 올리빈형 인산철 리튬을 코팅하여 전해질과의 부반응 억제 및 내부 단락 시 음극으로부터 양극으로 전달되는 리튬 이온과 전자의 이동 속도를 제어시켜줌으로써 과전류 발생으로 인한 열폭주 현상을 방지할 수 있으며, 음극 활물질의 표면에 스피넬형 리튬 티타늄 산화물을 코팅하여 음극 표면에 SEI막이 과도하게 두껍게 형성되는 것을 제어할 수 있을 뿐만 아니라 열 폭주 인자를 제어함으로써 기존의 리튬 이차 전지가 갖는 전기화학적 특성 및 안전성을 향상시킬 수 있다. 더욱이 본 발명에 따른 분리막과 함께 사용하면 전지의 안전성 향상에 시너지 효과를 나타낼 수 있다.
본 발명의 다른 측면에서는, 상기 양극이 올리빈형 인산철 코팅층을 구비한 리튬 복합금속 산화물인 양극활물질을 구비함과 동시에, 상기 음극이 리튬 티탄 산화물 코팅층을 구비한 탄소재인 음극 활물질을 구비할 수 있다. 코팅된 양극활물질과 코팅된 음극활물질을 병용하는 경우에는 상기 언급한 효과를 동시에 얻을 수 있을 뿐만 아니라 안전성 측면에서 더욱 개선된 효과를 얻을 수 있다.
본 발명에 있어서, 양극 활물질의 코어로는 당 분야에서 리튬 이차 전지의 양극 활물질로 사용되는 리튬 금속 산화물이라면 제한 없이 사용될 수 있다. 사용가능한 리튬 금속 산화물의 예를 들면 LiCoO2, LiNiO2, LiNiCoO2, LiNixCoyAlzO2(0<x<1, 0<y<1, 0<z<1, x+y+z=1), LiNixCoyMnzO2(0<x<1, 0<y<1, 0<z<1, x+y+z=1), LiMn2O4 등을 각각 단독으로 또는 이들 중 2종 이상을 조합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 양극 활물질의 코어인 리튬 금속 산화물은 평균 입경은 당업자가 적절하게 선택할 수 있으며, 예를 들면 6~16 ㎛(micrometer)인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 양극 활물질의 쉘부 형성 물질로는 올리빈형 인산철 리튬이 사용된다. 올리빈형 인산철 리튬의 함량은 리튬 금속 산화물 100 중량부 대비 1 중량부 내지 3 중량부인 것이 바람직한데, 함량이 1 중량부 미만이면 코어인 리튬 금속 산화물의 표면을 모두 감쌀 수 없어 전해액과의 부반응을 방지할 수 없고, 3 중량부를 초과하면 잉여분의 올리빈형 인산철 리튬 미분말이 저항체로써 작용하여 전지의 성능 저하가 발생하게 되며, 또한 낮은 전압 범위에서 지속적으로 부반응을 야기하기 때문에 안전성을 저하하는 요인이 된다.
본 발명에 따른 올리빈형 인산철 리튬의 평균입경은 리튬 금속 산화물 코어에 코팅될 수 있을 정도라면 특별히 제한되지 않으며, 예를 들면 1 ㎛ 이하일 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 음극 활물질의 코어로는 당 분야에서 리튬 이차 전지의 음극 활물질로 사용되는 탄소재라면 제한 없이 사용될 수 있다. 사용가능한 탄소재의 예를 들면 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다, 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
본 발명에 있어서, 음극 활물질의 코어인 탄소재의 평균 입경은 당업자가 적절하게 선택할 수 있으며, 예를 들면 15~30 ㎛(micrometer)인 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 음극 활물질의 쉘부 형성 물질로는 스피넬형 리튬 티탄 산화물이 사용된다. 스피넬형 리튬 티탄 산화물의 함량은 탄소재 100 중량부 대비 1.5 중량부 내지 2.5 중량부인 것이 바람직한데, 함량이 1.5 중량부 미만이면 탄소재 코어부를 완전히 감쌀 수 없어 오히려 더 불균일한 SEI막을 형성할 수 있고, 이로 인한 사이클 수명 저하 및 SEI막이 쉽게 파괴되어 열폭주 현상을 초래할 수 있으며, 2.5 중량부를 초과하면 탄소재 코어부를 코팅하고 남은 입자들이 저항체로 작용 할 수 있어 안정성을 저하시킨다.
본 발명에 따른 스피넬형 리튬 티탄 산화물의 평균입경은 탄소재 코어에 코팅될 수 있을 정도라면 특별히 제한되지 않으며, 예를 들면 1㎛ 이하일 수 있으나, 이에 한정되는 것은 아니다.
선택적으로, 양극 활물질 및/또는 음극 활물질의 쉘부에 코팅성을 향상하기 위해 금속 산화물을 더 포함할 수 있다. 이러한 금속 산화물로는 이산화티탄, 산화 알루미늄, 지르코늄 산화물, 하프늄 산화물 또는 탈륨 산화물 등이 사용될 수 있으며, 보다 바람직하게는 이산화티탄을 사용할 수 있다.
선택적으로, 양극 활물질 및/또는 음극 활물질의 쉘부에 전도성 향상을 위해 전도성 탄소를 더 포함할 수 있다. 전도성 탄소로는 슈퍼-P, 케첸 블랙, 흑연, 아세틸렌 블랙, 탄소 나노 튜브, 활성탄 등을 사용할 수 있다.
전극 활물질 코어에 쉘부 형성 물질을 코팅하는 방법은 당분야에 널리 알려진 습식 코팅 또는 건식 코팅이 모두 가능하며, 습식 코팅은 코팅 재료를 분산시킨 분산액 또는 현탁액이나 코팅 재료를 용해시킨 용액을 음극 활물질에 분사하거나 함침시킨 후 건조하는 방법이다. 건식 코팅은 건식 코팅법은 코어부의 표면에 쉘부에 해당하는 코팅재료를 기계적인 방법으로 코팅하는 방법이다. 전단력, 충돌력, 압축력 등이 발현되어 코어부 물질의 구형화 효과와 해쇄 효과가 동시에 일어나 전극 활물질의 분체 특성이 향상될 수 있다. 본 발명에 있어서, 바람직하게는 건식 코팅을 채택할 수 있다.
본 발명에 따른 전극 활물질과 분리막이 준비되면 이로부터 통상적인 방법에 따라 리튬 이차전지를 제조할 수 있다.
먼저, 전극 활물질, 바인더, 용매 및, 선택적으로 도전재를 포함하는 전극 조성물을 이용하여 집전체 상에 전극 활물질층을 형성한다. 이 때, 전극 활물질층을 형성하는 방법은 전극 활물질 조성물을 집전체 상에 직접 코팅하는 방법이나 또는 전극 활물질 조성물을 별도의 지지체 상부에 코팅하고 건조한 다음, 이 지지체로부터 박리하여 얻어진 필름을 집전체 상에 라미네이션하는 방법이 있다. 여기에서 지지체는 활물질층을 지지할 수 있는 것이라면 모두 다 사용 가능하며, 구체적인 예로는 마일라 필름, 폴리에틸렌테레프탈레이트(PET) 필름 등이 있다.
상기 바인더, 도전재 및 용매는 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
상기 바인더로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 및 그 혼합물이 사용될 수 있다. 상기 도전재로는 카본블랙 또는 아세틸렌 블랙이, 상기 용매로는 아세톤, N-메틸피롤리돈이 대표적이다.
상기와 같은 방법에 따라 전극이 제조되면 양극판과 음극판 사이에 분리막을 삽입하고, 전극 조립체를 만든다. 이어서, 제조된 전극 조립체를 케이스 안에 넣고, 리튬 이차전지용 전해액을 주입하면 본 발명의 리튬 이차전지가 완성된다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
<양극과 음극의 제조>
평균입경이 10 ㎛인 LiNi5Co2Mn3O2 100 중량부에 평균입경이 1 ㎛인 올리빈형 인산철 리튬(LiFePO4) 2 중량부, TiO2 0.1중량부, Super-P 0.3중량부를 건식 코팅하여 코어-쉘형 양극활물질을 제조하였다.
평균입경이 20 ㎛인 메조페이스 흑연 분말(MGP) 100 중량부에 평균입경이 1 ㎛인 리튬 티탄 산화물(Li4Ti5O12) 2 중량부, TiO2 0.1중량부, Super-P 0.5중량부를 건식 코팅하여 코어-쉘형 음극활물질을 제조하였다.
건식 코팅 설비로는 NOB-130(호소카와 마이크론 주식회사, 일본)을 사용하였다. TiO2는 코팅성을 높이기 위하여 사용되었으며, Super-P는 전도성을 보강하기 위해 사용되었다.
상기와 같이 제조된 양극활물질과, 도전재로 전도성 탄소, 바인더로 PVdF(polyvinylidenfluoride)를 93/3/4의 비율로 혼합하고 적당량의 NMP(N-methyl pyrrolidone)를 첨가하여 적당한 점도의 슬러리를 얻었으며, 이를 알루미늄 박막 위에 코팅하고 건조시킨 후 압연하여 양극을 얻었다.
한편, 상기와 같이 제조된 음극활물질과, 도전재로 전도성 카본, 바인더로 PVdF(polyvinylidenfluoride)를 85/8/7의 비율로 혼합하고 적당량의 NMP(N-methyl pyrrolidone)를 첨가하여 적당한 점도의 슬러리를 얻었으며, 이를 구리 박막 위에 코팅하고 건조시킨 후 압연하여 음극을 얻었다.
<분리막의 제조>
메타-아라미드(poly(meta-phenylene isophthalamide)) 45 중량부, 디메틸아세트아마이드(N,N-Dimethylacetamide) 55 중량부를 혼합하여 슬러리를 제조한다. 제조 된 슬러리를 다이(die)코터로 폴리에틸렌(PE) 다공성막(두께: 16 ㎛(micrometer))의 양면에 각 3 ㎛ 두께로 코팅하여 전체 두께가 22 ㎛인 복합체 다공성 분리막을 제조하였다.
양극활물질, 음극활물질, 분리막의 코팅 전·후의 SEM 사진을 도 1에 나타내었다(a: 정극 활물질, b: 부극 활물질, c: 분리막).
또한 분리막 코팅 전 후의 물성 데이터를 표1에 나타내었다.
표 1
Figure PCTKR2012002334-appb-T000001
상기 표 1을 참고하면, 아라미드 코팅층을 형성한 후에도 통기도는 크게 감소하지 않은 반면, 열 변형은 현저하게 감소한 것을 알 수 있다.
<전지의 제조>
상기 제조된 양극과 음극 사이에 상기 제조된 분리막을 개재시킨 후, 알루미늄 외장재 내에 수납하고, 에틸렌 카보네이트:에틸메틸 카보네이트=1:3의 체적비로 혼합된 비수 용매에 1.15 M이 되도록 LiPF6를 용해시킨 비수 전해액을 주입하여 리튬 이차전지를 제조하였다. 전지 크기는 두께 10mm × 폭 216mm × 길이 216 mm이었으며, 설계 용량은 40 Ah로 하였다.
실시예 2
음극활물질로 평균입경이 20 ㎛인 메조페이스 흑연 분말을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
실시예 3
양극활물질로 평균입경이 10 ㎛인 LiNi5Co2Mn3O2를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
비교예 1
양극활물질로 평균입경이 9 ㎛인 LiNi4Co3Mn3O2를 사용하고, 음극활물질로 평균입경이 20 ㎛인 메조페이스 흑연 분말을 사용하고, 분리막으로 폴리에틸렌 다공성막을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
비교예 2
양극활물질로 평균입경이 9 ㎛인 LiNi4Co3Mn3O2를 사용하고, 음극활물질로 평균입경이 20 ㎛인 메조페이스 흑연 분말을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
비교예 3
분리막으로 양면에 세라믹을 코팅한 폴리에틸렌 다공성막을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 전지를 제조하였다.
시험예 1: 고율 방전특성 및 상온 사이클 특성
상기 실시예 및 비교예에 따라 제조된 리튬 이차 전지는 충·방전 사이클 장치를 이용하여 방전 특성 및 상온에서의 사이클 특성을 평가하였다.
전류밀도에 따른 방전 특성은 25℃ 하에서 충전전류 0.5C(20A), 충전 전압 4.2V, CC-CV 조건으로 충전 후 20분간 휴지하고, 방전전류 0.5C~12.0C로 2.7V까지 방전하였다.
전류밀도에 따른 방전 특성은 0.5C(20A) 전류밀도에서의 방전용량을 기준용량으로 하여 10C 전류 밀도에서의 방전용량의 비율을 표 1에 코팅 전후의 고율 특성을 정리하여 기재하였다.
또한, 제조된 전지로 상온에서 1C/1C로 충방전하여 1번째 방전용량 대비 1000번째 방전용량으로 사이클 특성을 평가하여 표 2에 기재하였다.
그 중에서, 실시예 1(a) 및 비교예 1(b)에 따라 제조된 리튬 이차 전지의 방전 특성을 도 2에, 실시예 1 및 비교예 1에 따라 제조된 리튬 이차 전지의 상온에서 수명특성을 도 3에 도시하였다.
표 2
Figure PCTKR2012002334-appb-T000002
상기 표 2 및 도 2에 나타난 고율 방전 특성을 비교하면, 양극 및 음극 활물질 표면에 코팅 처리를 함으로써 고율 방전 특성이 개선됨을 확인할 수 있다. 또한 비교예 1과 비교예 2를 비교하면, 일반 폴리에틸렌 분리막에 비해 아라미드가 코팅된 복합 분리막을 사용하였을 때의 방전 특성은 큰 차이를 보이지 않고 있음을 알 수 있다. 이는 분리막 표면에 아라미드를 코팅하는 것이 전지의 전기적 특성을 열화시키지 않는 것을 확인할 수 있다.
그리고, 일반적으로 전해액이 분해하여 양극 활물질 표면에 고분자 막을 형성함으로써 접촉 저항을 증가시키고 사이클이 진행되면서 리튬 이온의 탈삽입 과정 중 리튬 이온의 손실이 발생하게 되며, 이로부터 활물질의 구조 변화가 발생하며 그에 따라 용량 감소가 발생하게 된다. 그런데, 활물질에 코팅을 하지 않은 비교예1 및 비교예 2의 사이클 특성과 실시예들의 사이클 특성으로부터 양극 및 음극 활물질 표면 코팅을 통해 전해액과의 분해 반응이 감소하는 것으로 판단된다.
시험예 2: 안전성 평가
실시예들 및 비교예들에 따라 제조된 전지를 이용하여 과충전 특성, 열적 안전성(가열 특성), 및 못 관통 특성에 따른 전지의 형상 변화 및 표면 온도 변화를 측정하여 그 결과를 하기 표 3에 기재하였으며, 각각의 안전성 평가 항목에 따른 전압 및 온도 변화를 도 4(과충전 특성), 도 5(열적 안전성), 도 6(못 관통 특성)에 각각 도시하였다.
표 3
Figure PCTKR2012002334-appb-T000003
상기 표 3에 나타낸 것과 같이 실시예들은 전반적으로 안전성에서 우수한 특성을 나타내는 것을 알 수 있다. 특히, 표면 코팅을 하지 않은 활물질을 사용 한 비교예1 및 비교예 2의 경우에는 안전성이 매우 취약함을 알 수 있다. 또한 아라미드가 코팅 된 복합 분리막을 사용하였더라도 활물질 표면 코팅이 이루어지지 않은 비교예 2의 경우에는 발열량을 제어할 수 있는 능력이 저하되므로 안전성이 취약함을 확인할 수 있다.
그리고 세라믹이 코팅된 분리막을 사용한 비교예 3의 경우에는 과충전 특성에서는 우수한 특성을 보이고 있으나, 못 관통 특성에서는 충분한 내열성을 확보하고 있지 않다는 것을 알 수 있는데, 내부 단락으로 인한 순간 과전류 발생 및 내부 온도 증가로 인해 분리막의 형상을 유지할 수 없으므로 발화가 되는 것으로 판단된다.

Claims (14)

  1. 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리막을 구비하는 리튬 이차전지에 있어서,
    상기 분리막은 아라미드 코팅층을 구비한 폴리올레핀 다공성막이며,
    상기 양극이 올리빈형 인산철 리튬 코팅층을 구비한 리튬 금속 산화물인 양극활물질을 구비하거나, 상기 음극이 스피넬형 리튬 티탄 산화물 코팅층을 구비한 탄소재인 음극 활물질을 구비하는 리튬 이차전지.
  2. 제1항에 있어서,
    상기 폴리올레핀 다공성막의 두께는 10 ㎛(micrometer) 내지 30 ㎛(micrometer)인 것을 특징으로 하는 리튬 이차전지.
  3. 제1항에 있어서,
    상기 아라미드 코팅층의 두께는 2 ㎛(micrometer) 내지 10 ㎛(micrometer)인 것을 특징으로 하는 리튬 이차전지.
  4. 제1항에 있어서,
    상기 아라미드는 파라-아라미드, 메타-아라미드, 또는 이들의 혼합물인 것을 특징으로 하는 리튬 이차전지.
  5. 제1항에 있어서,
    상기 분리막은 통기도가 400 sec/100ml 이하인 것을 특징으로 하는 리튬 이차전지.
  6. 제1항에 있어서,
    상기 분리막의 통기도는 폴리올레핀 다공성막의 통기도를 기준으로 35 % 이하로 감소된 값을 갖는 것을 특징으로 하는 리튬 이차전지.
  7. 제1항에 있어서,
    상기 분리막은 파단강도가 500 kgf/㎠ 이상인 것을 특징으로 하는 리튬 이차전지.
  8. 제1항에 있어서,
    상기 리튬 금속 산화물은 LiCoO2, LiNiO2, LiNiCoO2, LiNixCoyAlzO2(0<x<1, 0<y<1, 0<z<1, x+y+z=1), LiNixCoyMnzO2(0<x<1, 0<y<1, 0<z<1, x+y+z=1) 및 LiMn2O4로 이루어진 군에서 선택되는 어느 하나 또는 이들의 조합인 것을 특징으로 하는 리튬 이차전지.
  9. 제1항에 있어서,
    상기 올리빈형 인산철 리튬의 함량은 리튬 금속 산화물 100 중량부 대비 1 중량부 내지 3 중량부인 것을 특징으로 하는 리튬 이차전지.
  10. 제1항에 있어서,
    상기 양극 활물질은 쉘부에 금속 산화물, 전도성 탄소, 또는 이들의 혼합물을 더 포함하는 것을 특징으로 하는 리튬 이차전지.
  11. 제1항에 있어서,
    상기 탄소재는 연화탄소, 경화탄소, 천연 흑연, 키시흑연, 열분해 탄소, 액정 피치계 탄소섬유, 탄소 미소구체, 액정피치 및 석유와 석탄계 코크스로 이루어진 군에서 선택되는 어느 하나 또는 이들의 조합인 것을 특징으로 하는 리튬 이차전지.
  12. 제1항에 있어서,
    상기 스피넬형 리튬 티탄 산화물의 함량은 탄소재 100 중량부 대비 1.5 중량부 내지 2.5 중량부인 것을 특징으로 하는 리튬 이차전지.
  13. 제1항에 있어서,
    상기 음극 활물질은 쉘부에 금속 산화물, 전도성 탄소, 또는 이들의 혼합물을 더 포함하는 것을 특징으로 하는 리튬 이차전지.
  14. 제1항에 있어서,
    상기 양극이 올리빈형 인산철 코팅층을 구비한 리튬 복합금속 산화물인 양극활물질을 구비하고, 상기 음극이 리튬 티탄 산화물 코팅층을 구비한 탄소재인 음극 활물질을 구비하는 것을 특징으로 하는 리튬 이차전지.
PCT/KR2012/002334 2011-05-31 2012-03-29 리튬 이차전지 WO2012165758A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280033285.8A CN103650229A (zh) 2011-05-31 2012-03-29 锂二次电池
EP12793734.0A EP2717375B1 (en) 2011-05-31 2012-03-29 Lithium secondary battery
JP2014513419A JP6203709B2 (ja) 2011-05-31 2012-03-29 リチウム二次電池
US14/094,265 US9252413B2 (en) 2011-05-31 2013-12-02 Lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0051886 2011-05-31
KR1020110051886A KR101308677B1 (ko) 2011-05-31 2011-05-31 리튬 이차전지

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/094,265 Continuation US9252413B2 (en) 2011-05-31 2013-12-02 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2012165758A1 true WO2012165758A1 (ko) 2012-12-06

Family

ID=47259567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002334 WO2012165758A1 (ko) 2011-05-31 2012-03-29 리튬 이차전지

Country Status (6)

Country Link
US (1) US9252413B2 (ko)
EP (1) EP2717375B1 (ko)
JP (1) JP6203709B2 (ko)
KR (1) KR101308677B1 (ko)
CN (1) CN103650229A (ko)
WO (1) WO2012165758A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647049A (zh) * 2013-12-04 2014-03-19 合肥国轩高科动力能源股份公司 一种磷酸铁锂薄膜电极的制备方法
US20160268589A1 (en) * 2014-10-16 2016-09-15 Lg Chem, Ltd. Anode for secondary battery comprising additive for improving low-temperature characteristics, and secondary battery having the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464509B1 (ko) * 2012-12-28 2014-11-25 주식회사 에코프로 리튬이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지용 양극활물질
KR101657742B1 (ko) * 2013-04-10 2016-09-19 주식회사 엘지화학 이차전지용 양극 및 이의 제조 방법
JP6494598B2 (ja) * 2013-06-20 2019-04-03 エルジー・ケム・リミテッド リチウム二次電池用高容量電極活物質及びこれを用いたリチウム二次電池
KR101469050B1 (ko) * 2013-06-21 2014-12-04 주식회사 휴비스 셧다운 기능 및 열안정성이 우수한 전지용 세퍼레이터 및 이를 이용한 2차 전지
CA2918670C (en) 2013-08-21 2022-02-01 Hydro-Quebec Positive electrode material for lithium secondary battery
WO2015065090A1 (ko) * 2013-10-31 2015-05-07 주식회사 엘지화학 전극-분리막 복합체의 제조방법, 그 제조방법에 의해 제조된 전극-분리막 복합체 및 그를 포함하는 리튬 이차전지
KR102273772B1 (ko) 2014-05-21 2021-07-06 삼성에스디아이 주식회사 복합 양극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
JP6376068B2 (ja) * 2015-07-27 2018-08-22 トヨタ自動車株式会社 負極合材および全固体電池
KR102379762B1 (ko) * 2015-08-13 2022-03-25 삼성에스디아이 주식회사 리튬 이차 전지
KR102486526B1 (ko) * 2015-09-10 2023-01-09 에스케이온 주식회사 리튬 이차 전지
KR101940168B1 (ko) * 2016-05-12 2019-01-18 삼성에스디아이 주식회사 리튬 금속 전지
US20200044237A1 (en) * 2016-12-28 2020-02-06 Panasonic Intellectual Property Management Co., Ltd. Electrochemical device
KR102263467B1 (ko) 2017-07-19 2021-06-11 주식회사 엘지에너지솔루션 집전체가 없는 전극 및 이를 포함하는 이차전지
CN107808954B (zh) * 2017-10-19 2019-09-24 清华大学深圳研究生院 一种钛酸锂包覆硬碳复合材料及其制备方法
KR102054807B1 (ko) * 2017-10-24 2019-12-11 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 다공질층
CN109698300A (zh) * 2017-10-24 2019-04-30 住友化学株式会社 非水电解液二次电池用多孔层
KR102331305B1 (ko) * 2017-11-21 2021-11-26 주식회사 엘지에너지솔루션 전극 조립체 및 이를 포함하는 리튬 이차전지
WO2019176421A1 (ja) * 2018-03-16 2019-09-19 三洋電機株式会社 非水電解質二次電池用セパレータ、非水電解質二次電池、及び非水電解質二次電池用セパレータの製造方法
WO2019225588A1 (ja) * 2018-05-23 2019-11-28 株式会社Adeka リチウムイオン二次電池
JP7320418B2 (ja) * 2019-09-20 2023-08-03 太平洋セメント株式会社 リチウムイオン二次電池用混合型正極活物質及びリチウムイオン二次電池用正極の製造方法
WO2021168558A1 (fr) * 2020-02-24 2021-09-02 HYDRO-QUéBEC Materiaux d ' electrode comprenant un oxyde lamellaire de lithium et de metal enrobe d'un phosphate de metal de type olivine, electrodes les comprenant et leur utilisation en electrochimie
KR102514014B1 (ko) 2020-10-30 2023-03-23 고려대학교 산학협력단 확장된 삼상 계면을 가진 다층 구조체를 포함하는 공기전극 및 그 제조방법
KR102323858B1 (ko) 2020-11-11 2021-11-10 강창기 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080029878A (ko) * 2006-09-29 2008-04-03 가부시끼가이샤 도시바 비수전해질 전지용 부극 활성 물질, 비수전해질 전지,전지팩 및 자동차
KR20100098559A (ko) * 2008-03-25 2010-09-07 가부시끼가이샤 도시바 비수 전해질 전지
KR20100126394A (ko) * 2008-02-20 2010-12-01 스미또모 가가꾸 가부시키가이샤 다공질 필름, 그것을 포함하는 적층 다공질 필름 및 세퍼레이터
KR20100127433A (ko) * 2009-05-26 2010-12-06 주식회사 코캄 리튬 이차전지용 음극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
KR20110023067A (ko) * 2009-08-28 2011-03-08 대정이엠(주) 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729774B2 (ja) * 2000-02-28 2011-07-20 株式会社豊田中央研究所 リチウム二次電池用負極材料の製造方法
JP5135664B2 (ja) * 2003-12-05 2013-02-06 日産自動車株式会社 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP2005209570A (ja) 2004-01-26 2005-08-04 Teijin Ltd 非水系二次電池用セパレータ、その製造法および非水系二次電池
JP4721944B2 (ja) * 2005-04-13 2011-07-13 パナソニック株式会社 大型電源装置
JP5095121B2 (ja) * 2006-04-28 2012-12-12 パナソニック株式会社 非水電解質二次電池用セパレータおよび非水電解質二次電池
JP5474563B2 (ja) * 2007-01-18 2014-04-16 エルジー・ケム・リミテッド 正極活物質及びこれを含む二次電池
CN104393219B (zh) * 2007-06-19 2017-08-29 帝人株式会社 非水系二次电池用隔膜、其制造方法和非水系二次电池
KR100889622B1 (ko) * 2007-10-29 2009-03-20 대정이엠(주) 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그제조방법과 이를 포함하는 리튬 이차전지
KR100888685B1 (ko) * 2007-11-05 2009-03-13 주식회사 코캄 코어-쉘형 리튬 이차전지용 음극 활물질 및 그 제조방법과이를 포함하는 리튬 이차전지
JP2009252421A (ja) * 2008-04-03 2009-10-29 Toyota Motor Corp 負極活物質およびその製造方法ならびに該負極活物質を備えた電池
WO2010021248A1 (ja) * 2008-08-19 2010-02-25 帝人株式会社 非水系二次電池用セパレータ
JP2010092718A (ja) * 2008-10-08 2010-04-22 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
KR101050438B1 (ko) * 2008-11-10 2011-07-19 주식회사 코캄 안전성이 우수한 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
EP2450988A4 (en) * 2009-05-26 2014-06-04 Kokam Co Ltd ACTIVE ANODE MATERIAL FOR LITHIUM SECONDARY BATTERY, PREPARATION METHOD THEREFOR, AND LITHIUM SECONDARY BATTERY CONTAINING SAID MATERIAL
JP2011090876A (ja) * 2009-10-22 2011-05-06 Toyota Motor Corp リチウム二次電池および該電池の製造方法
KR101105876B1 (ko) 2009-11-16 2012-01-16 주식회사 코캄 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080029878A (ko) * 2006-09-29 2008-04-03 가부시끼가이샤 도시바 비수전해질 전지용 부극 활성 물질, 비수전해질 전지,전지팩 및 자동차
KR20100126394A (ko) * 2008-02-20 2010-12-01 스미또모 가가꾸 가부시키가이샤 다공질 필름, 그것을 포함하는 적층 다공질 필름 및 세퍼레이터
KR20100098559A (ko) * 2008-03-25 2010-09-07 가부시끼가이샤 도시바 비수 전해질 전지
KR20100127433A (ko) * 2009-05-26 2010-12-06 주식회사 코캄 리튬 이차전지용 음극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
KR20110023067A (ko) * 2009-08-28 2011-03-08 대정이엠(주) 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717375A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647049A (zh) * 2013-12-04 2014-03-19 合肥国轩高科动力能源股份公司 一种磷酸铁锂薄膜电极的制备方法
US20160268589A1 (en) * 2014-10-16 2016-09-15 Lg Chem, Ltd. Anode for secondary battery comprising additive for improving low-temperature characteristics, and secondary battery having the same
US9859551B2 (en) * 2014-10-16 2018-01-02 Lg Chem, Ltd. Anode for secondary battery comprising additive for improving low-temperature characteristics, and secondary battery having the same

Also Published As

Publication number Publication date
US20140087233A1 (en) 2014-03-27
JP6203709B2 (ja) 2017-09-27
JP2014518432A (ja) 2014-07-28
CN103650229A (zh) 2014-03-19
EP2717375A4 (en) 2015-02-18
KR20120133288A (ko) 2012-12-10
EP2717375B1 (en) 2017-08-09
KR101308677B1 (ko) 2013-09-13
US9252413B2 (en) 2016-02-02
EP2717375A1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2012165758A1 (ko) 리튬 이차전지
WO2018008953A1 (en) Negative electrode for secondary battery
WO2019108039A2 (ko) 음극 및 이를 포함하는 이차전지
WO2018097562A1 (ko) 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2014189329A1 (ko) 다층의 활물질층을 포함하는 리튬 이차전지
WO2015037867A1 (ko) 리튬 전극 및 그를 포함하는 리튬 이차전지
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
WO2015041450A1 (ko) 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2011019187A2 (ko) 리튬 이차전지
WO2014088270A1 (ko) 리튬 이차전지용 고용량 음극 활물질, 이의 제조 방법 및 이를 포함한 리튬 이차전지
WO2011145871A2 (ko) 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2014185750A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2015099243A1 (ko) 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자
WO2019203571A1 (ko) 비대칭 구조의 이차전지용 난연 분리막
WO2011059154A1 (ko) 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
WO2015199384A1 (ko) 리튬 이차전지
WO2020153728A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2020111649A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2022010121A1 (ko) 급속충전 성능이 향상된 음극 및 리튬 이차전지
WO2015105365A1 (ko) 고 연신 특성의 분리막을 가진 전극조립체 및 이를 포함하는 이차전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2021225396A1 (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019050216A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2016122196A1 (ko) 전극, 전지 및 전극의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014513419

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012793734

Country of ref document: EP