WO2012161321A1 - 機械構造用鋼部品およびその製造方法 - Google Patents

機械構造用鋼部品およびその製造方法 Download PDF

Info

Publication number
WO2012161321A1
WO2012161321A1 PCT/JP2012/063511 JP2012063511W WO2012161321A1 WO 2012161321 A1 WO2012161321 A1 WO 2012161321A1 JP 2012063511 W JP2012063511 W JP 2012063511W WO 2012161321 A1 WO2012161321 A1 WO 2012161321A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
bainite
carbide
less
strength
Prior art date
Application number
PCT/JP2012/063511
Other languages
English (en)
French (fr)
Inventor
真也 寺本
啓督 高田
久保田 学
庸一 谷口
純一 中塚
和寛 藤村
知志 小金丸
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US13/823,644 priority Critical patent/US9187797B2/en
Priority to KR1020137014235A priority patent/KR20130083924A/ko
Priority to IN2559DEN2013 priority patent/IN2013DN02559A/en
Priority to CN201280003600.2A priority patent/CN103210108B/zh
Publication of WO2012161321A1 publication Critical patent/WO2012161321A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/003Selecting material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to steel parts for machine structures such as transportation equipment such as automobiles and industrial machines, and a manufacturing method thereof, and in particular, steel parts for machine structures having high fatigue strength and high toughness without reducing machinability. And a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2011-118312 filed in Japan on May 26, 2011, the contents of which are incorporated herein by reference.
  • the fatigue strength depends on the tensile strength, and the fatigue strength increases as the tensile strength is increased.
  • an increase in tensile strength decreases machinability.
  • Many steel parts for machine structures require cutting after hot forging, and the cutting cost accounts for most of the manufacturing cost of the parts.
  • a decrease in machinability due to an increase in tensile strength leads to a significant increase in the manufacturing cost of parts.
  • the tensile strength exceeds 1200 MPa, the machinability is remarkably lowered and the manufacturing cost is greatly increased. Therefore, it is practically difficult to increase the strength exceeding this strength. Therefore, in these machine structural parts, an increase in cutting cost due to a decrease in machinability is a bottleneck in achieving high fatigue strength, and a technique for achieving both high fatigue strength and machinability is required.
  • Patent Document 2 As conventional knowledge to ensure machinability while having high strength, for example, in Patent Document 2, a large amount of V is added to steel, and V carbonitride deposited by aging treatment adheres to the tool surface during machining. It has been proposed to be effective in preventing tool wear. However, in order to ensure machinability, a large amount of V is required, and the hot ductility is extremely low due to the high alloy. When such steel is used, there arises a problem of cracks and wrinkles generated during casting, and subsequent hot working, that is, hot rolling of material bar steel, and flaws generated during hot forging of parts.
  • Patent Document 3 proposes that it is effective to reduce the high-carbon island martensite and retained austenite in the structure using a bainite-based metal structure.
  • the durability ratio is at most 0.56, and there is a limit to increasing the strength without reducing the machinability, and the fatigue strength is low.
  • Patent Document 4 it is effective to form a fine ferrite-bainite structure after sub-hot forging at a temperature range of 800 to 1050 ° C., and to precipitate V carbonitride by subsequent aging treatment. It has been proposed. In general, when the durability ratio is increased, the toughness tends to decrease, but the toughness is improved by refining the ferrite-bainite structure by sub-hot forging. However, the improvement in toughness is small in steel parts for machine structures that require toughness. Further, in the sub-hot forging in the temperature range of 800 to 1050 ° C., the forging load is large and the life of the die is remarkably reduced, so that it is difficult to produce industrially.
  • Patent Documents 5 and 6 propose methods for increasing strength by precipitating Ti carbide or V carbide in steel.
  • Ti becomes nitride at a high temperature preferentially over carbide, so coarse Ti nitride is generated, which not only contributes to precipitation strengthening, but also significantly reduces the impact value. End up.
  • Japanese Patent Laid-Open No. 1-198450 JP 2004-169055 A Japanese Patent Laid-Open No. 4-176842 Japanese Patent No. 3300511 JP 2011-241441 A JP 2009-84648 A
  • the present invention provides a steel part for machine structure that has improved fatigue strength and toughness without reducing machinability by controlling the structure in the part by subsequent cooling and heat treatment even in normal hot forging, and It aims at providing the manufacturing method.
  • the main structure is made fine bainite by cooling at a relatively fast cooling rate, and then V carbides are precipitated in the bainite structure by aging treatment, and the size and dispersion state thereof are determined.
  • V carbides are precipitated in the bainite structure by aging treatment, and the size and dispersion state thereof are determined.
  • the gist of the present invention is as follows.
  • the steel structure has an area ratio of 95% or more containing a bainite structure, The width of the bainite lath is 5 ⁇ m or less, V carbides having an average particle size of 4 nm or more and 7 nm or less are dispersed in the bainite structure, A steel part for machine structural use, in which the area ratio of V carbide in the bainite structure is 0.18% or more.
  • a steel material comprising the balance Fe and inevitable impurities is heated to 1100 ° C. or higher and 1300 ° C. or lower and hot forged, After the hot forging, the average cooling rate up to 300 ° C. is cooled at 3 ° C./second or more and 120 ° C./second or less, The manufacturing method of the steel part for machine structures which performs an aging treatment within the temperature range of 550 degreeC or more and 700 degrees C or less after this cooling.
  • the present invention it is possible to provide a steel part for machine structure with high fatigue strength and high toughness without increasing the cutting cost by selecting the steel component range, the structure form and the heat treatment condition. It is extremely effective.
  • the present inventors diligently studied the steel component range, the structure morphology, and the heat treatment conditions for the above-mentioned purpose, and as a result, found the following (a) to (d).
  • the temperature of the aging treatment is higher than a certain level, the V carbide is coarsened and the tensile strength is not improved, while the fatigue strength is further increased.
  • the durability ratio is improved.
  • the U-notch Charpy absorbed energy at 20 ° C. is 80 J / cm 2 or more and the durability ratio is 0.60.
  • the above high toughness and high durability ratio can be obtained.
  • improving the durability ratio to 0.60 or more means, for example, when the tensile strength is 1100 MPa, the fatigue strength is increased without increasing the tensile strength. It means improving about 130 MPa or more. Machinability depends strongly on tensile strength. If only the fatigue strength can be improved without increasing the tensile strength, the fatigue strength can be improved without reducing the machinability, and both machinability and high fatigue strength can be achieved.
  • the average cooling rate up to 300 ° C. is usually set to a speed range of 3 ° C./second or more and 120 ° C./second or less.
  • the desired fine bainite structure can also be obtained by hot forging.
  • the present invention has been completed only after further studies based on these findings.
  • C 0.05 to 0.20% C is an important element that determines the strength of steel. In order to obtain sufficient strength as a part, the lower limit is made 0.05%. Compared to other alloy elements, the alloy cost is low. If a large amount of C can be added, the alloy cost of the steel material can be reduced. However, when a large amount of C is added, residual austenite or island martensite in which C is concentrated at the boundary of the lath during bainite transformation is generated, and the toughness and durability ratio are lowered, so the upper limit is made 0.20%.
  • Si 0.10 to 1.00% Si is an effective element as an element for increasing the strength of steel and as a deoxidizing element. In order to obtain these effects, the lower limit is made 0.10%. Si is an element that promotes ferrite transformation. If it exceeds 1.00%, ferrite is formed at the grain boundaries of the prior austenite and the fatigue strength and durability ratio are remarkably lowered. Therefore, the upper limit is set to 1.00.
  • Mn 0.75 to 3.00%
  • Mn is an element that promotes bainite transformation, and is an important element for making the structure bainite in the cooling process after hot forging. Furthermore, it combines with S to form sulfides and has an effect of improving machinability, and also has an effect of suppressing the growth of austenite grains and maintaining high toughness. In order to exert these effects, the lower limit is made 0.75%. On the other hand, when the amount of Mn exceeding 3.00% is added, the hardness of the substrate increases and becomes brittle, so that the toughness and machinability are significantly lowered. The upper limit is 3.00%.
  • P 0.001 to 0.050% Since P usually contains 0.001% or more as an inevitable impurity in steel, the lower limit is made 0.001%. And since contained P segregates at the grain boundaries of the prior austenite and the toughness is remarkably lowered, the upper limit is limited to 0.050%. Preferably it is 0.030% or less, More preferably, it is 0.010% or less.
  • S 0.001 to 0.200%
  • S forms sulfides with Mn and has an effect of improving machinability, and also has an effect of suppressing the growth of austenite grains and maintaining high toughness.
  • the lower limit is made 0.001%.
  • the upper limit is made 0.200%.
  • V Over 0.20 to 0.25% V is an element effective for forming carbides, precipitation strengthening the bainite structure, and increasing the strength and durability ratio. In order to sufficiently obtain this effect, a content of 0.05% or more is necessary. On the other hand, if it exceeds 0.50%, the effect is saturated and not only the alloy cost is increased, but also the hot ductility is significantly reduced. Problems arise. In the present invention, in particular, while increasing the strength, the range of V is set to more than 0.20 to 0.25% in order to achieve both manufacturability and economy.
  • Cr 0.01 to 1.00% Cr is an effective element for promoting the bainite transformation. In order to obtain the effect, 0.01% or more is added, but even if added over 1.00%, the effect is saturated and only the alloy cost is increased. Therefore, the Cr content is set to 0.01 to 1.00%.
  • Al 0.001 to 0.500%
  • Al is effective in suppressing deoxidation and austenite grain growth and maintaining high toughness. Furthermore, Al combines with oxygen during machining, adheres to the tool surface, and is effective in preventing tool wear. In order to exert these effects, the lower limit is made 0.001%. On the other hand, if it exceeds 0.500%, a large amount of hard inclusions are formed and all of toughness, durability ratio and machinability are lowered. Therefore, the upper limit is 0.500%.
  • N 0.0080 to 0.0200%
  • N forms nitrides with various alloying elements such as V and Al, and is important for maintaining high toughness and obtaining a high durability ratio even if the strength is increased by suppressing the growth of austenite grains and making the bainite structure finer. Element.
  • the lower limit is made 0.0080%.
  • the upper limit is made 0.0200%.
  • Ca 0.0003 to 0.0100%, Mg: 0.0003 to 0.0100%, Zr: 0.0005 to 0.1000%
  • Ca, Mg, and Zr are not essential.
  • One or more of these Ca: 0.0003 to 0.0100%, Mg: 0.0003 to 0.0100%, and Zr: 0.0005 to 0.1000% may be contained.
  • Ca, Mg, and Zr all form oxides and serve as crystallization nuclei for Mn sulfide, which has the effect of uniformly and finely dispersing Mn sulfide.
  • any element dissolves in Mn sulfide, lowers its deformability, suppresses elongation of Mn sulfide shape after rolling or hot forging, and improves anisotropy of mechanical properties such as toughness. There is an effect to make it smaller.
  • the lower limit of Ca and Mg is 0.0003%
  • the lower limit of Zr is 0.0005%.
  • Mo 0.01 to 1.00%, Nb: 0.001 to 0.200%
  • Mo and Nb are not essential.
  • Mo and Nb are effective elements for forming carbides, precipitation strengthening the bainite structure, and increasing the strength and durability ratio.
  • the lower limit of Mo is 0.01%
  • the lower limit of Nb is 0.001%. If any of them is added more than necessary, the effect is saturated and only the cost of the alloy is increased. Therefore, the upper limit of Mo is 1.00%, and the upper limit of Nb is 0.200%.
  • a bainite structure with an area ratio of 95% or more is defined as a bainite structure with an area ratio of 95% or more. If the main structure is a bainite structure, it has high toughness and a high durability ratio, but the remaining structure is ferrite. This is because when the retained austenite or island martensite is present in an area ratio of 5% or more, the toughness and the durability ratio are remarkably lowered. The smaller these remaining structures, the higher the toughness and durability ratio, and preferably the bainite structure is 97% or more in terms of area ratio.
  • the bainite lath width is 5 ⁇ m or less Further, the bainite lath width is specified to be 5 ⁇ m or less. When the width exceeds 5 ⁇ m, coarse cementite precipitates at the lath boundary with a bainite structure transformed at a relatively high temperature, toughness, This is because the durability ratio is low. As the lath width is narrower, the bainite structure is transformed at a lower temperature, the size of cementite is reduced, and the toughness and the durability ratio are higher. Therefore, the width of the bainite lath is preferably 3 ⁇ m or less.
  • V carbide with an average particle size of 4 nm or more and 7 nm or less is dispersed and present in the bainite structure.
  • the average particle size of the V carbide in the bainite structure is specified to be 4 nm or more. This is because the strength is high but the tensile strength is also high, and the durability ratio is small, and it is impossible to achieve both high fatigue strength and machinability.
  • the upper limit value of the average particle size of V carbide is defined as 7 nm because when the average particle size exceeds 7 nm, not only the tensile strength but also the fatigue strength is remarkably lowered, and high fatigue strength cannot be achieved. is there.
  • the area ratio of V carbide in the bainite structure is 0.18% or more. Furthermore, the area ratio of V carbide in the bainite structure is specified to be 0.18% or more. This is because the durability ratio is low.
  • Mo carbide and Nb carbide having an average particle size of 4 nm or more and 7 nm or less are also dispersed in the bainite structure.
  • the total area ratio of these V carbide, Mo carbide, and Nb carbide is 0.18% or more.
  • a steel material (bar steel, steel plate, etc.) containing the above-described component composition and the balance being Fe and inevitable impurities is heated to 1100 ° C. or higher and 1300 ° C. or lower and hot forged.
  • the reason why the steel material having the above-described component composition is heated to 1100 ° C. or higher and 1300 ° C. or lower is to sufficiently dissolve V, Mo, and Nb in the steel by heating before hot forging.
  • the V, Mo, and Nb solutionized here become carbides of V, Mo, and Nb in the subsequent aging treatment, and are dispersed and precipitated in the bainite structure.
  • heating temperature is less than 1100 degreeC, V, Mo, and Nb cannot fully be made into solution in steel, the precipitation strengthening amount in subsequent aging treatment is small, and fatigue strength and durability ratio will become low.
  • raising the heating temperature more than necessary beyond 1300 ° C. promotes the growth of austenite grains, and the structure transformed in the subsequent cooling process becomes coarse, resulting in a decrease in toughness and durability ratio. Therefore, the heating temperature of the steel material is set to 1100 ° C. or higher and 1300 ° C. or lower.
  • the average cooling rate up to 300 ° C. is cooled at 3 ° C./second or more and 120 ° C./second or less.
  • the reason why the average cooling rate up to 300 ° C. is defined as 3 ° C./second or more and 120 ° C./second or less is to make the bainite structure 95% or more in area ratio and the width of bainite lath to 5 ⁇ m or less.
  • the bainite ratio and the bainite lath width defined in the present invention do not change depending on the cooling rate, so the cooling rate from 300 ° C. after hot forging is limited.
  • the average cooling rate is less than 3 ° C / second, ferrite with an area ratio of 5% or more is formed along the prior austenite grain boundaries, and the width of the bainite lath exceeds 5 ⁇ m, which significantly reduces toughness, fatigue strength, and durability ratio. To do.
  • the average cooling rate exceeds 120 ° C./sec, residual austenite and island martensite with an area ratio of 5% or more are generated at the bainite lath boundary, and the toughness and durability ratio (fatigue strength / tensile strength) are remarkable. To drop.
  • an aging treatment is performed within a temperature range of 550 ° C. or more and 700 ° C. or less.
  • the reason why the aging treatment is performed at 550 ° C. or more and 700 ° C. or less is that the fine aging of V carbide, Mo carbide, and Nb carbide is precipitated in the bainite structure by this aging treatment, and the bainite structure is strengthened by precipitation strengthening. This is to obtain fatigue strength and a high durability ratio. If the aging treatment temperature is less than 550 ° C., the precipitation amount of V carbide, Mo carbide, Nb carbide is small and sufficient precipitation strengthening amount cannot be obtained, and the fatigue strength and durability ratio are both low, or V carbide, Mo carbide, Nb carbide.
  • the lower limit of the heat treatment temperature is 550 ° C.
  • the upper limit is set to 700 ° C.
  • the temperature is preferably 600 ° C. or higher, more preferably 650 ° C. or higher.
  • the tensile strength is 1200 MPa or less in order to ensure sufficient machinability.
  • JIS Z 2201 No. 14 tensile test piece, JIS Z 2274 No. 1 rotating bending fatigue test piece, and JIS Z 2202 2 mm U notch impact test piece were collected from the central part of these forgings, tensile strength, Charpy at 20 ° C. Absorbed energy and fatigue strength were determined.
  • the fatigue strength was defined as the durability to stress amplitude without rupture at 107 rotates at a rotation bending fatigue test.
  • the ratio of the obtained fatigue strength and tensile strength was obtained as the durability ratio (fatigue strength / tensile strength).
  • tissue observation was extract
  • the area ratio of bainite is determined by polishing the specimen until it becomes a mirror surface, and then performing repeller etching to confirm the remaining structure other than bainite, such as ferrite and island martensite. After taking a field of view, it was calculated by image analysis. The width of the bainite lath was polished again until it became a mirror surface, etched with nital, 10 times of 5000 times scanning electron micrographs were taken, and the lath width was measured at 10 places in each field of view. The average value was obtained.
  • the average particle size of the carbide was obtained by taking 10 specimens of a transmission electron microscope photograph of 15000 times each with a transmission electron microscope after finishing the test piece into a thin film by an electropolishing method.
  • the area of each Mo and Nb alloy carbide was determined by image analysis, the equivalent circle diameter was calculated, and the average value was determined.
  • the area ratio of the precipitate was calculated from the total area of the alloy carbide occupying the observation area.
  • the carbides were identified by analysis of a limited-field electron diffraction pattern using a transmission electron microscope and elemental analysis by energy dispersive X-ray spectroscopy.
  • the inventive examples 1 to 21 all have a bainite structure with an area ratio of 95% or more, a lath width of 5 ⁇ m or less, and an aging treatment temperature of 550 ° C. or more. Carbides of 9 nm or more and 6.7 nm or less are sufficiently precipitated, Charpy absorbed energy at 20 ° C. is 82 J / cm 2 or more, and durability ratio is 0.61 or more. In order to ensure machinability, the tensile strength is 1200 MPa or less. Higher fatigue strength than 33 ferritic-pearlite non-heat treated steel.
  • Comparative Example No. Nos. 22 and 23 have a high C or Si content.
  • Nos. 31 and 32 are within the specified steel composition range, but the average cooling rate is not specified, and there is a large amount of the remainder such as ferrite and residual austenite at the bainite lath boundary. At 32, the width of the bainite lath is large and the Charpy absorbed energy and durability ratio are low.
  • No. 24 the steel composition and heat treatment conditions are not specified, and sufficient precipitation strengthening cannot be obtained, resulting in a low durability ratio.
  • No. 24, 25, and 28 have alloy elements added more than necessary, and on the contrary, the Charpy absorbed energy is low.
  • No. Nos. 26 and 27 contain Ti and have low Charpy absorption energy. No.
  • No. 27 does not provide sufficient precipitation strengthening and has a low durability ratio.
  • No. No. 29 has a large amount of fine carbides precipitated and high fatigue strength. On the other hand, since tensile strength is high, both the durability ratio and Charpy absorbed energy are low.
  • No. 30 is higher than the specified aging temperature, and the average particle size of the carbide is larger than 7 nm and is coarse, so the strength and durability ratio are low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

被削性を低下させることなく、疲労強度、靱性を向上させた機械構造用鋼部品、およびその製造方法を提供する。質量%でC:0.05~0.20%、Si:0.10~1.00%、Mn:0.75~3.00%、P:0.001~0.050%、S:0.001~0.200%、V:0.20超~0.25%、Cr:0.01~1.00%、Al:0.001~0.500%、N:0.0080~0.0200%を含有し、残部がFe及び不可避的不純物よりなる鋼からなり、鋼組織が、面積率で95%以上がベイナイト組織であり、ベイナイトラスの幅が5μm以下であり、ベイナイト組織中に平均粒径4nm以上、7nm以下のV炭化物が分散して存在し、ベイナイト組織中のV炭化物の面積率が0.18%以上である。

Description

機械構造用鋼部品およびその製造方法
 本発明は、自動車を始めとする輸送機器や産業機械などの機械構造用鋼部品およびその製造方法に関し、特に被削性を低下させることなく、高疲労強度と高靭性を有する機械構造用鋼部品、およびその製造方法に関するものである。本願は、2011年5月26日に日本に出願された特願2011-118312号に基づき優先権を主張し、その内容をここに援用する。
 旧来、自動車や産業機械等の機械構造部品の多くは、素材棒鋼などの鋼材から部品形状に熱間鍛造された後、再加熱され、焼入れ焼戻しの調質処理が施されて、高強度および高靱性が付与されていた。近年では、製造コストの低減の観点から、焼入れ焼戻しの調質処理工程の省略が進められおり、例えば、特許文献1などに見られるように、熱間鍛造のままでも、高強度および高靱性を付与できる非調質鋼が提案されてきた。しかしながら、これら高強度高靱性の非調質鋼の機械構造用鋼部品への適用において、実際に障害となるものは高疲労強度化と被削性を両立させることである。
一般に疲労強度は引張強さに依存するとされ、引張強さを高くすれば疲労強度は高くなる。その一方で引張強さの上昇は被削性を低下する。機械構造用鋼部品の多くは、熱間鍛造後、切削加工を必要とし、その切削コストは部品の製造コストの大半を占める。引張強さの上昇による被削性の低下は、部品の製造コストの大幅な増加につながる。一般に引張強さが1200MPaを超えると著しく被削性が低下し、製造コストが大幅に増加するため、この強度を超える高強度化は実用上困難である。従って、これら機械構造用部品において、被削性の低下による切削コストの増加は高疲労強度化のネックであり、高疲労強度化と被削性の両立技術が求められている。
 高強度でありながら被削性を確保させる従来の知見として、例えば、特許文献2では、鋼中に多量のVを添加し、時効処理により析出したV炭窒化物が機械加工時に工具面に付着して保護し、工具摩耗の防止に効果のあることを提案している。しかしながら、被削性を確保するためには、多量のVが必要となり、高合金のため熱間延性が著しく低い。このような鋼を用いた場合、鋳造時に発生する割れや疵と、その後の熱間加工、すなわち素材棒鋼の熱間圧延や、部品の熱間鍛造時の疵発生の問題が生じる。
 高疲労強度化と被削性を両立させる手段として、疲労強度と引張強さの比、すなわち耐久比(疲労強度/引張強さ)を向上させることが有効である。例えば、特許文献3では、ベイナイト主体の金属組織とし組織中の高炭素島状マルテンサイトおよび残留オーステナイトを低減することが有効であると提案されている。しかしながら、耐久比は高々0.56以下であり、被削性を低下させることなく、強度を高めるには限界があり、疲労強度はいずれも低い。
 また、例えば、特許文献4では、800~1050℃の温度域での亜熱間鍛造によって成形後、微細フェライト-ベイナイト組織とし、その後の時効処理によってV炭窒化物を析出することが有効であると提案されている。一般に、高耐久比化を図ると靱性が低下する傾向を示すが、亜熱間鍛造によりフェライト-ベイナイト組織を微細化することで靱性が改善される。しかしながら、靱性の必要な機械構造用鋼部品において、その靱性の改善は小さい。また800~1050℃の温度域での亜熱間鍛造では、鍛造負荷が大きく、型の寿命を著しく低下するため工業上、生産が困難である。
 また、例えば、特許文献5、6では、鋼中にTi炭化物やV炭化物を析出させて強度を高める方法が提案されている。しかし、Tiが含有されていると、Tiは炭化物より優先的に高温で窒化物となるため、粗大なTi窒化物が生成され、析出強化に寄与しないだけでなく、衝撃値も著しく低下してしまう。
特開平1-198450号公報 特開2004-169055号公報 特開平4-176842号公報 特許3300511号公報 特開2011-241441号公報 特開2009-84648号公報
 本発明は、通常の熱間鍛造でも、その後の冷却および熱処理で部品内の組織を制御することによって被削性を低下させることなく、疲労強度、靱性を向上させた機械構造用鋼部品、およびその製造方法を提供することを目的とする。
 本発明は、熱間鍛造後に、比較的速い冷却速度で冷却することで主体組織を微細なベイナイトとした上で、時効処理にてベイナイト組織中にV炭化物を析出させ、そのサイズや分散状態を制御することにより、高シャルピー吸収エネルギーおよび高耐久比を有し、被削性を低下させることなく、疲労強度、靭性を向上させた機械構造用鋼部品を得ることを見出し、本発明を完成した。
 本発明の要旨は、以下の通りである。
(1)
質量%で、
C:0.05~0.20%、
Si:0.10~1.00%、
Mn:0.75~3.00%、
P:0.001~0.050%、
S:0.001~0.200%、
V:0.20超~0.25%、
Cr:0.01~1.00%、
Al:0.001~0.500%、
N:0.0080~0.0200%
を含有し、残部がFe及び不可避的不純物よりなる鋼からなり、
鋼組織が、面積率で95%以上がベイナイト組織を含有し、
ベイナイトラスの幅が5μm以下であり、
ベイナイト組織中に平均粒径4nm以上、7nm以下のV炭化物が分散して存在し、
ベイナイト組織中のV炭化物の面積率が0.18%以上である、機械構造用鋼部品。
(2)
さらに、質量%で、
Ca:0.0003~0.0100%、
Mg:0.0003~0.0100%、
Zr:0.0005~0.1000%
のうちの1種または2種以上を含有する、(1)に記載の機械構造用鋼部品。
(3)
さらに、質量%で、
Mo:0.01~1.00%、
Nb:0.001~0.200%
のうちの1種または2種を含有する、(1)または(2)に記載の機械構造用鋼部品。
(4)
20℃でのシャルピー吸収エネルギーが80J/cm以上であり、耐久比が0.60以上である、(1)に記載の機械構造用鋼部品。
(5)
質量%で、
C:0.05~0.20%、
Si:0.10~1.00%、
Mn:0.75~3.00%、
P:0.001~0.050%、
S:0.001~0.200%、
V:0.20超~0.25%、
Cr:0.01~1.00%、
Al:0.001~0.500%、
N:0.0080~0.0200%
を含有し、残部がFe及び不可避的不純物よりなる鋼材を、1100℃以上、1300℃以下に加熱して熱間鍛造し、
該熱間鍛造後、300℃までにおける平均冷却速度を3℃/秒以上、120℃/秒以下で冷却し、
該冷却後、550℃以上、700℃以下の温度範囲内で時効処理を施す、機械構造用鋼部品の製造方法。
 本発明によれば、鋼成分範囲、組織形態および熱処理条件を選択することにより、切削コストを増加することなく、高疲労強度・高靱性の機械構造用鋼部品を提供することが可能となり、産業上極めて効果の大きいものである。
 本発明者らは、上述した目的に対し、鋼成分範囲、組織形態、および熱処理条件について鋭意検討し、その結果、以下の(a)~(d)を知見した。
(a)面積率で95%以上のベイナイト組織で、ベイナイトラスの幅が5μm以下の微細組織にした上で、時効処理にてベイナイト組織中に微細なV炭化物を分散させることによって、従来の非調質鋼より高い耐久比が得られる。時効処理で微細なV炭化物が析出することによって、引張強さおよび疲労強度はいずれも上昇する。しかし、時効処理の温度が一定以上高くなると、V炭化物が粗大化し引張強さ向上しなくなり、一方、疲労強度は更に上昇する。その結果、時効処理の温度が一定以上高くなると、耐久比が向上する。
(b)面積率で95%以上のベイナイト組織で、ベイナイトラスの幅が5μm以下の微細組織であれば、20℃でのUノッチシャルピー吸収エネルギーが80J/cm以上、耐久比が0.60以上の高靭性、高耐久比が得られる。従来の非調質鋼(耐久比は0.48程度)において、耐久比を0.60以上に向上させるということは、例えば、引張強さ1100MPaの場合、引張強さを上げることなく疲労強度を約130MPa以上向上させることを意味する。被削性は引張強さに強く依存する。引張強さを上げることなく、疲労強度だけを向上させることができれば、被削性を低下させることなく疲労強度を向上し、被削性と高疲労強度化が両立される。
(c)低C、高NおよびV添加した鋼材を熱間鍛造成形した後、300℃までにおける平均冷却速度を3℃/秒以上、120℃/秒以下の速度範囲に設定することで、通常の熱間鍛造でも所望の微細なベイナイト組織が得られる。
(d)鋼中にTiが含有されていると、Tiは炭化物より優先的に高温で窒化物となるため、粗大なTi窒化物が生成され、析出強化に寄与しないだけでなく、衝撃値も著しく低下してしまう。それに対して、Vはオーステナイト化した時の溶解量が多く、その一部が窒化物となっても、窒化物の量は少なく、溶解したVのほとんどが、時効処理によってV炭化物となって析出し、大きな析出強化量が得られる。
 本発明は、これらの知見に基づいて、さらに検討を重ねて初めて完成したものである。
 以下、本発明について詳細に説明する。まず、上述した機械構造用鋼部品の鋼成分範囲の限定理由について説明する。ここで、成分についての「%」は、質量%を意味する。
 C:0.05~0.20%
 Cは、鋼の強度を決める重要な元素である。部品として十分に強度を得るためには、下限は0.05%とする。他の合金元素に比べて合金コストは安く、Cを多量に添加することができれば鋼材の合金コストは低減できる。しかしながら、多量のCを添加すると、ベイナイト変態時にラスの境界にCが濃縮した残留オーステナイトや島状マルテンサイトが生成し、靱性や耐久比が低下するため、上限は0.20%とする。
 Si:0.10~1.00%
 Siは、鋼の強度を高める元素として、また脱酸元素として有効な元素である。これら効果を得るためには、下限は0.10%とする。またSiはフェライト変態を促進する元素であり、1.00%超では、旧オーステナイトの粒界にフェライトが生成し、疲労強度、耐久比が顕著に低下するため、上限は1.00とする。
 Mn:0.75~3.00%
 Mnは、ベイナイト変態を促進する元素であり、熱間鍛造後の冷却過程で組織をベイナイトとするために重要な元素である。さらにSと結合して硫化物を形成し、被削性を向上させる効果があり、またオーステナイト粒の成長を抑制し高靱性を維持する効果もある。これら効果を発揮するためには、下限は0.75%とする。一方、3.00%超のMn量を添加すると素地の硬さが大きくなり脆くなるため、かえって靱性や被削性が顕著に低下する。上限は3.00%とする。
 P:0.001~0.050%
 Pは、鋼中に不可避的不純物として通常、0.001%以上は含有しているため、下限を0.001%とする。そして、含有されたPは旧オーステナイトの粒界等に偏析し、靭性を顕著に低下するため、上限は0.050%に制限する。好ましくは0.030%以下であり、より好ましくは0.010%以下である。
 S:0.001~0.200%
 Sは、Mnと硫化物を形成し、被削性を向上させる効果があり、またオーステナイト粒の成長を抑制し高靱性を維持する効果もある。これら効果を発揮するためには、下限は0.001%とする。しかし、Mn量にも依存するが、多量に添加すると靱性等の機械的性質に異方性が大きくなることから、上限は0.200%とする。
 V:0.20超~0.25%
 Vは、炭化物を形成し、ベイナイト組織を析出強化し強度、耐久比を高めるのに有効な元素である。この効果を十分に得るには、0.05%以上の含有量が必要である。一方、0.50%を超えると、効果は飽和して合金コストがかさむだけでなく、熱間延性が著しく低下するため、素材棒鋼の熱間圧延や、部品の熱間鍛造時の疵発生の問題が生じる。本願発明では、特に、高強度化をはかる一方で、製造性や経済性との両立を図るために、Vの範囲を、0.20超~0.25%とする。
 Cr:0.01~1.00%
 Crは、ベイナイト変態を促進するのに有効な元素である。その効果を得るには0.01%以上添加するが、1.00%を超えて添加しても、その効果は飽和して合金コストがかさむだけである。したがって、Crの含有量は0.01~1.00%とする。
 Al:0.001~0.500%
 Alは、脱酸やオーステナイト粒の成長を抑制し高靭性を維持するのに有効である。さらにAlは機械加工時に酸素と結合して工具面に付着し、工具摩耗の防止に効果がある。これら効果を発揮するためには、下限は0.001%とする。一方、0.500%超では多量の硬質介在物を形成し靭性、耐久比および被削性のいずれも低下する。したがって、上限は0.500%とする。
 N:0.0080~0.0200%
 Nは、V、Al等の各種合金元素と窒化物を形成し、オーステナイト粒の成長抑制やベイナイト組織の微細化により強度を高めても高靱性を維持し、さらに高耐久比を得るために重要な元素である。この効果を得るには、下限は0.0080%とする。一方、0.0200%を超えると、その効果は飽和する。さらに熱間延性が著しく低下し、素材棒鋼の熱間圧延や部品の熱間鍛造時の疵発生の問題が生じるため、上限は0.0200%とする。
 Ca:0.0003~0.0100%、Mg:0.0003~0.0100%、Zr:0.0005~0.1000%
 本発明では、Ca、Mg、Zrは必須ではない。これらCa:0.0003~0.0100%、Mg:0.0003~0.0100%、Zr:0.0005~0.1000%のうちの1種または2種以上を含有しても良い。
 Ca、Mg、Zrは、いずれも酸化物を形成し、Mn硫化物の晶出核となりMn硫化物を均一微細分散する効果がある。また、いずれの元素もMn硫化物中に固溶し、その変形能を低下させ、圧延や熱間鍛造後のMn硫化物形状の伸延を抑制し、靱性等の機械的性質の異方性を小さくする効果がある。これら効果を発揮するには、Ca、Mgの下限は0.0003%とし、Zrの下限は0.0005%とする。一方、Ca、Mgは0.0100%を超えると、Zrは0.1000%を超えると、かえってこれら酸化物や硫化物等の硬質介在物を多量に生成し、靱性、耐久比および被削性は低下する。したがって、Ca、Mgの上限は0.0100%とし、Zrの上限は0.1000%とする。
 Mo:0.01~1.00%、Nb:0.001~0.200%
 本発明では、Mo、Nbは必須ではない。これらMo:0.01~1.00%、Nb:0.001~0.200%のうちの1種または2種を含有しても良い。
 Mo、Nbは、Vと同様に、炭化物を形成し、ベイナイト組織を析出強化し強度、耐久比を高めるのに有効な元素である。この効果を得るには、Moの下限は0.01%とし、Nbの下限は0.001%とする。いずれも必要以上に添加しても効果は飽和し合金コストの上昇を招くだけである。したがって、Moの上限は1.00%とし、Nbの上限は0.200%とする。
 次に、本発明の機械構造用鋼部品の鋼組織の限定理由について説明する。
 面積率で95%以上のベイナイト組織
 組織を面積率で95%以上のベイナイト組織に規定したのは、主体組織がベイナイト組織であれば高靭性、高耐久比を有するものの、その残部組織であるフェライト、残留オーステナイトまたは島状マルテンサイトが面積率で5%以上存在する場合、靭性、耐久比は著しく低下するためである。これら残部組織が少なければ少ないほど、靭性、耐久比は高く、好ましくはベイナイト組織が面積率で97%以上である。
 ベイナイトラス幅が5μm以下
 さらに、ベイナイトラスの幅が5μm以下に規定されるのは、その幅が5μm超では比較的高温で変態したベイナイト組織でラス境界には粗大なセメンタイトが析出し、靭性、耐久比が低いためである。ラス幅が狭いほど、低温で変態したベイナイト組織であり、セメンタイトのサイズも小さくなり、より高靭性、高耐久比を有する。したがって、好ましくはベイナイトラスの幅は3μm以下とする。
 ベイナイト組織中に平均粒径4nm以上、7nm以下のV炭化物が分散して存在
 ベイナイト組織中のV炭化物の平均粒径を4nm以上に規定したのは、その平均粒径が4nm未満では、高い疲労強度を有するが同時に引張強さも高く、耐久比の値としては小さくなり、高疲労強度化と被削性の両立は実現できないからである。また、V炭化物の平均粒径の上限値を7nmに規定したのは、その平均粒径が7nm超では、引張強さだけでなく疲労強度も著しく低下し、高疲労強度化を達成できないからである。
 ベイナイト組織中のV炭化物の面積率が0.18%以上
 さらに、ベイナイト組織中のV炭化物の面積率を0.18%以上に規定したのは、0.18%未満では析出強化量が小さく、耐久比が低いためである。
 なお、Mo、Nbを含有する場合、V炭化物の他に、ベイナイト組織中に平均粒径4nm以上、7nm以下のMo炭化物、Nb炭化物も分散して存在することとなる。その場合、ベイナイト組織中において、それらV炭化物、Mo炭化物、Nb炭化物の合計の面積率が0.18%以上である。
 次に、本発明の機械構造用鋼部品の製造方法について説明する。
 先ず、上述した成分組成を含有し、残部がFe及び不可避的不純物よりなる鋼材(棒鋼、鋼板等)を、1100℃以上、1300℃以下に加熱して熱間鍛造する。上述した成分組成からなる鋼材を1100℃以上、1300℃以下に加熱することを規定したのは、熱間鍛造前の加熱によってV、Mo、Nbを鋼中に十分に溶体化させるためである。ここで溶体化したV、Mo、Nbが、後の時効処理において、V、Mo、Nbの炭化物となって、ベイナイト組織中に分散して析出する。加熱温度1100℃未満では、V、Mo、Nbを鋼中に十分に溶体化させることができず、その後の時効処理での析出強化量が小さく、疲労強度、耐久比は低くなる。一方、1300℃を超えて必要以上に加熱温度を上げることは、オーステナイト粒の成長を促し、その後の冷却過程で変態した組織が粗大となり靭性、耐久比が低下する。したがって、鋼材の加熱温度を1100℃以上、1300℃以下とした。
 熱間鍛造した後、次に、300℃までにおける平均冷却速度を3℃/秒以上、120℃/秒以下で冷却する。300℃までにおける平均冷却速度を3℃/秒以上、120℃/秒以下に規定したのは、面積率で95%以上のベイナイト組織とし、ベイナイトラスの幅を5μm以下とするためである。300℃未満の温度領域では、本発明で規定するベイナイト率、ベイナイトラス幅が、冷却速度によって変化しないことから、熱間鍛造した後から300℃までの冷却速度を制限することとした。平均冷却速度が3℃/秒未満では、旧オーステナイト粒界に沿って面積率で5%以上のフェライトが生成し、またベイナイトラスの幅が5μm超となり、靭性、疲労強度および耐久比を著しく低下する。一方、平均冷却速度が120℃/秒を超えると、ベイナイトラス境界に面積率で5%以上の残留オーステナイトや島状マルテンサイトが生成し、靱性、耐久比(疲労強度/引張強さ)を顕著に低下する。
 該冷却後、550℃以上、700℃以下の温度範囲内で時効処理を施す。550℃以上、700℃以下で時効処理を施すことを規定したのは、この時効処理でベイナイト組織中に微細なV炭化物やMo炭化物、Nb炭化物を析出させ、ベイナイト組織を析出強化させることにより高疲労強度、高耐久比を得るためである。時効処理温度が550℃未満では、V炭化物やMo炭化物、Nb炭化物の析出量が少なく十分な析出強化量が得られず疲労強度、耐久比ともに低いか、もしくは、V炭化物やMo炭化物、Nb炭化物が十分析出し高い疲労強度を有するが同時に引張強さも高いため、耐久比が低い。熱処理温度の下限は550℃とする。一方、処理温度700℃を超えると、V炭化物やMo炭化物、Nb炭化物が粗大化し、十分な析出強化量が得られず引張強さ、疲労強度ともに低く、高疲労強度化を達成できない。そのため、上限は700℃とする。上述した規定の温度範囲内では、時効処理の温度が高いほど、耐久比は向上するため、好ましくは600℃以上であり、より好ましくは650℃以上とする。
 なお、本発明によって高疲労強度、高靱性を有する機械構造用鋼部品が得られるが、被削性を十分に確保するためには、引張強さは1200MPa以下にすることが望ましい。
 本発明を実施例によって以下に説明する。なお、これら実施例は本発明の技術的意義、効果を説明するためのものであり、本発明の範囲を限定するものではない。
 表1に示す化学組成の鋼を100kg真空溶解炉にて溶製した。これを直径55mmの棒鋼に圧延後、鍛造用試験片を切り出し、表1に示す加熱温度に加熱して熱間鍛造した。熱間鍛造した後、300℃までの冷却方法は油冷、水冷または空冷を行い、冷却速度を制御し、その後、300℃未満では空冷とした。平均冷却速度は、熱間鍛造した後の試験片の温度から300℃を差し引いた値を、熱間鍛造した後300℃まで冷却するのに要した時間で割って求めた。その後、表1に示す時効温度で、時効処理を施した。なお、表1の下線部は本発明の範囲外条件である。
 これら鍛造材の中央部よりJIS Z 2201の14号引張試験片、JIS Z 2274の1号回転曲げ疲労試験片、およびJIS Z 2202の2mmUノッチ衝撃試験片を採取し、引張強さ、20℃シャルピー吸収エネルギー、および疲労強度を求めた。ここで、疲労強度は回転曲げ疲労試験にて10回転で破断せず耐久した応力振幅と定義した。また求められた疲労強度と引張強さの比を耐久比(疲労強度/引張強さ)として求めた。
 鍛造材のL方向の1/4厚み部から組織観察用試験片を採取した。ベイナイトの面積率は、試験片を鏡面になるまで研磨後、レペラーエッチングを行い、ベイナイト以外の残部であるフェライト、島状マルテンサイト等の組織を確認し、500倍の光学顕微鏡写真を各10視野撮影した後、画像解析により算出した。またベイナイトラスの幅は、試験片を再度、鏡面になるまで研磨後、ナイタールエッチングを行い、5000倍の走査型電子顕微鏡写真を各10視野撮影し、各視野10箇所のラス幅を測定し、その平均値を求めた。炭化物の平均粒径は、試験片を電解研磨法により薄膜に仕上げた後、透過型電子顕微鏡にて、15000倍の透過型電子顕微鏡写真を各10視野撮影し、その中で観察されたV、Mo、Nbの合金炭化物一個一個の面積を画像解析で求め、円相当直径を算出し、その平均値を求めた。また析出物の面積率は、観察面積に占める合金炭化物の全面積から算出した。なお、炭化物の同定は、透過型電子顕微鏡を用いて制限視野電子回折図形の解析やエネルギー分散形X線分光法による元素分析で行った。
 No.1~21の本発明例は、いずれも面積率で95%以上のベイナイト組織で、そのラス幅は5μm以下の微細組織であり、時効処理温度が550℃以上であるため、平均粒径4.9nm以上、6.7nm以下の炭化物が十分析出し、20℃でのシャルピー吸収エネルギーは82J/cm以上、耐久比は0.61以上の高靱性、高耐久比を有する。被削性の確保のために引張強さは1200MPa以下ではあるが、同程度の引張強さと比較すると明らかのように、従来例No.33のフェライト-パーライト非調質鋼より高疲労強度を実現している。
 これに対して、比較例No.22、23はCまたはSiの含有量が多く、またNo.31、32は規定した鋼組成範囲内ではあるが、平均冷却速度が規定外で、ベイナイトラス境界にフェライトや残留オーステンサイト等の残部の量が多く、またNo.32ではベイナイトラスの幅が大きく、シャルピー吸収エネルギー、耐久比が低い。No.24は鋼組成、熱処理条件が規定外で、十分な析出強化が得られず耐久比が低い。No.24、25、28は必要以上に合金元素が添加され、かえってシャルピー吸収エネルギーが低い。No.26、27はTiが含有されており、シャルピー吸収エネルギーが低く、さらにNo.27は十分な析出強化が得られず、耐久比が低い。No.29は多量に微細な炭化物が析出し、高い疲労強度を有するが、その一方で引張強さも高いため、耐久比、シャルピー吸収エネルギーともに低い。No.30は規定した時効処理温度より高く、炭化物の平均粒径が7nm超で粗大なため、強度および耐久比が低い。
 これから明らかなように、本発明で規定する条件をすべて満たすものは比較例、従来例より靱性および疲労特性が優れている。
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1. 質量%で、
    C:0.05~0.20%、
    Si:0.10~1.00%、
    Mn:0.75~3.00%、
    P:0.001~0.050%、
    S:0.001~0.200%、
    V:0.20超~0.25%、
    Cr:0.01~1.00%、
    Al:0.001~0.500%、
    N:0.0080~0.0200%
    を含有し、残部がFe及び不可避的不純物よりなる鋼からなり、
    鋼組織が、面積率で95%以上がベイナイト組織を含有し、
    ベイナイトラスの幅が5μm以下であり、
    ベイナイト組織中に平均粒径4nm以上、7nm以下のV炭化物が分散して存在し、
    ベイナイト組織中のV炭化物の面積率が0.18%以上である、機械構造用鋼部品。
  2. さらに、質量%で、
    Ca:0.0003~0.0100%、
    Mg:0.0003~0.0100%、
    Zr:0.0005~0.1000%
    のうちの1種または2種以上を含有する、請求項1に記載の機械構造用鋼部品。
  3. さらに、質量%で、
    Mo:0.01~1.00%、
    Nb:0.001~0.200%
    のうちの1種または2種を含有する、請求項1または2に記載の機械構造用鋼部品。
  4. 20℃でのシャルピー吸収エネルギーが80J/cm以上であり、耐久比が0.60以上である、請求項1に記載の機械構造用鋼部品。
  5. 質量%で、
    C:0.05~0.20%、
    Si:0.10~1.00%、
    Mn:0.75~3.00%、
    P:0.001~0.050%、
    S:0.001~0.200%、
    V:0.20超~0.25%、
    Cr:0.01~1.00%、
    Al:0.001~0.500%、
    N:0.0080~0.0200%
    を含有し、残部がFe及び不可避的不純物よりなる鋼材を、1100℃以上、1300℃以下に加熱して熱間鍛造し、
    該熱間鍛造後、300℃までにおける平均冷却速度を3℃/秒以上、120℃/秒以下で冷却し、
    該冷却後、550℃以上、700℃以下の温度範囲内で時効処理を施す、機械構造用鋼部品の製造方法。
PCT/JP2012/063511 2011-05-26 2012-05-25 機械構造用鋼部品およびその製造方法 WO2012161321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/823,644 US9187797B2 (en) 2011-05-26 2012-05-25 Steel part for machine structural use and manufacturing method thereof
KR1020137014235A KR20130083924A (ko) 2011-05-26 2012-05-25 기계 구조용 강 부품 및 그 제조 방법
IN2559DEN2013 IN2013DN02559A (ja) 2011-05-26 2012-05-25
CN201280003600.2A CN103210108B (zh) 2011-05-26 2012-05-25 机械结构用钢部件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011118312A JP5620336B2 (ja) 2011-05-26 2011-05-26 高疲労強度、高靭性機械構造用鋼部品およびその製造方法
JP2011-118312 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012161321A1 true WO2012161321A1 (ja) 2012-11-29

Family

ID=47217386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063511 WO2012161321A1 (ja) 2011-05-26 2012-05-25 機械構造用鋼部品およびその製造方法

Country Status (6)

Country Link
US (1) US9187797B2 (ja)
JP (1) JP5620336B2 (ja)
KR (1) KR20130083924A (ja)
CN (1) CN103210108B (ja)
IN (1) IN2013DN02559A (ja)
WO (1) WO2012161321A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050152A1 (ja) 2013-10-02 2015-04-09 新日鐵住金株式会社 時効硬化性鋼
WO2015050151A1 (ja) 2013-10-02 2015-04-09 新日鐵住金株式会社 時効硬化性鋼
WO2016158470A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金株式会社 時効硬化性鋼及び時効硬化性鋼を用いた部品の製造方法
JP2017128795A (ja) * 2016-01-18 2017-07-27 株式会社神戸製鋼所 鍛造用鋼及び大型鍛鋼品
WO2017126407A1 (ja) * 2016-01-18 2017-07-27 株式会社神戸製鋼所 鍛造用鋼及び大型鍛鋼品

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620336B2 (ja) 2011-05-26 2014-11-05 新日鐵住金株式会社 高疲労強度、高靭性機械構造用鋼部品およびその製造方法
WO2015133470A1 (ja) 2014-03-05 2015-09-11 大同特殊鋼株式会社 時効硬化型ベイナイト非調質鋼
JP6301694B2 (ja) * 2014-03-24 2018-03-28 株式会社神戸製鋼所 真空浸炭用鋼材及びその製造方法
JP6620490B2 (ja) * 2015-09-29 2019-12-18 日本製鉄株式会社 時効硬化性鋼
JP7071222B2 (ja) 2018-06-07 2022-05-18 大同特殊鋼株式会社 燃料噴射部品の製造方法
CN113737108A (zh) * 2020-05-27 2021-12-03 宝山钢铁股份有限公司 一种耐延迟开裂的电镀锌超强双相钢及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116032A (ja) * 1987-10-29 1989-05-09 Nkk Corp 高強度・高靭性非調質鋼の製造方法
JPH0688162A (ja) * 1992-09-09 1994-03-29 Daido Steel Co Ltd 高強度・高靭性非調質鋼
JPH06306460A (ja) * 1993-04-16 1994-11-01 Nippon Steel Corp 高疲労強度熱間鍛造品の製造方法
JPH073385A (ja) * 1993-06-21 1995-01-06 Sanyo Special Steel Co Ltd 熱間鍛造用高強度高靱性非調質鋼
JP2003147479A (ja) * 2001-11-14 2003-05-21 Nippon Steel Corp 非調質高強度・高靭性鍛造品およびその製造方法
JP2004169055A (ja) * 2002-11-15 2004-06-17 Aichi Steel Works Ltd 被削性に優れた時効硬化型高強度ベイナイト鋼部品およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762203B2 (ja) 1988-02-03 1995-07-05 新日本製鐵株式会社 高強度高靭性熱間鍜造非調質鋼
JPH0814001B2 (ja) * 1990-03-12 1996-02-14 新日本製鐵株式会社 熱間鍛造非調質部品の製造方法
JP2743116B2 (ja) * 1990-07-27 1998-04-22 愛知製鋼 株式会社 熱間鍛造用非調質鋼
JPH05287373A (ja) * 1992-04-14 1993-11-02 Nippon Steel Corp 高強度高靱性熱間加工非調質鋼の製造方法
JP3139876B2 (ja) 1993-04-05 2001-03-05 新日本製鐵株式会社 熱間鍛造用非調質鋼および非調質熱間鍛造品の製造方法ならびに非調質熱間鍛造品
JP3300511B2 (ja) 1993-12-09 2002-07-08 新日本製鐵株式会社 強靭性、耐久比、降伏比および被削性に優れる亜熱間鍛造用鋼の製造方法
JPH08277437A (ja) * 1995-04-07 1996-10-22 Kobe Steel Ltd 高強度・高靭性熱間鍛造用非調質鋼とその鍛造品の製造方法
JP2001152246A (ja) * 1999-11-22 2001-06-05 Sanyo Special Steel Co Ltd 靭性、鏡面性および被削性に優れたプラスチック成形金型用鋼の製造方法
JP4415219B2 (ja) * 2004-07-28 2010-02-17 大同特殊鋼株式会社 時効硬化鋼
DE102007057421A1 (de) * 2007-08-27 2009-03-05 Georgsmarienhütte Gmbh Stahl zur Herstellung von massiv umgeformten Maschinenbauteilen
JP4955499B2 (ja) 2007-09-28 2012-06-20 株式会社神戸製鋼所 疲労強度及び伸びフランジ性に優れた高強度熱延鋼板
JP5427418B2 (ja) * 2009-01-19 2014-02-26 Jfe条鋼株式会社 軟窒化用鋼
JP5245997B2 (ja) * 2009-04-06 2013-07-24 新日鐵住金株式会社 靭性に優れた高強度熱間鍛造非調質鋼及びその製造方法
JP5343923B2 (ja) 2010-05-18 2013-11-13 新日鐵住金株式会社 時効硬化性鋼および機械部品の製造方法
JP5620336B2 (ja) 2011-05-26 2014-11-05 新日鐵住金株式会社 高疲労強度、高靭性機械構造用鋼部品およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116032A (ja) * 1987-10-29 1989-05-09 Nkk Corp 高強度・高靭性非調質鋼の製造方法
JPH0688162A (ja) * 1992-09-09 1994-03-29 Daido Steel Co Ltd 高強度・高靭性非調質鋼
JPH06306460A (ja) * 1993-04-16 1994-11-01 Nippon Steel Corp 高疲労強度熱間鍛造品の製造方法
JPH073385A (ja) * 1993-06-21 1995-01-06 Sanyo Special Steel Co Ltd 熱間鍛造用高強度高靱性非調質鋼
JP2003147479A (ja) * 2001-11-14 2003-05-21 Nippon Steel Corp 非調質高強度・高靭性鍛造品およびその製造方法
JP2004169055A (ja) * 2002-11-15 2004-06-17 Aichi Steel Works Ltd 被削性に優れた時効硬化型高強度ベイナイト鋼部品およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROMASA TAKADA ET AL.: "Micro-structure and mechanical properties of microalloyed bainite forging steel", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 5, no. 6, September 1992 (1992-09-01), pages 1902 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050152A1 (ja) 2013-10-02 2015-04-09 新日鐵住金株式会社 時効硬化性鋼
WO2015050151A1 (ja) 2013-10-02 2015-04-09 新日鐵住金株式会社 時効硬化性鋼
KR20150110804A (ko) 2013-10-02 2015-10-02 신닛테츠스미킨 카부시키카이샤 시효 경화성 강
US10066281B2 (en) 2013-10-02 2018-09-04 Nippon Steel & Sumitomo Metal Corporation Age-hardenable steel
WO2016158470A1 (ja) * 2015-03-31 2016-10-06 新日鐵住金株式会社 時効硬化性鋼及び時効硬化性鋼を用いた部品の製造方法
JPWO2016158470A1 (ja) * 2015-03-31 2017-12-21 新日鐵住金株式会社 時効硬化性鋼及び時効硬化性鋼を用いた部品の製造方法
JP2017128795A (ja) * 2016-01-18 2017-07-27 株式会社神戸製鋼所 鍛造用鋼及び大型鍛鋼品
WO2017126407A1 (ja) * 2016-01-18 2017-07-27 株式会社神戸製鋼所 鍛造用鋼及び大型鍛鋼品

Also Published As

Publication number Publication date
US9187797B2 (en) 2015-11-17
JP5620336B2 (ja) 2014-11-05
KR20130083924A (ko) 2013-07-23
IN2013DN02559A (ja) 2015-08-07
US20130186529A1 (en) 2013-07-25
JP2012246527A (ja) 2012-12-13
CN103210108A (zh) 2013-07-17
CN103210108B (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
JP5620336B2 (ja) 高疲労強度、高靭性機械構造用鋼部品およびその製造方法
JP5152441B2 (ja) 機械構造用鋼部品およびその製造方法
WO2010061882A1 (ja) 継目無鋼管およびその製造方法
JP5484103B2 (ja) 高強度機械部品用素材鋼板およびその製造方法並びに高強度機械部品製造方法
JP2007302974A (ja) 耐遅れ破壊特性に優れた高強度厚鋼板およびその製造方法
JP5152440B2 (ja) 機械構造用鋼部品およびその製造方法
JP5801529B2 (ja) 曲げ疲労強度が高く、繰り返し応力による変形量の小さい熱間鍛造用非調質鋼およびその部品の製造方法
JP4793298B2 (ja) 非調質鋼材およびその製造方法
JP6620490B2 (ja) 時効硬化性鋼
JP5871085B2 (ja) 冷間鍛造性および結晶粒粗大化抑制能に優れた肌焼鋼
JPH11152542A (ja) 高い疲れ限度比を有する熱間鍛造非調質鋼およびその製造方法
JPH0925539A (ja) 強度と靭性に優れた快削非調質鋼
JP5181621B2 (ja) マルテンサイト型熱間鍛造用非調質鋼及び熱間鍛造非調質鋼部品
JP5688742B2 (ja) 靭性、耐磨耗性に優れる鋼の製造方法
KR101458348B1 (ko) 열간 단조용 비조질강 및 열간 단조 비조질품 및 그 제조 방법
JP6791179B2 (ja) 非調質鋼およびその製造方法
WO2011155605A1 (ja) 被削性に優れた高強度鋼、およびその製造方法
JP3534146B2 (ja) 耐疲労特性に優れた非調質鋼材及びその製造方法
JP4121416B2 (ja) 機械構造用非調質型熱間鍛造部品およびその製造方法
JPH111743A (ja) 被削性に優れた高強度高靭性調質鋼材
CN114790530B (zh) 一种高塑性超高强钢板及其制造方法
JP2013076125A (ja) 強度および靭性に優れた機械構造用鋼材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13823644

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137014235

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789313

Country of ref document: EP

Kind code of ref document: A1