WO2012163468A1 - Verwendung von nanoskaligen materialien in einer zusammensetzung zur verhinderung von ermüdungserscheinungen im oberflächennahen gefüge von antriebselementen - Google Patents

Verwendung von nanoskaligen materialien in einer zusammensetzung zur verhinderung von ermüdungserscheinungen im oberflächennahen gefüge von antriebselementen Download PDF

Info

Publication number
WO2012163468A1
WO2012163468A1 PCT/EP2012/001997 EP2012001997W WO2012163468A1 WO 2012163468 A1 WO2012163468 A1 WO 2012163468A1 EP 2012001997 W EP2012001997 W EP 2012001997W WO 2012163468 A1 WO2012163468 A1 WO 2012163468A1
Authority
WO
WIPO (PCT)
Prior art keywords
oils
composition according
composition
nanoparticles
pitting
Prior art date
Application number
PCT/EP2012/001997
Other languages
English (en)
French (fr)
Inventor
Stefan Grundei
Carla KRUTZSCH
Martin Schmidt-Amelunxen
Original Assignee
Klüber Lubrication München Se & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klüber Lubrication München Se & Co. Kg filed Critical Klüber Lubrication München Se & Co. Kg
Priority to CN201280025402.6A priority Critical patent/CN103732728A/zh
Priority to KR1020137031294A priority patent/KR101594771B1/ko
Priority to BR112013031020-0A priority patent/BR112013031020B1/pt
Priority to DK12720427.9T priority patent/DK2714866T3/en
Priority to ES12720427.9T priority patent/ES2589812T3/es
Priority to JP2014513067A priority patent/JP5762629B2/ja
Priority to US14/122,603 priority patent/US9296970B2/en
Priority to EP12720427.9A priority patent/EP2714866B1/de
Publication of WO2012163468A1 publication Critical patent/WO2012163468A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/10Metal oxides, hydroxides, carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/02Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic oxygen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M147/00Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
    • C10M147/02Monomer containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/105Silica
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • C10M2209/1045Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/04Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/061Coated particles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • the present invention relates to the use of nanoscale materials in a composition applied to their surfaces to prevent fatigue damage in drive elements.
  • this order protects the surfaces of drive elements against the formation of gray staining, surface fatigue, micro-pitting and pitting. The occurrence of fatigue damage on these surfaces is thereby prevented or reduced.
  • gray pitting and pitting are those which are the most severe material damage from the resulting cracks.
  • DE-OS 1 644 934 describes organophosphates as additives in lubricants which are added as anti-fatigue additives.
  • EP 1 642 957 A1 discloses thiazoles as anti-pitting additives.
  • EP 1 642 957 A1 relates to the use of MoS 2 and molybdenum dithiocarbamate, which are used as additives in urea fats for propeller shafts.
  • the additives known from the prior art described above are not thermally stable as organic substances.
  • they can evaporate under the operating conditions or can react as a classic anti-wear additives, especially with the metal surfaces, ie they predominantly react on the touching roughness peaks, since there by the flash temperatures occurring sufficient energy for a chemical reaction with the metallic Friction layer is present. Therefore, they can at most act as subordinate anti-pitting additives.
  • Solid lubricants such as molybdenum disulfide, on the other hand, have a tendency to precipitate out due to their density Settle oil formulations and may also have a corrosive effect.
  • the object of the present invention is to provide a composition which can be applied to the surfaces of drive elements so as to prevent or reduce the fatigue phenomena "gray spots" and "pitting" on these drive elements.
  • the composition should contain no volatile organic compounds as anti-pitting additive and the anti-pitting additives should be in a liquid phase with Newtonian flow behavior. This allows them to penetrate into the structures or depressions described above and reinforce the metal structure there.
  • the subject of the present invention is accordingly the use of a composition which is applied to the surface of the drive elements in order to prevent or avoid fatigue phenomena. It has surprisingly been found that the application of a composition containing surface-modified nanoparticles and a carrier material prevents or prevents the fatigue damage, such as gray pitting and pitting.
  • the surface-modified nanoparticles contained in the composition are oxidic nanoparticles. They can be selected from silica, zinc oxide and alumina.
  • surface modification reagents such as alkyl, aryl, Alkylarylsilanes having at least 1 to 3 of these alkyl, aryl or alkylaryl groups, which may additionally contain functional groups, in particular thio groups, phosphate groups and which are used individually or in combination.
  • the optionally present thio or phosphate groups can additionally undergo a reaction with the metal surface to be protected.
  • the amount of modifying reagent per nm 2 of the particle surface is 0.1 to 10 molecules of the modifying reagent, preferably 0.3 to 5 molecules. This chemical modification has the effect that the nanoparticles in different base oils are monoparticulate, ie without aggregation.
  • composition may contain mixtures of nanoparticles which are both different from one another and have different particle sizes.
  • the surface-modified nanoparticles have an average particle size of from 10 nm to less than 200 nm, preferably from 10 nm to 100 nm.
  • the particle size of nanoparticles can be determined by different methods. Dry methods such as transmission electron microscopy often provide smaller particle sizes than the dynamic light scattering measurement, as in the latter method a relatively tightly bound solvent envelope requires larger values.
  • the particle size data in this application are generally related to dynamic light scattering results.
  • the carrier material is selected from the group consisting of mineral oils, synthetic hydrocarbons, polyglycols, esters and ester compounds, PFPE, native oils and derivatives of native oils, aromatic oils such as phenyl ethers and mixtures thereof.
  • Polygkycols, esters and synthetic hydrocarbons are particularly preferably used as carrier material.
  • composition of the present invention containing the nanoparticles and the carrier may further be incorporated into a lubricant become.
  • This lubricant may be in the form of fats, pastes, oils and is selected from the group consisting of a lubricating oil or mixtures of lubricating oils, polyglycols, silicone oils, perfluoropolyethers, mineral oils, esters, synthetic hydrocarbons, phenyl ethers, native oils and derivatives of native oils.
  • organic or inorganic thickeners in particular PTFE, graphite, metal oxides, boron nitride, molybdenum disulfide, phosphates, silicates, sulfonates, polyimides, metal soaps, metal complex soaps, ureas and mixtures thereof, solid lubricants such as graphite, M0S2.
  • compositions which are used as a concentrate in one of the above-mentioned lubricants are particularly preferred.
  • soluble additives in particular aromatic amines, phenols, phosphates, as well as corrosion inhibitors, antioxidants, anti-wear agents, friction reducing agents, means for protection against metal influences, UV stabilizers may be present in the composition.
  • composition of the invention generally consists of 0.1 to 40 wt .-% surface-modified nanoparticles, in particular 2 to 20 wt .-% surface-modified nanoparticles, and 99.9% to 60% by weight of carrier material, in particular 8 to 80 wt. -% carrier material.
  • the introduction of the nanoparticles into the carrier material can take place in two ways.
  • dispersions of nanoparticles can be produced in a sol-gel process and surface-modified in the dispersion, and then the dispersion can be prepared by adding the support material and removing the volatile solvents.
  • This process can be referred to as redispersing and has the advantage that the nanoparticles are always wetted by liquid and thus the risk of agglomeration is reduced.
  • This method is described in the following examples.
  • the solvents may be removed and the dry particles isolated. By dispersing under shear and optionally elevated temperature, the particles can be incorporated. Which method is to be used depends on various factors such as particle type, particle sizes, type and extent of surface coverage and chemical nature of the carrier material and must be individually tailored.
  • This composition can then be incorporated into any lubricant so that, based on the final formulation of 0.1-10% nanoparticles, 99.9-90% lubricant.
  • FIG. 1 Particle size distribution of a batch of Levasil 200N / 30%
  • Figure 2 Particle size of the S1O2 dispersion, wherein the particles with the
  • FIG. 3 Particle size of the S1O2 dispersion after functionalization with
  • FIG. 4 Particle size distribution in polyglycol (Example 4)
  • FIG. 5 The theological properties of the nanoparticles
  • SiO 2 nanoparticles The preparation of SiO 2 nanoparticles is described, for example, in: W. Stöber, A. Fink, Journal of Colloid and Interface Science 26, 62-69, 1968 or in: Chen Wang et al. Matehals Letters 6_1, 2007, 506 - 510.
  • the disadvantage of using the Stöber process in production is that the resulting dispersions have low levels of SiO 2 nanoparticles, typically around 3% by mass S1O 2.
  • the stability of the nanoparticles and also the nature of the particles which form are determined by the choice of reaction conditions, in particular the pH.
  • Levasil Under the trade name Levasil (Akzo Nobel, formerly HC Starck) aqueous dispersions are offered with solids contents of up to 50%. For example, Levasil 200N / 30% is a 30% dispersion stabilized with ammonia. The particle size is given as about 55 nm. This size distribution is confirmed by the diagram in Figure 1, which shows the particle analysis with a Malvern Zetasizer. Also available from Akzo Nobel under the trade name Bindzil are S1O2 nanodispersions with particle sizes around 10 nm and solids contents up to 40%, the surfaces of which are modified with epoxysilane.
  • 83.11 g of the dispersion of functionalized nanoparticles according to Example 2 are mixed with 28.10 g of water-miscible polyglycol (monomers ethylene oxide and propylene oxide, kinematic viscosity 100 mm 2 / sec at 40 ° C.) in a rotary evaporator while heating with the oil bath to 100 ° C. and applying a vacuum, for example with a water jet pump, concentrated.
  • the result is a clear liquid.
  • the high dispersion to oil ratio is required in order to be able to produce concentrations of 10% nanoparticles in the polyglycol in the low concentration of SiO 2 particles on which the dispersions prepared in the Stöber process are based.
  • polyglycol dispersions are prepared which in all cases build on the dispersion of Example 1.
  • silanes phenyltrimethoxysilane and triethoxy (octyl) silane were used in addition to butyltrimethoxysilane. It was modified with a silane per nm 2 analogously to Example 2. In all cases, clear liquids result after redispersion. Table 1 shows that the kinematic viscosity is only slightly increased. The content of Si0 2 is also reflected in the higher density.
  • Table 1 shows the data of the 10% dispersions of the butyl silane, octyl silane and phenyl silane modified nanoparticles in polyglycol.
  • the dynamic viscosity of the nanoparticle-containing oils was determined as a function of the shear rate using a cone / plate system on the rheometer.
  • the shear rate is increased logarithmically from 50 sec “1 to 5000 sec " 1 .
  • the dynamic viscosity remains independent of the shear rate, so it is observed Newton's flow behavior (see FIG. 5).
  • Aerosil-containing mixture designated 4e in FIG. 5, thus shows a pronounced deviation from Newton 's flow behavior, which can be explained by an interaction of the unmodified particles.
  • Table 2 shows little influence on the theological properties of the nanoparticles. So there are also highly concentrated dispersions, such as Levasil, possible as a nanoparticle source.
  • nanoparticle dispersion containing 1% Si0 2 .
  • Example 6 The nanoparticles in Example 6 have a small, negligible influence on the rheological properties, resulting in VKA endurance a slight deterioration.
  • the wear factor is increased slightly, the coefficient of friction remains the same.
  • the welding force a slight improvement is observed.
  • the effect on friction and wear is therefore dependent on the experimental conditions and can also lead to deterioration. There is no effect as an anti-wear additive.
  • Gear oil formulations were made with 60 nm SiO 2 particles with a butyl surface modification. For this purpose, a 10% dispersion of the modified nanoparticles in polyglycol was used, which can be easily stirred into the formulation. The concentration of nanoparticles in the final formulation is 1%.
  • the formulation was prepared in two viscosity layers (100 and 220 est).
  • Corrosion protection additives 0,305 0,305 0,305 0,305 0,305
  • the gray speckling is significantly reduced when nanoparticles are used in a polyglycol gear oil. Overall, it can be stated that the nanoparticles have significantly improved the gray-particle bearing capacity by using the two compositions containing the nanoparticles, when they are present as a deposit on the surfaces of the drive elements starting from a good level of references 100 est and 220 est) are.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von nanoskaligen Materialien in einer Zusammensetzung, die zur Verhinderung von Ermüdungsschäden in Antriebselementen auf deren Oberflächen aufgetragen wird. Insbesondere werden durch diesen Auftrag die Oberflächen von Antriebselementen gegen die Bildung von Grauflecken (grey staining, surface fatigue, micro-pitting) und die Grübchenbildung geschützt. Das Auftreten von Ermüdungsschäden auf diesen Oberflächen wird dadurch verhindert oder vermindert.

Description

Verwendung von nanoskaligen Materialien in einer Zusammensetzung zur Verhinderung von Ermüdungserscheinungen im oberflächennahen Gefüge von
Antriebselementen
Beschreibung
Die vorliegende Erfindung betrifft die Verwendung von nanoskaligen Materialien in einer Zusammensetzung, die zur Verhinderung von Ermüdungsschäden in Antriebselementen auf deren Oberflächen aufgetragen wird. Insbesondere werden durch diesen Auftrag die Oberflächen von Antriebselementen gegen die Bildung von Grauflecken (grey staining, surface fatigue, micro-pitting) und die Grübchenbildung geschützt. Das Auftreten von Ermüdungsschäden auf diesen Oberflächen wird dadurch verhindert oder vermindert.
Bei Antriebselementen kommt es im Falle von zu hohen mechanischen Belastungen zu zwei Arten von Schädigungen:
1) Fressen und Verschleißen, bei denen die Schädigung von der Oberfläche der Kontaktflächen ausgeht.
2) Ermüdungsschäden, die ihren Ausgang im Gefüge unterhalb der belasteten Flächen nehmen und letztendlich in Ausbrüchen, wie beispielsweise Pitting, Grauflecken, Grübchenbildung, enden.
Zur Verminderung von Verschleiß und Fressen gibt es eine Vielzahl von Additiven und Festschmierstoffen, die gut bekannt sind und vielfach eingesetzt werden. Zur Unterbindung von Ermüdungsschäden sind nur sehr wenige wirksame Maßnahmen bekannt. Eine Maßnahme ist die Erhöhung der Schmierfilmdicke. Ermüdungsverschleiß (Pitting) entsteht durch örtliche Überlastung des Werkstoffes durch periodische Druckbeanspruchung. Die Ermüdung des Werkstoffes wird durch Grauflecken (grey staining, surface fatigue, mirco-pitting) bzw. Grübchen auf der Oberfläche des Werkstoffes sichtbar. Es entstehen zunächst 20 bis 40 pm unterhalb der Oberfläche feine Risse im Metallgitter, die zu Materialausbrüchen führen. Die als Micro-pittings oder Graufleckigkeit bezeichneten kleinen mikroskopisch sichtbaren Ausbrüche auf der Zahnflanke, sind als mattgraue Bereiche zu erkennen. Bei Verzahnungen können praktisch in allen Geschwindigkeitsbereichen Grauflecken auf Zahnflanken beobachtet werden. Auch in Wälzlagern entstehen im Bereich des Gleitkontaktes sehr flache Ausbrüche als Grauflecken auf der Laufbahn Diese Zusammenhänge sind ausführlich in der DE 10 2007 036 856 A1 und der dort angegebenen Literatur beschrieben.
Zur Verbesserung der Viskositätseigenschaften werden in Schmiermitteln unterschiedliche Zusätze verwendet, um die oben genannten Schäden in Wälzlagern, Zahnrädern, Getrieben und dergleichen zu vermeiden oder zumindest zu minimieren. Hierbei sind die als Graufleckenbildung und die Grübchenbildung bezeichneten Ermüdungsschäden, diejenigen, die zu schwerwiegendsten Materialbeeinträchtigungen durch die entstehenden Risse gehören.
Zur Vermeidung dieser Ermüdungsschäden können folgende Maßnahmen ergriffen werden:
Senkung der Kontaktkräfte,
geeignete Auswahl des Schmiermittels,
ausreichende Schmiermittelzufuhr, günstige Positionierung und Gestaltung der Schmierstellen, Vermeidung von Zuständen ohne Schmierung.
Zur Vermeidung von Ermüdungserscheinungen wurden verschiedene Untersuchungen gemacht, unter anderem wurde versucht, die Schmierwirkung von Schmierstoffen durch Zugabe verschiedener Additive zu verbessern. Es wurden insbesondere Additive untersucht, mit denen die Reibung zwischen den Bauteilen verringert werden kann oder die eine verbesserte Viskosität aufweisen.
So beschreibt die DE-OS 1 644 934 Organophosphate als Additive in Schmiermitteln, die als Anti-Ermüdungsadditive zugesetzt werden.
Die bereits oben genannte DE 10 2007 036 856 A1 offenbart die Zugabe von Polymeren mit Estergruppen, die als Antifatigue-Additive in Schmiermitteln verwendet werden.
Aus der US 2003/0092585 A1 sind Thiazole als Anti-Pitting-Additive bekannt. Die EP 1 642 957 A1 betrifft die Verwendung von MoS2 und Molybdändithiocarbamat, die als Additive in Harnstofffetten für Gelenkwellen Verwendung finden.
Die oben beschriebenen, aus dem Stand der Technik bekannten Additive, wie Organophosphate und Thiazole, sind als organische Stoffe thermisch nicht stabil. Darüber hinaus können sie unter den Betriebsbedingungen verdampfen oder können als klassische Anti-Wear-Additive vor allem mit den Metalloberflächen reagieren, d.h. sie reagieren überwiegend an den sich berührenden Rauhigkeitsspitzen ab, da dort durch die auftretenden Blitztemperaturen ausreichend Energie für eine chemische Reaktion mit der metallischen Reibschicht vorhanden ist. Sie können deshalb allenfalls untergeordnet als Anti-Pitting-Additive wirken. Festschmierstoffe, wie Molybdändisulfid haben dagegen aufgrund ihrer Dichte die Tendenz, sich aus Ölformulierungen abzusetzen und können außerdem korrosiv wirken. Da die Feststoffteilchen mit Teilchengrößen im pm Bereich eingesetzt werden, kommt es zu einer starken Beeinflussung des Fließverhaltens und einer Viskositätserhöhung sowie zu einem Abweichen vom newtonschen Fließverhalten. Dieses Verhalten verschlechtert die Verfügbarkeit des Additivs im Schmierspalt. REM Untersuchungen an den Oberflächen der metallischen Reibpartner zeigen, dass diese Strukturen bzw. Vertiefungen mit Abmessungen deutlich unterhalb 1 pm aufweisen. Diese Vertiefungen sind den pm großen Festschmierstoff Teilchen nicht zugänglich.
Ausgehend von dem Stand der Technik ist es die Aufgabe der vorliegenden Erfindung, eine Zusammensetzung zur Verfügung zu stellen, die auf die Oberflächen von Antriebselementen aufgetragen werden kann, um so die Ermüdungserscheinungen „Grauflecken" und „Grübchenbildung" auf diesen Antriebelementen zu verhindern oder vermindern. Die Zusammensetzung soll dabei keine flüchtigen organischen Verbindungen als Anti-Pitting-Additiv beinhalten und die Anti Pitting Additive sollen in einer flüssigen Phase mit Newton 'schem Fließverhalten vorliegen Dadurch können sie in die oben beschriebene Strukturen bzw. Vertiefungen eindringen und dort das Metallgefüge verstärken.
Gegenstand der vorliegenden Erfindung ist dementsprechend die Verwendung einer Zusammensetzung, die auf die Oberfläche der Antriebselemente aufgetragen wird, um Ermüdungserscheinungen zu verhindern oder zu vermeiden. Überraschenderweise wurde gefunden, dass durch den Auftrag einer Zusammensetzung, die oberflächenmodifizierte Nanoteilchen und ein Trägermaterial enthält, die Ermüdungsschäden, wie Graufleckenbildung und Grübchenbildung verhindert oder vermieden werden. Die in der Zusammensetzung enthaltenen oberflächenmodifizierten Nanopartikel sind oxidische Nanopartikel. Sie können ausgewählt werden aus Siliziumdioxid, Zinkoxid und Aluminiumoxid. Zur Oberflächenmodifizierung eignen sich insbesondere Oberflächenmodifizierungsreagenzien, wie Alkyl-, Aryl-, Alkylarylsilane mit mindestens 1 bis 3 dieser Alkyl-, Aryl- bzw. Alkylarylgruppen, die zusätzlich funktionale Gruppen, insbesondere Thiogruppen, Phosphatgruppen enthalten können und die einzeln oder in Kombination verwendet werden. Die optional vorhandenen Thio- oder Phosphatgruppen können zusätzlich eine Reaktion mit der zu schützenden Metalloberfläche eingehen. Bei der Oberflächenmodifizierung beträgt die Menge an Modifizierungsreagenz pro nm2 der Teilchenoberfläche 0,1 bis 10 Moleküle des Modifizierungsreagenz, bevorzugt 0,3 bis 5 Moleküle. Diese chemische Modifizierung bewirkt, dass die Nanopartikei in verschiedenen Grundölen monoteilig, d.h. ohne Aggregation vorliegen.
Es hat sich auch gezeigt, dass die Zusammensetzung Mischungen von Nanoteilchen enthalten kann, die sowohl voneinander verschieden sind und unterschiedlich Teilchengrößen aufweisen.
Die oberflächenmodifizierten Nanopartikei haben eine mittlere Teilchengröße von 10 nm bis kleiner 200 nm, bevorzugt 10 nm bis 100 nm. Die Teilchengröße von Nanoteilchen kann mit unterschiedlichen Verfahren bestimmt werden. Trockene Verfahren wie die Messung mit dem Transmissionselektronenmikroskop liefern dabei oft kleinere Teilchengrößen als die Messung mit der dynamischen Lichtstreuung, da bei dem letzten Verfahren eine relativ fest gebundene Solvenshülle größere Werte bedingt. Die Teilchengrößenangaben in dieser Anmeldung beziehen sich in der Regel auf Ergebnisse mit der dynamischen Lichtstreuung.
Das Trägermaterial wird ausgewählt aus der Gruppe bestehend aus Mineralölen, synthetischen Kohlenwasserstoffen, Polyglykole, Ester und Esterverbindungen, PFPE, native Öle und Derivate von nativen Ölen, aromatenhaltige Öle wie Phenylether und deren Mischungen. Besonders bevorzugt als Trägermaterial werden Polygkykole, Ester und synthetische Kohlenwasserstoffe eingesetzt.
Die erfindungsgemäße Zusammensetzung, die die Nanoteilchen und das Trägermittel enthält, kann des weiteren in ein Schmiermittel eingearbeitet werden. Dieses Schmiermittel kann in Form von Fetten, Pasten, Ölen vorliegen und wird ausgewählt aus der Gruppe bestehend aus einem Schmieröl oder Gemischen von Schmierölen, Polyglykolen, Silikonölen, Perfluorpolyether, Mineralölen, Estern, synthetischen Kohlenwasserstoffen, Phenylethern, nativen Ölen und Derivate von nativen Ölen, organischen oder anorganischen Verdickern, insbesondere PTFE, Graphit, Metalloxiden, Bornitrid, Molybdändisulfid, Phosphaten, Silikaten, Sulfonaten, Polyimiden, Metallseifen, Metallkomplexseifen, Harnstoffen und deren Gemische, Festschmierstoffen wie Graphit, M0S2.
Besonders bevorzugt sind Zusammensetzungen, die als Konzentrat in einem der oben erwähnten Schmiermittel zum Einsatz gebracht werden.
Außerdem können lösliche Additive, insbesondere aromatische Amine, Phenole, Phosphate, sowie Korrosionsschutzmittel, Oxidationsschutzmittel, Verschleißschutzmittel, Mittel zur Reibungsminderung, Mittel zum Schutz gegen Metalleinflüsse, UV-Stabilisatoren in der Zusammensetzung vorhanden sein.
Die erfindungsgemäße Zusammensetzung besteht im allgemeinen aus 0,1 bis 40 Gew.-% oberflächenmodifizierten Nanopartikeln, insbesondere 2 bis 20 Gew.-% oberflächenmodifizierten Nanopartikeln, sowie 99,9% bis 60% Gew.-% Trägermaterial, insbesondere 8 bis 80 Gew.-% Trägermaterial.
Die Einbringung der Nanoteilchen in das Trägermaterial kann dabei auf zweierlei Weise erfolgen. Zum einen können Dispersionen von Nanoteilchen in einem Sol- Gel-Prozess erzeugt, und in der Dispersion oberflächenmodifiziert werden und anschließend durch Zugabe des Trägermaterials und Abziehen der flüchtigen Lösemittel die Dispersion erstellt werden. Dieses Verfahren kann als Umdispergieren bezeichnet werden und hat den Vorteil, dass die Nanoteilchen immer von Flüssigkeit benetzt sind und damit die Gefahr der Agglomeration verringert wird. Dieses Verfahren wird in den nachfolgenden Beispielen beschrieben. Alternativ können nach dem Modifizieren der Oberflächen die Lösemittel entfernt und die trockenen Teilchen isoliert werden. Durch Eindispergieren unter Scherung und optional erhöhter Temperatur können die Teilchen eingearbeitet werden. Welches Verfahren anzuwenden ist, hängt von verschiedensten Faktoren wie Teilchenart, Teilchengrößen, Art und Ausmaß der Oberflächenbelegung und chemischer Natur des Trägermaterials ab und muss individuell abgestimmt werden.
Diese Zusammensetzung kann dann in ein beliebiges Schmiermittel eingebracht werden, sodass bezogen auf die Endformulierung von 0,1 - 10 % Nanoteilchen, 99,9 - 90 % Schmiermittel vorliegen.
Die nachfolgend beschriebenen Abbildungen zeigen: Figur 1 : Teilchengrößenverteilung einer Charge von Levasil 200N/30%
Figur 2: Teilchengröße der S1O2 Dispersion, wobei die Teilchen mit dem
Stöber Prozeß hergestellt und mit dyn. Lichtstreuung bestimmt wurden (Beispiel 1 )
Figur 3: Teilchengröße der S1O2 Dispersion nach Funktionalisierung mit
Butylsilan, die mit dyn. Lichtstreuung bestimmt wurde (Beispiel 2)
Figur 4: Teilchengrößenverteilung in Polyglykol (Beispiel 4)
Figur 5: Die Theologischen Eigenschaften der Nanoteilchen enthaltende
Zusammensetzung basierend auf Polyglykol in Abhängigkeit vom Schergefälle (Beispiele 4 a bis d und Vergleichsbeispiel 4 e)
Die Herstellung von SiO2-Nanoteilchen ist beispielsweise beschrieben in: W. Stöber, A. Fink, Journal of Colloid and Interface Science 26, 62 - 69, 1968 oder in: Ziehen Wang et al. Matehals Letters 6_1, 2007, 506 - 510. Der Nachteil bei Verwendung des Stöber-Prozesses bei der Herstellung ist, dass die entstehenden Dispersionen niedrige Gehalte an SiO2-Nanoteilchen aufweisen, in der Regel um 3 % Massengehalt S1O2. Die Stabilität der Nanoteilchen und auch die Art der sich ausbildenden Teilchen wird dabei durch die Wahl der Reaktionsbedingungen, hier insbesondere des pH Wertes bestimmt. Es gibt auch kommerzielle Quellen von nanoteiligen Si02-Dispersionen. Unter dem Handelsnamen Levasil (Akzo Nobel, früher HC Starck) werden wässrige Dispersionen mit Feststoffgehalten von bis zu 50% angeboten. Bei Levasil 200N/30% handelt es sich beispielsweise um eine 30%ige Dispersion, die mit Ammoniak stabilisiert ist. Die Teilchengröße wird mit ca. 55 nm angegeben. Diese Größenverteilung wird durch das Diagramm in Figur 1 bestätigt, die die Teilchenanalyse mit einem Malvern Zetasizer zeigt. Ebenfalls von Akzo Nobel unter dem Handelsnamen Bindzil sind S1O2- Nanodispersionen mit Teilchengrößen um 10 nm und Feststoffgehalten bis 40% erhältlich, deren Oberflächen mit Epoxysilan modifiziert sind.
Die Herstellung der wäßrigen Dispersionen wird auch in der EP 1 554 221 B1 und der EP 1 554 220 B1 beschrieben.
Beispiel 1 :
Verfahren zur Herstellung von unmodifizierten S1O2 Nanoteilchen aus Tetraethylorthosilikat (Stöberverfahren)
In einem 2 I Dreihalskolben mit KPG Rührer und Rückflußkühler werden 612,4 g Ethanol, 113,47 g H2O dest, 21 ,67 g NH3 (25%) vorgelegt und auf Rückfluß erhitzt. Eine Lösung von 95,68 g Tetraethylorthosilikat in 156,77 g Ethanol wird langsam über einen Tropftrichter zugegeben. Nach Beendigung der Zugabe wird die Reaktionslösung für weitere 4 h unter Rühren am Rückfluß gehalten. Es entsteht eine opaleszierende Dispersion. Die mittlere Teilchengröße beträgt 52 nm, wie in Figur 2 angegeben ist.
Beispiel 2:
Funktionalisierung der Oberfläche von Nanoteilchen mit einem Silanisierungsreagenz, die nach dem Stöberprozess gemäß Beispiel 1 hergestellt wurden Es ist bekannt, dass Laut Literatur, beispielsweise der zwischen 4 und 4,6 SiOH Gruppen pro nm2 auf Si02-Oberflächen zu erwarten sind (Dissertation von M. Braun (Beiträge zur physikalisch-chemischen Charakterisierung funktionaler Si02-Oberflächen, TU Chemnitz, 2009). Von Trialkoxyalkylsilanen oder Trialkoxyarylsilanen werden damit etwas mehr als ein Silan pro nm2 an Oberfläche der zu funktionalisierenden SiO2-Nanokugeln benötigt. Es können aber auch höhere oder niedrigere Silanmengen eingesetzt werden. Bei der vertretbaren Annahme, dass es sich um kugelförmige Teilchen handelt, kann die Spezifische Oberfläche in m2/g berechnet werden:
Oberfläche = 3000/(Durchmesser Nanokugeln in Nanometer) Die in Beispiel 1 hergestellte Dispersion (277,87 g) wird auf 78°C unter Rückfluß und Rühren erhitzt. Nach Erreichen der Temperatur werden 1 ,66 g n- Butyltrimethoxysilan in einem Schuß zugegeben. Die Lösung wird weitere 8 h unter Rühren bei 78°C gehalten. Figur 3 zeigt, dass die Teilchengrößenverteilung erhalten bleibt.
Beispiel 3:
Einarbeiten der funktionalisierten Nanoteilchen in Polyglykol
83,11 g der Dispersion aus funktionalisierten Nanoteilchen nach Beispiel 2 werden gemeinsam mit 28,10 g wassermischbaren Polyglykol (Monomere Ethylenoxid und Propylenoxid; kinematische Viskosität 100 mm2/sec bei 40°C) im Rotationsverdampfer unter Erhitzen mit dem Ölbad auf 100°C und Anlegen eines Vakuums, beispielsweise mit einer Wasserstrahlpumpe, eingeengt. Es resultiert eine klare Flüssigkeit. Das hohe Verhältnis Dispersion zu Öl ist erforderlich, um bei der geringen Konzentration an SiO2-Teilchen, die in den Dispersionen, die im Stöber-Prozeß hergestellt werden, zugrunde liegt, Konzentrationen von 10% Nanoteilchen im Polyglykol herstellen zu können. Diese Dispersion kann ebenfalls per dynamischer Lichtstreuung vermessen werden, allerdings muß dazu durch Zugabe des Grundöles auf eine Konzentration von 1% S1O2 verdünnt werden. Figur 4 zeigt, dass die Teilchengröße erhalten bleibt. Die Verbreiterung des Peaks läßt sich mit der höheren Viskosität des Polyglykols verglichen mit den Wasser/Ethanol Mischungen erklären. Die Verschiebung des Peaks zu größeren Teilchendurchmesser kann durch die Vergrößerung der Solvenshülle erklärt werden, da die Polyglykolmoleküle an der Teilchenoberfläche einen größeren Raum einnehmen als Wasser oder Ethanol. Beispiel 4:
Rheologische Eigenschaften von modifizierten Nanoteilchen in Polyglykol
Entsprechend den vorangegangen Beispielen werden Polyglykoldispersionen hergestellt, die in allen Fällen auf der Dispersion des Beispiels 1 aufbauen. Als Silane wurden neben Butyltrimethoxysilan auch Phenyltrimethoxysilan und Triethoxy(octyl)silan verwendet. Es wurde mit einem Silan pro nm2 analog Beispiel 2 modifiziert. In allen Fällen resultieren klare Flüssigkeiten nach Umdispergieren. Tabelle 1 zeigt, dass die kinematische Viskosität nur geringfügig erhöht ist. Der Gehalt an Si02 zeigt sich auch an der höheren Dichte.
Tabelle 1
Figure imgf000013_0001
In Tabelle 1 sind die Daten der 10%igen Dispersionen der mit Butylsilan, Octylsilan und Phenylsilan modifizierten Nanoteilchen in Polyglykol dargestellt.
Es wurde zusätzlich die dynamische Viskosität der Nanoteilchen-haltigen Öle in Abhängigkeit von der Scherrate mit einem Kegel/Platte System am Rheometer bestimmt. Die Scherrate wird logarithmisch von 50 sec"1 bis 5000 sec"1 gesteigert. Bei den drei oben beschriebenen Dispersionen bleibt die dynamischen Viskosität unabhängig von der Scherrate, man beobachtet also ein Newton 'sches Fließverhalten (siehe Figur 5). Im Gegensatz dazu zeigt eine 10%ige Dispersion von Aerosil OX 50 (Hydrophil pyrogene Kieselsäure BET 35 - 65 m2/g von der Firma Evonik, laut Herstellerangabe eine mittlere Primärteilchengröße von 40 nm und damit ähnlich den untersuchten Nanoteilchen) im identischen Polyglykol eine deutliche Abnahme der Viskosität mit der Scherung (Figur 5).
Die Aerosil enthaltende Mischung, die in Figur 5 mit 4e bezeichnet ist, zeigt damit eine ausgeprägte Abweichung vom Newton 'sehen Fließverhalten, was mit einer Wechselwirkung der unmodifizierten Teilchen erklärt werden kann.
Beispiel 5
Funktionalisierung und Umdispergieren ausgehend von Levasil 200N/30% 404 g Levasil 200N/30% werden unter Rühren auf etwa 85°C erhitzt. 395 g Ethanol und 11 ,78 g Butyltrimethoxysilan (entspricht etwa 5 Silanmoleküle pro nm2 Oberfläche) werden in einem Schuß zugegeben und ca. 1 h unter Rühren bei der Temperatur gehalten. Bereits in der Hitze bildet sich eine gelartige Konsistenz aus.
21 ,06 g des Gels werden mit 81 ,89 g Polyglykolöl, wie oben beschrieben, umdispergiert. Es resultiert eine klare Flüssigkeit (ca. 3,8 % S1O2).
Tabelle 2
Figure imgf000015_0001
Die Tabelle2 zeigt geringen Einfluss auf die Theologischen Eigenschaften durch die Nanoteilchen. Es sind also auch hochkonzentrierte Dispersionen, wie Levasil, als Nanoteilchenquelle möglich.
Beispiel 6
Zur Untersuchung des Einflusses der Nanoteilchen auf Reibung und Verschleiß wird durch Verdünnen mit Grundöl eine Nanoteilchendispersion mit einem Gehalt von1 % Si02 hergestellt.
Tabelle 3
Figure imgf000016_0001
Die Nanoteilchen in Beispiel 6 haben einen geringen, vernachlässigbaren Einfluß auf die rheologischen Eigenschaften, beim VKA Dauerverschleiß ergibt sich eine leichte Verschlechterung. Im SRV wird der Verschleißfaktor etwas erhöht, der Reibwert bleibt gleich. Bei der Schweißkraft wird eine geringfügige Verbesserung beobachtet. Die Wirkung auf Reibung und Verschleiß ist also abhängig von den Versuchsbedingungen und kann auch zu Verschlechterungen führen. Damit ist keine Wirkung als Anti-Wear-Additiv gegeben.
Beispiel 7
Wirkung der modifizierten Nanoteilchen in einer auf Polyglykol basierenden Getriebeölformulierung
Getriebeölformulierungen wurden mit 60 nm großen SiO2-Teilchen mit einer Butyl-Oberflächenmodifizierung hergestellt. Dazu wurde eine 10%ige Dispersion der modifizierten Nanoteilchen in Polyglykol verwendet, die einfach in die Formulierung eingerührt werden kann. Die Konzentration der Nanoteilchen in der Endformulierung beträgt 1 %. Die Formulierung wurde in zwei Viskositätslagen (100 und 220 est) hergestellt.
Tabelle 4
Nanoteilchen Nanoteilchen enthaltende enthaltende
Referenz 220 Formulierung, Referenzbeisp. Formulierung est 220 est 100 est 100 est wassermischbares Polyglykol
Monomere EthylenoxioV
Propylenoxid 94, 15 84, 15 94, 15 84, 15
Antioxidantgemisch 3 3 3 3
Antiwearadditiv, 2,3 2,3 2,3 2,3
Korrosionschutzadditive, 0,305 0,305 0,305 0,305
0,2
Antischaum, Silikonbasis 0,2 0,2 0,2
10% Dispersion von butyl
funktionalisierten Si02
Nanoteilchen in Polyglykol
Teilchengröße ca. 60 nm 10 10 Mit den oben beschriebenen Zusammensetzungen wurde nun untersucht, wie sich die Verwendung von Nanopartikeln im Hinblick auf die Graufleckentragfähigkeit auswirkt.
Tabelle 5
Nanoteilchen
enthaltende Nanoteilchen
Referenzbeisp. Formulierung, Referenzbeispiel enthaltende
220 est 220 est 100 est Formulierung 100 est
Viskosität Viskositäts- und Dichtedaten
236,7 238,7 98,3 106,5
V 40°C (mm2/sec)
V 100°C 41 ,3 41 ,7 19,4 19,9 (mm2/sec)
230,0 230,5 220,4 211 ,1
VI
Dichte 40°C (g/ml) 1 ,042 1 ,046 1 ,026 1 ,032
FZG-Graufleckenkurztest 2200U7min. T=90°C
Gewichtsänderung
23 7 23 12
Ritzel/Rad
Gesamt
Graufleckenfläche
nach
Schadstufe 7 15,70% 2,50% 10% 2,90%
(Mittel 3 Flanken
Graufleckenfläche
nach 5,20%
Schadstufe 9 20% 4,50% 13,80%
(Mittel 3 Flanken
Profilabweichung
nach
Schadstufe 7 3,3 μηι 0 μσι 1 ,8 πΊ 5,3 μηη
(Mittel 3 Flanken)
Profilabweichung
nach
Schadstufe 9 3,3 μηη 0 μιτι 0 mm 5 μηι
(Mittel 3 Flanken)
SKS GFKT < KS 9 SKS GFKT < KS 9 SKS GFKT < KS 9 SKS GFKT < KS 9 Graufleckenbildung Graufleckenbildung Graufleckenbildung Graufleckenbildung ist kaum zu ist kaum zu ist kaum zu erwarten ist kaum zu erwarten erwarten erwarten Wie aus Tabelle 5 ersichtlich, ist die Graufleckenbildung deutlich reduziert, wenn Nanopartikel in einem Polyglykol-Getriebeöl verwendet werden. Insgesamt lässt sich feststellen, dass durch die Nanopartikel die Graufleckentragfähigkeit durch die Verwendung der beiden Zusammensetzungen, die die Nanopartikel enthalten, nochmals deutlich verbessert wurde, wenn sie als Auftrag auf den Oberflächen der Antriebselemente ausgehend von einem guten Niveau Referenzen 100 est und 220 est) vorhanden sind.

Claims

Patentansprüche
Verwendung einer Zusammensetzung enthaltend
(a) 0,1 bis 40 Gew.-% oberflächenmodifizierte Nanopartikel und
(b) 99,9 bis 60 Gew.-% ein Trägermaterial,
wobei die Zusammensetzung auf die Oberflächen von Antriebselementen zur Verhinderung oder Verminderung von Ermüdungsschäden, insbesondere Grübchenbildung oder Graufleckigkeit aufgetragen wird.
Verwendung einer Zusammensetzung nach Anspruch 1 , wobei die oberflächenmodifizierten Nanopartikel oxidische Nanopartikel sind.
Verwendung einer Zusammensetzung nach einem der Ansprüche 1 oder 2, wobei die oberflächenmodifizierten Nanopartikel ausgewählt werden aus Siliziumdioxid, Zinkoxid und Aluminiumoxid.
Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 3, wobei die Oberflächenmodifizierung über Oberflächenmodifizierungsreagenzien, ausgewählt aus Alkyl-, Aryl-, Alkylarylsilanen mit mindestens 1 bis 3 dieser Alkyl-, Aryl- und Alkylarylgruppen, die zusätzlich funktionale Gruppen, insbesondere Thiogruppen, Phosphatgruppen enthalten können, und die einzeln oder in Kombination verwendet werden und wobei die zusätzlichen funktionalen Gruppen mit Metalloberflächen reagieren können, bewirkt wird.
Verwendung einer Zusammensetzunge nach einem der Ansprüche 1 bis 4, wobei die Menge an Modifizierungsreagenz pro nm2 der Teilchenoberfläche 0,1 mit 10 Moleküle des Modifizierungsreagenz beträgt.
Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 5, wobei die Zusammensetzung Mischungen von Nanoteilchen enthält, die sowohl verschiedene Substanzen als auch verschiedene Teilchengrößen aufweisen.
Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 6, wobei die oberflächenmodifizierten Nanopartikel eine Teilchengröße von 10 nm bis kleiner 200 nm aufweisen, wobei die Teilchengröße mit dynamischer Lichtstreuung in Dispersion bestimmt wird.
Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 7, wobei das in der Zusammensetzung vorhandene Trägermaterial ausgewählt wird aus der Gruppe bestehend aus synthetischen und nativen Esterölen, Polyglykolen, synthetischen Kohlenwasserstoffölen.
Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 8, wobei die Zusammensetzung in ein Schmiermittel ausgewählt aus der Gruppe der Fette, Pasten, Öle eingebracht wird.
Verwendung einer Zusammensetzung nach Anspruch 9, wobei das Schmiermittel ausgewählt wird aus der Gruppe bestehend aus einem Schmieröl oder Gemischen von Schmierölen, Polyglykole, Silikonöle, Perfluorpolyether, Mineralölen, Esterölen, Kohlenwasserstoffölen, Phenyletherölen, nativen Ölen, Derivaten von nativen Ölen, einem organischen oder anorganischen Verdicker, insbesondere PTFE, Graphit, Metalloxiden, Bornitrid, Molybdändisulfid, Phosphaten, Silikaten, Sulfonaten, Polyimiden, Metallseifen, Metallkomplexseifen, Harnstoffen und deren Gemische, Festschmierstoffen wie Graphit, MoS2.
5
11. Verwendung einer Zusammensetzung nach einem der Ansprüche 9 oder 10, wobei in der Zusammensetzung des weiteren lösliche Additive, insbesondere aromatische Amine, Phenolen, Phosphaten, Schwefelträger sowie Korrosionsschutzmittel, Oxidationsschutzmittei, l o Verschleißschutzmittel, Mittel zur Reibungsminderung, Mittel zum Schutz gegen Metalleinflüsse, UV-Stabilisatoren vorhanden sind.
Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 11 , die in einem Schmiermittel bezogen auf die Endformulierung in einer Menge on 0,1 bis 10% Nanoteilchen, 99,9 bis 90% Schmiermittel vorliegt.
0
PCT/EP2012/001997 2011-06-01 2012-05-09 Verwendung von nanoskaligen materialien in einer zusammensetzung zur verhinderung von ermüdungserscheinungen im oberflächennahen gefüge von antriebselementen WO2012163468A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201280025402.6A CN103732728A (zh) 2011-06-01 2012-05-09 组合物中的纳米级材料用于阻止在驱动元件的表面附近结构中的疲劳现象的用途
KR1020137031294A KR101594771B1 (ko) 2011-06-01 2012-05-09 표면-근접 구조의 구동부품에서 피로현상을 예방하기 위한 조성물
BR112013031020-0A BR112013031020B1 (pt) 2011-06-01 2012-05-09 uso de materiais em nanoescala em uma composição para evitar fenômenos de fadiga perto da superfície dos elementos de acionamento
DK12720427.9T DK2714866T3 (en) 2011-06-01 2012-05-09 Use of nanoscale materials in a composition to prevent fatigue phenomena in surface-driven structures of drive elements
ES12720427.9T ES2589812T3 (es) 2011-06-01 2012-05-09 Uso de materiales nanométricos en una composición para evitar los fenómenos de fatiga en la estructura cercana a la superficie de elementos de accionamiento
JP2014513067A JP5762629B2 (ja) 2011-06-01 2012-05-09 駆動構成要素の表面に近い組織における疲労現象を防止するための、組成物中のナノスケール材料の使用
US14/122,603 US9296970B2 (en) 2011-06-01 2012-05-09 Use of nanoscale materials in a composition for preventing symptoms of fatigue in the surface-closed structure of drive elements
EP12720427.9A EP2714866B1 (de) 2011-06-01 2012-05-09 Verwendung von nanoskaligen materialien in einer zusammensetzung zur verhinderung von ermüdungserscheinungen im oberflächennahen gefüge von antriebselementen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011103215A DE102011103215A1 (de) 2011-06-01 2011-06-01 Verwendung von nanoskaligen Materialien in einer Zusammensetzung zur Verhinderung von Ermüdungserscheinungen im oberfläschennahen Gefüge von Antriebselementen
DE102011103215.4 2011-06-01

Publications (1)

Publication Number Publication Date
WO2012163468A1 true WO2012163468A1 (de) 2012-12-06

Family

ID=46062230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/001997 WO2012163468A1 (de) 2011-06-01 2012-05-09 Verwendung von nanoskaligen materialien in einer zusammensetzung zur verhinderung von ermüdungserscheinungen im oberflächennahen gefüge von antriebselementen

Country Status (10)

Country Link
US (1) US9296970B2 (de)
EP (1) EP2714866B1 (de)
JP (1) JP5762629B2 (de)
KR (1) KR101594771B1 (de)
CN (1) CN103732728A (de)
BR (1) BR112013031020B1 (de)
DE (1) DE102011103215A1 (de)
DK (1) DK2714866T3 (de)
ES (1) ES2589812T3 (de)
WO (1) WO2012163468A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117345A (ja) * 2013-12-19 2015-06-25 株式会社アドマテックス 滑剤組成物及びその製造方法
CN112961721A (zh) * 2020-12-30 2021-06-15 徐州振峰新材料科技有限公司 一种润滑油用含石墨烯的润滑防护添加剂
CN115023484A (zh) * 2019-12-20 2022-09-06 道达尔能源一技术公司 用于齿轮的润滑组合物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104450007A (zh) * 2014-11-19 2015-03-25 上海应用技术学院 一种导电用耐高温润滑脂及其制备方法
RU2582999C1 (ru) * 2015-02-20 2016-04-27 Общество с ограниченной ответственностью "Инженерная смазочная компания "МИСКОМ" Композитная смазка
JP6843123B2 (ja) * 2015-05-04 2021-03-17 ピクセリジェント・テクノロジーズ,エルエルシー 改良した潤滑剤を可能にするナノ添加剤
KR101714394B1 (ko) * 2015-11-30 2017-03-10 계명대학교 산학협력단 내열성이 우수한 베어링용 고체 윤활제 제조방법
CN106398805A (zh) * 2016-08-31 2017-02-15 中山大学惠州研究院 一种利用表面改性纳米粒子改进锂基润滑脂弹性变形能力的方法
DE102017004541A1 (de) 2017-05-11 2018-11-15 Klüber Lubrication München Se & Co. Kg Schmierstoffzusammensetzung
CN109233943B (zh) * 2018-09-26 2021-09-03 山东莱克科技有限公司 一种纳米材料制备的润滑剂及其制备方法
JP7294546B2 (ja) 2021-03-24 2023-06-20 Dic株式会社 粒子含有グリース組成物
CN113322119B (zh) * 2021-06-29 2022-03-01 河南大学 一种甲醇发动机专用纳米节能润滑油及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1644934A1 (de) 1967-01-30 1971-06-03 Mobil Oil Corp Schmiermittel
US20030092585A1 (en) 2001-11-13 2003-05-15 The Lubrizol Corporation Lubricating compositions and concentrates containing an antiwear amount of a thiadiazole
EP1642957A1 (de) 2004-09-30 2006-04-05 Toyoda Koki Kabushiki Kaisha Schmierfettzusammensetzung für homokinetische Gelenke vom Kugeltyp und homokinetische Gelenke vom Kugeltyp diese enthaltend
WO2008127395A2 (en) * 2007-04-11 2008-10-23 Cerion Technologies, Inc. Ceramic high temperature lubricity agent
EP1554220B1 (de) 2002-10-14 2009-01-21 Akzo Nobel N.V. Kolloidale siliciumdioxiddispersion
DE102007036856A1 (de) 2007-08-06 2009-02-26 Evonik Rohmax Additives Gmbh Verwendung von Estergruppen-umfassenden Polymeren als Antifatigue-Additive
CN102041140A (zh) * 2010-01-19 2011-05-04 无锡惠源包装有限公司 一种抗微点蚀的齿轮油复合添加剂

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140476A (ja) * 1997-08-05 1999-05-25 Nippon Shokubai Co Ltd 潤滑剤
JP3466920B2 (ja) * 1998-05-15 2003-11-17 マブチモーター株式会社 ウォーム減速機付き小型モータ
JP4714977B2 (ja) * 2000-09-27 2011-07-06 Jfeスチール株式会社 転がり軸受の潤滑方法
JP2004150473A (ja) * 2002-10-29 2004-05-27 Jfe Steel Kk 転がり軸受の潤滑方法
JP2005097514A (ja) * 2003-08-27 2005-04-14 Nsk Ltd 転動装置用潤滑剤及び転動装置
JP4444680B2 (ja) * 2004-01-27 2010-03-31 有限会社ナプラ 潤滑剤組成物
JP2006144827A (ja) * 2004-11-16 2006-06-08 Nsk Ltd 転動装置
US20070161518A1 (en) * 2006-01-11 2007-07-12 National Starch And Chemical Investment Holding Corporation Boron Nitride Based Lubricant Additive
KR20080041870A (ko) * 2006-11-08 2008-05-14 에스케이에너지 주식회사 내연기관용 윤활유 조성물
US8741821B2 (en) * 2007-01-03 2014-06-03 Afton Chemical Corporation Nanoparticle additives and lubricant formulations containing the nanoparticle additives
US20080269086A1 (en) * 2007-04-30 2008-10-30 Atanu Adhvaryu Functionalized nanosphere lubricants
EP2028224A1 (de) * 2007-07-30 2009-02-25 Nanoresins AG Weichmacherzusammensetzung
CN102272277A (zh) * 2008-12-30 2011-12-07 3M创新有限公司 润滑剂组合物及形成方法
CA2750658C (en) * 2009-01-26 2013-12-03 Bakers Hughes Incorporated Additives for improving motor oil properties
EP2311926A1 (de) * 2009-10-09 2011-04-20 Rhein Chemie Rheinau GmbH Additive für Schmiermittel zur Verbesserung der tribologischen Eigenschaften, ein Verfahren zu deren Herstellung und deren Verwendung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1644934A1 (de) 1967-01-30 1971-06-03 Mobil Oil Corp Schmiermittel
US20030092585A1 (en) 2001-11-13 2003-05-15 The Lubrizol Corporation Lubricating compositions and concentrates containing an antiwear amount of a thiadiazole
EP1554220B1 (de) 2002-10-14 2009-01-21 Akzo Nobel N.V. Kolloidale siliciumdioxiddispersion
EP1554221B1 (de) 2002-10-14 2009-07-15 Akzo Nobel N.V. Wässrige siliciumdioxiddispersion
EP1642957A1 (de) 2004-09-30 2006-04-05 Toyoda Koki Kabushiki Kaisha Schmierfettzusammensetzung für homokinetische Gelenke vom Kugeltyp und homokinetische Gelenke vom Kugeltyp diese enthaltend
WO2008127395A2 (en) * 2007-04-11 2008-10-23 Cerion Technologies, Inc. Ceramic high temperature lubricity agent
DE102007036856A1 (de) 2007-08-06 2009-02-26 Evonik Rohmax Additives Gmbh Verwendung von Estergruppen-umfassenden Polymeren als Antifatigue-Additive
CN102041140A (zh) * 2010-01-19 2011-05-04 无锡惠源包装有限公司 一种抗微点蚀的齿轮油复合添加剂

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201156, Derwent World Patents Index; AN 2011-G53057, XP002677829 *
LI X ET AL: "Surface-modification in situ of nano-SiO2 and its structure and tribological properties", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM, NL, vol. 252, no. 22, 15 September 2006 (2006-09-15), pages 7856 - 7861, XP024892766, ISSN: 0169-4332, [retrieved on 20060915], DOI: 10.1016/J.APSUSC.2005.09.068 *
W. STÖBER; A. FINK, JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 26, 1968, pages 62 - 69
ZICHEN WANG ET AL., MATERIALS LETTERS, vol. 61, 2007, pages 506 - 510

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117345A (ja) * 2013-12-19 2015-06-25 株式会社アドマテックス 滑剤組成物及びその製造方法
CN115023484A (zh) * 2019-12-20 2022-09-06 道达尔能源一技术公司 用于齿轮的润滑组合物
CN112961721A (zh) * 2020-12-30 2021-06-15 徐州振峰新材料科技有限公司 一种润滑油用含石墨烯的润滑防护添加剂

Also Published As

Publication number Publication date
DE102011103215A1 (de) 2012-12-06
JP5762629B2 (ja) 2015-08-12
EP2714866B1 (de) 2016-06-29
BR112013031020B1 (pt) 2019-11-19
ES2589812T3 (es) 2016-11-16
BR112013031020A2 (pt) 2018-04-24
JP2014518932A (ja) 2014-08-07
EP2714866A1 (de) 2014-04-09
CN103732728A (zh) 2014-04-16
KR101594771B1 (ko) 2016-02-17
DK2714866T3 (en) 2016-09-19
US20140162914A1 (en) 2014-06-12
KR20140018976A (ko) 2014-02-13
US9296970B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
EP2714866B1 (de) Verwendung von nanoskaligen materialien in einer zusammensetzung zur verhinderung von ermüdungserscheinungen im oberflächennahen gefüge von antriebselementen
Azman et al. Dispersion stability and lubrication mechanism of nanolubricants: a review
Luo et al. Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives
Azman et al. Study of tribological properties of lubricating oil blend added with graphene nanoplatelets
EP2268725B1 (de) Partikuläre wachskomposite und verfahren zu deren herstellung sowie deren verwendung
Rudenko et al. Talc as friction reducing additive to lubricating oil
DE102006058224B4 (de) Verwendung nanosphärischer Additive in Schmiermittelformulierungen
Bhaumik et al. Analysis of anti-wear properties of CuO nanoparticles as friction modifiers in mineral oil (460cSt viscosity) using pin-on-disk tribometer
V. Thottackkad et al. Experimental studies on the tribological behaviour of engine oil (SAE15W40) with the addition of CuO nanoparticles
Alves et al. Nanolubrication mechanisms: Influence of size and concentration of CuO nanoparticles
WO2012004236A1 (de) Plättchenförmige eisenpigmente, magnetorheologisches fluid und vorrichtung
Dhanola et al. Influence of different surfactants on the stability and varying concentrations of TiO 2 nanoparticles on the rheological properties of canola oil-based nanolubricants
Haldar et al. Enhancing the tribological properties of hydraulic oil-based nanolubricants using MWCNT-SiO2 hybrid nanoparticles
Duan et al. Tribological properties and lubrication mechanism of manganese phosphate trihydrate as lubricant additives
Lin et al. Well-Dispersed Graphene Enhanced Lithium Complex Grease Toward High-Efficient Lubrication
EP0275351A1 (de) Schmierfähige Hydraulikflüssigkeit, insbesondere Bremsflüssigkeit, Verfahren zu ihrer Herstellung und ihre Verwendung
EP3622042B1 (de) Schmierstoffzusammensetzung
EP1577372A1 (de) Stabile wässrige Dispersion von Partikeln sowie Verwendung und Herstellungsverfahren solcher Dispersionen
Dong et al. Preparation and oil lubrication of polyvinylidene fluoride (PVDF) nanospheres
EP2746369B1 (de) Mittel zur Beimischung in einen Betriebsstoff für eine technische Anlage, Konzentrat zur Beimischung in einen Betriebsstoff für eine technische Anlage und Betriebsstoff
Sajith et al. An investigation of the effect of addition of nanoparticles on the properties of lubricating oil
KR102115607B1 (ko) 표면 처리된 알루미나 나노입자를 이용한 회전기기용 나노유체 윤활유
CH644890A5 (en) Lubricant for use at high temperatures
Gupta et al. Combination of nano-particles of graphite and PTFE in the right amount for synergism as anti-wear and extreme pressure additive in oil
DE19909352A1 (de) Schmierstoffzusammensetzung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12720427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012720427

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137031294

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014513067

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14122603

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013031020

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013031020

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131202