WO2012164781A1 - 回折光学素子およびその製造方法 - Google Patents

回折光学素子およびその製造方法 Download PDF

Info

Publication number
WO2012164781A1
WO2012164781A1 PCT/JP2012/000985 JP2012000985W WO2012164781A1 WO 2012164781 A1 WO2012164781 A1 WO 2012164781A1 JP 2012000985 W JP2012000985 W JP 2012000985W WO 2012164781 A1 WO2012164781 A1 WO 2012164781A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
adjustment layer
optical element
optical
anchor
Prior art date
Application number
PCT/JP2012/000985
Other languages
English (en)
French (fr)
Inventor
辰敏 末永
岡田 夕佳
村田 晶子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2012800014624A priority Critical patent/CN102918432A/zh
Priority to US13/805,482 priority patent/US9291753B2/en
Priority to JP2012538102A priority patent/JP5180411B2/ja
Publication of WO2012164781A1 publication Critical patent/WO2012164781A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00269Fresnel lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00769Producing diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Definitions

  • the present invention relates to a diffractive optical element and a manufacturing method thereof.
  • the present invention relates to a diffractive optical element having an optical adjustment layer on the surface of a lens substrate and having reduced wavelength dependency of diffraction efficiency, and a method for manufacturing the same.
  • a diffractive optical element is an optical element having a large number of grating structures on the surface of a substrate made of an optical material such as glass or resin.
  • Diffractive optical elements are used in various optical systems. For example, lenses designed to collect diffracted light of a specific order at one point, spatial low-pass filters, polarizing holograms, etc. are known. Yes.
  • a diffractive optical element has a feature that an optical system can be made compact.
  • the longer the wavelength of light the greater the diffraction, so it is also possible to improve the chromatic aberration and field curvature of the optical system by combining a diffractive optical element with a refractive optical element. .
  • the diffractive optical element described above since the diffraction efficiency ideally depends on the wavelength of light, if the diffractive optical element is designed to optimize the diffraction efficiency with light of a specific wavelength, the other wavelengths Then, it has the subject that diffraction efficiency falls.
  • a diffractive optical element is applied to an optical system that uses white light, such as a camera lens, there is a problem that there is a limit to the application of the diffractive optical element alone.
  • Patent Document 1 includes a base made of an optical material and provided with a diffraction grating on the surface, and an optical adjustment layer made of an optical material different from the base and covering the diffraction grating.
  • a phase difference type diffractive optical element is disclosed.
  • phase difference type diffractive optical element when the wavelength of light transmitted through the diffractive optical element is ⁇ and the depth of the diffraction grating is d, the following equation (1) is satisfied, and the m-th order diffraction with respect to the light of wavelength ⁇ Efficiency is 100%.
  • m is an integer and represents the diffraction order.
  • Patent Document 1 discloses that a resin is used as the optical material constituting the base and an ultraviolet curable resin is used as the optical material constituting the optical adjustment layer.
  • phase difference type diffractive optical element optimization of optical characteristics is required, but a structure in which a substrate having a different property and an optical adjustment layer are joined to each other is optimal. It is also required to make it.
  • Patent Document 1 as a means for improving the adhesion strength, a concentric projection having a diffraction ring zone and an axial center matched is provided in a planar second region surrounding the first region where the diffraction grating is formed, A method is disclosed in which the contact area between the substrate and the optical adjustment layer is increased and the adhesion strength is improved by forming the optical adjustment layer so as to cover the protrusions.
  • the present invention provides a diffractive optical element capable of improving the adhesion strength between a substrate and an optical adjustment layer and suppressing cracks caused by separation of the optical adjustment layer from the substrate and separation of the optical adjustment layer, and a method for manufacturing the same. .
  • the diffractive optical element of the present invention is made of a first optical material containing a first resin, and is made of a base having a diffraction grating shape on the surface and a second optical material containing a second resin.
  • An optical adjustment layer formed on a diffraction grating shape, wherein the base has a first region having the diffraction grating shape on a surface thereof, and a first region located outside the first region.
  • the optical adjustment layer is formed so as to cover at least a part of the first region and the second region, and a plurality of anchor grooves are formed in the second region.
  • the depth of the outermost anchor groove among the plurality of anchor grooves is shallower than the depth of the innermost anchor groove.
  • the anchor groove located on the innermost side is deepest, and the groove located on the outer side is shallower.
  • the deepest anchor groove of the plurality of anchor grooves is 0.05 mm or less.
  • the plurality of anchor grooves have a concentric shape in which the diffraction grating shape and the axial center are substantially matched.
  • a part of the surface of the second region has a planar shape
  • the cross-sectional shape of the surface of the optical adjustment layer connects the tip of the diffraction step of the diffraction grating shape in the first region.
  • the shape is substantially the same as the envelope, and the second region has a substantially planar shape along the base shape.
  • the thickness of the optical adjustment layer is 0.05 mm from the envelope connecting the tips of the diffraction grating-shaped diffraction steps to the surface of the optical adjustment layer along the normal direction.
  • the thickness is as follows.
  • the first optical material is a low-refractive index high-dispersion material than the second optical material.
  • the second optical material is a composite material including a resin and inorganic particles.
  • the inorganic particles are mainly composed of at least one oxide of zirconium oxide, yttrium oxide, lanthanum oxide, alumina, and silica.
  • the method for producing a diffractive optical element of the present invention comprises a first optical material containing a first resin, a base having a diffraction grating shape on the surface, and a second optical material containing a second resin,
  • a diffractive optical element manufacturing method comprising: an optical adjustment layer formed on the diffraction grating shape of a substrate; and a first region having the diffraction grating shape on a surface thereof and positioned outside the first region.
  • a plurality of anchor grooves formed in the second area, and the depth of the anchor groove located on the outermost side among the plurality of anchor grooves is the anchor groove located on the innermost side.
  • the raw material of the second optical material has photocurability, and is irradiated with light to cure the raw material of the second optical material.
  • the raw material of the second optical material has ultraviolet curable properties, and the raw material of the second optical material is cured by irradiating ultraviolet rays.
  • the depth of the outermost anchor groove among the plurality of anchor grooves formed in the second region of the base is shallower than the depth of the innermost anchor groove.
  • (A) And (b) is a figure which shows the base
  • (A)-(c) is a figure which shows another example of the anchor groove
  • (A) to (d) is a diagram showing a method for manufacturing a diffractive optical element according to an embodiment of the present invention.
  • (A) And (b) is a figure which shows the state of the base
  • (A) And (b) is a figure which shows the state of the base
  • the inventor of the present application examines in detail the cracks generated in the optical adjustment layer in the diffractive optical element in which the optical adjustment layer made of a composite material is formed on the surface of the base having a diffraction grating shape.
  • the film peeling was examined in detail.
  • the optical adjustment layer is formed so as to cover the first region having the diffraction grating shape formed on the surface of the substrate and a part of the second region surrounding the first region, the planar portion of the second region It was found that the cracks of the optical adjustment layer starting from the above and the interface peeling between the substrate and the optical adjustment layer occurring at the end of the first region occur with high probability.
  • the present inventor has conceived the diffractive optical element described below.
  • a plurality of anchor grooves were formed in the flat portion of the second region, and the optical adjustment layer was deposited so as to cover the anchor grooves in the first region and the second region.
  • the adhesion strength between the substrate and the optical adjustment layer is improved by the effect of the anchor groove, and peeling of the optical adjustment layer in the second region can be prevented.
  • the improvement in adhesion strength can be effective as a countermeasure against cracks because it can suppress the fine movement of the interface of the optical adjustment layer in the second region.
  • (Embodiment 1) 1 and 2 are views showing a base 1 of a diffractive optical element according to the first embodiment of the present invention.
  • FIG. 1A is a top view of the base 1 on which the diffraction grating 2 and the anchor grooves 3 are formed
  • FIG. 1B is a side sectional view of the base 1.
  • the base 1 made of the first optical material containing the first resin includes a diffraction grating 2 and an anchor groove 3 on the surface thereof.
  • the diffraction grating 2 and the anchor groove 3 are formed so that the formation axis center 4 is substantially coincident.
  • the first region 5 having the diffraction grating 2 formed on the surface has a convex cross-sectional shape having a lens action.
  • a plurality of anchor grooves 3 are formed in a second region 6 that is located outside the first region 5 and has a planar shape surrounding the first region 5.
  • region 5 is made into convex shape, this invention is not limited to this, A concave shape may be sufficient.
  • the shape of the anchor groove 3 is, for example, a concentric shape in which the diffraction grating 2 formed in the first region 5 and the axial center are substantially coincident with each other, but the present invention is not limited to this.
  • the anchor groove 3 has a shape recessed with respect to the planar shape of the second region 6 of the base 1.
  • the base body 1 does not have a shape that protrudes from the planar shape in the second region 6.
  • the relationship of the formula (2) is established between the second optical material and the depth d of the diffraction grating in the entire wavelength region to be used, and is sufficient as an optical element. Any material having translucency can be used.
  • the first optical material constituting the substrate 1 in Embodiment 1 contains a resin.
  • the material containing the resin is used as the first optical material when considering mold molding that can be expected to be most productive in the production of lenses.
  • the durability of the mold is higher than that of the resin. This is because the substrate 1 having a diffraction grating shape is not easily manufactured because it is greatly deteriorated, whereas a material containing a resin can be applied to a manufacturing method with high mass productivity such as injection molding.
  • the material including the resin can be easily micro-processed by molding or other processing methods, it is easy to cope with a change in the pitch of the diffraction grating 2 or the shape of the diffraction step (not shown). There is. It is also advantageous for reducing the size and weight of the diffractive optical element.
  • FIG. 2 is an enlarged view of the portion A shown in FIG. 1 (b), and shows details of the anchor groove 3.
  • the case where the number of anchor grooves is three will be described, but the present invention is not limited to this.
  • the three anchor grooves 3 are represented as D1, D2, and D3 from the side close to the first region 5 (that is, the inner peripheral side), respectively.
  • the depth of the anchor groove D3 located on the outermost side is shallower than the depth of the anchor groove D1 located on the innermost side.
  • the anchor grooves D1, D2, and D3 are all different in depth.
  • the depth of the groove is such that the innermost anchor groove D1 is the deepest, the outermost anchor groove D3 is the shallowest, and the intermediate anchor groove D2 is an intermediate depth thereof, so that the grooves located on the outer peripheral side gradually.
  • the structure is shallower.
  • the anchor groove 3 When the anchor groove 3 is filled with the optical adjustment layer 9 (FIG. 5), the contact area between the substrate 1 and the optical adjustment layer 9 is increased, and the adhesion strength is improved. Therefore, it is preferable that the optical adjustment layer 9 is filled in the anchor groove without any gap.
  • the inventors of the present application examined in detail the relationship between the shape of the anchor groove 3 and the amount of penetration of the optical adjustment layer 9.
  • the optical adjustment layer 9 is sufficiently extended to the anchor groove 3 on the outer peripheral side by adopting a configuration in which the anchor groove 3 close to the first region 5 side is deep and gradually becomes shallow toward the outer peripheral side. It was found that can be filled.
  • the depth of the anchor groove D1 was 0.01 mm
  • the anchor groove D2 was 0.0075 mm
  • the anchor groove D3 was 0.005 mm.
  • the depth of the deepest anchor groove D1 is preferably 0.05 mm or less, and in this example, it is 0.01 mm.
  • the anchor groove D1 was formed at a position 0.01 mm away from the interface 7 with respect to the interface 7 between the first region 5 and the second region 6 as the formation pitch between the grooves.
  • the distance between the anchor grooves D1 and D2 and the distance between the anchor grooves D2 and D3 were each formed at a pitch of 0.025 mm (the dimensions are shown).
  • Each of the anchor grooves 3 formed this time has a groove shape in which only one side is inclined at 40 °.
  • the number of anchor grooves is three, and the grooves have a right-angled triangular cross section.
  • the same effect can be obtained with two to five grooves.
  • the width of the opening 8 is set to 0.05 mm or less. Is desirable.
  • the width of the opening 8 is preferably set to 0.005 mm or more.
  • 3 (a) to 3 (c) are views showing an anchor groove having a shape different from the cross-sectional shape described above as another example of the anchor groove 3 described above.
  • FIG. 3A shows an anchor groove 20 having a cross-sectional shape approximating an inverted equilateral triangle in which two sides inclined in the depth direction intersect. Even in this configuration, the same adhesion strength as described above can be obtained.
  • FIG. 3B shows an anchor groove 24 having a quadrangular cross-sectional shape having standing walls 22 and 23 of approximately 90 ° with respect to the flat surface 21. Even in this configuration, the same adhesion strength as described above can be obtained.
  • FIG. 3C shows an anchor groove 25 having a curved cross section having a predetermined curvature. Even in this configuration, the same adhesion strength as described above can be obtained.
  • FIG. 4 is a diagram showing an experimental result in which the formation depths of the plurality of anchor grooves 3 are mutually changed.
  • the optical adjustment layer 9 was formed using the base 1 having three anchor groove depths of 0.016 mm, and the optical adjustment layer 9 after film formation was peeled off from the base 1 and inverted, and the tip of the protrusion was formed from the bottom. (The amount of penetration into the anchor groove 3) was measured with a laser microscope. As a result, only the anchor groove D1 on the first region 5 side is filled to a height equivalent to the groove formation depth, and the optical adjustment layer 9 has penetrated to the bottom end of the anchor groove D1 and has been cured. I understand.
  • the intrusion amounts into the anchor grooves gradually decreased to 0.015 mm and 0.014 mm, respectively, and the anchor grooves were not completely filled.
  • the adhesion strength in the anchor grooves D2 and D3 is inferior to the anchor groove D1. Conceivable.
  • the depth of the anchor groove is made shallower toward the outer peripheral side and the insufficient amount of penetration is eliminated.
  • FIG. 5 is a side sectional view showing the diffractive optical element 100 according to the first embodiment of the present invention.
  • the optical adjustment layer 9 is film-formed on the base 1 having the diffraction grating 2 and the anchor groove 3 so as to cover at least a part of the first region 5 and the second region 6 using a mold described later. is there.
  • the optical adjustment layer 9 in the second region 6 was film-formed by weighing the raw material of the optical adjustment layer 9 so as to completely fill the anchor groove 3.
  • the surface of the optical adjustment layer 9 has an aspherical shape equivalent to the envelope connecting the tips of the diffraction steps of the diffraction grating 2, and the surface of the optical adjustment layer 9 is formed by transferring the mold shape. Is done.
  • the length from the envelope to the surface of the optical adjustment layer 9 along the normal direction (the film thickness of the optical adjustment layer 9) is 0.03 mm or less.
  • the film thickness is preferably not less than the depth of the diffraction grating step and not more than 0.1 mm, particularly not more than 0.05 mm.
  • the surface of the optical adjustment layer 9 has a substantially planar shape along the substrate shape.
  • the material constituting the optical adjustment layer 9 is a material that satisfies the relationship of the formula (2) and has sufficient translucency at a set film thickness.
  • the second optical material constituting the optical adjustment layer 9 in Embodiment 1 a composite material in which inorganic particles are dispersed in a resin is used. Thereby, the refractive index and Abbe number of the second optical material can be adjusted.
  • the second optical material having the adjusted appropriate refractive index and Abbe number for the optical adjustment layer 9 can be improved.
  • the second optical material can have a high refractive index that cannot be achieved by the resin alone.
  • the second optical material is It is preferable to adjust the refractive index and wavelength dispersibility to be higher than those of one optical material because more materials can be selected as the inorganic particles.
  • the first optical material preferably has a lower refractive index and higher wavelength dispersion than the second optical material.
  • the second optical material made of the composite material when used as the optical adjustment layer 9, the second optical material has a higher refractive index than the first optical material and has a lower wavelength than the first optical material. It is necessary to have dispersibility. For this reason, the inorganic particles dispersed in the second resin are also preferably composed mainly of a material having a low wavelength dispersibility, that is, a high Abbe number.
  • the main component is at least one oxide selected from the group consisting of a number (.76) and silica (Abbe number: .68). Moreover, you may use these complex oxides.
  • inorganic particles exhibiting a high refractive index represented by titanium oxide, zinc oxide and the like May coexist.
  • an acrylic resin such as a polycarbonate resin, polymethyl methacrylate (PMMA) or an alicyclic acrylic resin, an alicyclic olefin resin, or the like is selected. Is preferable in that it is excellent. These resins may be copolymerized with other resins for the purpose of improving moldability, mechanical properties, etc., alloyed with other resins, or blended with other resins. Two or more kinds of resins may be included as well as the resin.
  • a (meth) acrylic resin such as polymethyl methacrylate, acrylate, methacrylate, urethane acrylate, epoxy acrylate, polyester acrylate or the like can be used.
  • epoxy resin; oxetane resin; ene-thiol resin may be used, and polyester resin such as polyethylene terephthalate and polycaprolactone may be used.
  • polystyrene resins such as polystyrene; olefin resins such as polypropylene; polyamide resins such as nylon; polyimide resins such as polyimide and polyetherimide; polyvinyl alcohol; butyral resin; vinyl acetate resin; it can.
  • a mixture or copolymer of these resins may be used, or a knitted product of these resins may be used.
  • FIG. 6A to FIG. 6D are views showing a method for manufacturing a diffractive optical element according to the second embodiment of the present invention.
  • FIG. 6A is a diagram showing a state where the raw material 10 of the optical adjustment layer 9 is dropped on the mold 11.
  • a predetermined amount of the raw material 10 of the optical adjustment layer 9 is dropped onto the curved portion 12 of the mold 11 that regulates the surface shape of the optical adjustment layer 9.
  • it is desirable that the raw material 10 is dropped at the center of the curved portion 12.
  • the raw material 10 can be applied to the substrate 1.
  • the shape of the curved portion 12 is a shape corresponding to the convex lens shape of the diffractive optical element 100.
  • the mold shape is also changed to a shape in accordance with the lens shape.
  • a solvent for example, when polycarbonate is used for the substrate 1, an alcohol solvent typified by methanol, ethanol, 2-propanol, 1-propanol, 1-butanol and the like can be used.
  • glycol solvents such as ethylene glycol and methyl cellosolve, and solvents such as water can also be used.
  • FIG. 6B is a diagram showing a state in which the base 1 shown in FIG. The formation surface of the diffraction grating 2 and the anchor groove 3 of the substrate 1 is opposed to the raw material 10 side of the optical adjustment layer 9. Thereafter, the base 1 is faced down in the direction of the mold 11, and the base 1 is brought into close contact with the base contact surfaces 13 and 14 of the mold 11.
  • the base 1 is faced down in the direction of the mold 11, but the present invention is not limited to this.
  • the raw material 10 of the optical adjustment layer 9 is dropped onto the mold 11, but even if it is dropped onto the diffraction grating 2 forming surface of the substrate 1, it can be produced in the same process.
  • FIG. 6C is a diagram showing a process of curing the raw material 10 of the optical adjustment layer 9.
  • the raw material 10 is irradiated with ultraviolet rays 16 from the light source 15 through the base 1 and cured.
  • the raw material 10 has photocurability, for example, and can be hardened by irradiating light.
  • the raw material 10 has ultraviolet curability and is cured by irradiation with ultraviolet rays.
  • die 11 may be formed with the material which permeate
  • the raw material 10 is hardened by irradiating the raw material 10 through the metal mold
  • the raw material 10 is thermosetting, it heats and hardens.
  • FIG. 6D shows the completed diffractive optical element 100.
  • the mold 11 is opened and the base body 1 is taken out.
  • the optical adjustment layer whose curvature is regulated by the mold 11 9 is completed.
  • this inventor produced the diffractive optical element with the above-mentioned manufacturing method using the base
  • the completed diffractive optical element was confirmed with an optical microscope, it was confirmed that light entered the vicinity of the portion where the convex portion was formed and appeared to shine. This is because the raw material 10 is cured in a state where the raw material 10 is not sufficiently filled around the convex portion or between the convex portion and the convex portion. That is, the adhesion between the optical adjustment layer and the substrate is insufficient. Further, in the diffractive optical element manufactured using the substrate provided with the convex portions, cracks occurred in the optical adjustment layer at a high probability during manufacture. In such a diffractive optical element, it was also confirmed that the end of the optical adjustment layer was floating.
  • FIG. 15 shows a photograph taken from above of a diffractive optical element manufactured using a substrate provided with convex portions. The materials used are the same as those described later. It can be seen that large cracks 159 are generated in the optical adjustment layer.
  • FIG. 7 is a view showing a flow 10a of the raw material 10 when the base body 1 provided with the convex portions 3a instead of the concave anchor grooves 3 is brought into contact with the mold 11.
  • the raw material 10 sandwiched and pressed between the base 1 and the mold 11 flows along the mold 11 from the inside toward the outside.
  • the flow 10a is blocked at the tip of the convex portion 3a, and the raw material 10 is hardly filled between the convex portion 3a and the convex portion 3a. Therefore, the raw material 10 is not sufficiently filled between the convex portions 3 a and the convex portions 3 a, and is in a floating state with respect to the base body 1.
  • the adhesion strength between the substrate 1 and the optical adjustment layer 9 is lowered.
  • FIG. 8 is a view showing a flow 10b of the raw material 10 when the base body 1 provided with the concave anchor grooves 3 is brought into contact with the mold 11.
  • FIG. The raw material 10 sandwiched and pressed between the base 1 and the mold 11 flows along the mold 11 from the inside toward the outside.
  • the anchor groove 3 is a concave portion
  • the flow of the raw material 10 is not blocked unlike the convex portion 3a (FIG. 7).
  • the raw material 10 that flows smoothly is easily filled into the anchor groove 3. It is also considered that the raw material 10 is more reliably filled into the anchor groove 3 due to capillary action.
  • the adhesion strength between the base 1 and the optical adjustment layer 9 can be increased.
  • Polycarbonate resin (d-line refractive index 1.585, Abbe number 28) was used as the resin constituting the substrate 1.
  • a resin obtained by dispersing a zirconium oxide filler in an acrylate resin (d-line refractive index 1.600, Abbe number 33) was used.
  • FIG. 9 shows a cross-sectional shape of the diffractive optical element 30.
  • the base 31 and the optical adjustment layer 33 are in close contact with each other in the second region 32 of the base 31.
  • the base 31 and the optical adjustment layer 33 in the second region 32 are peeled off at the interface 34 due to the difference in thermal shrinkage between the materials.
  • This phenomenon affects not only the second region 32 but also the interface between the diffraction grating 36 formed on the surface of the first region 35 and the optical adjustment layer 33. The influence starts from the diffraction grating 37 adjacent to the second region 32 and proceeds toward the center of the first region 35.
  • FIG. 10 is a diagram showing an evaluation of the transition of the number of film separations that occurred when two samples having a total of 37 diffraction gratings formed on the substrate 31 were cast in a high temperature environment.
  • the horizontal axis represents the standing time
  • the vertical axis represents the number of film peeling
  • the data for 0 hours of standing is the number of film peeling before the standing test.
  • the film peeling before the standing test is stable to the extent that it does not affect the performance, although several films are peeled off in both samples.
  • it was put in a high temperature environment it was allowed to stand for 2 hours, and interface peeling was observed in 70% to 80% of the diffraction ring zones of the substrate.
  • Such peeling affects the image quality.
  • an image is taken, a low-quality image in which contrast is enhanced with white being enhanced over the entire screen is obtained.
  • FIG. 11 is a diagram in which the state of the substrate 31 and the optical adjustment layer 33 in the second region 32 is evaluated with a laser microscope.
  • FIG. 11A shows a state before the standing test
  • FIG. 11B shows a state after being left for 24 hours. Furthermore, the measurement location is obtained by evaluating the portion B in FIG. 9, reference numeral 38 indicates the surface of the substrate, and reference numeral 39 indicates the surface of the optical adjustment layer.
  • the inclined portion 40 is the surface of the optical adjustment layer in the first region 35.
  • the substrate surface 38 and the optical adjustment layer surface 39 are substantially parallel, and the substrate surface is in close contact even when the substrate surface 38 is flat. .
  • the optical adjustment layer surface 39 is warped by about 0.019 mm, and it can be recognized that it has peeled off at the interface with the substrate surface 38. Furthermore, it is considered that if the stress balance is significantly lost during this film peeling process, it will lead to cracks.
  • FIGS. 12 to 14 are diagrams showing the results of a similar test performed on the diffractive optical element 50 having the anchor groove specification described in detail in the first embodiment.
  • the configuration of the diffractive optical element 50 is the same as that of the diffractive optical element 100.
  • FIG. 12 shows a cross-sectional shape of the diffractive optical element 50.
  • the anchor groove 53 described in detail with reference to FIG. 2 is formed at the interface with the optical adjustment layer 54.
  • FIG. 13 is a graph showing an evaluation of the transition of the number of film peeling. Although an increase in the number of film peelings of about 1 to 3 was observed after standing for 24 hours, it was confirmed that the film peeling was significantly suppressed compared to the results shown in FIG. Moreover, if it is this grade, it will not affect imaging performance directly.
  • FIG. 14 is a diagram in which the state of the base 51 and the optical adjustment layer 54 in the second region 52 is evaluated with a laser microscope.
  • FIG. 14A shows the state before the standing test
  • FIG. 14B shows the state after 24 hours.
  • Reference numeral 58 indicates the surface of the substrate
  • reference numeral 55 indicates the surface of the optical adjustment layer. A remarkable difference is observed between the state after standing for 24 hours in FIG. 14B and the state in FIG.
  • FIG. 14B when the optical adjustment layer surface 55 is watched, the tip 56 of the optical adjustment layer 54 is warped up by a little less than 0.005 mm, but the anchor groove forming surface 57 is parallel to the substrate surface 58.
  • FIG. 14 (a) shows a well-adhered state that does not change compared to before the standing test. That is, it can be determined that the base and the optical adjustment layer are firmly adhered to each other in the anchor groove portion.
  • the diffractive optical element in which the anchor groove of the present invention is formed has a useful structure as a measure against film peeling and cracking.
  • Example 1 As a specific example of the present invention, a substrate 1 shown in FIGS. 1 and 2 was produced.
  • the base 1 was produced by injection-molding the first optical material using a polycarbonate resin (d-line refractive index 1.585, Abbe number 28) as the first resin of the first optical material constituting the base 1.
  • a polycarbonate resin d-line refractive index 1.585, Abbe number 28
  • the groove depth of the anchor groove D1 was 0.01 mm
  • the groove depth of the anchor groove D2 was 0.075 mm
  • the groove depth of the anchor groove D3 was 0.005 mm.
  • the anchor groove D1 was formed at a position away from the interface 7 by 0.01 mm with respect to the interface 7 between the first region 5 and the second region 6 as the formation pitch between the grooves.
  • the distance between the anchor grooves D1 and D2 and the distance between the anchor grooves D2 and D3 were each formed at a pitch of 0.025 mm (the dimensions are shown).
  • the anchor groove 3 formed this time has a groove shape in which only one side is inclined at 40 °.
  • An optical adjustment layer 9 in which a zirconium oxide filler was dispersed in an ultraviolet curable resin was formed on the substrate 1 by molding.
  • an acrylate resin d-line refractive index 1.600, Abbe number 33 was used.
  • the optical adjustment layer 9 was filled in the anchor groove 3 without any gap, and the substrate 1 and the optical adjustment layer 9 showed good adhesion strength.
  • Comparative Example 1 A diffractive optical element of Comparative Example 1 was produced in the same manner as in Example 1. The difference from Example 1 is that the depths of the three anchor grooves are aligned to 0.016 mm.
  • the optical adjustment layer was formed using a base having three anchor groove depths of 0.016 mm, and the optical adjustment layer after film formation was peeled off from the base and turned upside down, so that the height from the bottom to the tip of the protrusion The amount of penetration into the anchor groove was measured with a laser microscope.
  • the intrusion amounts into the anchor grooves gradually decreased to 0.015 mm and 0.014 mm, respectively, and the anchor grooves were not completely filled.
  • the adhesion strength in the anchor grooves D2 and D3 is inferior to the anchor groove D1. Conceivable.
  • the present invention is particularly useful in the field of diffractive optical elements and manufacturing methods thereof.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 基体と光学調整層を被着する構造の回折光学素子では、基体と光学調整層の密着強度が低下すると光学調整層にクラックや剥離といった不良が発生する。本発明の回折光学素子100では、基体1の平面状の第2領域6に複数のアンカー溝3が形成されている。さらに、複数のアンカー溝3のうち最も外側に位置するアンカー溝の深さは、最も内側に位置するアンカー溝の深さよりも浅くなる構造とする。そのような基体1の回折格子2を形成した第1領域5とアンカー溝3を形成した第2領域6を覆う形で光学調整層9が被着されている。

Description

回折光学素子およびその製造方法
 本発明は、回折光学素子およびその製造方法に関する。特に、レンズ基体の表面に光学調整層を有し、回折効率の波長依存性を低減した回折光学素子およびその製造方法に関する。
 回折光学素子は、ガラスや樹脂等の光学材料からなる基体の表面に、多数の格子構造を備えた光学素子である。
 回折光学素子は、種々の光学系に用いられており、例えば、特定次数の回折光を1点に集めるように設計したレンズや、空間ローパスフィルタ、偏光ホログラム等として使用するもの等が知られている。
 回折光学素子は、光学系をコンパクトにできるという特徴を有する。
 また、屈折とは逆に長波長の光ほど回折は大きく発現することから、回折光学素子を屈折系の光学素子と組み合わせることにより、光学系の色収差や像面湾曲を改善することも可能である。
 一方、上述した回折光学素子においては、回折効率は理想的には光の波長に依存することから、特定の波長の光で回折効率を最適となるように回折光学素子を設計すると、その他の波長では回折効率が低下するという課題を有する。例えば、カメラ用レンズ等の白色光を利用する光学系に回折光学素子を適用しようとした場合、この回折光学素子単独での適用には限界があるという問題がある。
 このような課題に対して、特許文献1は、光学材料からなり、表面に回折格子が設けられた基体と、基体と異なる光学材料からなり、回折格子を覆う光学調整層とを備えた、位相差型の回折光学素子を開示している。
 この位相差型の回折光学素子は、回折光学素子を透過する光の波長をλとし、回折格子の深さをdとした場合、下記式(1)を満たすと波長λの光に対するm次回折効率が100%となる。
Figure JPOXMLDOC01-appb-M000001
ここで、mは整数であり、回折次数を表す。
 従って、使用する光の波長帯域内において、dがほぼ一定となるような波長依存性を持つ屈折率n1(λ)の光学材料と屈折率n2(λ)の光学材料とを組み合わせる事ができれば、回折効率の波長依存性を低減することができる。一般的には、屈折率が高く波長分散の低い材料と、屈折率が低く波長分散の高い材料とが組み合わされる。特許文献1は、基体を構成する光学材料として樹脂を用い、光学調整層を構成する光学材料として紫外線硬化樹脂を用いることを開示している。
 このような位相差型の回折光学素子では、光学特性の最適化が求められる一方で、少なからず性質の異なる基体と光学調整層とを接合させる構造となるため、効率よく密着させる構造上の最適化も求められる。
 特許文献1においても、密着強度を向上させる手段として、回折格子を形成した第1領域を囲む平面状の第2領域に、回折輪帯と軸中心を合致させた同心円形状の突起部を設け、その突起を覆うように光学調整層を形成する構造とすることで、基体と光学調整層の接触面積を増大させ、密着強度を向上させる方法が開示されている。
特開2010-102000号公報
 本願発明者の検討によると、特許文献1に記載のように、平面状の第2領域に突起部(凸部)を設けても、密着強度が十分でない場合があることがわかった。
 本発明は、基体と光学調整層の密着強度を向上させ、光学調整層の基体からの剥離および光学調整層の乖離に起因するクラックを抑制することのできる回折光学素子およびその製造方法を提供する。
 本発明の回折光学素子は、第1の樹脂を含む第1の光学材料からなり、表面に回折格子形状を有する基体と、第2の樹脂を含む第2の光学材料からなり、前記基体の前記回折格子形状上に形成された光学調整層と、を有する回折光学素子であって、前記基体は、表面に前記回折格子形状を有する第1領域と、前記第1領域よりも外側に位置する第2領域とを有し、前記光学調整層は、前記第1領域と、前記第2領域の少なくとも一部とを覆うように形成されており、前記第2領域には、複数のアンカー溝が形成されており、前記複数のアンカー溝のうち最も外側に位置するアンカー溝の深さは、最も内側に位置するアンカー溝の深さよりも浅いことを特徴とする。
 ある実施形態によれば、前記複数のアンカー溝の中で、前記最も内側に位置するアンカー溝が最も深く、外側に位置する溝ほど浅くなっている。
 ある実施形態によれば、前記複数のアンカー溝のうち最も深いアンカー溝の深さは0.05mm以下である。
 ある実施形態によれば、前記複数のアンカー溝は、前記回折格子形状と軸中心を略合致させた同心円形状である。
 ある実施形態によれば、前記第2領域の表面の一部は平面形状であり、前記光学調整層の表面の断面形状は、前記第1領域においては前記回折格子形状の回折段差の先端を結ぶ包絡線と略同一形状であり、前記第2領域においては前記基体形状に沿った略平面形状である。
 ある実施形態によれば、前記光学調整層の厚さは、前記回折格子形状の回折段差の先端を結ぶ包絡線から法線方向に沿った前記光学調整層の表面までの長さが0.05mm以下となる厚さである。
 ある実施形態によれば、前記第1の光学材料は、前記第2の光学材料よりも低屈折率高分散材料である。
 ある実施形態によれば、前記第2の光学材料は、樹脂と無機粒子とを含むコンポジット材料である。
 ある実施形態によれば、前記無機粒子は、酸化ジルコニウム、酸化イットリウム、酸化ランタン、アルミナおよびシリカのうちの少なくとも1種類の酸化物を主成分とする。
 本発明の回折光学素子の製造方法は、第1の樹脂を含む第1の光学材料からなり、表面に回折格子形状を有する基体と、第2の樹脂を含む第2の光学材料からなり、前記基体の前記回折格子形状上に形成された光学調整層と、を有する回折光学素子の製造方法であって、表面に前記回折格子形状を有する第1領域と前記第1領域よりも外側に位置する第2領域とを有し、前記第2領域には複数のアンカー溝が形成されており、前記複数のアンカー溝のうち最も外側に位置するアンカー溝の深さは、最も内側に位置するアンカー溝の深さよりも浅い基体を準備する工程と、前記基体に前記第2の光学材料を被着するための金型に前記第2の光学材料の原料を滴下する工程と、前記第2の光学材料を挟み込むように前記基体と前記金型とを密着させる工程と、前記基体と前記金型とを密着させた状態で前記第2の光学材料の原料を硬化させる工程と、を包含することを特徴とする。
 ある実施形態によれば、前記第2の光学材料の原料は光硬化性を有し、光を照射して前記第2の光学材料の原料を硬化させる。
 ある実施形態によれば、前記第2の光学材料の原料は紫外線硬化性を有し、紫外線を照射して前記第2の光学材料の原料を硬化させる。
 本発明によれば、基体の第2領域に形成された複数のアンカー溝のうち最も外側に位置するアンカー溝の深さは、最も内側に位置するアンカー溝の深さよりも浅い。これにより、基体と光学調整層の密着強度を大幅に向上させることができる。このため、製造時に発生する光学調整層の乖離に起因するクラック不良を抑制でき、生産性を大幅に高めることができる。また、環境の変化や長期使用などによって、光学調整層の端部から徐々に進行する基体と光学調整層の剥離を防止することができ、信頼性の高い回折光学素子を提供することができる。
(a)および(b)は、本発明の実施形態に係る回折光学素子の基体を示す図である。 本発明の実施形態に係る回折光学素子の基体を示す図である。 (a)から(c)は、本発明の実施形態に係るアンカー溝の別の例を示す図である。 アンカー溝への光学調整層の侵入量を測定した結果を示す図である。 本発明の実施形態に係る回折光学素子を示す図である。 (a)から(d)は、本発明の実施形態に係る回折光学素子の製造方法を示す図である。 凹形状のアンカー溝の代わりに凸部を設けた基体を金型に当接したときの光学調整層の原料の流れを示す図である。 本発明の実施形態に係る凹形状のアンカー溝を設けた基体を金型に当接したときの光学調整層の原料の流れを示す図である。 アンカー溝を形成していない回折光学素子を示す図である。 アンカー溝を形成していない回折光学素子の膜剥離数の推移を示す図である。 (a)および(b)は、アンカー溝を形成していない回折光学素子の第2領域における基体と光学調整層の状態を示す図である。 本発明の実施形態に係る回折光学素子を示す図である。 本発明の実施形態に係る回折光学素子の膜剥離数の推移を評価した図である。 (a)および(b)は、本発明の実施形態に係る回折光学素子の第2領域における基体と光学調整層の状態を示す図である。 回折光学素子の光学調整層に発生したクラックを示す図である。
 本願発明者は、回折格子形状を有する基体表面に、コンポジット材料を原料とする光学調整層を形成した回折光学素子における、光学調整層に発生するクラックについて詳細に検討するとともに、光学調整層と基体との膜剥離について詳細に検討した。その結果、基体の表面に形成された回折格子形状を有する第1領域と、第1領域を囲む第2領域の一部とを覆うように光学調整層を形成した場合、第2領域の平面部を起点とする光学調整層のクラックと、第1領域の端部で発生する基体と光学調整層の界面剥離とが高い確率で発生することが分かった。
 この知見に基づき、本願発明者は以下に説明する回折光学素子に想到した。
 具体的には、アンカー溝を第2領域の平面部に複数形成し、光学調整層は第1領域と第2領域のアンカー溝を覆う形で被着させる構成にした。これにより、アンカー溝による効果で基体と光学調整層の密着強度が向上し、第2領域における光学調整層の剥離を防止できる。また、密着強度向上は、第2領域における光学調整層の界面微動を抑制できるため、クラック対策としても有効である。
 以下、図面を参照しながら本発明の実施形態を説明する。
 (実施形態1)
 図1および図2は、本発明の第1の実施形態に係る回折光学素子の基体1を示す図である。
 図1(a)は、回折格子2およびアンカー溝3が表面に形成された基体1の上面図であり、図1(b)は、基体1の側断面図である。
 第1の樹脂を含む第1の光学材料からなる基体1は、その表面に回折格子2およびアンカー溝3を備える。回折格子2とアンカー溝3は、形成軸中心4を略一致させて形成されている。
 表面に回折格子2が形成された第1領域5は、レンズ作用を有する凸状の断面形状を有する。第1領域5の外側に位置し、第1領域5を囲む平面形状を有する第2領域6には、複数のアンカー溝3が形成されている。なお、本実施形態1では第1領域5の断面形状を凸状としているが、本発明はこれに限定されず、凹状であってもよい。また、アンカー溝3の形状は、例えば、第1領域5に形成された回折格子2と軸中心を略一致させた同心円形状であるが、本発明はこれに限定されない。
 アンカー溝3は、基体1の第2領域6の平面形状に対して窪んだ形状である。基体1は、第2領域6においてその平面形状に対して突出した形状を有さない。
 第1の光学材料としては、使用する波長領域全体で、第2の光学材料および回折格子の深さdとの間で式(2)の関係が成立するもので、且つ、光学素子として十分な透光性を有するものであれば用いることができる。
Figure JPOXMLDOC01-appb-M000002
 加工の容易性ならびに後述する第2の光学材料の選択範囲を考慮して、本実施形態1における基体1を構成する第1の光学材料は樹脂を含む。
 第1の光学材料として樹脂を含む材料を使用するのは、レンズの生産において最も生産性が期待できる金型成形を考えた場合、ガラスを含む材料においては、金型の耐久性が樹脂に比べ大幅に悪化するため、回折格子形状を有した基体1の製造が容易でないのに対し、樹脂を含む材料は、射出成形等の量産性の高い製造方法を適用することができるからである。また、樹脂を含む材料は金型成形や他の加工法により微細加工を実施することが容易であるため、回折格子2のピッチや回折段差(図では省略)の形状変更に対応し易いという利点が有る。また、回折光学素子の小型化、軽量化に対しても有利である。
 図2は、図1(b)で図示したA部を拡大した図であり、アンカー溝3の詳細を示している。なお、本実施形態1の説明ではアンカー溝の数が3本の場合について説明するが、本発明はこれに限定されない。
 図2では、3本のアンカー溝3を第1領域5に近い側(すなわち内周側)からそれぞれD1、D2、D3と表している。最も外側に位置するアンカー溝D3の深さは、最も内側に位置するアンカー溝D1の深さよりも浅くなっている。
 図2に示す例では、アンカー溝D1、D2、D3は、それぞれの深さが全て異なっている。その溝深さは、最も内側のアンカー溝D1が最も深く、最も外側のアンカー溝D3が最も浅く、中間のアンカー溝D2はそれらの中間の深さというように、外周側に位置する溝ほど徐々に浅くなっている構成となっている。
 アンカー溝3に光学調整層9(図5)が充填されると、基体1と光学調整層9との接触面積が増加し、密着強度が向上する。このことから、光学調整層9がアンカー溝に隙間なく充填されることが好ましい。
 本願発明者らは、アンカー溝3の形状と光学調整層9の侵入量との関係について詳細に検討を行った。
 この結果、図2に示す通り、第1領域5側に近いアンカー溝3を深く、外周側ほど徐々に浅くなる構成をとることにより、外周側のアンカー溝3にまで、光学調整層9が十分に充填されうることを見出した。
 具体的な一例としては、アンカー溝D1の溝深さを0.01mm、アンカー溝D2を0.0075mm、アンカー溝D3を0.005mmで形成した。最も深いアンカー溝D1の深さは0.05mm以下であることが望ましく、この例では0.01mmとしている。
 さらに、溝間の形成ピッチは第1領域5と第2領域6の界面7を基準に界面7から0.01mm離れた位置にアンカー溝D1を形成した。そして、アンカー溝D1とD2の間隔およびアンカー溝D2とD3の間隔のそれぞれは0.025mmピッチで形成した(寸法は図示する)。また、今回形成したアンカー溝3のそれぞれは一辺のみが40°で傾斜した溝形状としている。
 なお、本実施形態1では、アンカー溝数を3本とし、直角三角形状の断面を有した溝で説明しているが、2本から5本でも同様の効果が得られる。
 ただし、図2に示すアンカー溝3の開口部8が大きくなる程、アンカー溝へ充填される後述する光学調整層原料が増大するため、開口部8の幅は、0.05mm以下で設定するのが望ましい。また、アンカー溝3の開口部8が狭すぎると光学調整層原料が侵入できなくなるため、開口部8の幅は0.005mm以上で設定するのが好ましい。
 図3(a)から図3(c)は、上述したアンカー溝3の別の例として、上述した断面形状とは異なる形状を有するアンカー溝を示した図である。
 図3(a)は、深さ方向に傾斜した2辺が交差する逆正三角形に近似した断面形状のアンカー溝20を示している。この構成においても、上述と同様の密着強度が得られる。
 図3(b)は、平坦面21に対しほぼ90°の立ち壁22、23を有した四角形の断面形状のアンカー溝24を示している。この構成においても、上述と同様の密着強度が得られる。
 図3(c)は、所定曲率を有した曲面の断面形状のアンカー溝25を示している。この構成においても、上述と同様の密着強度が得られる。
 図4は、複数のアンカー溝3の形成深さを互いに変えるに至った実験結果を示す図である。実験では、3本のアンカー溝深さを0.016mmに揃えた基体1を用い光学調整層9を成形するとともに、膜成形後の光学調整層9を基体1より剥がし反転させ、底面から突起先端までの高さ(アンカー溝3への侵入量)をレーザ顕微鏡で実測した。その結果、第1領域5側のアンカー溝D1のみ溝形成深さと同等の高さまで充填された状態となっており、アンカー溝D1の底の先端部まで光学調整層9が侵入して硬化した様子が分かる。
 それに対し、外周側のアンカー溝D2およびD3では、それぞれ0.015mm、0.014mmと、アンカー溝への侵入量が徐々に少なくなっており、アンカー溝が完全に埋まる状態ではなかった。溝内部に光学調整層9が隙間なく充填された時に最大の付着強度が発揮されると考えると、そのような状態では、アンカー溝D2およびD3での付着強度はアンカー溝D1に対し劣るものと考えられる。
 よって、アンカー溝深さを外周側ほど浅くし、侵入量不足を解消するのが本実施形態1のアンカー溝構成である。
 図5は、本発明の第1の実施形態に係る回折光学素子100を示す側断面図である。回折格子2およびアンカー溝3を備えた基体1上に、光学調整層9を後述する金型を用いて、第1領域5と第2領域6の少なくとも一部を覆うように膜成形したものである。
 また、第2領域6での光学調整層9は、アンカー溝3を完全に埋め尽くすように光学調整層9の原料を秤量し膜成形した。
 さらに、光学調整層9の表面は、回折格子2の形状が有する回折段差の先端を結ぶ包絡線と同等の非球面形状であり、金型形状を転写することで光学調整層9の表面が形成される。また、包絡線から法線方向に沿った光学調整層9の表面までの長さ(光学調整層9の膜厚)は0.03mm以下としている。膜厚が極端に増加すると収差が増大するとともに、樹脂の硬化収縮にともない、表面形状の制御が難しくなる。このことから、膜厚は、回折格子段差の深さ以上、0.1mm以下、特に0.05mm以下とすることが好ましい。また、第2領域6の表面の一部の平面部分では、光学調整層9の表面は、その基体形状に沿った略平面形状である。
 さらに、光学調整層9を構成する材料は、式(2)の関係を満たすもので、かつ、設定された膜厚において十分な透光性を有するものを用いる。本実施形態1における光学調整層9を構成する第2の光学材料は、樹脂に無機粒子が分散したコンポジット材料を用いる。これにより、第2の光学材料の屈折率およびアッベ数を調整することが可能となる。調整した適切な屈折率およびアッベ数を有する第2の光学材料を光学調整層9に用いることにより、回折光学素子100が用いられる光の波長帯域における回折効率を改善することができる。
 また、屈折率の高い無機粒子を樹脂に分散させることにより、樹脂単体では達成し得ない高い屈折率を第2の光学材料は有することができる。
 一般的に無機粒子は樹脂より高屈折率であることが多い。このため、基体1に第1の樹脂を含む第1光学材料を用い、光学調整層9として、第2の樹脂に無機粒子が分散した第2光学材料を用いる場合、第2光学材料は、第1光学材料よりも高屈折率低波長分散性を示すように調整することが、無機粒子として選択し得る材料が多くなるため好ましい。言い換えれば、第1光学材料は第2光学材料よりも低屈折率高波長分散性であることが好ましい。
 上述したように、光学調整層9としてコンポジット材料からなる第2光学材料を用いる場合、第2光学材料は第1光学材料よりも高い屈折率を有し、かつ、第1光学材料よりも低い波長分散性を有することが必要である。このため、第2の樹脂に分散させる無機粒子も、低波長分散性、すなわち高アッベ数の材料を主成分とすることが好ましい。例えば、酸化ジルコニウム(アッベ数.35)、酸化イットリウム(アッベ数.34)、酸化ランタン(アッベ数.35)、酸化ハフニウム(アッベ数.32)、酸化スカンジウム(アッベ数.27)、アルミナ(アッベ数.76)、およびシリカ(アッベ数.68)からなる群より選ばれる少なくとも1種類の酸化物を主成分とすることが特に好ましい。また、これらの複合酸化物を用いてもよい。
 回折光学素子100が用いられる光の波長帯域において、式(2)を満たす限り、さらにこれらの無機粒子に加えて、例えば、酸化チタンや酸化亜鉛等に代表される高屈折率を示す無機粒子等を共存させてもよい。
 基体1の第1の光学材料としては、例えば、ポリカーボネート系樹脂、ポリメチルメタクリレート(PMMA)、脂環式アクリル樹脂等のアクリル系樹脂、脂環式オレフィン樹脂等を選択することが、透光性が優れているという点で好ましい。これらの樹脂に対し、成形性や機械特性等を向上させる目的で他の樹脂と共重合させたり、他の樹脂とのアロイ化を行ったり、他の樹脂をブレンドしてもよく、1種類の樹脂のみならず2種類以上の樹脂を含んでもよい。
 光学調整層9の第2の光学材料としては、例えば、ポリメタクリル酸メチル、アクリレート、メタクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート等の(メタ)アクリル樹脂を用いることができる。また、エポキシ樹脂;オキセタン樹脂;エン-チオール樹脂を用いてもよいし、ポリエチレンテレフタレートおよびポリカプロラクトン等のポリエステル樹脂を用いることもできる。また、ポリスチレン等のポリスチレン樹脂;ポリプロピレン等のオレフィン樹脂;ナイロン等のポリアミド樹脂;ポリイミドやポリエーテルイミド等のポリイミド樹脂;ポリビニルアルコール;ブチラール樹脂;酢酸ビニル樹脂;脂環式ポリオレフィン樹脂等を用いることもできる。また、これらの樹脂の混合体や共重合体を用いてもよいし、これらの樹脂を編成したものを用いてもよい。
 (実施形態2)
 図6(a)から図6(d)は、本発明の第2の実施形態に係る回折光学素子の製造方法を示す図である。
 図6(a)は、光学調整層9の原料10を金型11に滴下した状態を示す図である。光学調整層9の原料10を光学調整層9の表面形状を規制する金型11の湾曲部12に所定量滴下する。この際、原料10の滴下は、湾曲部12の中心に滴下するのが望ましい。この金型11を用いることで原料10は基体1に被着させることができる。
 また、湾曲部12の形状は、回折光学素子100の凸レンズ形状に対応した形状となっている。凹レンズ形状である場合は、そのレンズ形状に順じた形状に金型形状も変更する。
 また、光学調整層9の原料10を滴下するときには、原料10と溶媒とを混合して滴下時の粘度を下げておくことが望ましい。そのような溶媒としては、例えば、基体1にポリカーボネートを使用する場合、メタノール、エタノール、2-プロパノール、1-プロパノール、1-ブタノール等に代表されるアルコール系溶媒を用いることができる。また、エチレングリコール、メチルセロソルブ等に代表されるグリコール系溶媒や、水等の溶媒を使用することもできる。
 図6(b)は、図1に示した基体1を金型11に当接した状態を示す図である。基体1の回折格子2とアンカー溝3の形成面を、光学調整層9の原料10側に対向させる。その後、金型11方向に基体1をフェースダウンし、金型11の基体当接面13、14に基体1を密着させる。
 なお、本実施形態2では、基体1を金型11方向にフェースダウンするとしているが、本発明はこれに限定するものではない。また、図6(a)では、光学調整層9の原料10を金型11に滴下するとしているが、基体1の回折格子2形成面に滴下しても、同様の工程で作製可能である。
 図6(c)は、光学調整層9の原料10を硬化させる工程を示す図である。基体1と金型11とを密着させた状態で、基体1を介して、光源15から紫外線16を原料10に照射して硬化させる。原料10は、例えば光硬化性を有しており、光を照射することで硬化させることができる。この例では、原料10は紫外線硬化性を有しており、紫外線を照射することで硬化させる。
 また、金型11は、例えばガラス等の光線を透過する材料で形成されていてもよく、その場合は、金型11を介して原料10に所望の光線を照射することで原料10を硬化させることができる。なお、原料10が熱硬化性の場合は、熱を加えて硬化させる。
 図6(d)は、完成した回折光学素子100を示す図である。光学調整層の原料10の硬化後、金型11を開放して基体1を取り出すと、基体1の回折格子2とアンカー溝3の形成面に、金型11で曲率を規制された光学調整層9を備えた回折光学素子100が完成する。
 なお、本願発明者は、アンカー溝の代わりに凸部を複数設けた基体を用いて、上述の製造方法で回折光学素子を作製した。しかし、完成した回折光学素子を光学顕微鏡で確認したところ、凸部を形成した箇所付近に光が進入し光って見えることを確認した。これは、原料10が凸部の周辺、または凸部と凸部との間に十分に充填されていない状態で硬化されたことに起因する。つまり、光学調整層と基体の密着が不十分であることを意味する。また、凸部を設けた基体を用いて作製した回折光学素子は、製造時、高い確率で光学調整層にクラックが発生した。このような回折光学素子においては、光学調整層の端部が浮いていることも確認した。
 図15に、凸部を設けた基体を用いて作製した回折光学素子を上方から撮影した写真を示す。使用材料は後述するものと同じである。光学調整層に大きくクラック159が発生していることがわかる。
 図7は、凹形状のアンカー溝3の代わりに凸部3aを設けた基体1を金型11に当接したときの原料10の流れ10aを示す図である。基体1と金型11に挟み込まれて押圧された原料10は、金型11に沿って内側から外側へ向かって流れていく。このとき、凸部3aの先端部で流れ10aが遮られ、凸部3aと凸部3aの間には原料10が充填されにくい状態になる。このため、凸部3aと凸部3aの間には原料10が十分に充填されず、基体1に対して浮いた状態となる。その結果、基体1と光学調整層9との密着強度が低くなってしまうことになる。
 図8は、凹形状のアンカー溝3を設けた基体1を金型11に当接したときの原料10の流れ10bを示す図である。基体1と金型11に挟み込まれて押圧された原料10は、金型11に沿って内側から外側へ向かって流れていく。このとき、アンカー溝3は凹部であるので、凸部3a(図7)のように原料10の流れを遮ることはない。スムーズに流れる原料10は、容易にアンカー溝3に充填されることになる。また、毛細管現象により、より確実に原料10はアンカー溝3に充填されることも考察される。このように、アンカー溝3に原料10が十分に充填された結果、基体1と光学調整層9との密着強度を強くすることができる。
 以下、作製した回折光学素子の密着強度について説明する。以下に示す実験結果は、光学調整層9が基体から剥離して、光学調整層9から離れた回折輪帯の本数(膜剥離数)を評価したものである。また、現象を加速させるため、110℃の高温環境中で24時間放置し評価した。
 基体1を構成する樹脂として、ポリカーボネート樹脂(d線屈折率1.585、アッベ数28)を用いた。光学調整層9を構成する樹脂としては、アクリレート樹脂(d線屈折率1.600、アッベ数33)に酸化ジルコニウムフィラーを分散させたものを用いた。
 図9から図11は、比較例として、アンカー溝を形成していない回折光学素子30およびその膜剥離数の推移を表したものである。
 図9は、回折光学素子30の断面形状を示している。回折光学素子30は、基体31の第2領域32において、基体31と光学調整層33は平面34で密着する。このような回折光学素子30を、高温環境中に投じると、材料同士の熱収縮率差で第2領域32の基体31と光学調整層33が界面34で最悪の場合剥離する。この現象は、第2領域32に留まらず第1領域35の表面に形成した回折格子36と光学調整層33の界面にも影響する。その影響は、第2領域32に近接する回折格子37から始まり第1領域35の中心方向に進行する。
 図10は、基体31に総数37本の回折格子を形成した2サンプルを用い、高温環境中に投じた際に発生した膜剥離数の推移を評価した図である。図において、横軸が放置時間、縦軸が膜剥離数、放置0時間のデータは、放置試験前の膜剥離数である。
 放置試験前の膜剥離は、両サンプルとも数本の膜剥離が認められるものの性能には影響しない程度に安定している。ただし、高温環境中に投じると放置2時間で、基体が有する回折輪帯のうち、70%から80%の回折輪帯で界面剥離が認められた。このような剥離は、画像品質に影響し、撮像すると画面全体で白が強調されたコントラストが劣化した低品質の画像となる。
 図11は、第2領域32における基体31と光学調整層33の状態をレーザ顕微鏡で評価した図である。図11(a)が放置試験前、図11(b)が24時間放置後の状態を示している。さらに、測定箇所は図9のB部を評価したものであり、参照符号38は基体表面を示しており、参照符号39は光学調整層表面を示している。傾斜部40は第1領域35の光学調整層表面である。
 まず、図11(a)に示す放置試験前の状態は、基体表面38と光学調整層表面39がほぼ平行で、基体表面が38が平坦であっても隙間なく密着している様子が確認できる。
 それに対し、図11(b)に示す24時間放置後の状態は、光学調整層表面39が0.019mm程度反り上がっており、基体表面38との界面で剥離した様子が認識できる。さらに、この膜剥離過程で応力均衡が著しく崩れるとクラックに繋がるものと考えられる。
 ただし、このような傾向は、光学調整層に用いる樹脂によっても状況は若干異なる。
 図12から図14は、実施形態1で詳細を説明したアンカー溝仕様の回折光学素子50について、同様の試験を行った結果を示す図である。回折光学素子50の構成は回折光学素子100と同じである。
 図12は、回折光学素子50の断面形状を示している。基体51の第2領域52には、図2で詳細を説明したアンカー溝53が、光学調整層54との界面に形成されている。
 図13は、膜剥離数の推移を評価した図である。24時間放置後で1から3本程度の膜剥離数の増加が認められるものの、図10の結果と比べると、膜剥離に対して格段に抑制効果があることが確認できた。また、この程度であれば撮像性能には直接影響しない。
 図14は、第2領域52における基体51と光学調整層54の状態をレーザ顕微鏡で評価した図である。図14(a)が放置試験前、図14(b)が24時間放置後の状態を示している。参照符号58は基体表面を示しており、参照符号55は光学調整層表面を示している。図14(b)の24時間放置後の状態と、図11(b)の状態とは顕著な差が認められる。
 図14(b)において、光学調整層表面55を注視すると、光学調整層54の先端56は0.005mm弱の反り上がりが認められるものの、アンカー溝形成面57は基材表面58と平行であり、図14(a)の放置試験前に比べても変化しておらず良く密着している状態が確認できる。つまり、アンカー溝部では、基体と光学調整層が強固に密着していると判断できる。
 以上のように、本発明のアンカー溝を形成した回折光学素子は、膜剥離とクラック対策として有用な構造である。
 次に、回折光学素子の実施例と比較例とを説明する。
 (実施例1)
 本発明の具体的な一例として、図1および図2に示す基体1を作製した。
 基体1を構成する第1光学材料の第1樹脂として、ポリカーボネート樹脂(d線屈折率1.585、アッベ数28)を用い、第1光学材料を射出成形することにより、基体1を作製した。
 アンカー溝D1の溝深さは0.01mm、アンカー溝D2の溝深さは0.075mm、アンカー溝D3の溝深さは0.005mmとした。さらに、溝間の形成ピッチは第1領域5と第2領域6の界面7を基準に、界面7から0.01mm離れた位置にアンカー溝D1を形成した。アンカー溝D1とD2の間隔およびアンカー溝D2とD3の間隔はそれぞれ0.025mmピッチで形成した(寸法は図示する)。また、今回形成したアンカー溝3は一辺のみが40°で傾斜した溝形状としている。
 本基体1上に、紫外線硬化樹脂中に酸化ジルコニウムフィラーを分散させた光学調整層9を、金型成形により形成した。紫外線硬化樹脂として、アクリレート樹脂(d線屈折率1.600、アッベ数33)を使用した。
 光学調整層9は、アンカー溝3に隙間なく充填されており、基体1と光学調整層9は良好な密着強度を示した。
 (比較例1)
 実施例1と同様の方法により、比較例1の回折光学素子を作製した。実施例1との差異は、3本のアンカー溝の深さを0.016mmに揃えたことである。
 実験では、3本のアンカー溝深さを0.016mmに揃えた基体を用い光学調整層を成形するとともに、膜成形後の光学調整層を基体より剥がし反転させ、底面から突起先端までの高さ(アンカー溝への侵入量)をレーザ顕微鏡で実測した。
 その結果、図4に示すように、第1領域側のアンカー溝D1のみ溝形成深さと同等の高さまで充填された状態となっており、アンカー溝D1の底の先端部まで光学調整層が侵入して硬化した様子が分かる。
 それに対し、外周側のアンカー溝D2およびD3では、それぞれ0.015mm、0.014mmと、アンカー溝への侵入量が徐々に少なくなっており、アンカー溝が完全に埋まる状態ではなかった。溝内部に光学調整層9が隙間なく充填された時に最大の付着強度が発揮されると考えると、そのような状態では、アンカー溝D2およびD3での付着強度はアンカー溝D1に対し劣るものと考えられる。
 本発明は、回折光学素子およびその製造方法の分野において特に有用である。
 1、31、51 基体
 2、36 回折格子
 3、53、D1、D2、D3 アンカー溝
 3a 凸部
 4 軸中心
 5、35 第1領域
 6、32、52 第2領域
 7 界面
 8 開口部
 9、33、54 光学調整層
 10 光学調整層の原料
 10a、10b 光学調整層の原料の流れ
 11 金型
 12 湾曲部
 13、14 基体当接面
 15 光源
 16 紫外線
 20 逆正三角形に近似した形状のアンカー溝
 21 平坦面
 22 立ち壁
 23 立ち壁
 24 四角形のアンカー溝
 25 曲面のアンカー溝
 30、50、100 回折光学素子
 34 平面
 37 第2領域に近接する回折格子
 38、58 基体表面
 39、55 光学調整層表面
 40 傾斜部
 56 光学調整層の先端
 57 アンカー溝形成面

Claims (12)

  1.  第1の樹脂を含む第1の光学材料からなり、表面に回折格子形状を有する基体と、
     第2の樹脂を含む第2の光学材料からなり、前記基体の前記回折格子形状上に形成された光学調整層と、
     を有する回折光学素子であって、
     前記基体は、表面に前記回折格子形状を有する第1領域と、前記第1領域よりも外側に位置する第2領域とを有し、
     前記光学調整層は、前記第1領域と、前記第2領域の少なくとも一部とを覆うように形成されており、
     前記第2領域には、複数のアンカー溝が形成されており、
     前記複数のアンカー溝のうち最も外側に位置するアンカー溝の深さは、最も内側に位置するアンカー溝の深さよりも浅い、回折光学素子。
  2.  前記複数のアンカー溝の中で、前記最も内側に位置するアンカー溝が最も深く、外側に位置する溝ほど浅くなっている、請求項1に記載の回折光学素子。
  3.  前記複数のアンカー溝のうち最も深いアンカー溝の深さは0.05mm以下である、請求項1または2に記載の回折光学素子。
  4.  前記複数のアンカー溝は、前記回折格子形状と軸中心を略合致させた同心円形状である、請求項1から3のいずれかに記載の回折光学素子。
  5.  前記第2領域の表面の一部は平面形状であり、
     前記光学調整層の表面の断面形状は、前記第1領域においては前記回折格子形状の回折段差の先端を結ぶ包絡線と略同一形状であり、前記第2領域においては前記基体形状に沿った略平面形状である、請求項1から4のいずれかに記載の回折光学素子。
  6.  前記光学調整層の厚さは、前記回折格子形状の回折段差の先端を結ぶ包絡線から法線方向に沿った前記光学調整層の表面までの長さが0.05mm以下となる厚さである、請求項1から5のいずれかに記載の回折光学素子。
  7.  前記第1の光学材料は、前記第2の光学材料よりも低屈折率高分散材料である、請求項1から6のいずれかに記載の回折光学素子。
  8.  前記第2の光学材料は、樹脂と無機粒子とを含むコンポジット材料である、請求項1から7のいずれかに記載の回折光学素子。
  9.  前記無機粒子は、酸化ジルコニウム、酸化イットリウム、酸化ランタン、アルミナおよびシリカのうちの少なくとも1種類の酸化物を主成分とする、請求項8に記載の回折光学素子。
  10.  第1の樹脂を含む第1の光学材料からなり、表面に回折格子形状を有する基体と、第2の樹脂を含む第2の光学材料からなり、前記基体の前記回折格子形状上に形成された光学調整層と、を有する回折光学素子の製造方法であって、
     表面に前記回折格子形状を有する第1領域と前記第1領域よりも外側に位置する第2領域とを有し、前記第2領域には複数のアンカー溝が形成されており、前記複数のアンカー溝のうち最も外側に位置するアンカー溝の深さは、最も内側に位置するアンカー溝の深さよりも浅い基体を準備する工程と、
     前記基体に前記第2の光学材料を被着するための金型に前記第2の光学材料の原料を滴下する工程と、
     前記第2の光学材料を挟み込むように前記基体と前記金型とを密着させる工程と、
     前記基体と前記金型とを密着させた状態で前記第2の光学材料の原料を硬化させる工程と、
     を包含する、回折光学素子の製造方法。
  11.  前記第2の光学材料の原料は光硬化性を有し、
     光を照射して前記第2の光学材料の原料を硬化させる、請求項10に記載の回折光学素子の製造方法。
  12.  前記第2の光学材料の原料は紫外線硬化性を有し、
     紫外線を照射して前記第2の光学材料の原料を硬化させる、請求項10に記載の回折光学素子の製造方法。
PCT/JP2012/000985 2011-05-30 2012-02-15 回折光学素子およびその製造方法 WO2012164781A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800014624A CN102918432A (zh) 2011-05-30 2012-02-15 衍射光学元件及其制造方法
US13/805,482 US9291753B2 (en) 2011-05-30 2012-02-15 Diffraction optical element and production method therefor
JP2012538102A JP5180411B2 (ja) 2011-05-30 2012-02-15 回折光学素子およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011120249 2011-05-30
JP2011-120249 2011-05-30

Publications (1)

Publication Number Publication Date
WO2012164781A1 true WO2012164781A1 (ja) 2012-12-06

Family

ID=47168968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000985 WO2012164781A1 (ja) 2011-05-30 2012-02-15 回折光学素子およびその製造方法

Country Status (4)

Country Link
US (1) US9291753B2 (ja)
JP (1) JP5180411B2 (ja)
CN (2) CN102918432A (ja)
WO (1) WO2012164781A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179565A (ja) * 2013-03-15 2014-09-25 Sumitomo Osaka Cement Co Ltd 光半導体発光装置、照明器具、及び表示装置、並びに演色性制御方法
JP2021170081A (ja) * 2020-04-16 2021-10-28 キヤノン株式会社 回折光学素子、光学系及び光学機器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6486042B2 (ja) * 2014-09-12 2019-03-20 キヤノン株式会社 積層型の回折光学素子
CN108303835B (zh) * 2018-02-27 2021-04-09 Oppo广东移动通信有限公司 结构光投射器及其控制方法、深度相机和电子装置
CN109304539A (zh) * 2018-11-02 2019-02-05 英诺激光科技股份有限公司 一种具有任意曲面、用于相差校正的光学器件的间接制作方法
US11448918B2 (en) * 2019-01-30 2022-09-20 Samsung Electronics Co., Ltd. Grating device, screen including the grating device, method of manufacturing the screen and display apparatus for augmented reality and/or virtual reality including the screen
CN110609341B (zh) * 2019-09-20 2021-07-09 浙江水晶光电科技股份有限公司 消色差透镜、光学模组及vr佩戴设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113907A (ja) * 1993-10-18 1995-05-02 Matsushita Electric Ind Co Ltd 回折光学素子
JP2009053271A (ja) * 2007-08-23 2009-03-12 Sumitomo Electric Ind Ltd モールドの形成方法、回折格子の形成方法、および分布帰還型半導体レーザの製造方法
JP2010102000A (ja) * 2008-10-22 2010-05-06 Panasonic Corp 回折光学素子および回折光学素子の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561558A (en) 1993-10-18 1996-10-01 Matsushita Electric Industrial Co., Ltd. Diffractive optical device
CN101228580B (zh) * 2005-07-28 2011-05-11 松下电器产业株式会社 光学头及光盘装置
JP2007168087A (ja) 2005-12-19 2007-07-05 Dainippon Ink & Chem Inc 受理層形成方法
JP2007168097A (ja) 2005-12-19 2007-07-05 Toshiba Tec Corp インクジェットヘッド製造方法
JP4672058B2 (ja) 2006-03-24 2011-04-20 パナソニック株式会社 複合光学素子
CN101405629A (zh) 2006-03-24 2009-04-08 松下电器产业株式会社 复合光学元件
JP2007293951A (ja) 2006-04-21 2007-11-08 Sony Corp 回折素子、対物レンズユニット、光ピックアップ及び光ディスク装置
JP4378433B2 (ja) 2008-02-06 2009-12-09 パナソニック株式会社 回折光学素子およびその製造方法
CN102741715B (zh) * 2008-09-18 2015-05-20 松下电器产业株式会社 衍射光学元件及衍射光学元件的制造方法
JP2010128303A (ja) * 2008-11-28 2010-06-10 Canon Inc 回折光学素子、光学系及び光学機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113907A (ja) * 1993-10-18 1995-05-02 Matsushita Electric Ind Co Ltd 回折光学素子
JP2009053271A (ja) * 2007-08-23 2009-03-12 Sumitomo Electric Ind Ltd モールドの形成方法、回折格子の形成方法、および分布帰還型半導体レーザの製造方法
JP2010102000A (ja) * 2008-10-22 2010-05-06 Panasonic Corp 回折光学素子および回折光学素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179565A (ja) * 2013-03-15 2014-09-25 Sumitomo Osaka Cement Co Ltd 光半導体発光装置、照明器具、及び表示装置、並びに演色性制御方法
JP2021170081A (ja) * 2020-04-16 2021-10-28 キヤノン株式会社 回折光学素子、光学系及び光学機器

Also Published As

Publication number Publication date
CN102918432A (zh) 2013-02-06
JPWO2012164781A1 (ja) 2014-07-31
US9291753B2 (en) 2016-03-22
CN202548353U (zh) 2012-11-21
JP5180411B2 (ja) 2013-04-10
US20130088781A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5180411B2 (ja) 回折光学素子およびその製造方法
JP5271457B1 (ja) 回折光学素子および回折光学素子の製造方法
JP4077508B2 (ja) レンズの製造方法
JP2010102000A (ja) 回折光学素子および回折光学素子の製造方法
US20090180186A1 (en) Diffractive optical element and method for manufacturing same
US8149510B2 (en) Diffractive optical element and method of making the same
US7957063B2 (en) Diffractive optical device, optical system using the diffractive optical device and method for manufacturing diffractive optical device
US11892662B2 (en) Diffraction light guide plate and method of manufacturing diffraction light guide plate
JP5596859B2 (ja) 回折光学素子
EP2995977B1 (en) Multilayer diffractive optical element
JP4547467B1 (ja) 回折光学素子
US8559109B2 (en) Method for producing diffractive optical element, and diffractive optical element, including a diffraction grating and molded optical adjusting layer
JPWO2015015693A1 (ja) 回折光学素子、回折光学素子の製造方法および回折光学素子の製造方法に用いられる型
JP6783829B2 (ja) 回折光学素子およびそれを用いた光学機器
JP4977273B2 (ja) 回折光学素子の製造方法
JP2012220705A (ja) 回折光学素子およびその製造方法
WO2010140341A1 (ja) 回折光学素子
KR102367021B1 (ko) 회절 도광판
JP2004126061A (ja) 回折光学素子及びこれを用いた光学系
JP5459966B2 (ja) 回折光学素子及びそれを有する光学系並びに光学機器
WO2010087208A1 (ja) 回折光学素子およびその製造方法
WO2020196620A1 (ja) 微細凹凸パターンフィルムおよびヘッドアップディスプレイ装置
JP2013156404A (ja) 回折光学素子及びその製造方法並びに回折光学素子を用いた光学系

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001462.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012538102

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13805482

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792088

Country of ref document: EP

Kind code of ref document: A1