WO2012165477A1 - Fibre protéique et procédé pour la produire - Google Patents

Fibre protéique et procédé pour la produire Download PDF

Info

Publication number
WO2012165477A1
WO2012165477A1 PCT/JP2012/063924 JP2012063924W WO2012165477A1 WO 2012165477 A1 WO2012165477 A1 WO 2012165477A1 JP 2012063924 W JP2012063924 W JP 2012063924W WO 2012165477 A1 WO2012165477 A1 WO 2012165477A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein fiber
protein
fiber
stress
producing
Prior art date
Application number
PCT/JP2012/063924
Other languages
English (en)
Japanese (ja)
Inventor
関山和秀
横尾義春
関山香里
菅原潤一
Original Assignee
スパイバー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スパイバー株式会社 filed Critical スパイバー株式会社
Priority to JP2013518123A priority Critical patent/JP5739992B2/ja
Publication of WO2012165477A1 publication Critical patent/WO2012165477A1/fr

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch

Definitions

  • the present invention relates to a protein fiber containing a silk fibroin component and a method for producing the same.
  • Fibroin fiber is also called regenerated silk fiber and is known as biodegradable fiber with strength and elongation.
  • Patent Document 1 proposes that a dope solution is prepared using hexafluoroisopropanol (HFIP) as a solvent for silk fibroin, and after spinning, cold drawing is performed to obtain a regenerated silk fiber.
  • Patent Document 2 proposes that silk fibroin and hematin are added to a hexafluoroisopropanol (HFIP) solvent, extruded into a methanol coagulation liquid, spun, and cold-drawn.
  • HFIP hexafluoroisopropanol
  • the present invention provides a protein fiber having a high stress and having an appropriate elongation at break and a method for producing the same in order to solve the conventional problems.
  • the protein fiber of the present invention contains silk fibroin, and the protein fiber has a stress of 450 MPa or more and a breaking elongation of 5% or more.
  • the protein fiber production method of the present invention is a production method for obtaining the protein fiber, wherein the dope solution containing silk fibroin is wet-spun, and the unstretched yarn of the protein fiber is heated and stretched at least with dry heat. It is characterized by.
  • the present invention can provide a protein fiber having a high stress and an appropriate elongation at break and a method for producing the same. That is, according to the present invention, a protein fiber having a stress of 450 MPa or more and a breaking elongation of 5% or more can be realized. High stress, moderate elongation at break, and advantageous for composite materials (reinforced fibers) with metals, resins, rubbers, etc.
  • FIG. 1 is an explanatory view showing a manufacturing process in one embodiment of the present invention.
  • 2A and 2B are explanatory views showing a manufacturing process in another embodiment of the present invention.
  • FIG. 2A shows a spinning process and
  • FIG. 2B shows a drawing process.
  • FIG. 3 is a stress-displacement (strain) curve of the fibers obtained in Example 1 and Example 2 of the present invention.
  • FIG. 4 is a stress-displacement (strain) curve of the crosslinked fiber and raw unstretched fiber obtained in Example 3 of the present invention.
  • FIG. 5 is a SEM surface observation photograph of the fiber in one example of the present invention.
  • FIG. 6 is an SEM cross-sectional observation photograph of the fiber in one example of the present invention.
  • FIG. 7A is a schematic cross-sectional view of rabbit yarn
  • FIG. 7B is a schematic explanatory view showing the structure of rabbit yarn.
  • FIG. 8 is a stress-displacement (strain) curve of the drawn fiber obtained in Example 4 of the present invention.
  • FIG. 9 is a stress-displacement (strain) curve of the drawn fiber obtained in Example 5 of the present invention.
  • FIG. 10 is a stress-displacement (strain) curve of the drawn fiber obtained in Example 6 of the present invention.
  • FIG. 11 is a stress-displacement (strain) curve of the drawn fiber obtained in Example 7 of the present invention.
  • silk Silk is a fiber obtained from a silkworm made by silkworm (Bombyx mori) larvae.
  • silk thread 40 is composed of two fibroin 41s. Is covered with an outer glue (sericin) 42 to form one.
  • the fibroin 41 is composed of a large number of fibrils 43, and the outside of the fibroin 41 is covered with four layers of sericin 42 to form a single thread string 44.
  • the outer sericin 42 is dissolved and removed by refining and used as a silk filament for clothing.
  • the specific gravity of silk is 1.33.
  • the fineness is generally 3.3 deci tex and the fiber length is generally about 1300 to 1500 m.
  • the reason why the fineness is averaged is that the outer layer portion of the cocoon is thicker and thinner toward the inner side, resulting in an uneven fineness as a whole.
  • Silk fibroin The silk fibroin used in the present invention is made from natural or domestic silkworms or used or discarded silk fabric as a raw material, and refines silk fibroin from which silk fibroin is covered and from which other fats have been removed. Silk fibroin freeze-dried powder is preferred.
  • the protein fiber of the present invention may contain a polypeptide derived from spider silk protein in addition to silk fibroin.
  • the polypeptide derived from spider silk protein is not particularly limited as long as it is derived from or similar to natural spider silk protein.
  • the polypeptide is preferably a polypeptide derived from a large sputum bookmark thread protein produced in a spider large bottle-like line.
  • the large sputum bookmarker protein include large bottle-shaped spidroin MaSp1 and MaSp2 derived from the American spider spider (Nephila clavipes), and ADF3 and ADF4 derived from the Araneus diadematus.
  • the polypeptide derived from the large sputum bookmark thread protein includes a mutant, analog or derivative of the large sputum bookmark thread protein.
  • the protein fiber of the present invention comprises 10 to 100% by mass of silk fibroin and 0 to 90% by mass of polypeptide derived from spider silk protein. Is preferred. More preferably, the silk fibroin is 30 to 100% by mass, and the polypeptide derived from spider silk protein is 0 to 70% by mass. If it is the said range, there exists preferable spinnability, both components are favorable affinity without peeling, it becomes a hybrid fiber, and it becomes a protein fiber with a high stress and a moderate elongation at break.
  • Spinning solution As the solvent for the polypeptide derived from silk fibroin (lyophilized powder) and spider silk protein (lyophilized powder), any solvent can be used as long as it can dissolve the polypeptide.
  • an aqueous solution containing hexafluoroisopropanol (HFIP), hexafluoroacetone (HFA), urea, guanidine, sodium lauryl sulfate (SDS), lithium bromide, calcium chloride, lithium thiocyanate, etc. is added to an appropriate concentration.
  • the total concentration of the silk fibroin frozen powder and the polypeptide freeze-dried powder derived from spider silk protein is preferably 4.2 to 15.8% by mass. Dust and bubbles are removed to obtain a spinning solution (dope solution) having a solution viscosity of 2,500 to 15,000 cP (centipoise).
  • the coagulation liquid used for wet spinning may be any solution as long as it can be desolvated.
  • the solvent is HFIP
  • the coagulating liquid is preferably a lower alcohol having 1 to 5 carbon atoms such as methanol, ethanol, 2-propanol.
  • the temperature of the coagulation liquid is preferably 0 to 30 ° C. If it is the said range, spinning will be stabilized.
  • An undrawn yarn is obtained by extruding the spinning solution into a coagulating solution.
  • the extrusion speed is preferably 0.2 to 2.4 ml / h per hole. Within this range, spinning is stable. A more preferable extrusion rate is 0.25 to 1 ml / h per hole.
  • the length of the coagulation liquid tank is preferably 200 to 500 mm, the undrawn yarn take-up speed is preferably 1 to 20 m / min, and the residence time is preferably 0.05 to 0.15 min. If it is this range, solvent removal can be performed efficiently. Stretching (pre-stretching) may be performed in the coagulating liquid, but considering the evaporation of the lower alcohol, it is preferable to keep the coagulating liquid at a low temperature and take it off in the state of unstretched yarn.
  • the unstretched yarn is stretched 1.05 to 4 times by dry heat at a stretching temperature of 170 ° C to 230 ° C.
  • the molecules are highly oriented by high-temperature dry heat heating as described above, and a high-strength drawn yarn can be obtained.
  • a preferred stretching temperature is 180 ° C. to 225 ° C., and more preferably 190 ° C. to 220 ° C.
  • the preferred draw ratio is 2.7 to 3.9 times, and more preferably 2.9 to 3.5 times.
  • the dry heat an electric tubular furnace or a hot plate is used.
  • FIG. 1 is an explanatory view showing a manufacturing process in one embodiment of the present invention.
  • FIG. 1 shows a continuous process.
  • the spinning drawing apparatus 10 includes an extrusion process 1, an undrawn yarn manufacturing process 2, and a dry heat drawing process 3.
  • the spinning solution 6 is stored in the storage tank 7 and pushed out from the gear pump 8 to the base 9.
  • the spinning solution may be filled into a cylinder and extruded from a nozzle using a syringe pump.
  • the extruded spinning solution has an air gap 13 or is directly supplied into the coagulating liquid 11 in the coagulating liquid tank 12 to remove the solvent.
  • FIGS. 2A-B are explanatory views of an example in which the production process is separated in another embodiment of the present invention.
  • 2A shows the spinning step 20
  • FIG. 2B shows the drawing step 30.
  • the yarn may be wound up in each step or may be stored in the container without being wound up.
  • the spinning solution 22 is placed in the microsyringe 21, moved in the direction of arrow P using a syringe pump, the spinning solution 22 is pushed out from the nozzle 23, and the coagulating solution 25 in the coagulating solution tank 24 is discharged.
  • the unwound yarn wound body 26 is supplied.
  • the undrawn yarn is drawn out from the wound body 26, supplied to the dry heat drawing device 29, and drawn in the yarn path 31. Stretching is determined by the speed ratio between the supply nip roller 27 and the take-up nip roller 28. Next, the drawn yarn is wound around the wound body 32. Thereby, the fibroin fiber drawn yarn of the present invention is obtained.
  • Hot-water bath stretching may be performed in advance before dry heat heating stretching.
  • the molecular orientation can be further advanced by hot water bath stretching.
  • Hot water bath drawing is also useful for mixing (hybrid) of silk fibroin and spider silk protein.
  • the hot bath stretching conditions are preferably 30 to 90 ° C. and a stretching ratio of 1.05 to 6 times.
  • Fiber properties Fibroin fiber is obtained as described above.
  • the obtained fibroin fiber has a stress of 450 MPa or more and a breaking elongation of 5% or more. Since the natural silk fiber has a stress of about 410 MPa and the stress disclosed in FIG. 3 of Patent Document 2 is about 390 MPa, the stress of the fibroin yarn of the present invention is high.
  • the toughness is calculated from the integrated value of the stress-strain curve (SS curve) when measuring the strength and elongation of the fiber.
  • FIG. 3 is an explanatory diagram of the toughness of the fiber obtained in one example of the present invention, and shows a stress-displacement (strain) curve and toughness (shaded portion). It can be seen that toughness is high when both stress and elongation at break are high.
  • the preferred stress of the crosslinked fibroin fiber of the present invention is 600 MPa or more, more preferably 800 MPa or more.
  • the elongation of the crosslinked fiber is lowered, but the stress is surprisingly high.
  • the preferable breaking elongation of the non-crosslinked fiber is 9% or more, more preferably 15% or more, and further preferably 20% or more.
  • the diameter of the fibroin fiber of the present invention is preferably in the range of 5 to 100 ⁇ m. If it is the said range, a drawn fiber can be obtained stably.
  • a more preferable fiber diameter is in the range of 7 to 60 ⁇ m, still more preferably in the range of 10 to 40 ⁇ m.
  • the fibroin fiber (drawn yarn) of the present invention or the undrawn yarn of the raw material may be chemically crosslinked between polypeptide molecules in the fibroin fiber.
  • a known method for polymerizing or crosslinking a polymer material such as plastic or fiber material or a protein material such as collagen can be applied.
  • it may be performed using a condensation reaction by heating, ultraviolet rays, electron beams or the like, or using a known condensing agent.
  • functional groups that can be used for cross-linking in polypeptides include amino groups, carboxyl groups, thiol groups, and hydroxy groups, but are not limited thereto.
  • the amino group of the lysine side chain contained in the polypeptide can be cross-linked with an amide bond by dehydration condensation with the carboxyl group of the glutamic acid or aspartic acid side chain.
  • Crosslinking may be carried out by a dehydration condensation reaction under vacuum heating or by a dehydration condensation agent such as carbodiimide.
  • a crosslinking reaction may be performed with carbodiimide, glutaraldehyde, or the like.
  • the carbodiimide is represented by the general formula R 1 N ⁇ C ⁇ NR 2 (wherein R 1 and R 2 represent an organic group containing an alkyl group having 1 to 6 carbon atoms and a cycloalkyl group), and the specific compound is 1 -Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), diisopropylcarbodiimide (DIC), N, N'-dicyclohexylcarbodiimide (DCC), 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide, etc.
  • EDC Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • DIC diisopropylcarbodiimide
  • DCC N, N'-dicyclohexylcarbodiimide
  • 1-cyclohexyl-3- (2-morpholinoethyl) carbodiimide etc.
  • EDC and DIC are preferable because they have a high amide bond forming ability of peptide chains and easily undergo a crosslinking reaction.
  • the cross-linking treatment may be performed by applying a cross-linking agent to the fibroin fiber and performing cross-linking by vacuum heating and drying.
  • the carbodiimide may be applied to the fiber as a 100% product, or may be diluted with a lower alcohol having 1 to 5 carbon atoms or a buffer solution and applied to the fiber at a concentration of 0.005 to 10% by mass.
  • the treatment conditions are preferably immersed at a temperature of 20 to 45 ° C. for 3 to 48 hours. Ex. Of FIG. 3 is obtained by crosslinking treatment with carbodiimide. As shown in FIG.
  • the fibroin drawn yarn has a higher stress.
  • the stretched fiber is immersed in a solution obtained by adding carbodiimide and 1-hydroxybenzotriazole (HOBt) to 70% by mass ethanol or phosphate buffer, and reacted at 20 to 45 ° C. for 6 to 48 hours. After the reaction, it is washed with 100% by mass methanol for about 1 to 10 minutes.
  • HOBt 1-hydroxybenzotriazole
  • Example 1 Preparation of silk fibroin raw material (1) The silk fabric was cut to about 2 mm ⁇ 10 mm and boiled in boiling 0.5% by weight Marcel soap water (use Marcel soap fined with grater) for about 30 minutes. (2) Then, it boiled for 30 minutes with boiling hot water. (3) Procedures 1 and 2 were repeated two more times (3 times in total). (4) Finally boiled in boiling water for 30 minutes. By this operation, sericin and other additives covering the silk fibroin were completely removed. (5) The wet silk fibroin was dried overnight at 37 ° C. (6) The dried silk was weighed, and an LiBr aqueous solution (9 mol / L) was added so as to be 10 w / v%, followed by dissolution in a 40 ° C.
  • LiBr aqueous solution 9 mol / L
  • the aqueous solution was put into a cellulose dialysis membrane (Seamless Cellulose Tubing, 36/32 manufactured by VISKASESELES COAP) and dialyzed for 3 to 4 days using distilled water.
  • the recovered solution after dialysis was centrifuged at 20 ° C., 15,000 rpm for 1 hour to remove undissolved parts and dust.
  • the fine dust was completely removed by passing through a 150 ⁇ m filter manufactured by ADVANTEC.
  • the silk fibroin aqueous solution was frozen at ⁇ 80 ° C. and lyophilized overnight. After confirming that water was sufficiently removed, it was stored as silk fibroin powder. In this way, silk fibroin freeze-dried powder was obtained.
  • a spinning solution (dope solution) was filled in a cylinder, and an undrawn yarn was prepared in a 100% by mass methanol coagulation solution using a syringe pump from a nozzle having a diameter of 0.57 mm.
  • the extrusion speed was good from 0.2 to 2.4 ml / h. In this example, the extrusion speed was 0.6 ml / h, the coagulation liquid tank length was 400 mm, and the winding speed was 2 m / min.
  • the toughness calculation formula was as follows.
  • Toughness [E / (r 2 ⁇ ⁇ ⁇ L) ⁇ 1000] (unit: MJ / m 3 )
  • E Breaking energy (Unit: J)
  • r Radius of fiber (unit: mm)
  • Circumference ratio L
  • D The specific gravity of the fiber was measured according to the JIS L 1015 floatation method by requesting an outsourced analysis to the Kaken Test Center.
  • the specific gravity of the product of Example 1 was 1.36.
  • the stress-displacement (strain) curve of the drawn fiber obtained in Example 1 is shown in Ex. It is shown in 1.
  • Various physical property values are summarized below. Stress: 474.2 MPa Elongation: 21.3% Fiber diameter: 35.1 ⁇ m Breaking energy: 0.00164J Toughness: 84.8 MJ / m 3 Initial elastic modulus: 11.9 GPa
  • Example 2 In this example, the stretched fiber is post-crosslinked.
  • the carbodiimide diisopropylcarbodiimide (DIC) was used.
  • the stretched fiber obtained in Example 1 was immersed in a solution in which 20 ml of 70% by mass ethanol, 200 ⁇ l of diisopropylcarbodiimide (DIC) (liquid carbodiimide), and 4 mg of 1-hydroxybenzotriazole (HOBt) were mixed. And reacted at 25 ° C. for 6 hours. Thereafter, it was washed with 100% by mass methanol for 10 seconds and dried for 8 hours or more.
  • a stress-displacement (strain) curve of the obtained drawn fiber is shown in Ex. It is shown in 2.
  • Various physical property values are summarized below. Stress: 858.9 MPa Elongation: 9.4% Fiber diameter: 28.7 ⁇ m Breaking energy: 0.00070J Toughness: 54.1 MJ / m 3
  • Initial elastic modulus 18.3 GPa
  • the example product after crosslinking according to the present invention was a fibroin fiber having higher stress.
  • Table 1 compares the stresses of the fibers of Examples 1 to 3 with those of natural silk fibers.
  • a pUC57 vector (with an Nde I site immediately upstream of the 5 ′ end and an Xba I site immediately downstream of the 5 ′ end) into which the ADF3Kai gene having the base sequence represented by SEQ ID NO: 5 had been introduced was obtained. Thereafter, the gene was treated with restriction enzymes with Nde I and EcoR I and recombined into a pET22b (+) expression vector.
  • a PCR reaction was performed using ADF3Kai as a template using a T7 promoter primer (SEQ ID NO: 8) and Rep Xba I primer (SEQ ID NO: 9), and the 5 ′ half of the ADF3Kai gene sequence
  • sequence A The sequence (hereinafter referred to as “sequence A”) was amplified, and the fragment was subjected to restriction enzyme treatment with Nde I and Xba I in advance using a Mighty Cloning Kit (manufactured by Takara Bio Inc.). Recombined.
  • PCR reaction was performed using ADF3Kai as a template and an Xba I Rep primer (SEQ ID NO: 10) and a T7 terminator primer (SEQ ID NO: 11), and the sequence of the 3 ′ half of the gene sequence of ADF3Kai (hereinafter referred to as sequence B and The fragment was recombined into a pUC118 vector previously treated with Xba I and EcoR I using a Mighty Cloning Kit (Takara Bio Inc.).
  • the pUC118 vector into which the sequence A was introduced was treated with Nde I and Xba I
  • the pUC118 vector into which the sequence B was introduced was treated with restriction enzymes with Xba I and EcoR I, respectively, and the target DNA fragments of the sequences A and B were obtained by cutting out the gel.
  • the DNA fragments A and B and pET22b (+) previously treated with Nde I and EcoR I were subjected to a ligation reaction and transformed into E. coli DH5 ⁇ .
  • ADF3Kai-Large gene shown in SEQ ID NO: 6 was confirmed.
  • the amino acid sequence of ADF3Kai-Large is as shown in SEQ ID NO: 3.
  • pET22b (+) expression vector containing the ADF3Kai-Large-NRSH1 gene sequence obtained above was transformed into Escherichia coli Rosetta (DE3). After culturing the obtained single colony in 2 mL of LB medium containing ampicillin for 15 hours, 1.4 ml of the same culture solution was added to 140 mL of LB medium containing ampicillin and cultured at 37 ° C. and 200 rpm. The culture was continued until the OD 600 was 3.5. Then, OD 600 of the culture broth of 3.5, added with 50% glucose 140mL in 2 ⁇ YT medium 7L containing ampicillin, and further cultured until an OD 600 of 4.0.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • the cells recovered 2 hours after the addition of IPTG were washed with 20 mM Tris-HCl buffer (pH 7.4).
  • the washed cells were suspended in 20 mM Tris-HCl buffer (pH 7.4) containing about 1 mM PMSF, and the cells were disrupted with a high-pressure homogenizer (GEA Niro Soavi).
  • the disrupted cells were centrifuged to obtain a precipitate.
  • the resulting precipitate was washed with 20 mM Tris-HCl buffer (pH 7.4) until high purity.
  • the washed precipitate was dissolved in 7.5 M urea DB buffer (7.5 M urea, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0), and stirred with a stirrer.
  • Dialysis was performed with water using a cellulose tube 36/32) manufactured by Yakuhin Co., Ltd.
  • the white aggregated protein obtained after dialysis was recovered by centrifugation, the water was removed with a freeze dryer, and the lyophilized powder was recovered.
  • the degree of purification of the target protein (about 101.1 kDa) in the obtained lyophilized powder was confirmed by image analysis of the results of polyacrylamide gel electrophoresis of the powder using Totallab (nonlinear dynamics ltd.). As a result, the purification degree of ADF3Kai-Large-NRSH1 was about 85%.
  • a dope solution was prepared in the same manner as in Example 1. Silk fibroin and spider silk protein were mixed when preparing the dope solution.
  • Stretching conditions and results Stretching was carried out in the order of hot water bath stretching and dry heat stretching. Hot water bath stretching was performed continuously after the coagulation step.
  • the mass mixing ratio (silk: spider mass ratio) of silk fibroin and spider silk protein in Examples 4 to 7 and the conditions of the stretching process are shown in Table 2 (hot water bath stretching) and Table 3 (dry heat stretching). For reference, the conditions of Example 1 are also shown. The results are shown in Table 4. For reference, the results of Examples 1 to 3 are also shown.
  • the protein fiber of the present invention can be suitably used for resin or metal reinforcing fibers, composite materials, injection molding and the like.
  • the application can be applied to transportation equipment members such as automobiles, tire reinforcing fibers, and the like.
  • it can be applied to fishing lines, tennis and badminton guts, violin kites, violin bows, and artificial hair.
  • it can be applied to yarn, cotton, woven fabric, knitted fabric, braided fabric, non-woven fabric and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

L'invention concerne une fibre protéique qui contient de la fibroïne de soie, et la fibre protéique présente une contrainte d'au moins 450 MPa et un allongement à la rupture d'au moins 5 %. Ce procédé de production d'une fibre protéique vise à obtenir la fibre protéique susmentionnée, obtenue par filage humide d'un liquide dopé contenant de la fibroïne de soie, et mise en œuvre d'au moins un étirage chauffé sous chaleur sèche sur le fil non étiré de la fibre protéique. Le fil étiré ou le fil non étiré de la fibre protéique peut être ensuite réticulé au moyen de carbodiimide. Ainsi, l'invention concerne : une fibre protéique ayant une contrainte élevée et un allongement à la rupture favorable et un procédé pour la produire.
PCT/JP2012/063924 2011-06-01 2012-05-30 Fibre protéique et procédé pour la produire WO2012165477A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013518123A JP5739992B2 (ja) 2011-06-01 2012-05-30 タンパク質繊維及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-123648 2011-06-01
JP2011123648 2011-06-01

Publications (1)

Publication Number Publication Date
WO2012165477A1 true WO2012165477A1 (fr) 2012-12-06

Family

ID=47259329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063924 WO2012165477A1 (fr) 2011-06-01 2012-05-30 Fibre protéique et procédé pour la produire

Country Status (2)

Country Link
JP (1) JP5739992B2 (fr)
WO (1) WO2012165477A1 (fr)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002605A1 (fr) * 2012-06-28 2014-01-03 スパイバー株式会社 Fibre de protéine teintée dans la masse et procédé pour produire celle-ci
CN104790087A (zh) * 2015-03-29 2015-07-22 吴江市鼎盛丝绸有限公司 一种获取高强度蚕丝纤维的工艺方法及制备装置
JP2016223027A (ja) * 2015-05-29 2016-12-28 豊田合成株式会社 抗菌性再生シルクの製造方法
WO2017030197A1 (fr) * 2015-08-20 2017-02-23 国立研究開発法人理化学研究所 Procédé de fabrication de composition polypeptidique présentant une structure de type fibroïne
US9617315B2 (en) 2011-06-01 2017-04-11 Spiber Inc. Artificial polypeptide fiber and method for producing the same
WO2017131196A1 (fr) * 2016-01-29 2017-08-03 国立研究開発法人理化学研究所 Article moulé, son procédé de production, et procédé pour améliorer la dureté d'un article moulé
WO2017131195A1 (fr) * 2016-01-29 2017-08-03 国立研究開発法人理化学研究所 Article moulé, son procédé de production, et procédé pour améliorer le degré de cristallisation d'un article moulé
WO2018034111A1 (fr) * 2016-08-19 2018-02-22 国立研究開発法人理化学研究所 Composition de moulage composite comprenant une protéine de type fibroïne, et procédé de production de la composition de moulage composite
WO2018164189A1 (fr) * 2017-03-10 2018-09-13 Spiber株式会社 Article moulé en protéine et son procédé de production, et solution de protéine
JP2018197415A (ja) * 2016-06-02 2018-12-13 国立研究開発法人農業・食品産業技術総合研究機構 長尺ミノムシ絹糸の生産方法及びその生産装置
WO2019003364A1 (fr) 2017-06-29 2019-01-03 国立研究開発法人農業・食品産業技術総合研究機構 Procédé de production de longs fils de soie de chenilles burcicoles et son dispositif de production
WO2019049771A1 (fr) 2017-09-05 2019-03-14 国立研究開発法人農業・食品産業技術総合研究機構 Matériau composite renforcé de fibre et son procédé de fabrication
WO2019066037A1 (fr) * 2017-09-29 2019-04-04 Spiber株式会社 Liquide de dopage et produit l'utilisant, et fibre de protéine structurale et son procédé de production
WO2019064382A1 (fr) 2017-09-27 2019-04-04 国立研究開発法人農業・食品産業技術総合研究機構 Dispositif de collecte de fil
WO2019151352A1 (fr) * 2018-01-31 2019-08-08 Spiber株式会社 Fibres de protéine, et procédé de fabrication de celles-ci
WO2019151430A1 (fr) * 2018-01-31 2019-08-08 株式会社島精機製作所 Fil de fibre de protéine, corps tissé, procédé de fabrication de fil de fibre de protéine et procédé de fabrication de corps tissé
JP2019178465A (ja) * 2018-03-30 2019-10-17 住友ゴム工業株式会社 コード・ゴム組成物複合体、タイヤ及びコード・ゴム組成物複合体の製造方法
WO2019203228A1 (fr) 2018-04-16 2019-10-24 国立研究開発法人農業・食品産業技術総合研究機構 Procédé de production d'un faisceau de fibres de soie de chenille burcicole
CN110462118A (zh) * 2017-03-10 2019-11-15 丝芭博株式会社 蛋白质纤维的制造方法和制造装置
WO2020045381A1 (fr) 2018-08-27 2020-03-05 国立研究開発法人農業・食品産業技術総合研究機構 Procédé de production d'une touffe de fils extraite de fils de soie de chenille burcicole filés sur une surface de substrat
WO2020067547A1 (fr) * 2018-09-28 2020-04-02 Spiber株式会社 Fibres de fibroïne modifiée
WO2020067513A1 (fr) * 2018-09-28 2020-04-02 Spiber株式会社 Coton en fibre synthétique
JP2020090461A (ja) * 2018-12-06 2020-06-11 国立研究開発法人理化学研究所 修飾シルクフィブロインタンパク質、及びその利用
WO2020116503A1 (fr) 2018-12-04 2020-06-11 国立研究開発法人農業・食品産業技術総合研究機構 Dispositif de collecte de fil pour fil de soie de psychidae et procédé de production d'un fil de soie de psychidae long
WO2020184697A1 (fr) 2019-03-13 2020-09-17 国立研究開発法人農業・食品産業技術総合研究機構 Composite renforcé par des fibres et son procédé de fabrication
US10975206B2 (en) 2015-04-09 2021-04-13 Spiber Inc. Polar solvent solution and production method thereof
WO2021246398A1 (fr) 2020-06-02 2021-12-09 国立研究開発法人農業・食品産業技術総合研究機構 Dispositif de collecte d'un fil de soie de psychidé et procédé de production d'un fil de soie de psychidé long
CN113846485A (zh) * 2021-10-26 2021-12-28 厦门大学 一种简便高效的老化蚕丝丝素蛋白纤维修复方法
WO2022071480A1 (fr) 2020-09-30 2022-04-07 国立研究開発法人農業・食品産業技術総合研究機構 Procédé de commande de comportement pour des chenilles bursicoles et procédé de commande de position de filage
EP3808882A4 (fr) * 2018-04-03 2022-05-04 Hasetora Spinning Co. Ltd. Fil mélangé, corps tricoté/tissé de celui-ci et procédé de fabrication dudit corps tricoté/tissé
US20230035011A1 (en) * 2021-08-01 2023-02-02 Nano And Advanced Materials Institute Limited Anti-pilling merino wool fabric, garments comprising thereof, and method of fabrication thereof
US11668024B2 (en) 2015-04-09 2023-06-06 Spiber, Inc. Polar solvent solution and production method thereof
US11926927B2 (en) 2017-12-27 2024-03-12 National Agriculture And Food Research Organization Method of collecting bagworm silk thread

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840316B1 (ja) * 2015-03-25 2016-01-06 株式会社松風 まつげエクステンションの製造方法、まつげエクステンションおよびまつげエクステンションの取付け方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263614A (ja) * 1990-11-28 1992-09-18 E I Du Pont De Nemours & Co ポリペプチド繊維を紡糸する方法
JPH07207520A (ja) * 1994-01-14 1995-08-08 Kiyoichi Matsumoto 絹フィブロイン繊維の製造法
WO2003060099A2 (fr) * 2002-01-11 2003-07-24 Nexia Biotechnologies, Inc. Procedes et appareils de filage d'une proteine de soie d'araignee
JP2004068161A (ja) * 2001-03-14 2004-03-04 Tokyo Univ Of Agriculture & Technology 絹及び絹様材料の繊維、フィルム及び不織布の製造方法、並びに、それらの方法によって製造された繊維、フィルム又は不織布
JP2004532362A (ja) * 2001-04-02 2004-10-21 ザイロス ピーエルシー 絹繊維
JP2005515309A (ja) * 2002-01-09 2005-05-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリペプチド繊維およびそれらの製造方法
JP2009221401A (ja) * 2008-03-18 2009-10-01 Tokyo Univ Of Agriculture & Technology 再生絹材料及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103158A1 (fr) * 2004-04-20 2005-11-03 Nippon Shinyaku Co., Ltd. Film de fibroïne de soie
JP2007169806A (ja) * 2005-12-20 2007-07-05 Kaneka Corp 人工毛髪用繊維束及びそれを用いた頭飾製品
JP2009155774A (ja) * 2007-12-27 2009-07-16 Toray Ind Inc 繊維構造物およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263614A (ja) * 1990-11-28 1992-09-18 E I Du Pont De Nemours & Co ポリペプチド繊維を紡糸する方法
JPH07207520A (ja) * 1994-01-14 1995-08-08 Kiyoichi Matsumoto 絹フィブロイン繊維の製造法
JP2004068161A (ja) * 2001-03-14 2004-03-04 Tokyo Univ Of Agriculture & Technology 絹及び絹様材料の繊維、フィルム及び不織布の製造方法、並びに、それらの方法によって製造された繊維、フィルム又は不織布
JP2004532362A (ja) * 2001-04-02 2004-10-21 ザイロス ピーエルシー 絹繊維
JP2005515309A (ja) * 2002-01-09 2005-05-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリペプチド繊維およびそれらの製造方法
WO2003060099A2 (fr) * 2002-01-11 2003-07-24 Nexia Biotechnologies, Inc. Procedes et appareils de filage d'une proteine de soie d'araignee
JP2009221401A (ja) * 2008-03-18 2009-10-01 Tokyo Univ Of Agriculture & Technology 再生絹材料及びその製造方法

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617315B2 (en) 2011-06-01 2017-04-11 Spiber Inc. Artificial polypeptide fiber and method for producing the same
WO2014002605A1 (fr) * 2012-06-28 2014-01-03 スパイバー株式会社 Fibre de protéine teintée dans la masse et procédé pour produire celle-ci
JP5407009B1 (ja) * 2012-06-28 2014-02-05 スパイバー株式会社 原着タンパク質繊維の製造方法
JP2014029054A (ja) * 2012-06-28 2014-02-13 Spiber Inc 原着タンパク質繊維及びその製造方法
US9689089B2 (en) 2012-06-28 2017-06-27 Spiber Inc. Solution-dyed protein fiber and method for producing same
CN104790087A (zh) * 2015-03-29 2015-07-22 吴江市鼎盛丝绸有限公司 一种获取高强度蚕丝纤维的工艺方法及制备装置
US11668024B2 (en) 2015-04-09 2023-06-06 Spiber, Inc. Polar solvent solution and production method thereof
US10975206B2 (en) 2015-04-09 2021-04-13 Spiber Inc. Polar solvent solution and production method thereof
JP2016223027A (ja) * 2015-05-29 2016-12-28 豊田合成株式会社 抗菌性再生シルクの製造方法
WO2017030197A1 (fr) * 2015-08-20 2017-02-23 国立研究開発法人理化学研究所 Procédé de fabrication de composition polypeptidique présentant une structure de type fibroïne
US11174572B2 (en) 2015-08-20 2021-11-16 Riken Composite molding composition including fibroin-like protein, and method for producing composite molding composition
JPWO2017131195A1 (ja) * 2016-01-29 2018-11-22 国立研究開発法人理化学研究所 成形体及びその製造方法、並びに成形体の結晶化度を向上させる方法
WO2017131195A1 (fr) * 2016-01-29 2017-08-03 国立研究開発法人理化学研究所 Article moulé, son procédé de production, et procédé pour améliorer le degré de cristallisation d'un article moulé
JPWO2017131196A1 (ja) * 2016-01-29 2018-11-22 国立研究開発法人理化学研究所 成形体及びその製造方法、並びに成形体のタフネスを向上させる方法
WO2017131196A1 (fr) * 2016-01-29 2017-08-03 国立研究開発法人理化学研究所 Article moulé, son procédé de production, et procédé pour améliorer la dureté d'un article moulé
JP6998032B2 (ja) 2016-06-02 2022-02-10 国立研究開発法人農業・食品産業技術総合研究機構 長尺ミノムシ絹糸の生産方法及びその生産装置
JP7334995B2 (ja) 2016-06-02 2023-08-29 国立研究開発法人農業・食品産業技術総合研究機構 長尺ミノムシ絹糸の生産方法及びその生産装置
JP2018197415A (ja) * 2016-06-02 2018-12-13 国立研究開発法人農業・食品産業技術総合研究機構 長尺ミノムシ絹糸の生産方法及びその生産装置
JP2022028690A (ja) * 2016-06-02 2022-02-16 国立研究開発法人農業・食品産業技術総合研究機構 長尺ミノムシ絹糸の生産方法及びその生産装置
JP7088511B2 (ja) 2016-08-19 2022-06-21 国立研究開発法人理化学研究所 フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法
JPWO2018034111A1 (ja) * 2016-08-19 2019-07-18 国立研究開発法人理化学研究所 フィブロイン様タンパク質を含むコンポジット成形組成物及びその製造方法
WO2018034111A1 (fr) * 2016-08-19 2018-02-22 国立研究開発法人理化学研究所 Composition de moulage composite comprenant une protéine de type fibroïne, et procédé de production de la composition de moulage composite
US11286286B2 (en) 2017-03-10 2022-03-29 Spiber Inc. Method and device for manufacturing protein fiber
WO2018164189A1 (fr) * 2017-03-10 2018-09-13 Spiber株式会社 Article moulé en protéine et son procédé de production, et solution de protéine
CN110462118B (zh) * 2017-03-10 2022-10-11 丝芭博株式会社 蛋白质纤维的制造方法和制造装置
CN110462118A (zh) * 2017-03-10 2019-11-15 丝芭博株式会社 蛋白质纤维的制造方法和制造装置
JPWO2019003364A1 (ja) * 2017-06-29 2020-04-30 国立研究開発法人農業・食品産業技術総合研究機構 長尺ミノムシ絹糸の生産方法及びその生産装置
KR20220003144A (ko) 2017-06-29 2022-01-07 코쿠리츠켄큐카이하츠호진 노교쇼쿠힌산교기주츠소고켄큐키코 장척 도롱이벌레 견사의 생산 방법 및 그 생산 장치
JP6998069B2 (ja) 2017-06-29 2022-02-10 国立研究開発法人農業・食品産業技術総合研究機構 長尺ミノムシ絹糸の生産方法及びその生産装置
KR20200023418A (ko) 2017-06-29 2020-03-04 코쿠리츠켄큐카이하츠호진 노교쇼쿠힌산교기주츠소고켄큐키코 장척 도롱이벌레 견사의 생산 방법 및 그 생산 장치
CN110753765A (zh) * 2017-06-29 2020-02-04 国立研究开发法人农业·食品产业技术综合研究机构 长蓑蛾虫丝的生产方法及其生产装置
US11814751B2 (en) 2017-06-29 2023-11-14 National Agriculture And Food Research Organization Method for producing long bagworm silk threads and production device therefor
WO2019003364A1 (fr) 2017-06-29 2019-01-03 国立研究開発法人農業・食品産業技術総合研究機構 Procédé de production de longs fils de soie de chenilles burcicoles et son dispositif de production
US11732096B2 (en) 2017-09-05 2023-08-22 National Agriculture And Food Research Organization Fiber-reinforced composite material and method for manufacturing same
WO2019049771A1 (fr) 2017-09-05 2019-03-14 国立研究開発法人農業・食品産業技術総合研究機構 Matériau composite renforcé de fibre et son procédé de fabrication
WO2019064382A1 (fr) 2017-09-27 2019-04-04 国立研究開発法人農業・食品産業技術総合研究機構 Dispositif de collecte de fil
US11788206B2 (en) 2017-09-27 2023-10-17 National Agriculture And Food Research Organization Thread collecting device
WO2019066037A1 (fr) * 2017-09-29 2019-04-04 Spiber株式会社 Liquide de dopage et produit l'utilisant, et fibre de protéine structurale et son procédé de production
US11926927B2 (en) 2017-12-27 2024-03-12 National Agriculture And Food Research Organization Method of collecting bagworm silk thread
WO2019151430A1 (fr) * 2018-01-31 2019-08-08 株式会社島精機製作所 Fil de fibre de protéine, corps tissé, procédé de fabrication de fil de fibre de protéine et procédé de fabrication de corps tissé
WO2019151352A1 (fr) * 2018-01-31 2019-08-08 Spiber株式会社 Fibres de protéine, et procédé de fabrication de celles-ci
JP7087586B2 (ja) 2018-03-30 2022-06-21 住友ゴム工業株式会社 コード・ゴム組成物複合体、タイヤ及びコード・ゴム組成物複合体の製造方法
JP2019178465A (ja) * 2018-03-30 2019-10-17 住友ゴム工業株式会社 コード・ゴム組成物複合体、タイヤ及びコード・ゴム組成物複合体の製造方法
EP3808882A4 (fr) * 2018-04-03 2022-05-04 Hasetora Spinning Co. Ltd. Fil mélangé, corps tricoté/tissé de celui-ci et procédé de fabrication dudit corps tricoté/tissé
WO2019203228A1 (fr) 2018-04-16 2019-10-24 国立研究開発法人農業・食品産業技術総合研究機構 Procédé de production d'un faisceau de fibres de soie de chenille burcicole
WO2020045381A1 (fr) 2018-08-27 2020-03-05 国立研究開発法人農業・食品産業技術総合研究機構 Procédé de production d'une touffe de fils extraite de fils de soie de chenille burcicole filés sur une surface de substrat
CN112714813A (zh) * 2018-09-28 2021-04-27 丝芭博株式会社 改性丝心蛋白纤维
JP2022024191A (ja) * 2018-09-28 2022-02-09 Spiber株式会社 人造繊維綿
WO2020067513A1 (fr) * 2018-09-28 2020-04-02 Spiber株式会社 Coton en fibre synthétique
WO2020067547A1 (fr) * 2018-09-28 2020-04-02 Spiber株式会社 Fibres de fibroïne modifiée
JP7446578B2 (ja) 2018-09-28 2024-03-11 Spiber株式会社 人造繊維綿
US11877567B2 (en) 2018-12-04 2024-01-23 National Agriculture And Food Research Organization Apparatus for producing a bagworm silk thread, and method of producing long bagworm silk thread
WO2020116503A1 (fr) 2018-12-04 2020-06-11 国立研究開発法人農業・食品産業技術総合研究機構 Dispositif de collecte de fil pour fil de soie de psychidae et procédé de production d'un fil de soie de psychidae long
JP2020090461A (ja) * 2018-12-06 2020-06-11 国立研究開発法人理化学研究所 修飾シルクフィブロインタンパク質、及びその利用
JP7362096B2 (ja) 2018-12-06 2023-10-17 国立研究開発法人理化学研究所 修飾シルクフィブロインタンパク質、及びその利用
WO2020184697A1 (fr) 2019-03-13 2020-09-17 国立研究開発法人農業・食品産業技術総合研究機構 Composite renforcé par des fibres et son procédé de fabrication
WO2021246398A1 (fr) 2020-06-02 2021-12-09 国立研究開発法人農業・食品産業技術総合研究機構 Dispositif de collecte d'un fil de soie de psychidé et procédé de production d'un fil de soie de psychidé long
WO2022071480A1 (fr) 2020-09-30 2022-04-07 国立研究開発法人農業・食品産業技術総合研究機構 Procédé de commande de comportement pour des chenilles bursicoles et procédé de commande de position de filage
US20230035011A1 (en) * 2021-08-01 2023-02-02 Nano And Advanced Materials Institute Limited Anti-pilling merino wool fabric, garments comprising thereof, and method of fabrication thereof
US11846066B2 (en) * 2021-08-01 2023-12-19 Nano And Advanced Materials Institute Limited Anti-pilling merino wool fabric, garments comprising thereof, and method of fabrication thereof
CN113846485A (zh) * 2021-10-26 2021-12-28 厦门大学 一种简便高效的老化蚕丝丝素蛋白纤维修复方法

Also Published As

Publication number Publication date
JP5739992B2 (ja) 2015-06-24
JPWO2012165477A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5739992B2 (ja) タンパク質繊維及びその製造方法
JP5540166B1 (ja) 人造ポリペプチド繊維の製造方法
JP5584932B2 (ja) タンパク質繊維の製造方法
JP5427322B2 (ja) ポリペプチドの溶液とこれを用いた人造ポリペプチド繊維の製造方法及びポリペプチドの精製方法
JP5407009B1 (ja) 原着タンパク質繊維の製造方法
US20120231499A1 (en) High-molecular-weight recombinant silk or silk-like protein and micro- or nano-sized spider silk or silk-like fiber produced therefrom
JP5883271B2 (ja) 人造ポリペプチド極細繊維の製造方法
WO2020067574A1 (fr) Procédé de production de fibre de protéine
WO2019009302A1 (fr) Matériau composite et procédé de fabrication de matériau composite
WO2019151341A1 (fr) Article moulé en résine renforcée par des fibres et procédé de fabrication d'un article moulé en résine renforcée par des fibres
WO2019151424A1 (fr) Composition de fibroïne, solution de fibroïne, et procédé de fabrication de fibres de fibroïne
WO2020027153A1 (fr) Fibres de fibroïne modifiées et leur procédé de production
EP3859076A1 (fr) Fibres de fibroïne modifiée
JP2020122248A (ja) フィブロイン繊維の製造方法及びフィブロイン溶液
JP2020122249A (ja) フィブロイン繊維の製造方法及びフィブロイン溶液
JP2020020070A (ja) タンパク質繊維及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793801

Country of ref document: EP

Kind code of ref document: A1