WO2012161331A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2012161331A1
WO2012161331A1 PCT/JP2012/063556 JP2012063556W WO2012161331A1 WO 2012161331 A1 WO2012161331 A1 WO 2012161331A1 JP 2012063556 W JP2012063556 W JP 2012063556W WO 2012161331 A1 WO2012161331 A1 WO 2012161331A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
belt
layer
carcass
belt layer
Prior art date
Application number
PCT/JP2012/063556
Other languages
English (en)
French (fr)
Inventor
幸恵 浦田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2013516467A priority Critical patent/JP5944895B2/ja
Priority to EP12790356.5A priority patent/EP2716475B1/en
Priority to CN201280025611.0A priority patent/CN103561970A/zh
Priority to US14/122,393 priority patent/US20140124117A1/en
Publication of WO2012161331A1 publication Critical patent/WO2012161331A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C15/0036Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with high ply turn-up, i.e. folded around the bead core and terminating radially above the point of maximum section width
    • B60C15/0045Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with high ply turn-up, i.e. folded around the bead core and terminating radially above the point of maximum section width with ply turn-up up to the belt edges, i.e. folded around the bead core and extending to the belt edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C15/0036Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with high ply turn-up, i.e. folded around the bead core and terminating radially above the point of maximum section width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/06Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend diagonally from bead to bead and run in opposite directions in each successive carcass ply, i.e. bias angle ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2276Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/10801Structure made up of two or more sets of plies wherein the reinforcing cords in one set lie in a different angular position relative to those in other sets

Definitions

  • the present invention relates to a tire including a pair of bead cores, a carcass layer having a toroidal shape straddling between the pair of bead cores, and a belt layer disposed adjacent to the carcass layer.
  • a pair of bead cores, a carcass layer having a toroidal shape straddling between a pair of bead cores, a belt layer disposed adjacent to the carcass layer, and a bead core, a carcass layer, and a rubber layer covering the belt layer Tires equipped are known.
  • the tire includes a bead portion having a bead core, a tread portion having a tire tread surface, a side portion forming a side surface of the tire, and a shoulder portion straddling the tread portion from the side portion.
  • a tire in which a carcass layer is arranged such that a carcass layer folded back toward the outside in the tire width direction by a bead core is overlapped in a tread portion (for example, Patent Document 1).
  • the weight of the tire is reduced while maintaining the rigidity of the tread portion as compared with a tire in which a plurality of carcass layers are stacked separately.
  • the rigidity of the tread portion is only maintained with respect to a tire in which a plurality of carcass layers are stacked separately. That is, no consideration is given to the belt layer. Therefore, in the tire described above, the carcass cord provided in the carcass layer has an inclination of 8 ° to 12 ° with respect to the tire circumferential direction.
  • the belt layer has a belt cord having a predetermined inclination with respect to the tire circumferential direction.
  • the present invention has been made to solve the above-described problem, and omits at least one belt layer among a plurality of belt layers while ensuring rigidity against shear stress in the tire width direction.
  • An object of the present invention is to provide a tire that makes it possible.
  • a tire according to a first feature is adjacent to a pair of bead cores (bead core 12), a carcass layer (carcass layer 20) having a toroidal shape straddling the pair of bead cores, and the carcass layer.
  • a belt layer (belt layer 40).
  • the carcass layer is folded back toward the outside in the tire width direction by the bead core.
  • the carcass layer folded back by the bead core is disposed so as to be overlapped in a tread portion (tread portion 30) having a tire tread surface.
  • the carcass layer is formed by a plurality of carcass cords (carcass cords 21) having an inclination of 30 ° to 50 ° with respect to the tire circumferential direction.
  • the treat tensile rigidity of the carcass layer is not less than 90 kgf / mm 2 and not more than 300 kgf / mm 2.
  • the overlap width of the carcass layer folded back by the bead core in the tire width direction is 1/3 or more of the width of the belt layer.
  • the belt layer has a plurality of belt cords (belt cords 41) extending along the tire circumferential direction.
  • the strength of one belt cord among the plurality of belt cords is greater than the strength of one carcass cord among the plurality of carcass cords.
  • the belt layer has a plurality of belt cords having an inclination of ⁇ 10 ° to 0 ° with respect to the tire circumferential direction.
  • the treat tensile rigidity of the belt layer is 750 kgf / mm 2 or more, and the treat tensile strength of the belt layer is 2100 kgf or more per 50 mm width.
  • the tire includes, as the belt layer, a first belt layer and a second belt layer disposed adjacent to the tire radial direction of the first belt layer.
  • the second belt layer has a plurality of belt cords having a predetermined angle of inclination with respect to the tire circumferential direction.
  • the first belt layer has a plurality of belt cords having an inclination larger than the predetermined angle with respect to the tire circumferential direction.
  • a tire that can omit at least one belt layer among a plurality of belt layers while securing rigidity against shear stress in the tire width direction.
  • FIG. 1 is a perspective view showing a tire 1 according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a cross section in the tire width direction of the tire 1 according to the first embodiment.
  • FIG. 3 is a schematic view of the tire 1 according to the first embodiment viewed from the outside in the tire radial direction.
  • FIG. 4 is a schematic diagram illustrating a cross section in the tire width direction of the tire 1 according to the first modification.
  • FIG. 5 is a schematic diagram illustrating a cross section in the tire width direction of the tire 1 according to the second modification.
  • the tire according to the embodiment includes a pair of bead cores, a carcass layer having a toroidal shape straddling between the pair of bead cores, and a belt layer disposed adjacent to the carcass layer.
  • the carcass layer is folded back toward the outside in the tire width direction by a bead core.
  • the carcass layer folded back by the bead core is disposed so as to be overlapped at the tread portion having the tire tread surface.
  • the carcass layer is formed by a plurality of carcass cords having an inclination of 30 ° or more and 50 ° or less with respect to the tire circumferential direction.
  • the inclination of the carcass cord with respect to the tire circumferential direction is 30 ° or more, rigidity against shear stress in the tire width direction can be ensured by the carcass layer. Since rigidity against shear stress in the tire width direction is ensured by the carcass layer, even if at least one belt layer is omitted from the plurality of belt layers, the rigidity of the tire as a whole against shear stress in the tire width direction is achieved. Is secured.
  • FIG. 1 is a perspective view showing a tire 1 according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a cross section in the tire width direction of the tire 1 according to the first embodiment.
  • FIG. 3 is a schematic view of the tire 1 according to the first embodiment viewed from the outside in the tire radial direction.
  • the pneumatic tire 1 includes a pair of bead portions 10, a carcass layer 20, a tread portion 30, a belt layer 40, and sidewall portions 50.
  • the bead unit 10 has a bead core 12 and a bead filler 14.
  • the bead core 12 is provided to fix the tire 1 to a rim (not shown).
  • the bead core 12 is configured by a bead wire (not shown).
  • the bead filler 14 is provided to increase the rigidity of the bead portion 10.
  • the carcass layer 20 has a toroidal shape straddling between the pair of bead portions 10. As shown in FIG. 2, the carcass layer 20 is folded back at the bead core 12 in the tire width direction. Specifically, the carcass layer 20 is folded back while wrapping the bead core 12 and the bead filler 14. The carcass layer 20 folded back by the bead core 12 is disposed so as to be overlapped at the tread portion 30. Specifically, the carcass layer 20 has an outer carcass layer 20A folded back at one bead core 12, an outer carcass layer 20B folded back at the other bead core 12, and the outer carcass layer 20A and the outer carcass layer 20B. And an inner carcass layer 20C located inside the tire radial direction or the tire width direction.
  • the outer carcass layer 20 ⁇ / b> A and the outer carcass layer 20 ⁇ / b> B constitute an overlapping region 20 ⁇ / b> D that is overlapped with each other in the tread portion 30.
  • the overlap width X of the carcass layer 20 folded back by the bead core 12 (the width X of the overlap region 20D) is 1 / of the width Y of the belt layer 40. It is preferably 3 or more.
  • the carcass layer 20 is formed by a plurality of carcass cords 21 having an inclination ⁇ with respect to the tire circumferential direction (equatorial center line CL).
  • the inclination ⁇ of the carcass cord 21 with respect to the tire circumferential direction is not less than 30 ° and not more than 50 °. It should be noted that the carcass cord 21A that forms the outer carcass layer 20A and the carcass cord 21B that forms the outer carcass layer 20B intersect in the overlapping region 20D.
  • the carcass cord 21 is made of an organic fiber such as PET (Polyethylene Terephthalate) or nylon.
  • the treat tensile rigidity of one carcass layer 20 is not less than 90 kgf / mm 2 and not more than 300 kgf / mm 2.
  • the rigidity of one carcass cord 21 is preferably 330 kgf / mm 2 or more and 526 kgf / mm 2 or less. Further, it is preferable that the number of carcass cords 21 to be driven per width of 50 mm is 30 to 65.
  • Ef is the rigidity (Young's modulus) of the carcass cord 21
  • Em is the rigidity (Young's modulus) of the rubber covering the carcass cord 21
  • vf is the unit volume of the carcass cord 21 covered with rubber. This is the ratio of the carcass cord 21 included in the hit (the volume content of the cord).
  • r is the diameter of the carcass cord 21.
  • the tread portion 30 has a tire tread surface.
  • the tread portion 30 is composed of a plurality of blocks divided by a circumferential groove and a width direction groove.
  • the belt layer 40 is located on the outer side in the tire radial direction with respect to the carcass layer 20 (the outer carcass layer 20A and the outer carcass layer 20B). Moreover, the belt layer 40 has a plurality of belt cords 41 as shown in FIG.
  • the plurality of belt cords 41 have an inclination of ⁇ 10 ° or more and 0 ° or less with respect to the tire circumferential direction (equatorial center line CL). Note that, with respect to the tire circumferential direction (equatorial center line CL), the clockwise direction is the “+” direction and the counterclockwise direction is the “ ⁇ ” direction.
  • the belt cord 41 is made of, for example, steel or Kevlar.
  • the treat tensile rigidity of the belt layer 40 is 750 kgf / mm 2 or more.
  • the treat tensile strength of the belt layer 40 per width of 50 mm is 2100 kgf or more.
  • the strength of one belt cord 41 is preferably larger than the strength of one carcass cord 21.
  • the rigidity of one belt cord 41 is preferably 526 kgf or more / mm 2 or more, and the strength of one belt cord 41 is preferably 50 kgf or more.
  • the number of driven belt cords 41 per 50 mm is preferably 30 to 65.
  • Ef is the rigidity (Young's modulus) of the belt cord 41
  • Em is the rigidity (Young's modulus) of the rubber covering the belt cord 41
  • vf is the unit volume of the belt cord 41 covered with rubber. This is the ratio of the belt cord 41 included in the hit (the volume content of the cord).
  • is the inclination of the belt cord 41 with respect to the tire circumferential direction.
  • the sidewall portions 50 are formed at both ends of the tread portion 30 in the tire width direction.
  • the sidewall portion 50 is located between the bead portion 10 and the tread portion 30.
  • the carcass layer 20 can ensure rigidity against shear stress in the tire width direction. Since the rigidity with respect to the shear stress in the tire width direction is ensured by the carcass layer 20, even if at least one belt layer is omitted from the plurality of belt layers, the tire 1 as a whole has a shear stress in the tire width direction. As a result, a reduction in steering stability is suppressed.
  • the belt layer 40 is located on the outer side in the tire radial direction with respect to the carcass layer 20 (the outer carcass layer 20A and the outer carcass layer 20B).
  • the belt layer 40 is positioned on the inner side in the tire radial direction with respect to the outer carcass layer 20A and the outer carcass layer 20B, and the tire radial direction with respect to the inner carcass layer 20C. Located inside.
  • the belt layer 40 is a single layer has been described as an example.
  • the tire is arranged as a belt layer 40 adjacent to the first belt layer 40A and the first belt layer 40A in the tire radial direction.
  • Belt layer 40B that is, the belt layer 40 is composed of a first belt layer 40A and a second belt layer 40B. Note that the second belt layer 40B is disposed on the outer side in the tire radial direction than the first belt layer 40A.
  • the second belt layer 40B has a plurality of belt cords 41B having a predetermined angle of inclination with respect to the tire circumferential direction.
  • the predetermined angle is preferably an inclination of ⁇ 10 ° or more and 0 ° or less with respect to the tire circumferential direction (equatorial center line CL).
  • the first belt layer 40A has a plurality of belt cords 41A having an inclination larger than a predetermined angle with respect to the tire circumferential direction (equatorial center line CL).
  • the plurality of belt cords 41A have an inclination of greater than 0 ° and not more than 80 ° with respect to the tire circumferential direction (equatorial center line CL), and preferably have an inclination of not less than 10 ° and not more than 30 °. It is more preferable.
  • the first belt layer 40A and the second belt layer 40B are provided.
  • the inclination of the plurality of belt cords 41A in the first belt layer 40A is larger than the inclination of the plurality of belt cords 41B in the second belt layer 40B. Therefore, in the modified example 2, since the rigidity with respect to the shear stress in the tire width direction is ensured by the first belt layer 40A, the rigidity of the tire 1 as a whole with respect to the shear stress in the tire width direction is secured, and the steering stability is reduced. Is further suppressed.
  • the case where the second belt layer 40B is disposed on the outer side in the tire radial direction of the first belt layer 40A has been described as an example, but is not limited thereto.
  • the second belt layer 40B may be disposed on the inner side in the tire radial direction of the first belt layer 40A.
  • evaluation result 1 As shown in Table 1, tires having different inclinations of the carcass cord with respect to the tire circumferential direction were mounted on the vehicle, and the steering stability was subjected to subjective index evaluation by a running test of the vehicle.
  • the index 100 is a steering stability index corresponding to a tire in which the carcass layer is not overlapped in the tread portion and the belt layer is not omitted.
  • tires having the same configuration as the embodiment are used except for the values shown in Table 1.
  • the tire size used is “155 / 65R13”.
  • the evaluation result 2 will be described.
  • the treat tensile rigidity of one carcass layer, the rigidity of one carcass cord (cord rigidity), the material of the carcass cord, the number of driven carcass cords per 50 mm width, the carcass Tires with different cord diameters (cord diameters) were attached to the vehicle, and the steering stability was subjectively evaluated by a running test of the vehicle.
  • the index 100 is a steering stability index corresponding to a tire in which the carcass layer is not overlapped in the tread portion and the belt layer is not omitted.
  • tires having the same configuration as in the embodiment are used except for the values shown in Table 2.
  • the tire size used is “155 / 65R13”.
  • Example 20 to 24 the treat tensile rigidity of one carcass layer is in the range of 90 kgf / mm 2 or more and 300 kgf / mm 2 or less. Was confirmed to be suppressed. Secondly, in Examples 20 to 24, since the rigidity (cord rigidity) of one carcass cord is in the range of 330 kgf / mm 2 or more and 526 kgf / mm 2 or less, a decrease in steering stability is suppressed. It was confirmed. Thirdly, in Examples 20 to 24, it was confirmed that the number of driven carcass cords per 50 mm width was in the range of 30 to 65, so that a decrease in steering stability was suppressed. .
  • Comparative Examples 21 to 22 it was confirmed that the handling stability of the one-carcass layer was significantly lowered because the treat tensile stiffness of one carcass layer was outside the range of 90 kgf / mm 2 to 300 kgf / mm 2. It was. Secondly, in Comparative Example 20, it was confirmed that the steering stability was significantly lowered because the rigidity (cord rigidity) of one carcass cord was outside the range of 330 kgf / mm 2 or more and 526 kgf / mm 2 or less. Thirdly, in Comparative Example 21, it was confirmed that the driving stability is remarkably lowered because the number of driven carcass cords per 50 mm width is outside the range of 30 to 65.
  • the evaluation result 3 As shown in Table 3, the treat tensile rigidity of one belt layer, the rigidity (cord rigidity) of one belt cord, the treat tensile strength of the belt layer per 50 mm width, one belt cord Tires having different strength (cord strength), belt cord material, number of driven belt cords per 50 mm width, inclination of the belt cord with respect to the tire circumferential direction, and inclination of the belt cord with respect to the tire circumferential direction were prepared. First, these tires were mounted on a vehicle, and the growth rate of the tire diameter (internal pressure growth @ center) at the equator centerline CL was evaluated by a vehicle running test.
  • the index 100 is a steering stability index corresponding to a tire in which the carcass layer is not overlapped in the tread portion and the belt layer is not omitted. Moreover, the moldability and weight of these tires were evaluated. Third, these tires were filled with water, and an index evaluation was performed on the breaking strength of the tires by a water pressure test.
  • the index 100 is an index indicating a predetermined standard such as an in-house standard. In Examples and Comparative Examples, tires having the same configuration as in the embodiment are used except for the values shown in Table 3. The tire size used is “155 / 65R13”.
  • the treat tensile rigidity of one belt layer is 750 kgf / mm 2 or more, so that a decrease in steering stability is suppressed. confirmed.
  • the rigidity (cord rigidity) of one belt cord is 526 kgf or more / mm 2 or more, it was confirmed that a decrease in steering stability was suppressed.
  • the decrease in fracture strength was suppressed because the treat tensile strength of the belt layer per 50 mm width was 2100 kgf or more.
  • Examples 30 to 34 since the strength (cord strength) of one belt cord is 50 kgf or more, it was confirmed that the decrease in breaking strength was suppressed. Fifth, in Examples 30 to 34, it was confirmed that the inner pressure growth @ center was suppressed because the inclination of the belt cord with respect to the tire circumferential direction was in the range of ⁇ 10 ° to 0 °. . Sixth, in Examples 30 to 34, it was confirmed that the number of driven belt cords per 50 mm width was in the range of 30 to 65, so that a decrease in steering stability was suppressed. .
  • Comparative Examples 31 to 32 and Comparative Example 34 it was confirmed that the handling stability was lowered because the treat tensile stiffness of one belt layer was smaller than 750 kgf / mm 2.
  • Comparative Examples 31 to 33 it was confirmed that the breaking strength was remarkably lowered because the treat tensile strength of the belt layer per 50 mm width was smaller than 2100 kgf.
  • Comparative Example 41 since the overlap width of the carcass layer with respect to the belt layer was smaller than 30%, it was confirmed that the steering stability was significantly lowered. It was also confirmed that good results could not be obtained for the moldability of the tire.
  • Comparative Example 42 since the overlap width of the carcass layer with respect to the belt layer was 100%, it was confirmed that good results were not obtained with respect to the tire weight.
  • Evaluation result 5 As shown in Table 5, a tire having a single belt layer and a tire having two belt layers were prepared in the tire width direction. Note that a tire having two belt layers includes a first belt layer and a second belt layer disposed on the outer side in the tire radial direction from the first belt layer.
  • the inclination of the plurality of belt cords in the first belt layer with respect to the tire circumferential direction (equatorial center line CL) will be described as the first inclination.
  • the inclination with respect to the tire circumferential direction (equatorial centerline CL) of a plurality of belt cords in the second belt layer will be described as a second inclination.
  • the tire from which the angle of the 1st inclination differs was prepared.
  • the index 100 is a steering stability index corresponding to a tire in which the carcass layer is not overlapped in the tread portion and the belt layer is not omitted. Moreover, the moldability and weight of these tires were evaluated.
  • tires having the same configuration as in the embodiment except for the values shown in Table 5 are used.
  • the tire size used is “255 / 45R17”.
  • Example 55 Although there was a certain effect on the weight of the tire, it was confirmed that the effect on the steering stability was low. That is, it was confirmed that when the angle of the first inclination is an angle of 10 ° or more and 40 ° or less with respect to the tire circumferential direction, good results can be obtained for both steering stability and tire weight. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 タイヤ1は、1対のビードコア12と、1対のビードコア12間に跨るトロイダル形状を有するカーカス層20と、カーカス層20に隣接して配置されるベルト層40とを備える。カーカス層20は、ビードコア12でタイヤ幅方向の外側に向けて折り返されている。ビードコア12で折り返されたカーカス層20は、タイヤ踏み面を有するトレッド部30において重ね合わされるように配置される。カーカス層20は、タイヤ周方向に対して30°以上50°以下の傾きを有する複数本のカーカスコード21によって形成される。

Description

タイヤ
 本発明は、1対のビードコアと、1対のビードコア間に跨るトロイダル形状を有するカーカス層と、カーカス層に隣接して配置されるベルト層とを備えるタイヤに関する。
 従来、1対のビードコアと、1対のビードコア間に跨るトロイダル形状を有するカーカス層と、カーカス層に隣接して配置されるベルト層と、ビードコア、カーカス層及びベルト層を被覆するゴム層とを備えるタイヤが知られている。
 タイヤは、ビードコアを有するビード部と、タイヤ踏み面を有するトレッド部と、タイヤの側面を形成するサイド部と、サイド部からトレッド部に跨るショルダー部とを備える。
 ここで、ビードコアでタイヤ幅方向の外側に向けて折り返されたカーカス層がトレッド部において重ね合わされるようにカーカス層が配置されたタイヤが知られている(例えば、特許文献1)。このようなタイヤでは、複数層のカーカス層が別体として重ね合わされたタイヤに比べて、トレッド部の剛性を維持しながら、タイヤの軽量化が図られている。
特開平04-297304号公報
 しかしながら、上述したタイヤでは、複数層のカーカス層が別体として重ね合わされたタイヤに対して、トレッド部の剛性が維持されているに過ぎない。すなわち、ベルト層は、何ら考慮されていない。従って、上述したタイヤでは、カーカス層に設けられるカーカスコードは、タイヤ周方向に対して8°~12°の傾きを有する。
 近年では、複数層のベルト層を備えたタイヤが提案されている。このようなタイヤでは、ベルト層は、タイヤ周方向に対して所定傾きを有するベルトコードを有する。複数層のベルト層に設けられるコードを交差することによって、タイヤ幅方向の剪断応力に対して十分な剛性が確保されるとともに、タイヤ径方向に対する変形が抑制される。
 このようなタイヤにおいても、環境への配慮から部品点数の削減が求められており、タイヤの軽量化も望まれている。例えば、複数層のベルト層のうち、少なくとも1つのベルト層を省略することが考えられる。
 しかしながら、上述したタイヤのように、タイヤ周方向に対するカーカスコードの傾きが8°~12°である場合には、タイヤ幅方向の剪断応力に対する剛性をカーカス層によって確保することができない。従って、少なくとも1つのベルト層を省略してしまうと、タイヤの全体として、タイヤ幅方向の剪断応力に対する剛性が不十分になってしまう。
 そこで、本発明は、上述した課題を解決するためになされたものであり、タイヤ幅方向の剪断応力に対する剛性を確保しながら、複数層のベルト層のうち、少なくとも1層のベルト層を省略することを可能とするタイヤを提供することを目的とする。
 第1の特徴に係るタイヤ(タイヤ1)は、1対のビードコア(ビードコア12)と、前記1対のビードコア間に跨るトロイダル形状を有するカーカス層(カーカス層20)と、前記カーカス層に隣接して配置されるベルト層(ベルト層40)とを備える。前記カーカス層は、前記ビードコアでタイヤ幅方向の外側に向けて折り返されている。前記ビードコアで折り返されたカーカス層は、タイヤ踏み面を有するトレッド部(トレッド部30)において重ね合わされるように配置される。前記カーカス層は、タイヤ周方向に対して30°以上50°以下の傾きを有する複数本のカーカスコード(カーカスコード21)によって形成される。
 第1の特徴において、前記カーカスコードが延びる方向において、前記カーカス層のトリート引張剛性は、90kgf/mm2以上300kgf/mm2以下である。
 第1の特徴において、タイヤ幅方向において、前記ビードコアで折り返されたカーカス層の重なり幅は、前記ベルト層の幅の1/3以上である。
 第1の特徴において、前記ベルト層は、タイヤ周方向に沿って延びる複数本のベルトコード(ベルトコード41)を有する。前記複数本のベルトコードのうち、1本のベルトコードの強度は、前記複数本のカーカスコードのうち、1本のカーカスコードの強度よりも大きい。
 第1の特徴において、前記ベルト層は、タイヤ周方向に対して-10°以上0°以下の傾きを有する複数本のベルトコードを有する。前記タイヤ周方向において、前記ベルト層のトリート引張剛性は、750kgf/mm2以上であり、50mm幅当たりにおいて、前記ベルト層のトリート引張強力は、2100kgf以上である。
 第1の特徴において、前記タイヤは、前記ベルト層として、第1ベルト層と、前記第1ベルト層のタイヤ径方向に隣接して配置される第2ベルト層とを有している。前記第2ベルト層は、前記タイヤ周方向に対して所定角度の傾きを有する複数本のベルトコードを有している。前記第1ベルト層は、前記タイヤ周方向に対して前記所定角度よりも大きい傾きを有する複数本のベルトコードを有している。
 本発明によれば、タイヤ幅方向の剪断応力に対する剛性を確保しながら、複数層のベルト層のうち、少なくとも1層のベルト層を省略することを可能とするタイヤを提供することができる。
図1は、第1実施形態に係るタイヤ1を示す斜視図である。 図2は、第1実施形態に係るタイヤ1のタイヤ幅方向の断面を示す模式図である。 図3は、第1実施形態に係るタイヤ1をタイヤ径方向の外側から見た模式図である。 図4は、変更例1に係るタイヤ1のタイヤ幅方向の断面を示す模式図である。 図5は、変更例2に係るタイヤ1のタイヤ幅方向の断面を示す模式図である。
 以下において、本発明の実施形態に係るタイヤについて、図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
[実施形態の概要]
 実施形態に係るタイヤは、1対のビードコアと、1対のビードコア間に跨るトロイダル形状を有するカーカス層と、カーカス層に隣接して配置されるベルト層とを備える。カーカス層は、ビードコアでタイヤ幅方向の外側に向けて折り返されている。ビードコアで折り返されたカーカス層は、タイヤ踏み面を有するトレッド部において重ね合わされるように配置される。カーカス層は、タイヤ周方向に対して30°以上50°以下の傾きを有する複数本のカーカスコードによって形成される。
 実施形態では、タイヤ周方向に対するカーカスコードの傾きが30°以上であるため、タイヤ幅方向の剪断応力に対する剛性をカーカス層によって確保することができる。タイヤ幅方向の剪断応力に対する剛性がカーカス層によって確保されるため、複数層のベルト層のうち、少なくとも1層のベルト層を省略しても、タイヤの全体として、タイヤ幅方向の剪断応力に対する剛性が確保される。
 実施形態では、タイヤ周方向に対するカーカスコードの傾きが50°以下であるため、操縦安定性の低下が抑制される。
 [第1実施形態]
 (タイヤの構成)
 以下において、第1実施形態に係るタイヤについて、図面を参照しながら説明する。図1は、第1実施形態に係るタイヤ1を示す斜視図である。図1では、タイヤ1の内部構造を示すために、タイヤ1の一部が省略されていることに留意すべきである。図2は、第1実施形態に係るタイヤ1のタイヤ幅方向の断面を示す模式図である。図3は、第1実施形態に係るタイヤ1をタイヤ径方向の外側から見た模式図である。
 図1に示すように、空気入りタイヤ1は、一対のビード部10と、カーカス層20と、トレッド部30と、ベルト層40と、サイドウォール部50とを備えている。
 ビード部10は、ビードコア12と、ビードフィラー14とを有する。ビードコア12は、タイヤ1をリム(不図示)に固定するために設けられる。ビードコア12は、ビードワイヤー(不図示)によって構成される。ビードフィラー14は、ビード部10の剛性を高めるために設けられる。
 第1に、カーカス層20は、一対のビード部10の間に跨るトロイダル形状を有する。カーカス層20は、図2に示すように、ビードコア12でタイヤ幅方向の外側に折り返されている。詳細には、カーカス層20は、ビードコア12及びビードフィラー14を包み込みながら折り返されている。ビードコア12で折り返されたカーカス層20は、トレッド部30において重ね合わされるように配置される。詳細には、カーカス層20は、一方のビードコア12で折り返された外側カーカス層20Aと、他方のビードコア12で折り返された外側カーカス層20Bと、外側カーカス層20A及び外側カーカス層20Bに対して、タイヤ径方向或いはタイヤ幅方向の内側に位置する内側カーカス層20Cとを有する。外側カーカス層20A及び外側カーカス層20Bは、トレッド部30において互いに重ね合わされる重複領域20Dを構成する。
 ここで、図2及び図3に示すように、タイヤ幅方向において、ビードコア12で折り返されたカーカス層20の重なり幅X(重複領域20Dの幅X)は、ベルト層40の幅Yの1/3以上であることが好ましい。
 第2に、カーカス層20は、図3に示すように、タイヤ周方向(赤道中心線CL)に対して傾きθを有する複数本のカーカスコード21によって形成される。タイヤ周方向に対するカーカスコード21の傾きθは、30°以上50°以下である。なお、外側カーカス層20Aを形成するカーカスコード21A及び外側カーカス層20Bを形成するカーカスコード21Bは、重複領域20Dにおいて交差することに留意すべきである。
 カーカスコード21は、例えば、PET(Polyethylen Terephthalate)やナイロンなどの有機繊維によって構成される。コード方向において、1層のカーカス層20のトリート引張剛性は、90kgf/mm2以上300kgf/mm2以下である。1本のカーカスコード21の剛性は、330kgf/mm2以上526kgf/mm2以下であることが好ましい。また、幅50mm当たりにおいて、カーカスコード21の打ち込み本数は、30本~65本であることが好ましい。
 ここで、カーカスコード21のコード方向におけるカーカス層20のトリート引張剛性(EL)は、EL=Ef×vf+Em×(1-vf)の式によって算出される。
 但し、Efは、カーカスコード21の剛性(ヤング率)であり、Emは、カーカスコード21を被覆するゴムの剛性(ヤング率)であり、vfは、ゴムで被覆されたカーカスコード21の単位体積当たりに含まれるカーカスコード21の割合(コードの体積含有率)である。
 なお、vfは、vf=(πr2/4×N)/(r×50)の式によって算出される。但し、rは、カーカスコード21の径である。
 図1に戻って、トレッド部30は、タイヤ踏み面を有する。トレッド部30は、周方向溝や幅方向溝によって区分けされた複数のブロックによって構成される。
 ベルト層40は、カーカス層20(外側カーカス層20A及び外側カーカス層20B)に対してタイヤ径方向の外側に位置する。また、ベルト層40は、図3に示すように、複数本のベルトコード41を有する。複数本のベルトコード41は、タイヤ周方向(赤道中心線CL)に対して-10°以上0°以下の傾きを有する。なお、かかる角度は、タイヤ周方向(赤道中心線CL)に対して、右回りを“+”方向とし、左回りを“-”方向としている。
 ベルトコード41は、例えば、スチールやケブラーによって構成される。タイヤ周方向において、ベルト層40のトリート引張剛性は、750kgf/mm2以上である。幅50mm当たりにおいて、ベルト層40のトリート引張強力は、2100kgf以上である。1本のベルトコード41の強度は、1本のカーカスコード21の強度よりも大きいことが好ましい。1本のベルトコード41の剛性は、526kgf以上/mm2以上であり、1本のベルトコード41の強力は、50kgf以上であることが好ましい。50mm当たりにおいて、ベルトコード41の打ち込み本数は、30本~65本であることが好ましい。
 ここで、ベルトコード41のコード方向におけるベルト層40のトリート引張剛性(EL)は、EL=Ef×vf+Em×(1-vf)の式によって算出される。
 但し、Efは、ベルトコード41の剛性(ヤング率)であり、Emは、ベルトコード41を被覆するゴムの剛性(ヤング率)であり、vfは、ゴムで被覆されたベルトコード41の単位体積当たりに含まれるベルトコード41の割合(コードの体積含有率)である。
 なお、vfは、vf=(πr2/4×N)/(r×50)の式によって算出される。但し、rは、ベルトコード41の径である。
 また、ベルトコード41のコード方向に対する直交方向におけるベルト層40のトリート引張剛性(ET)は、ET=4/3×Em/(1-vf)の式によって算出される。
 さらに、タイヤ周方向におけるベルト層40のトリート引張剛性(Exx)は、Exx=ELcos4θ+ETによって算出される。但し、θは、タイヤ周方向に対するベルトコード41の傾きである。
 図1に戻って、サイドウォール部50は、トレッド部30のタイヤ幅方向の両端に形成されている。サイドウォール部50は、ビード部10とトレッド部30との間に位置している。
 (作用及び効果)
 第1実施形態では、タイヤ周方向に対するカーカスコード21の傾きが30°以上50°以下であるため、タイヤ幅方向の剪断応力に対する剛性をカーカス層20によって確保することができる。タイヤ幅方向の剪断応力に対する剛性がカーカス層20によって確保されるため、複数層のベルト層のうち、少なくとも1層のベルト層を省略しても、タイヤ1の全体として、タイヤ幅方向の剪断応力に対する剛性が確保され、操縦安定性の低下が抑制される。
 [変更例1]
 以下において、第1実施形態の変更例1について、図面を参照しながら説明する。以下においては、第1実施形態に対する相違点について主として説明する。
 具体的には、第1実施形態では、ベルト層40は、カーカス層20(外側カーカス層20A及び外側カーカス層20B)に対してタイヤ径方向の外側に位置する。これに対して、変更例1では、ベルト層40は、外側カーカス層20A及び外側カーカス層20Bに対して、タイヤ径方向の内側に位置しており、内側カーカス層20Cに対して、タイヤ径方向の内側に位置する。
 変更例1では、外側カーカス層20A及び外側カーカス層20Bと内側カーカス層20Cとの間にベルト層40が配置されるため、ベルト層40に設けられるベルトコード41がカーカス層20によって保護される。従って、ベルトコード41の耐カット性が向上する。
 [変更例2]
 以下において、第1実施形態の変更例2について、図面を参照しながら説明する。以下においては、第1実施形態に対する相違点について主として説明する。
 具体的に、第1実施形態では、ベルト層40は、一層である場合を例に挙げて説明した。これに対して、変更例2では、タイヤは、図5に示すように、ベルト層40として、第1ベルト層40Aと、第1ベルト層40Aのタイヤ径方向に隣接して配置される第2ベルト層40Bとを有している。すなわち、ベルト層40は、第1ベルト層40Aと、第2ベルト層40Bとによって構成されている。なお、第2ベルト層40Bは、第1ベルト層40Aよりもタイヤ径方向外側に配置されている。
 第2ベルト層40Bは、タイヤ周方向に対して所定角度の傾きを有する複数本のベルトコード41Bを有している。なお、所定角度は、タイヤ周方向(赤道中心線CL)に対して-10°以上0°以下の傾きであることが好ましい。
 一方、第1ベルト層40Aは、タイヤ周方向(赤道中心線CL)に対して所定角度よりも大きい傾きを有する複数本のベルトコード41Aを有している。なお、複数本のベルトコード41Aは、タイヤ周方向(赤道中心線CL)に対して0°よりも大きく、80°以下の傾きであることが好ましく、10°以上、30°以下の傾きであることがより好ましい。
 変更例2では、第1ベルト層40Aと第2ベルト層40Bとを有している。第1ベルト層40Aにおける複数本のベルトコード41Aの傾きは、第2ベルト層40Bにおける複数本のベルトコード41Bの傾きよりも大きい。よって、変更例2では、タイヤ幅方向の剪断応力に対する剛性が第1ベルト層40Aによって確保されるため、タイヤ1の全体として、タイヤ幅方向の剪断応力に対する剛性が確保され、操縦安定性の低下が更に抑制される。
 なお、変更例2では、第2ベルト層40Bは、第1ベルト層40Aのタイヤ径方向外側に配置されている場合を例に挙げて説明したが、これに限定されない。第2ベルト層40Bは、第1ベルト層40Aのタイヤ径方向内側に配置されていてもよい。
 [評価結果1]
 以下において、評価結果1について説明する。評価結果1では、表1に示すように、タイヤ周方向に対するカーカスコードの傾きが異なるタイヤを車両に装着して、車両の走行試験によって、操縦安定性について主観で指数評価した。なお、指数100は、トレッド部においてカーカス層が重ね合わされておらず、ベルト層が省略されていないタイヤに対応する操縦安定性の指数である。なお、実施例及び比較例では、表1に示す値を除いて、実施形態と同様の構成を有するタイヤが用いられている。また、使用したタイヤサイズは、「155/65R13」としている。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例11~実施例13では、タイヤ周方向に対するカーカスコードの傾きθが30°以上50°以下の範囲内であるため、操縦安定性の低下が抑制されていることが確認された。一方で、比較例11~比較例12では、タイヤ周方向に対するカーカスコードの傾きθが30°以上50°以下の範囲外であるため、操縦安定性が著しく低下することが確認された。
 [評価結果2]
 以下において、評価結果2について説明する。評価結果2では、表2に示すように、1層のカーカス層のトリート引張剛性、1本のカーカスコードの剛性(コード剛性)、カーカスコードの材質、幅50mm当たりにおけるカーカスコードの打ち込み本数、カーカスコードの径(コード径)が異なるタイヤを車両に装着して、車両の走行試験によって、操縦安定性について主観で指数評価した。なお、指数100は、トレッド部においてカーカス層が重ね合わされておらず、ベルト層が省略されていないタイヤに対応する操縦安定性の指数である。なお、実施例及び比較例では、表2に示す値を除いて、実施形態と同様の構成を有するタイヤが用いられている。また、使用したタイヤサイズは、「155/65R13」としている。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、第1に、実施例20~実施例24では、1層のカーカス層のトリート引張剛性が90kgf/mm2以上300kgf/mm2以下の範囲内であるため、操縦安定性の低下が抑制されていることが確認された。第2に、実施例20~実施例24では、1本のカーカスコードの剛性(コード剛性)が330kgf/mm2以上526kgf/mm2以下の範囲内であるため、操縦安定性の低下が抑制されていることが確認された。第3に、実施例20~実施例24では、幅50mm当たりにおけるカーカスコードの打ち込み本数が30本~65本の範囲内であるため、操縦安定性の低下が抑制されていることが確認された。
 これに対して、比較例21~比較例22では、1層のカーカス層のトリート引張剛性が90kgf/mm2以上300kgf/mm2以下の範囲外であるため、操縦安定性が著しく低下することが確認された。第2に、比較例20では、1本のカーカスコードの剛性(コード剛性)が330kgf/mm2以上526kgf/mm2以下の範囲外であるため、操縦安定性が著しく低下することが確認された。第3に、比較例21では、幅50mm当たりにおけるカーカスコードの打ち込み本数が30本~65本の範囲外であるため、操縦安定性が著しく低下することが確認された。
 [評価結果3]
 以下において、評価結果3について説明する。評価結果3では、表3に示すように、1層のベルト層のトリート引張剛性、1本のベルトコードの剛性(コード剛性)、幅50mm当たりにおけるベルト層のトリート引張強力、1本のベルトコードの強力(コード強力)、ベルトコードの材質、幅50mm当たりにおけるベルトコードの打ち込み本数、タイヤ周方向に対するベルトコードの傾き、タイヤ周方向に対するベルトコードの傾きが異なるタイヤを準備した。第1に、これらのタイヤを車両に装着して、車両の走行試験によって、赤道中心線CLにおいてタイヤの径の成長率(内圧成長@センター)を評価した。第2に、これらのタイヤを車両に装着して、車両の走行試験によって、操縦安定性について主観で指数評価した。なお、指数100は、トレッド部においてカーカス層が重ね合わされておらず、ベルト層が省略されていないタイヤに対応する操縦安定性の指数である。また、これらのタイヤの成形性及び重量について評価した。第3に、これらのタイヤに水を充填して、水圧試験によって、タイヤの破壊強度について指数評価した。なお、指数100は、社内基準などのように所定基準を示す指数である。なお、実施例及び比較例では、表3に示す値を除いて、実施形態と同様の構成を有するタイヤが用いられている。また、使用したタイヤサイズは、「155/65R13」としている。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、第1に、実施例30~実施例34では、1層のベルト層のトリート引張剛性が750kgf/mm2以上であるため、操縦安定性の低下が抑制されていることが確認された。第2に、実施例30~実施例34では、1本のベルトコードの剛性(コード剛性)が526kgf以上/mm2以上であるため、操縦安定性の低下が抑制されていることが確認された。第3に、実施例30~実施例34では、幅50mm当たりにおけるベルト層のトリート引張強力が2100kgf以上であるため、破壊強度の低下が抑制されていることが確認された。第4に、実施例30~実施例34では、1本のベルトコードの強力(コード強力)が50kgf以上であるため、破壊強度の低下が抑制されていることが確認された。第5に、実施例30~実施例34では、タイヤ周方向に対するベルトコードの傾きが-10°以上0°以下の範囲内であるため、内圧成長@センターが抑制されていることが確認された。第6に、実施例30~実施例34では、幅50mm当たりにおけるベルトコードの打ち込み本数が30本~65本の範囲内であるため、操縦安定性の低下が抑制されていることが確認された。
 また、実施例30~実施例34では、内圧成長@センターについて良好な結果が得られ、破壊強度についても良好な結果が得られることが確認された。
 これに対して、比較例31~32及び比較例34では、1層のベルト層のトリート引張剛性が750kgf/mm2よりも小さいため、操縦安定性が低下することが確認された。また、比較例31~33では、幅50mm当たりにおけるベルト層のトリート引張強力が2100kgfよりも小さいため、破壊強度が著しく低下することが確認された。
 さらに、比較例34~36では、タイヤ周方向に対するベルトコードの傾きが-10°以上0°以下の範囲外であるため、内圧成長@センターについて良好な結果が得られないことが確認された。
 また、比較例31~比較例32では、内圧成長@センターについて良好な結果が得られず、破壊強度についても良好な結果が得られないことが確認された。
 [評価結果4]
 以下において、評価結果4について説明する。評価結果4では、表4に示すように、タイヤ幅方向において、ビードコアで折り返されたカーカス層の重なり幅(重複幅)が異なるタイヤを準備した。なお、カーカス層の重複幅は、タイヤ幅方向においてベルト層に対するカーカス層の重複幅の割合を%で表されている。これらのタイヤを車両に装着して、車両の走行試験によって、操縦安定性について主観で指数評価した。なお、指数100は、トレッド部においてカーカス層が重ね合わされておらず、ベルト層が省略されていないタイヤに対応する操縦安定性の指数である。また、これらのタイヤの成形性及び重量について評価した。なお、実施例及び比較例では、表4に示す値を除いて、実施形態と同様の構成を有するタイヤが用いられている。また、使用したタイヤサイズは、「155/65R13」としている。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例40~41では、ベルト層に対するカーカス層の重複幅が30%以上であるため、操縦安定性の低下が抑制されていることが確認された。また、タイヤの成形性及び重量についても良好な結果が得られることが確認された。
 これに対して、比較例41では、ベルト層に対するカーカス層の重複幅が30%よりも小さいため、操縦安定性が著しく低下することが確認された。また、タイヤの成形性についても良好な結果が得られないことが確認された。比較例42では、ベルト層に対するカーカス層の重複幅が100%であるため、タイヤの重量について良好な結果が得られないことが確認された。
 [評価結果5]
 以下において、評価結果5について説明する。評価結果5では、表5に示すように、タイヤ幅方向において、ベルト層が一層のタイヤと、ベルト層が2層のタイヤとを準備した。なお、ベルト層が2層のタイヤについては、第1ベルト層と、第1ベルト層よりもタイヤ径方向外側に配置される第2ベルト層とを有することとする。以下において、第1ベルト層における複数本のベルトコードのタイヤ周方向(赤道中心線CL)に対する傾斜を第1傾斜として説明する。一方、第2ベルト層における複数本のベルトコードのタイヤ周方向(赤道中心線CL)に対する傾斜を第2傾斜として説明する。また、評価結果5では、第1傾斜の角度が異なるタイヤを準備した。
 また、フラットベルト方式の試験装置を用いて、これらのタイヤの操縦安定性を指数評価した。なお、指数100は、トレッド部においてカーカス層が重ね合わされておらず、ベルト層が省略されていないタイヤに対応する操縦安定性の指数である。また、これらのタイヤの成形性及び重量について評価した。なお、実施例及び比較例では、表5に示す値を除いて、実施形態と同様の構成を有するタイヤが用いられている。また、使用したタイヤサイズは、「255/45R17」としている。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例51~実施例54では、第1傾斜の角度が、第2傾斜の角度よりも大きいため、操縦安定性の低下が抑制されていることが確認された。また、タイヤの重量についても、良好な結果が得られることが確認された。なお、実施例55では、タイヤの重量においては一定の効果があるものの、操縦安定性については、効果が低いことが確認された。つまり、第1傾斜の角度が、タイヤ周方向に対して、10°以上40°以下の角度であると、操縦安定性とタイヤの重量とのいずれも良好な結果が得られることが確認された。
 これに対して、比較例51~比較例53では、第1傾斜の角度が、第2傾斜の角度以下であるため、操縦安定性を抑制する効果が低下することが確認された。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 なお、日本国特許出願第2011-118163号(2011年5月26日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明によれば、タイヤ幅方向の剪断応力に対する剛性を確保しながら、複数層のベルト層のうち、少なくとも1層のベルト層を省略することを可能とするタイヤを提供できる。

Claims (5)

  1.  1対のビードコアと、前記1対のビードコア間に跨るトロイダル形状を有するカーカス層と、前記カーカス層に隣接して配置されるベルト層とを備えるタイヤであって、
     前記カーカス層は、前記ビードコアでタイヤ幅方向の外側に向けて折り返されており、
     前記ビードコアで折り返されたカーカス層は、タイヤ踏み面を有するトレッド部において重ね合わされるように配置されており、
     前記カーカス層は、タイヤ周方向に対して30°以上50°以下の傾きを有する複数本のカーカスコードによって形成されることを特徴とするタイヤ。
  2.  前記カーカスコードが延びる方向において、前記カーカス層のトリート引張剛性は、90kgf/mm2以上300kgf/mm2以下であることを特徴とする請求項1に記載のタイヤ。
  3.  タイヤ幅方向において、前記ビードコアで折り返されたカーカス層の重なり幅は、前記ベルト層の幅の1/3以上であることを特徴とする請求項1に記載のタイヤ。
  4.  前記ベルト層は、前記タイヤ周方向に対して-10°以上0°以下の傾きを有する複数本のベルトコードを有しており、
     前記タイヤ周方向において、前記ベルト層のトリート引張剛性は、750kgf/mm2以上であり、50mm幅当たりのトリート引張強力は、2100kgf以上であることを特徴とする請求項1に記載のタイヤ。
  5.  前記ベルト層として、第1ベルト層と、前記第1ベルト層のタイヤ径方向に隣接して配置される第2ベルト層とを有しており、
     前記第2ベルト層は、前記タイヤ周方向に対して所定角度の傾きを有する複数本のベルトコードを有しており、
     前記第1ベルト層は、前記タイヤ周方向に対して前記所定角度よりも大きい傾きを有する複数本のベルトコードを有している
    ことを特徴とする請求項1に記載の空気入りタイヤ。
PCT/JP2012/063556 2011-05-26 2012-05-25 タイヤ WO2012161331A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013516467A JP5944895B2 (ja) 2011-05-26 2012-05-25 タイヤ
EP12790356.5A EP2716475B1 (en) 2011-05-26 2012-05-25 Tire
CN201280025611.0A CN103561970A (zh) 2011-05-26 2012-05-25 轮胎
US14/122,393 US20140124117A1 (en) 2011-05-26 2012-05-25 Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-118163 2011-05-26
JP2011118163 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012161331A1 true WO2012161331A1 (ja) 2012-11-29

Family

ID=47217395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063556 WO2012161331A1 (ja) 2011-05-26 2012-05-25 タイヤ

Country Status (5)

Country Link
US (1) US20140124117A1 (ja)
EP (1) EP2716475B1 (ja)
JP (1) JP5944895B2 (ja)
CN (1) CN103561970A (ja)
WO (1) WO2012161331A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015047780A1 (en) 2013-09-24 2015-04-02 Bridgestone Americas Tire Operations, Llc Tire with toroidal element
JP2017202752A (ja) * 2016-05-12 2017-11-16 横浜ゴム株式会社 空気入りタイヤ
JP2017202753A (ja) * 2016-05-12 2017-11-16 横浜ゴム株式会社 空気入りタイヤ
WO2017200062A1 (ja) * 2016-05-20 2017-11-23 株式会社ブリヂストン タイヤ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180178595A1 (en) 2015-06-15 2018-06-28 Bridgestone Americas Tire Operations, Llc Tire having a conductivity path
JP2017074805A (ja) * 2015-10-13 2017-04-20 住友ゴム工業株式会社 空気入りタイヤ
JP6878774B2 (ja) * 2016-05-12 2021-06-02 横浜ゴム株式会社 空気入りタイヤ
CN108859616A (zh) * 2018-07-12 2018-11-23 万力轮胎股份有限公司 一种缺气保用轮胎
DE102022209354A1 (de) * 2022-09-08 2024-03-14 Continental Reifen Deutschland Gmbh Fahrzeugreifenkonstruktion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110003A (ja) * 1986-10-25 1988-05-14 Bridgestone Corp 二輪車用バイアス空気入りタイヤ
JPH04310405A (ja) * 1991-04-05 1992-11-02 Bridgestone Corp モータサイクルの不整地用タイヤ
JPH05178004A (ja) * 1991-12-27 1993-07-20 Sumitomo Rubber Ind Ltd 自動二輪車用ラジアルタイヤ
JPH10203113A (ja) * 1997-01-24 1998-08-04 Bridgestone Corp 空気入りタイヤとその装着方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1262580B (de) * 1962-09-08 1968-03-07 Continental Gummi Werke Ag Rohling fuer Fahrzeugluftreifen, insbesondere Zwei-Lagen-Reifen
FR2238603B1 (ja) * 1973-07-27 1976-06-18 Uniroyal
DE69406728T2 (de) * 1993-07-19 1998-04-02 Bridgestone Corp Luftreifen
JP3537916B2 (ja) * 1995-06-06 2004-06-14 株式会社ブリヂストン 空気入りセミラジアルタイヤの組合せ体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110003A (ja) * 1986-10-25 1988-05-14 Bridgestone Corp 二輪車用バイアス空気入りタイヤ
JPH04310405A (ja) * 1991-04-05 1992-11-02 Bridgestone Corp モータサイクルの不整地用タイヤ
JPH05178004A (ja) * 1991-12-27 1993-07-20 Sumitomo Rubber Ind Ltd 自動二輪車用ラジアルタイヤ
JPH10203113A (ja) * 1997-01-24 1998-08-04 Bridgestone Corp 空気入りタイヤとその装着方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015047780A1 (en) 2013-09-24 2015-04-02 Bridgestone Americas Tire Operations, Llc Tire with toroidal element
EP3049257A4 (en) * 2013-09-24 2017-06-21 Bridgestone Americas Tire Operations, LLC Tire with toroidal element
US9919568B2 (en) 2013-09-24 2018-03-20 Bridgestone Americas Tire Operations, Llc Tire with toroidal element
JP2017202752A (ja) * 2016-05-12 2017-11-16 横浜ゴム株式会社 空気入りタイヤ
JP2017202753A (ja) * 2016-05-12 2017-11-16 横浜ゴム株式会社 空気入りタイヤ
WO2017195891A1 (ja) * 2016-05-12 2017-11-16 横浜ゴム株式会社 空気入りタイヤ
WO2017195890A1 (ja) * 2016-05-12 2017-11-16 横浜ゴム株式会社 空気入りタイヤ
US11014408B2 (en) 2016-05-12 2021-05-25 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11034189B2 (en) 2016-05-12 2021-06-15 The Yokohama Rubber Co., Ltd. Pneumatic tire
WO2017200062A1 (ja) * 2016-05-20 2017-11-23 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
JPWO2012161331A1 (ja) 2014-07-31
EP2716475A1 (en) 2014-04-09
EP2716475B1 (en) 2018-10-31
CN103561970A (zh) 2014-02-05
JP5944895B2 (ja) 2016-07-05
EP2716475A4 (en) 2015-01-21
US20140124117A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2012161331A1 (ja) タイヤ
US9884521B2 (en) Run flat tire
JP4829895B2 (ja) 自動二輪車用ラジアルタイヤ
JP4031243B2 (ja) 空気入りラジアルタイヤ
JP2009137495A (ja) 空気入りタイヤ
WO2009093325A1 (ja) 空気入りタイヤ
EP2946946A1 (en) Pneumatic tire
US20150210120A1 (en) Motorcycle tire
WO2015063974A1 (ja) 空気入りタイヤ
US9975382B2 (en) Pneumatic tire for motorcycle
EP2610078A1 (en) Motorcycle tire for uneven terrain
JP2010137812A (ja) 空気入りタイヤ
EP1859961A2 (en) Pneumatic tire for motorcycle
US10377181B2 (en) Pneumatic tire
CN106232395A (zh) 侧增强型缺气保用子午线轮胎
JP2013001206A (ja) 空気入りタイヤ
JP2007326418A (ja) 空気入りラジアルタイヤ
JP2007153276A (ja) 空気入りランフラットラジアルタイヤ
JP2007022374A (ja) 自動二輪車用空気入りラジアルタイヤ
JP2012066798A (ja) 空気入りタイヤ
JP6803143B2 (ja) ランフラットタイヤ
JP2007210535A (ja) 自動二輪車用タイヤ
JP4904380B2 (ja) 自動二輪車用タイヤ
JP4710478B2 (ja) 空気入りタイヤ
JP2021079766A (ja) ランフラットタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14122393

Country of ref document: US