WO2012164948A1 - 過酸化水素分解装置及び過酸化水素の分解方法 - Google Patents

過酸化水素分解装置及び過酸化水素の分解方法 Download PDF

Info

Publication number
WO2012164948A1
WO2012164948A1 PCT/JP2012/003604 JP2012003604W WO2012164948A1 WO 2012164948 A1 WO2012164948 A1 WO 2012164948A1 JP 2012003604 W JP2012003604 W JP 2012003604W WO 2012164948 A1 WO2012164948 A1 WO 2012164948A1
Authority
WO
WIPO (PCT)
Prior art keywords
decomposition
hydrogen peroxide
water
material layer
treated
Prior art date
Application number
PCT/JP2012/003604
Other languages
English (en)
French (fr)
Inventor
龍均 木山
俊祐 山崎
Original Assignee
株式会社アサカ理研
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサカ理研, 三井造船株式会社 filed Critical 株式会社アサカ理研
Priority to KR1020127032981A priority Critical patent/KR101445837B1/ko
Publication of WO2012164948A1 publication Critical patent/WO2012164948A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds

Definitions

  • the present invention relates to an apparatus and method for decomposing hydrogen peroxide contained in water to be treated, and in particular, decomposes hydrogen peroxide by passing water to be treated through a decomposing material layer filled with granular or reticulated decomposing material.
  • the present invention relates to an apparatus and a method.
  • hydroxide solution An aqueous solution containing hydrogen peroxide (hereinafter simply referred to as “hydrogen peroxide solution”) is widely used as an oxidizing agent, a disinfectant, and a bleaching agent. Since hydrogen peroxide is eventually decomposed into harmless water and oxygen, its use is expanding as an environmentally friendly industrial chemical. Main applications include cleaning of equipment for processing ballast water discharged from ships, disinfection processing in the manufacturing process of drinking water and cosmetics, cleaning processing in the manufacturing process of semiconductors, pulp bleaching during paper manufacturing, general wastewater and One example is industrial wastewater treatment.
  • Wastewater containing hydrogen peroxide generated in each application is treated with a device for decomposing hydrogen peroxide, and those that meet the emission standards are finally discharged.
  • hydrogen peroxide is decomposed by adding alkaline chemicals to raise the pH of wastewater, or hydrogen peroxide is decomposed by passing water through an activated carbon tower.
  • the former method of adding a chemical requires a chemical for increasing the pH of the wastewater and a chemical for further neutralizing the wastewater that has become alkaline.
  • the present invention has been made to solve the above-described problems, and its object is to decompose hydrogen peroxide by passing water to be treated through a decomposition material layer filled with a granular or net-like decomposition material.
  • Hydrogen peroxide decomposition apparatus and decomposition method capable of promoting the discharge of gas generated during decomposition of hydrogen peroxide from the decomposition material layer and suppressing degradation of decomposition efficiency due to gas bubbles remaining in the decomposition material layer Is to provide.
  • Another object of the present invention is to provide a hydrogen peroxide decomposing apparatus and a decomposing method that can be applied to water to be treated containing high concentration hydrogen peroxide and that can decompose hydrogen peroxide in a short time. is there.
  • Still another object of the present invention is to prevent the decomposition material from flowing out of the apparatus accompanying the decomposition gas even if the flow rate of the water to be treated supplied to the decomposition material layer is increased.
  • An object of the present invention is to provide a hydrogen peroxide decomposing apparatus that can be converted into a hydrogen peroxide.
  • the hydrogen peroxide decomposing apparatus of the present invention is an apparatus for decomposing hydrogen peroxide contained in the water to be treated, the decomposition tower through which the water to be treated containing hydrogen peroxide is passed, and the inside of the decomposition tower
  • a plurality of degassing rectifying rods that extend from the lower surface to protrude from the upper surface and are spaced from each other in the decomposition layer.
  • the sum of the horizontal sectional areas of the plurality of degassing rectifying rods is S1 (m 2 ), and the horizontal sectional area of the empty column filled with the decomposition material is S2 (m 2 ).
  • the plurality of degassing rectifying rods can be evenly arranged in the decomposition material layer.
  • the support member that supports the decomposition material and the support member that supports the gas vent rectifying rod may be a common member or may be separate members.
  • the superficial velocity (SV) of the decomposition material layer can perform high-speed processing up to 10 to 500 hr ⁇ 1 .
  • the true specific gravity is 2.5 (g / cm) in order to prevent the decomposed material layer from being pushed up locally by the water to be treated at a high flow rate or the particles of the decomposed material flowing out of the apparatus.
  • the above decomposition materials can be used.
  • the decomposition material a material in which a powder of manganese dioxide (MnO 2 ) is supported on the surface of a granular carrier can be used.
  • the decomposition material may be damaged or the catalyst may be peeled off from the carrier during the decomposition of hydrogen peroxide.
  • the hydrogen peroxide decomposition apparatus is supplied with the water to be treated that has passed through the decomposition material layer and discharged from the decomposition tower, and decomposes hydrogen peroxide. It can be set as the structure further equipped with the solid-liquid separation apparatus which collect
  • the method for decomposing hydrogen peroxide of the present invention is a method for decomposing hydrogen peroxide contained in water to be treated, and passes through the decomposition material layer in an upward flow through the decomposition material layer filled with granular decomposition material.
  • the water to be treated is supplied to decompose hydrogen peroxide into water and oxygen, and extends from the lower surface of the decomposition material layer to the upper surface and is disposed in the decomposition material layer with a space therebetween. Further, the flow of water to be treated is rectified by a plurality of degassing rectifying rods, and the discharge of gas generated during the decomposition of hydrogen peroxide is promoted.
  • the water to be treated when water to be treated is passed through a decomposition material layer filled with granular or net-like decomposition material to decompose hydrogen peroxide, the water to be treated is passed through the decomposition material layer in an upward flow.
  • a degassing flow straightening rod extending from the lower surface of the decomposition material layer to the upper surface of the decomposition material layer, the gas generated during decomposition of hydrogen peroxide can be quickly discharged from the decomposition material layer. it can.
  • it is possible to suppress a decrease in contact efficiency between the decomposition material and hydrogen peroxide due to the generated gas bubbles, and it is possible to maintain stable decomposition efficiency.
  • the gas can be quickly discharged from the decomposition material layer by the degassing rectifier rod, so that water containing a high concentration of hydrogen peroxide is treated.
  • the gas generated during the decomposition of hydrogen peroxide can be quickly discharged by the degassing rectifying rod, so that the flow restriction due to the bubbles remaining in the decomposition material layer can be relaxed. Therefore, the superficial velocity (SV) can be set high, and as a result, downsizing of the apparatus can be realized. When the superficial velocity is increased, there is a concern that the decomposition material layer may be lifted or the decomposition material may flow out. As a countermeasure, it is preferable to use a decomposed material having a large true specific gravity.
  • FIG. 1 shows an overall configuration of a hydrogen peroxide decomposition apparatus according to a first embodiment of the present invention. It is a perspective view which shows the internal structure of the decomposition tower of the said hydrogen peroxide decomposition
  • a hydrogen peroxide decomposition apparatus 1 includes a tank 2 that stores water to be treated, a decomposition tower 3 that decomposes hydrogen peroxide of water to be treated, and a treatment object in the tank 2.
  • a supply device 4 that transports and circulates water to supply the decomposition tower 3 and a solid-liquid separation device 5 that separates and collects fine powder of the decomposed material mixed in the water to be treated are provided.
  • the tank 2 and the decomposition tower 3 are connected via a supply device 4 with a flow path (supply line) 41 such as a pipe, for example, and the water to be treated in the tank 2 is continuously decomposed by operating the supply device 4.
  • a flow path (supply line) 41 such as a pipe, for example
  • the cracking tower 3 and the tank 2 are connected to each other by a flow path (circulation line) 42 such as a pipe via a solid-liquid separation device 5, and the water to be treated discharged from the cracking tower 3 is connected to the solid-liquid separation device 5.
  • the supply line 41 is branched to the discharge line 43 on the way, and the line can be switched by opening and closing the valves 44a and 44b.
  • the supply device 4 can be a pump, for example.
  • a pump equipped with a metering pump or an inverter device can be used.
  • the flow rate adjustment may be performed by a flow rate adjustment valve or the like (not shown) installed in the pipe.
  • the solid-liquid separation apparatus 5 can use centrifuges, such as a cyclone, a filter, a sand separator, etc., for example. Among these, a cyclone is preferable.
  • the decomposition tower 3 has, for example, a cylindrical tower body 31 having a sealed structure.
  • a supply nozzle 31a and a discharge nozzle 31b for water to be treated are respectively arranged at the bottom and top of the tower body 31, and the supply line 41 and the circulation line 42 are connected to each other.
  • the decomposition tower 3 is filled with a granular decomposition material that decomposes hydrogen peroxide into water and oxygen to form a decomposition material layer 32.
  • the decomposed material layer 32 is filled with a granular decomposed material so that the layer thickness is, for example, in the range of 300 to 1500 mm, preferably 400 to 800 mm.
  • the decomposition material layer 32 is supported by a support member (for example, an eye plate) 33 arranged in the tower.
  • a support member for example, an eye plate
  • a plurality of water passage holes 33a penetrating vertically are formed, and the water to be treated is distributed and supplied to the decomposition material layer 32 through the water passage holes 33a.
  • a drop prevention strainer 33b is provided on the upper surface of the water passage hole 33a.
  • An example of the strainer 33b is a configuration in which a plurality of slits 33c having a width smaller than the particle size of the decomposition material are formed on the side surface of the cap-shaped member.
  • the strainer 33b is not necessarily provided, and the diameter of the water passage hole 33a may be designed to be smaller than the particle diameter of the decomposition material.
  • the number and arrangement of the water flow holes 33a, strainers 33b, and slits 33c can be determined according to the inner diameter of the decomposition tower 3, the processing flow rate, and the like.
  • the decomposition material there can be used a catalyst in which a catalyst having a resolution for hydrogen peroxide is supported on the surface of a granular carrier.
  • the supporting method is not particularly limited, and a known supporting method using an immersion method or a binder can be employed.
  • the catalyst include one or more metal compounds selected from manganese dioxide (MnO 2 ) and the like. Among these, manganese dioxide (MnO 2 ) is preferable.
  • MnO 2 manganese dioxide
  • the carrier for supporting such a catalyst may be any material that is resistant to hydrogen peroxide, and the material is not particularly limited. Specific examples of the carrier include one or more selected from garnet, ceramics, sacrandom, silica, and the like. Other examples include metals such as iron, stainless steel, and brass.
  • the true specific gravity of the decomposed material is 2.5 (g / cm 3 ) or more, preferably 3.5 to 4.5 (g / cm 3 ). 3 ), and the bulk specific gravity of the cracked material is 1.5 (g / cm 3 ) or more, preferably 1.5 to 2.5 (g / cm 3 ) so that the cracked gas can be quickly released.
  • the particle size of the decomposition material is preferably 0.5 to 3.0, for example.
  • the decomposition material decomposes hydrogen peroxide into water and oxygen, the decomposition material may be damaged due to expansion when oxygen is gasified. Therefore, the solid-liquid separation device 5 such as a cyclone is arranged to collect fine powder of the decomposed material, but the wear rate of the decomposed material itself (measurement method: JWWA A 103-1988) is 2.0%. The following is preferable.
  • the oxygen generated in the decomposition tower 3 enters the tank 2 together with the water to be treated that circulates. Furthermore, it may be sent to the decomposition tower 3 as it is, and the decomposition efficiency may decrease. Therefore, it is preferable to install an air separator instead of the solid-liquid separator 5 or before or after the solid-liquid separator 5.
  • a combination of manganese dioxide (catalyst) and garnet (carrier) is suitable for the catalyst and carrier constituting the decomposition material.
  • the component table of the decomposition material in this combination is shown below. MnO 2 in the component table is the ratio of the catalyst, and SiO 2 , Al 2 O 3 and Fe 2 O 3 are the main components of the support.
  • a plurality of rod-shaped members 34 extending in the vertical direction that is, the flow direction of the water to be treated
  • the degassing flow straightening rod 34 has a length that extends from the lower surface of the decomposition material layer 32 until the upper surface protrudes.
  • the degassing rectifying rod 34 can be erected on the surface of the support member 33. At this time, it is preferable that the degassing flow straightening rods 34 are evenly arranged in the horizontal plane of the support member 33.
  • FIG. 2 a configuration in which five degassing rectifying rods 34 are arranged is shown as an example.
  • the optimum value of S2 / S1 within the above-mentioned range varies depending on the processing conditions such as the concentration of hydrogen peroxide in the water to be treated, the flow rate, and the target decomposition concentration, so that S2 / S1 takes these setting values into consideration. Is preferably determined.
  • the horizontal cross-sectional area of the empty tower filled with the decomposition material corresponds to the horizontal cross-sectional area of the decomposition material layer 32 when the degassing rectifying rod 34 is not installed. In the example of FIG. 1, it is also the cross-sectional area of the inner diameter of the tower body 31.
  • the degassing rectifying rod 34 it is preferable to use, for example, a cylindrical rod-shaped member having an outer diameter of 10 to 100 mm (the rod-shaped member includes a hollow member inside). If the outer diameter is too small, the strength may be insufficient or the number of installations may increase. On the contrary, if the outer diameter is too large, the degassing effect per one is large, but depending on the value of S2 / S1, the tower diameter and the tower weight may increase.
  • the cross-sectional shape of the rod-shaped member is not limited, and may be various shapes such as a triangle, a square, a rectangle, an ellipse, and a polygon.
  • the rod-shaped member which comprises the degassing baffle rod 34 should just have tolerance to hydrogen peroxide, and material in particular is not restrict
  • STPG general steel materials
  • SUS special steel materials
  • resins such as vinyl chloride.
  • the number and distance of the degassing rectifying rods 34 are set according to the hydrogen peroxide concentration and processing speed of the raw water for treatment, but the distance is 5 to 100 times, preferably 10 to 50 times the diameter of the degassing rectifying rods 34. It is preferable to arrange evenly in the tower filled with the decomposition material.
  • the water to be treated is mainly waste water, which contains components and impurities other than hydrogen peroxide, but in this embodiment, water quality is particularly limited as long as it contains hydrogen peroxide. There is nothing.
  • the concentration of hydrogen peroxide is applicable from a low concentration to a medium concentration up to 1000 mg / l to a high concentration such as 1000 to 100,000 mg / l that cannot be processed by the prior art.
  • waste water is washed in the equipment of the processing equipment for ballast water discharged from ships, waste water that has been disinfected in the manufacturing process of drinking water and cosmetics, and cleaning processing in the manufacturing process of semiconductors.
  • Examples include waste water, waste water subjected to pulp bleaching in papermaking, general waste water, and industrial waste water.
  • the treated water stored in the tank 2 is supplied to the decomposition tower 3 by driving a supply device 4 such as a pump.
  • the flow rate is not limited and can be changed according to the overall processing conditions such as the concentration of hydrogen peroxide to be processed, the target decomposition concentration, and the target processing time.
  • the treated water supplied into the decomposition tower 3 is dispersedly supplied into the decomposition material layer 32 through the water passage holes 33a of the support member 33 and the slits 33c of the strainer 33b, and further passes through the decomposition material layer 32 in an upward flow.
  • the decomposition material layer 32 and hydrogen peroxide come into contact with each other, and the hydrogen peroxide is decomposed into water and oxygen, but a large amount of bubbles are generated by the gasified oxygen.
  • the treated water that has passed through the decomposition material layer 32 is discharged outside the tower through the discharge nozzle 31b.
  • the water to be treated discharged outside the tower is returned to the tank 2 through the circulation line 42 and supplied to the decomposition tower 3 again.
  • the valve 44a, 44b is switched to the discharge line 43 to discharge the treated water out of the apparatus.
  • the line switching may be performed when a predetermined time has elapsed, or may be performed based on the analysis result of the sampled water to be treated.
  • Gas bubbles generated in a large amount instantly fill the decomposition material layer 32 (hatched portion in the figure), further aggravating the flow of water in the center.
  • the bubbles filling the decomposition material layer 32 in this manner cause a decrease in contact efficiency and cause the center of the decomposition material layer 32 to be lifted.
  • the flow of water is improved on the outer periphery of the degassing rectifying rod 34 as schematically shown in FIG. It is possible to reduce the area where the flow of water is reduced, such as the central part of the water. Thereby, the flow of water in the decomposition material layer 32 is made uniform, and gas discharge is promoted.
  • the water to be treated is supplied so as to pass through the decomposition material layer 32 filled with the granular decomposition material in an upward flow, and the upper surface protrudes from the lower surface of the decomposition material layer 32.
  • the gas generated during the decomposition of hydrogen peroxide can be quickly discharged from the decomposition material layer 32.
  • the gas generated during the decomposition of hydrogen peroxide can be quickly discharged by the degassing rectifying rod 34, so that the restriction on the flow rate due to the bubbles remaining in the decomposition material layer 32 can be relaxed. it can. Therefore, the superficial velocity (SV) can be set high, and as a result, downsizing of the apparatus can be realized.
  • SV superficial velocity
  • the decomposition material layer may be lifted or the decomposition material may flow out.
  • the hydrogen peroxide decomposition apparatus 1 has a feature that can achieve high-concentration and high-speed processing.
  • the present invention is also applicable to low density-low speed, high density-low speed, or low density-high speed processing.
  • the hydrogen peroxide decomposing apparatus 1 has the feature that chemicals for decomposing hydrogen peroxide are not used in addition to maintaining the decomposing efficiency by degassing and downsizing the apparatus.
  • the hydrogen peroxide decomposition apparatus 1 according to the present embodiment realizes an environmentally friendly hydrogen peroxide decomposition process with a compact apparatus.
  • the apparatus when applied to a ballast water treatment apparatus, the apparatus may be installed in a ship.
  • the apparatus since the apparatus can be downsized, it is possible to suppress a significant increase in the load applied to the power motor of the ship even when installed in the ship.
  • the hydrogen peroxide decomposition apparatus is an example of an apparatus that is applied to water to be treated having a low concentration to a medium concentration of, for example, hydrogen peroxide of 1000 mg / l or less. That is, when the water can be decomposed to a target value (for example, a detected value or less) with one pass of water, the circulation line 42 as shown in FIG. FIG. 4 shows the configuration of the hydrogen peroxide decomposition apparatus 6 according to this embodiment in which the circulation line 42 is omitted.
  • symbol is abbreviate
  • the gas generated during the decomposition of hydrogen peroxide can be quickly discharged from the decomposition material layer 32.
  • a solid-liquid separator 5 such as a cyclone is provided in the middle of the discharge line 43 as shown in FIG.
  • the concentration of hydrogen peroxide is low, the amount of oxygen gas generated is also reduced, so that breakage of the decomposition material is reduced.
  • the superficial velocity (SV) is set low, it is difficult for the decomposed material to flow out. Therefore, the solid-liquid separation device 5 such as a cyclone can be omitted.
  • the decomposition material is not limited to a granular shape, and may be a net shape.
  • a decomposition material in which catalyst powder is supported on the surface of the reticulated member can be used.
  • the mesh member for example, a wire mesh formed of a metal such as iron, stainless steel, or brass can be used.
  • the catalyst similar to the granular decomposition material as described above can be used, for example.
  • FIG. 5 shows an example of a decomposed material layer 32 configured by filling a mesh-shaped decomposed material.
  • a decomposition material layer is configured by laminating a plurality of planar mesh members 7 on which a catalyst is supported in advance on a support member 33.
  • the strainer 33b may be omitted.
  • the net-like member 7 has a hole 71 through which the degassing rectifying rod is passed in the plane, and the outer periphery is formed in a circular shape.
  • the horizontal cross-sectional shape of the tower main body 31 is a quadrangle, a net-like member having a square outer periphery is used.
  • the number of layers of the net-like member 7 can be set so that, for example, the decomposed material layer 32 has a thickness of 300 to 1500 mm, preferably 400 to 800 mm. Even when such a net-like decomposition material 7 is used, the same operation and effect as the embodiment using the granular decomposition material can be obtained.
  • Example 1 Next, examples performed for confirming the effects of the present invention will be described.
  • a cracking column made of a transparent resin material is filled with a decomposition material, and hydrogen peroxide is decomposed by the circulation system of the first embodiment.
  • the hydrogen peroxide concentration of the water to be treated was 18900 mg / l (Experiment 1), 21500 mg / l (Experiment 2), 17800 mg / l (Experiment 3), and 19600 mg / l (Experiment 4).
  • Other detailed test conditions are shown below, and the test results are shown in Table 2.
  • FIG. 6A is a photograph of the filtration column of Experiment 1.
  • the retention of gas is prevented by providing a degassing flow straightening rod.
  • gas stagnation was prevented.
  • the degassing flow straightening rod is not provided, bubbles are filled in the decomposition material layer as shown in FIG.
  • Example 2 a decomposition column is filled in a filtration column made of a transparent resin material, and hydrogen peroxide is decomposed by the one-pass method of the second embodiment.
  • the hydrogen peroxide concentration of the water to be treated was 100 mg / l (Experiment 5), 200 mg / l (Experiment 6), 500 mg / l (Experiment 7), and 1000 mg / l (Experiment 8).
  • SV 10, 20, 30, 40, 50 in each experiment, respectively. Other conditions are the same as in the first embodiment.
  • the test results of this example are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Removal Of Specific Substances (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

【課題】粒状の分解材を充填した分解材層に被処理水を通水して過酸化水素を分解するにおいて、過酸化水素分解時に発生するガスが分解材層から排出するのを促進し、分解材層内にガスの気泡が滞留することによる分解効率の低下を抑制する 【解決手段】過酸化水素を含んだ被処理水が通水される分解塔と、前記分解塔内に配置された複数の通水孔を有する支持部材上に過酸化水素を水と酸素に分解する粒状の分解材が充填されて成る分解材層と、前記支持部材の通水孔を通じて被処理水が前記分解材層を上向き流れで通過するように、前記分解塔の底部側から被処理水を供給する供給装置と、前記分解塔内に配置された支持部材に支持され、前記分解材層の下面から上面を突出するまで延びると共に、前記分解層中に間隔をあけて配置された複数のガス抜き整流棒と、を備えた構成とする。

Description

過酸化水素分解装置及び過酸化水素の分解方法
 本発明は、被処理水に含まれる過酸化水素を分解する装置及び方法に関し、特に、粒状又は網状の分解材が充填された分解材層に被処理水を通水して過酸化水素を分解する装置及び方法に関する。
 過酸化水素を含む水溶液(以下、単に「過酸化水素水」と称する)は、酸化剤,殺菌剤,漂白剤として広く利用されている。過酸化水素は、最終的には無害な水と酸素に分解するため、環境にやさしい工業薬品として用途が拡大している。主な用途としては、船舶から排出されるバラスト水の処理装置の装置内洗浄、飲料水や化粧品の製造過程における消毒処理、半導体の製造過程における洗浄処理、製紙の際のパルプ漂白、一般廃水及び工業廃水処理などが一例として挙げられる。
 各用途にて発生する過酸化水素を含んだ廃水は、過酸化水素を分解させるための装置で処理され、排出基準を満たすものは最終的に放流される。従来においては、アルカリ性の薬品を添加して廃水のpHを上げることによって過酸化水素を分解したり、活性炭塔に通水して過酸化水素を分解したりすることが行われている。しかしながら、前者の薬品を添加する方法は、廃水のpHを上げるための薬品と、アルカリ性となった廃水をさらに中和するための薬品が必要となってしまう。
 一方、後者の活性炭を使用する方法の場合、高濃度の過酸化水素処理は高流速でも低流速でも困難であり、低濃度の過酸化水素処理でも高流速の処理は困難である。加えて、粒状の活性炭を充填した活性炭塔の場合、過酸化水素の分解時に発生する酸素ガスの気泡が充填層内に滞留し、過酸化水素と活性炭の接触を阻害する問題がある。過酸化水素と活性炭の接触が阻害されると、結果として装置の分解効率が低下する。
 また、充填層内に気泡が滞留すると充填層内において局所的に流速が増加し、活性炭層を局所的に押し上げたり、活性炭の粒が塔外に流出したりする原因となる。そのため装置に供給する流量が制限されてしまう。流量が制限されることは、結果として装置の小型化を図ることを難しくする。
特開平10-211487号公報
 本発明は、上述した問題点を解決するためになされたものであり、その目的は、粒状又は網状の分解材を充填した分解材層に被処理水を通水して過酸化水素を分解するにおいて、過酸化水素分解時に発生するガスが分解材層から排出するのを促進し、分解材層内にガスの気泡が滞留することによる分解効率の低下を抑制できる過酸化水素分解装置及び分解方法を提供することにある。
 本発明の他の目的は、高濃度の過酸化水素を含む被処理水にも適用することができ、しかも短時間で過酸化水素を分解できる過酸化水素分解装置及び分解方法を提供することにある。
 本発明のさらに他の目的は、分解材層に供給する被処理水の流量を多くしても、分解ガスに同伴して分解材が装置外に流出するのを抑制でき、結果として装置の小型化を図ることのできる過酸化水素分解装置を提供することにある。
 本発明の過酸化水素分解装置は、被処理水に含まれる過酸化水素を分解処理する装置であって、過酸化水素を含んだ被処理水が通水される分解塔と、前記分解塔内に配置された複数の通水孔を有する支持部材上に過酸化水素を水と酸素に分解する粒状の分解材が充填されて成る分解材層と、前記支持部材の通水孔を通じて被処理水が前記分解材層を上向き流れで通過するように、前記分解塔の底部側から被処理水を供給する供給装置と、前記分解塔内に配置された支持部材に支持され、前記分解材層の下面から上面を突出するまで延びると共に、前記分解層中に間隔をあけて配置された複数のガス抜き整流棒と、を備えたことを特徴とする。
 前記複数のガス抜き整流棒は、前記複数のガス抜き整流棒の水平断面積の合計をS1(m)とし、分解材が充填される空塔の水平断面積をS2(m)としたときに、S2/S1=10~2000の範囲内となるように本数が決められていることが好ましい。複数のガス抜き整流棒は、分解材層内に均等に配列することができる。なお、分解材を支持する支持部材とガス抜き整流棒を支持する支持部材は、共通の部材であってもよく、別々の部材であってもよい。
 上記構成の過酸化水素分解装置は、分解材層の空塔容積をQ1(m)、被処理水の流量をQ2(m/hr)としたとき、分解材層の空塔速度(SV)が10~500hr-1までの高速処理を行うことができる。このとき、高い流速の被処理水によって分解材層が局所的に押し上げられたり、分解材の粒が装置外に流出したりするのを防止するために、真比重が2.5(g/cm)以上の分解材を用いることができる。分解材としては、二酸化マンガン(MnO)の粉末を粒状の担体の表面に担持させたものを用いることができる。
 特に、高濃度且つ高速処理の条件下においては、過酸化水素の分解時に分解材が破損したり、触媒が担体から剥がれたりする場合がある。このように分解材から脱離した微粉を放流しないように、上記の過酸化水素分解装置は、分解材層を通過して前記分解塔から排出された被処理水が供給され、過酸化水素分解時に脱離した分解材の微粉を回収する固液分離装置をさらに備えた構成とすることができる。
 本発明の過酸化水素の分解方法は、被処理水に含まれる過酸化水素を分解する方法であって、粒状の分解材が充填された分解材層に、前記分解材層を上向き流れで通過するように被処理水を供給して、過酸化水素を水と酸素に分解すると共に、前記分解材層の下面から上面を突出するまで延びると共に、前記分解材層中に間隔をあけて配置された複数のガス抜き整流棒によって被処理水の流れを整流し、過酸化水素分解時に発生したガスの排出を促進させたことを特徴とする。
 本発明によれば、粒状又は網状の分解材を充填した分解材層に被処理水を通水して過酸化水素を分解するにおいて、分解材層を上向き流れで通過するように被処理水を供給すると共に、分解材層の下面から上面を突出するまで延びるガス抜き整流棒を分解材層に配置したことにより、過酸化水素の分解時に発生したガスを速やかに分解材層から排出することができる。その結果、発生したガスの気泡によって分解材と過酸化水素の接触効率が低下するのを抑制でき、安定した分解効率を維持することが可能となる。
 さらに本発明によれば、過酸化水素分解時に発生するガスの量が多くなっても、ガス抜き整流棒によって分解材層から速やかに排出できるので、高濃度の過酸化水素を含む水を被処理水とすることができる。
 さらに本発明によれば、過酸化水素分解時に発生するガスをガス抜き整流棒によって速やかに排出できるので、分解材層内に気泡が滞留することに因る流量制限を緩和することができる。そのため空塔速度(SV)を高く設定することができ、結果として装置の小型化を実現することができる。空塔速度を高くすると分解材層の持ち上がりや分解材の流出が懸念される。その対策として、真比重が大きい分解材を用いることが好ましい。
本発明の第1実施形態に従う過酸化水素分解装置の全体構成を示す。 上記過酸化水素分解装置の分解塔の内部構造を示す斜視図である。 過酸化水素分解処理時における分解塔内の様子を模式的に示す図である。 本発明の第2実施形態に従う過酸化水素分解装置の全体構成を示す。 分解塔内に充填する分解材を網状にした変形例である。 本発明の効果を確認するために行った試験結果を示す。
 以下、本発明の好ましい実施形態に従う過酸化水素分解装置及び分解方法について、添付図面を参照しながら詳しく説明する。但し、以下に説明する実施形態によって本発明の技術的範囲は何ら限定解釈されることはない。
(第1実施形態)
 第1実施形態に従う過酸化水素分解装置について、図1を参照しながら説明する。本実施形態に従う過酸化水素分解装置は、高濃度の過酸化水素を含む被処理水を処理可能な装置の一例である。図1に示すように、過酸化水素分解装置1は、被処理水を貯留するタンク2と、通水される被処理水の過酸化水素を分解する分解塔3と、タンク2内の被処理水を移送及び循環して分解塔3に供給する供給装置4と、被処理水中に混入した分解材の微粉を分離回収する固液分離装置5を備えている。
 タンク2と分解塔3は供給装置4を介して例えば配管等の流路(供給ライン)41で連結されており、供給装置4を稼働させることによってタンク2内の被処理水が連続的に分解塔3に供給される構成である。さらに分解塔3とタンク2は固液分離装置5を介して例えば配管等の流路(循環ライン)42で連結されており、分解塔3から排出された被処理水が固液分離装置5を介してタンク2に戻される構成である。供給ライン41は途中で排出ライン43に分岐されており、バルブ44a,44bの開閉によってラインの切り替えが可能となっている。
 供給装置4は、例えばポンプなどを用いることができる。移送及び循環を行うために、定量ポンプやインバータ装置を備えたポンプなどを用いることができる。流量調整は、配管に設置した流量調整バルブ等(不図示)によって行うようにしてもよい。また、固液分離装置5は、例えばサイクロンなどの遠心分離器、濾過器、サンドセパレーターなどを用いることができる。その中でも、サイクロンが好ましい。
 分解塔3は、例えば密閉構造の円筒形の塔本体31を有している。塔本体31の底部及び上部には、被処理水の供給ノズル31a及び排出ノズル31bがそれぞれ配置されており、前述の供給ライン41及び循環ライン42がそれぞれ接続されている。分解塔3内には、過酸化水素を水と酸素に分解する粒状の分解材が充填されて分解材層32を形成している。分解材層32は、例えば層厚が300~1500mm、好ましくは400~800mmの範囲内となるように粒状の分解材が充填されている。
 分解材層32は、塔内に配置した支持部材(例えば目皿)33によって支持されている。支持部材33の面内には、上下に貫通する通水孔33aの複数が形成されており、被処理水は、これら通水孔33aを通じて分解材層32に分散供給される。通水孔33aから分解材が落下しないよう、通水孔33aの上面に落下防止用のストレーナー33bを設置している。ストレーナー33bは、キャップ状の部材の側面に分解材の粒径より幅の狭いスリット33cの複数を形成した構成が一例として挙げられる。但し、必ずしもストレーナー33bを設ける必要はなく、通水孔33aの径を分解材の粒径より小さく設計するようにしてもよい。通水孔33a,ストレーナー33b,スリット33cの数及び配列は、分解塔3の内径や処理流量などに応じて決めることができる。
 分解材は、過酸化水素に対する分解能を備えた触媒を、粒状の担体の表面に担持させたものを用いることができる。担持方法は特に制限されることはなく、液浸法やバインダーなどを用いた公知の担持方法を採用することができる。触媒としては、二酸化マンガン(MnO)などから選択される1種以上の金属化合物が一例として挙げられる。その中でも、二酸化マンガン(MnO)が好ましい。分解材の有効表面積を大きくするために、触媒は、例えば平均粒径が30~40μmの粉末を用いることが好ましい。このような触媒を担持させる担体は、過酸化水素に耐性を有する材料であればよく、特に材料が制限されることはない。担体の具体例としては、ガーネット、セラミックス、サクランダム、シリカなどから選択される1種以上が一例として挙げられる。また他の一例として、鉄、ステンレス、真鍮などの金属が挙げられる
 なお、分解材の流出を防止しながらの高速処理を実現するためには、分解材の真比重が2.5(g/cm)以上、好ましくは3.5~4.5(g/cm)であり、さらに、分解ガスの抜けが速やかになるように分解材の嵩比重が1.5(g/cm)以上、好ましくは1.5~2.5(g/cm)となる担体を用いるのが好ましい。そのような担体としては、ガーネットが好適である。また、分解材の粒度は、例えば0.5~3.0であることが好ましい。
 分解材は過酸化水素を水と酸素に分解するので、酸素がガス化する際の膨張によって分解材が破損等する場合がある。そのため、サイクロン等の固液分離装置5を配置して分解材の微粉を回収するようにしているが、使用する分解材自体の磨滅率(測定方法;JWWA A 103-1988)が2.0%以下であることが好ましい。また、被処理水の過酸化水素濃度が高い場合や処理速度が速い場合、分解塔3で発生する酸素が循環する被処理水と共にタンク2に入って来るため、ポンプの動作不良が起きたり、更にそのまま分解塔3に送られて分解効率が低下したりする場合がある。そのため、固液分離装置5に代えて、或いは固液分離装置5の前か後にエアーセパレータを設置することが好ましい。
 前述したように、分解材を構成する触媒と担体には、二酸化マンガン(触媒)とガーネット(担体)の組み合わせが好適である。この組み合わせにおける分解材の成分表を下記に示す。成分表中のMnOが触媒の割合であり、SiO,Al及びFeが担体の主成分である。
Figure JPOXMLDOC01-appb-T000001
 分解材層32内には、上下方向(すなわち、被処理水の流れ方向)に延びる棒状部材34が複数本配置されている。この棒状部材34を配置することによってガスの排出が促進されるので、本明細書においては「ガス抜き整流棒」と称する。ガス抜き整流棒34は、分解材層32の下面から上面を突出するまで延びる長さとなっている。詳しくは図2に示すように、ガス抜き整流棒34は、支持部材33の表面に立設することができる。このとき、支持部材33の水平面内においてガス抜き整流棒34が均等に配列されることが好ましい。
 図2には、5本のガス抜き整流棒34を配置した構成を一例として示しているが、ガス抜き整流棒34の設置本数は、分解材層32の水平断面積に占めるガス抜き整流棒34の面積の割合に基づいて決定することが好ましい。具体的には、ガス抜き整流棒34の水平断面積の合計をS1(m)、分解材が充填される空塔の水平断面積をS2(m)としたときに、S2/S1=10~2000、好ましくは50~1000、さらに好ましくは100~1000となるように設置本数を決めることが好ましい。S2/S1の値が小さ過ぎると、ガス抜きの効果が十分に得られない場合がある。反対に、S2/S1の値が大き過ぎると、水の流れが良くなるだけで分解材と過酸化水素の接触効率が低下する場合がある。なお、前述の範囲内におけるS2/S1の最適値は、被処理水中の過酸化水素濃度,流速,目標とする分解濃度などの処理条件によって変わるので、これらの設定値を考慮してS2/S1を決定するのが好ましい。なお、分解材が充填される空塔の水平断面積とは、ガス抜き整流棒34を設置していないときの分解材層32の水平断面積に相当する。図1の例では、塔本体31の内径の断面積でもある。
 ガス抜き整流棒34は、例えば外径が10~100mmの円柱形の棒状部材を用いるのが好ましい(棒状部材には、内部が空洞のものも含まれる)。外径が小さ過ぎると強度不足や設置本数が多くなり過ぎる場合がある。反対に、外径が大き過ぎると1本あたりのガス抜き作用は大きいが、S2/S1の値によっては塔径や塔重量の増加になる場合がある。但し、棒状部材の断面形状が限定されることはなく、三角形、正方形、長方形、楕円、多角形など、種々の形状とすることも可能である。また、ガス抜き整流棒34を構成する棒状部材は、過酸化水素に耐性を有していればよく、材料が特に制限されることはない。材料の一例としては、例えばSTPGなどの一般鋼材、SUSなどの特殊鋼材、塩化ビニルなどの樹脂などを挙げることができる。棒状部材としてパイプを使用する場合は、被処理水が浸入しないように端部を封止する。また、表面抵抗を減らすための棒状部材の表面にコーティングを施すようにしてもよい。
 ガス抜き整流棒34の配置本数、距離は、処理原水の過酸化水素濃度や処理速度によって設定するが、ガス抜き整流棒34の直径の5~100倍、好ましくは10~50倍の距離で、分解材が充填された塔内に均等に配置することが好ましい。
 (作用)
 続いて、図1に示す過酸化水素分解装置を用いて、被処理水に含まれる過酸化水素を分解する方法について説明する。被処理水は主として廃水であり、その中には過酸化水素以外の成分や不純物等が含まれているが、本実施形態においては過酸化水素を含んだ水であれば特に水質が制限されることはない。過酸化水素の濃度は、1000mg/lまでの低濃度~中濃度のものから、1000~100000mg/lといった従来技術では処理できない高濃度のものまで適用可能である。さらに、本実施形態の分解材は、過酢酸の分解もできるので、例えば半導体の洗浄過程において添加されることがある過酢酸が含まれていてもよい。実際に分解試験を行ったところ、SV=20hr-1において200mg/lの過酢酸が検出値以下まで分解できたことを確認している。
 廃水としては、既述したように、船舶から排出されるバラスト水の処理装置の装置内洗浄廃水、飲料水や化粧品の製造過程における消毒処理を行った廃水、半導体の製造過程における洗浄処理を行った廃水、製紙の際のパルプ漂白を行った廃水、一般廃水及び工業廃水などが一例として挙げられる。
 タンク2に貯留された被処理水は、ポンプ等の供給装置4を駆動させることによって分解塔3に供給される。被処理水の供給量は、分解材層32の空塔容積をQ1(m)、被処理水の流量をQ2(m/hr)としたとき、分解材層32の空塔速度(SV=Q2/Q1)が10~500hr-1、好ましくは10~200hr-1、さらに好ましくは10~100hr-1となる範囲内に流量調整することが好ましい。但し、流量が限定されることはなく、処理する過酸化水素の濃度や目標とする分解濃度、並びに目標とする処理時間など総合的な処理条件に応じて変えることができる。
 分解塔3内に供給された被処理水は、支持部材33の通水孔33a及びストレーナー33bのスリット33cを通じて分解材層32内に分散供給され、さらに上向き流れで分解材層32を通過する。このとき、分解材層32と過酸化水素が接触し、過酸化水素が水と酸素に分解されるが、ガス化した酸素による大量の気泡が発生する。分解材層32を通過した被処理水は、排出ノズル31bを介して塔外に排出される。過酸化水素が1000mg/lを超える高濃度の場合、1パスの通水では目標値(例えば、検出値以下)にまで分解しきれない。そのため、塔外に排出された被処理水は、循環ライン42を介してタンク2に戻し、再び分解塔3に供給する。このような循環処理を繰り返して目標値にまで過酸化水素が分解されると、バルブ44a,44bによって排出ライン43に切り替えて処理後の水を装置外に排出する。ラインの切り替えは、予め決めた時間が経過したときに行ってもよく、サンプリングした被処理水の分析結果に基づいて行うようにしてもよい。
 ここで、ガス抜き整流棒34を配置することによってガスの排出が促進される理由について、図3を参照しながら説明する。まず、例えば図1に示した分解塔3において粒状の分解材を充填しないで通水した場合、塔壁面との摩擦が原因となって中央部の方が水が流れやすい。これに対して、粒状の分解材を充填すると、図3(a)に模式的に示すように、中央よりも塔の内周面側の方が水が流れやすくなる。そのため、分解材層32の中央部を流れる水の量が減り、分解材層32の中央で発生するガスの排出が停滞する。大量に発生するガスの気泡は瞬く間に分解材層32内に充満し(図のハッチングの部分である)、中央部の水の流れをさらに悪化させる。こうして分解材層32内に充満する気泡は、接触効率の低下や分解材層32の中央を持ち上げる原因となる。
 一方、本実施形態のようにガス抜き整流棒34を設置すると、図3(b)に模式的に示すように、ガス抜き整流棒34の外周で水の流れがよくなるので、図3(a)の中央部のような水の流れが減る領域を少なくすることができる。これにより、分解材層32内の水の流れが均一化され、ガスの排出が促進されることとなる。
 以上のように、本実施形態によれば、粒状の分解材を充填した分解材層32を上向き流れで通過するように被処理水を供給すると共に、分解材層32の下面から上面を突出するまで延びるガス抜き整流棒34の複数を分解材層32に配置したことにより、過酸化水素の分解時に発生したガスを速やかに分解材層32から排出することができる。その結果、発生したガスの気泡によって分解材と過酸化水素の接触効率が低下するのを抑制でき、安定した分解効率を維持することが可能となる。
 さらに本実施形態によれば、過酸化水素分解時に発生するガスをガス抜き整流棒34によって速やかに排出できるので、分解材層32内に気泡が滞留することに因る流量制限を緩和することができる。そのため空塔速度(SV)を高く設定することができ、結果として装置の小型化を実現することができる。空塔速度を高くすると分解材層の持ち上がりや分解材の流出が懸念される。しかし、真比重が好ましくは2.5~4.5(g/cm)の分解材を用いることによって、例えばSV=100以上に設定しても分解材層32の持ち上がりや流出を防止することが可能である。
 以上のように、過酸化水素分解装置1は、高濃度且つ高速の処理を実現できる特長がある。勿論、低濃度-低速,高濃度-低速,又は低濃度-高速の処理にも適用可能である。さらに、過酸化水素分解装置1は、ガス抜きによる分解効率の維持および装置の小型化に加えて、過酸化水素を分解するための薬品を使用しないという特長がある。その結果、本実施形態による過酸化水素分解装置1は、コンパクトな装置で環境にやさしい過酸化水素の分解処理を実現している。例えば、バラスト水処理装置に適用する場合、装置を船舶内に設置することもある。しかし、本実施形態による過酸化水素分解装置1にあっては、装置の小型化が可能であるため、船舶内に設置しても船舶の動力モーターにかかる負荷を著しく増加させることが抑えられる。
(第2実施形態)
 本実施形態の過酸化水素分解装置は、例えば過酸化水素が1000mg/l以下の低濃度から中濃度の被処理水に適用される装置の一例である。すなわち、1パスの通水で目標値(例えば、検出値以下)にまで分解できる場合、図1のような循環ライン42を省略することもできる。図4は、循環ライン42を省略した本実施形態に従う過酸化水素分解装置6の構成を示している。なお、第1実施形態と同じ構成については同じ符号を付すことによって詳しい説明を省略する。
 本実施形態の過酸化水素分解装置6によっても、過酸化水素の分解時に発生したガスを速やかに分解材層32から排出することができる。その結果、発生したガスの気泡によって分解材と過酸化水素の接触効率が低下するのを抑制でき、安定した分解効率を維持することが可能となる。なお、過酸化水素が低濃度から中濃度の被処理水の場合、例えばSV=10~50hr-1の範囲内となるように被処理水の供給量を設定してもよい。
 サイクロン等の固液分離装置5は、図4のように排出ライン43の途中に設けている。しかし、過酸化水素が低濃度である場合、酸素ガスの発生量も減少するので分解材の破損等も軽減される。加えて、空塔速度(SV)を低く設定した場合には分解材の流出も起こり難い。従って、サイクロン等の固液分離装置5を省略することも可能である。
 ここまでは粒状の分解材を用いた実施形態を説明した。しかし、分解材は粒状に限らず、網状であってもよい。網状の分解材としては、網状部材の表面に触媒の粉末を担持させた分解材を用いることができる。網状部材は、例えば鉄、ステンレス、真鍮などの金属で形成された金網を用いることができる。また、触媒は、例えば既述の粒状の分解材と同様の触媒を用いることができる。
 図5は、網状の分解材を充填して構成した分解材層32の一例を示す。図5の例は、予め触媒が担持されている平面状の網状部材7の複数を、支持部材33上に積層することによって分解材層を構成している。この場合、ストレーナー33bを省略してもよい。網状部材7は、面内にガス抜き整流棒を通す穴71が形成され、外周が円形に形成されている。塔本体31の水平断面形状が四角形の場合には、外周が四角形の網状部材を用いる。網状部材7の積層数は、粒状の分解材と同様に、例えば分解材層32の層厚が300~1500mm、好ましくは400~800mmの範囲内となるように設定することができる。このような網状の分解材7を用いても、粒状の分解材を用いた実施形態と同様の作用・効果を得ることができる。
(実施例1)
 続いて、本発明の効果を確認するために行った実施例について説明する。本例は、透明の樹脂材料で製作したろ過カラムに分解材を充填し、第1実施形態の循環方式で過酸化水素を分解処理した実施例である。処理する被処理水の過酸化水素濃度は、18900mg/l(実験1),21500mg/l(実験2),17800mg/l(実験3)、19600mg/l(実験4)であった。その他の詳しい試験条件を以下に示し、試験の結果を表2に示す。
  ・ろ過カラム:内径75mm、高さ1000mm
  ・分解材:ガーネットの表面にMnOを担持させた分解材
  ・分解材層:層厚500mm
  ・SV=100hr-1
  ・ガス抜き整流棒:直径1mm、5本
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、17800mg/l以上の高濃度の被処理水であっても、150minの短い処理時間で目標値(検出値以下)まで分解できている。図6(a)の写真は、実験1のろ過カラムを撮影したものである。図6(a)から分かるように、ガス抜き整流棒を設けることによってガスの滞留が防止されている。実験2-4も同様にガスの滞留が防止されていた。これに対し、ガス抜き整流棒を設けなかった場合には、図6(b)のように分解材層内に気泡が充満してしまう。
(実施例2)
 続いて、実施例2について説明する。本例は、透明の樹脂材料で製作したろ過カラムに分解材を充填し、第2実施形態の1パス方式で過酸化水素を分解処理した実施例である。処理する被処理水の過酸化水素濃度は、100mg/l(実験5),200mg/l(実験6),500mg/l(実験7)、1000mg/l(実験8)であった。さらに、実施例2では各実験においてSV=10,20,30,40,50のそれぞれに設定した。その他の条件についは実施例1と同様である。本例の試験結果は表3に示す。
Figure JPOXMLDOC01-appb-T000003
 以上、本発明を具体的な実施形態に則して詳細に説明したが、形式や細部についての種々の置換、変形、変更等が、特許請求の範囲の記載により規定されるような本発明の精神及び範囲から逸脱することなく行われることが可能であることは、当該技術分野における通常の知識を有する者には明らかである。従って、本発明の範囲は、前述の実施形態及び添付図面に限定されるものではなく、特許請求の範囲の記載及びこれと均等なものに基づいて定められるべきである。
 1  過酸化水素分解装置
 2  タンク
 3  分解塔
 34 ガス抜き整流棒
 4  供給装置
 5  固液分離装置

Claims (6)

  1.  被処理水に含まれる過酸化水素を分解処理する装置であって、
     過酸化水素を含んだ被処理水が通水される分解塔と、
     前記分解塔内に配置された複数の通水孔を有する支持部材上に過酸化水素を水と酸素に分解する粒状の分解材が充填されて成る分解材層と、
     前記支持部材の通水孔を通じて被処理水が前記分解材層を上向き流れで通過するように、前記分解塔の底部側から被処理水を供給する供給装置と、
     前記分解塔内に配置された支持部材に支持され、前記分解材層の下面から上面を突出するまで延びると共に、前記分解層中に間隔をあけて配置された複数のガス抜き整流棒と、
     を備えたことを特徴とする過酸化水素分解装置。
  2.  前記複数のガス抜き整流棒は、
     前記複数のガス抜き整流棒の水平断面積の合計をS1(m)とし、分解材が充填される空塔の水平断面積をS2(m)としたときに、
     S2/S1=10~2000の範囲内となるように本数が決められていることを特徴とする請求項1に記載の過酸化水素分解装置。
  3.  分解材層の空塔容積をQ1(m)、被処理水の流量をQ2(m/hr)としたとき、
     分解材層の空塔速度(SV=Q2/Q1)が10~500hr-1であることを特徴とする請求項1又は2に記載の過酸化水素分解装置。
  4.  過酸化水素を分解する触媒を粒状の担体の表面に担持させた分解材を用い、
     前記分解材の真比重が2.5(g/cm)以上であることを特徴とする請求項1~3のいずれか1項に記載の過酸化水素分解装置。
  5.  分解材層を通過して前記分解塔から排出された被処理水が供給され、過酸化水素分解時に脱離した分解材の微粉を回収する固液分離装置をさらに備えたことを特徴とする請求項1~4のいずれか1項に記載の過酸化水素分解装置。
  6.  被処理水に含まれる過酸化水素を分解する方法であって、
     粒状の分解材が充填された分解材層に、前記分解材層を上向き流れで通過するように被処理水を供給して、過酸化水素を水と酸素に分解すると共に、
     前記分解材層の下面から上面を突出するまで延びると共に、前記分解材層中に間隔をあけて配置された複数のガス抜き整流棒によって被処理水の流れを整流し、過酸化水素分解時に発生したガスの排出を促進させたことを特徴とする過酸化水素の分解方法。
PCT/JP2012/003604 2011-06-02 2012-05-31 過酸化水素分解装置及び過酸化水素の分解方法 WO2012164948A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020127032981A KR101445837B1 (ko) 2011-06-02 2012-05-31 과산화수소 분해장치 및 과산화수소의 분해방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011124373A JP4860008B1 (ja) 2011-06-02 2011-06-02 過酸化水素分解装置及び過酸化水素の分解方法
JP2011-124373 2011-06-02

Publications (1)

Publication Number Publication Date
WO2012164948A1 true WO2012164948A1 (ja) 2012-12-06

Family

ID=45604552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003604 WO2012164948A1 (ja) 2011-06-02 2012-05-31 過酸化水素分解装置及び過酸化水素の分解方法

Country Status (3)

Country Link
JP (1) JP4860008B1 (ja)
KR (1) KR101445837B1 (ja)
WO (1) WO2012164948A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278589B2 (ja) * 2012-09-25 2018-02-14 オルガノ株式会社 過酢酸含有排水の処理装置および過酢酸含有排水の処理方法
KR102025311B1 (ko) * 2018-05-16 2019-09-25 한국화학연구원 과산화수소 분해용 촉매 및 이의 제조방법
KR102196709B1 (ko) 2018-11-02 2020-12-30 한국화학연구원 과산화수소 분해용 활성탄소 촉매, 이의 제조방법 및 이를 사용한 과산화수소 분해방법
KR102406565B1 (ko) * 2021-07-08 2022-06-08 소광민 폐수의 과산화수소 분해 장치

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215537U (ja) * 1975-07-22 1977-02-03
JPS6071085A (ja) * 1983-09-28 1985-04-22 Kurita Water Ind Ltd 過酸化水素の除去方法
JPS6227090A (ja) * 1985-07-26 1987-02-05 Japan Organo Co Ltd 過酸化水素の除去方法および装置
JPH05228356A (ja) * 1992-02-17 1993-09-07 Sofutaade Kogyo Kk 反応塔および反応塔の触媒充填方法
JPH1034172A (ja) * 1996-07-30 1998-02-10 Nippon Shokubai Co Ltd 廃水の処理方法
JPH10211487A (ja) * 1997-01-29 1998-08-11 Japan Organo Co Ltd 活性炭処理装置
JPH10314760A (ja) * 1997-05-16 1998-12-02 Japan Organo Co Ltd 過酸化水素除去装置及び過酸化水素含有排水の処理方法
JPH11197674A (ja) * 1997-11-11 1999-07-27 Aquas Corp 過酸化物含有排水の処理方法
JP2003053177A (ja) * 2001-08-20 2003-02-25 Mitsubishi Heavy Ind Ltd 有害物質処理設備の運転制御システム
JP2003190972A (ja) * 2001-12-21 2003-07-08 Japan Organo Co Ltd 過酸化水素含有排水処理装置
JP2003266081A (ja) * 2002-03-14 2003-09-24 Unitika Ltd 過酸化水素分解用活性炭及び過酸化水素含有排水の処理方法
JP2003340442A (ja) * 2002-05-24 2003-12-02 Satou Sogyo:Kk 溶存無機物吸着装置、溶存無機物吸着方法および溶存無機物吸着剤
JP2004202366A (ja) * 2002-12-25 2004-07-22 Ngk Insulators Ltd 上向流流動層式処理槽
JP2005296921A (ja) * 2004-09-27 2005-10-27 Sumitomo Chemical Co Ltd 接触気相反応用多管式反応装置
JP2006000827A (ja) * 2004-06-21 2006-01-05 Japan Organo Co Ltd 排水処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524731A (en) * 1968-09-30 1970-08-18 Exxon Research Engineering Co Mixed-phase flow distributor for packed beds
GB1553229A (en) * 1975-07-26 1979-09-26 Tba Industrial Products Ltd Synthetic thermoplastic moulding materials
JPS5478393A (en) * 1977-12-06 1979-06-22 Ebara Corp Method and apparatus for regenerating catalyst
GB8519059D0 (en) * 1985-07-29 1985-09-04 Ici Plc Hypochlorite decomposition
JPH08299974A (ja) * 1995-03-08 1996-11-19 Nkk Corp 二重管型オゾン接触反応槽
JP3233558B2 (ja) * 1995-08-01 2001-11-26 シャープ株式会社 過酸化水素除去装置
JP2960057B1 (ja) * 1998-07-27 1999-10-06 ミズ株式会社 過酸化水素の除去方法とその装置
KR100343972B1 (ko) * 1999-11-25 2002-07-24 주식회사 유니테크 과산화수소 함유 폐수의 처리 방법 및 그 장치
CN1369443A (zh) * 2001-02-02 2002-09-18 株式会社日本触媒 废水处理方法及处理装置
TWI238811B (en) * 2002-07-03 2005-09-01 Nippon Catalytic Chem Ind Method and apparatus for treating waste water
JP4699774B2 (ja) * 2005-02-18 2011-06-15 株式会社片山化学工業研究所 船舶バラスト水の処理方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215537U (ja) * 1975-07-22 1977-02-03
JPS6071085A (ja) * 1983-09-28 1985-04-22 Kurita Water Ind Ltd 過酸化水素の除去方法
JPS6227090A (ja) * 1985-07-26 1987-02-05 Japan Organo Co Ltd 過酸化水素の除去方法および装置
JPH05228356A (ja) * 1992-02-17 1993-09-07 Sofutaade Kogyo Kk 反応塔および反応塔の触媒充填方法
JPH1034172A (ja) * 1996-07-30 1998-02-10 Nippon Shokubai Co Ltd 廃水の処理方法
JPH10211487A (ja) * 1997-01-29 1998-08-11 Japan Organo Co Ltd 活性炭処理装置
JPH10314760A (ja) * 1997-05-16 1998-12-02 Japan Organo Co Ltd 過酸化水素除去装置及び過酸化水素含有排水の処理方法
JPH11197674A (ja) * 1997-11-11 1999-07-27 Aquas Corp 過酸化物含有排水の処理方法
JP2003053177A (ja) * 2001-08-20 2003-02-25 Mitsubishi Heavy Ind Ltd 有害物質処理設備の運転制御システム
JP2003190972A (ja) * 2001-12-21 2003-07-08 Japan Organo Co Ltd 過酸化水素含有排水処理装置
JP2003266081A (ja) * 2002-03-14 2003-09-24 Unitika Ltd 過酸化水素分解用活性炭及び過酸化水素含有排水の処理方法
JP2003340442A (ja) * 2002-05-24 2003-12-02 Satou Sogyo:Kk 溶存無機物吸着装置、溶存無機物吸着方法および溶存無機物吸着剤
JP2004202366A (ja) * 2002-12-25 2004-07-22 Ngk Insulators Ltd 上向流流動層式処理槽
JP2006000827A (ja) * 2004-06-21 2006-01-05 Japan Organo Co Ltd 排水処理方法
JP2005296921A (ja) * 2004-09-27 2005-10-27 Sumitomo Chemical Co Ltd 接触気相反応用多管式反応装置

Also Published As

Publication number Publication date
JP2012250172A (ja) 2012-12-20
JP4860008B1 (ja) 2012-01-25
KR20130030314A (ko) 2013-03-26
KR101445837B1 (ko) 2014-09-29

Similar Documents

Publication Publication Date Title
US9017559B2 (en) Water treatment apparatus and a method for cleaning a filter layer of a water treatment apparatus
EP2135657A1 (en) Water treatment apparatus and a method for cleaning a filter layer of a water treatment apparatus
WO2012164948A1 (ja) 過酸化水素分解装置及び過酸化水素の分解方法
JP2016034632A (ja) 水処理システム、水処理方法およびこれに使用する反応型浮上物分離装置、反応装置およびラジカル除去装置
JP2015182035A (ja) 水処理装置
JP5049929B2 (ja) 水処理装置及び水処理方法
JP5001923B2 (ja) 水処理装置及び水処理方法
US20090130742A1 (en) Vessel and system for biological regeneration of ion exchange and absorptive media
JP2007245034A (ja) 膜モジュールを用いた膜処理方法及び膜処理装置
JP4806821B2 (ja) 超音波殺菌装置
CN104355392A (zh) 一种废水臭氧催化氧化池装置
CN107915311A (zh) 一种高效传质臭氧催化氧化‑流化床污水处理系统
JP2007144307A (ja) 水処理方法及びその処理装置
JP5910635B2 (ja) 過酸化水素含有水の処理方法
CN208022768U (zh) 一种高效传质臭氧催化氧化-流化床污水处理系统
TWI226311B (en) Hydrogen peroxide containing water discharge treatment device
JP2544712B2 (ja) 廃水処理設備
JP6371970B2 (ja) 水処理装置
JP2009125702A (ja) 排水処理装置
JP4106128B2 (ja) 上向流嫌気性処理装置及び処理方法
JP2010264449A (ja) 浮上分離装置
KR100970426B1 (ko) 부상고도산화장치
CN204173973U (zh) 废水臭氧催化氧化池装置
JP2005152815A (ja) 汚水処理装置
JP2005007378A (ja) 木炭式水質浄化装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127032981

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793752

Country of ref document: EP

Kind code of ref document: A1