WO2012157762A1 - Fluide moteur, et système à cycle thermique - Google Patents

Fluide moteur, et système à cycle thermique Download PDF

Info

Publication number
WO2012157762A1
WO2012157762A1 PCT/JP2012/062841 JP2012062841W WO2012157762A1 WO 2012157762 A1 WO2012157762 A1 WO 2012157762A1 JP 2012062841 W JP2012062841 W JP 2012062841W WO 2012157762 A1 WO2012157762 A1 WO 2012157762A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
heat
cycle system
performance
hfc
Prior art date
Application number
PCT/JP2012/062841
Other languages
English (en)
Japanese (ja)
Inventor
正人 福島
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2012157762A1 publication Critical patent/WO2012157762A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/14Problems to be solved the presence of moisture in a refrigeration component or cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Definitions

  • the present invention relates to a working medium and a heat cycle system using the working medium.
  • a working medium for heat cycle such as a refrigerant for a refrigerator, a refrigerant for an air conditioner, a working fluid for a power generation system (waste heat recovery power generation, etc.), a working medium for a latent heat transport device (heat pipe, etc.), a secondary cooling medium, etc.
  • Chlorofluorocarbons (CFC) such as chlorotrifluoromethane and dichlorodifluoromethane
  • HCFC hydrochlorofluorocarbons
  • chlorodifluoromethane have been used.
  • CFCs and HCFCs are now subject to regulation because of their impact on the stratospheric ozone layer.
  • HFCs hydrofluorocarbons
  • HFC-32 difluoromethane
  • tetrafluoroethane tetrafluoroethane
  • pentafluoroethane etc.
  • HFC may cause global warming. Therefore, there is an urgent need to develop a working medium for heat cycle that has little influence on the ozone layer and has a low global warming potential.
  • 1,1,1,2-tetrafluoroethane (HFC-134a) used as a refrigerant for automobile air conditioning equipment has a large global warming potential of 1430 (100-year value).
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • HFC-152a 1,1-difluoroethane
  • Hydrochlorofluoroolefins (HCFO) and chlorofluoroolefins (CFO) such as hydrochlorofluoropropene having an easy carbon-carbon double bond are conceivable.
  • hydrochlorofluoropropene for example, 1-chloro-3,3,3-trifluoropropene (E) (HCFO-1233zd (E)) is known (Patent Document 1).
  • E 1-chloro-3,3,3-trifluoropropene
  • Patent Document 1 1-chloro-3,3,3-trifluoropropene
  • the cycle performance (capability) is insufficient.
  • the present invention relates to a heat cycle working medium that provides a heat cycle system that has low combustibility, little influence on the ozone layer, little influence on global warming, and excellent cycle performance (efficiency and capacity), and safety.
  • the thermal cycle system is ensured and has excellent cycle performance (efficiency and capacity).
  • the present invention is characterized by containing 1-chloro-1,2-difluoroethylene (hereinafter also referred to as HCFO-1122) as a working medium for heat cycle (hereinafter also referred to as a working medium).
  • the working medium of the present invention preferably further contains a hydrocarbon.
  • the working medium of the present invention preferably further contains HFC.
  • the working medium of the present invention preferably further contains hydrofluoroolefin (HFO).
  • the thermal cycle system of the present invention uses the working medium of the present invention.
  • the working medium of the present invention contains HCFO-1122 having a high proportion of halogen, the combustibility is suppressed.
  • it contains HCFO-1122 having a carbon-carbon double bond that is easily decomposed by OH radicals in the atmosphere, it has little influence on the ozone layer and little influence on global warming.
  • HCFO-1122 is included, a thermal cycle system having excellent cycle performance (efficiency and capacity) is provided. Since the heat cycle system of the present invention uses the working medium of the present invention with suppressed combustibility, safety is ensured.
  • it is excellent in thermodynamic properties, it is excellent in cycle performance (efficiency and capacity).
  • the efficiency is excellent, the power consumption can be reduced and the ability is excellent, so that the system can be downsized.
  • FIG. 3 is a cycle diagram in which a change in state of a working medium in a refrigeration cycle system is described on a temperature-entropy diagram.
  • FIG. 3 is a cycle diagram in which a change in state of a working medium in a refrigeration cycle system is described on a pressure-enthalpy diagram.
  • the working medium of the present invention contains 1-chloro-1,2-difluoroethylene.
  • the working medium of the present invention may include other working medium that vaporizes and liquefies together with CFO 1122, such as hydrocarbon, HFC, and HFO, as necessary.
  • the working medium of the present invention can be used in combination with components other than the working medium used together with the working medium (hereinafter, a composition containing the working medium and components other than the working medium is referred to as a working medium-containing composition).
  • components other than the working medium include lubricants, stabilizers, leak detection substances, desiccants, and other additives.
  • the content of HCFO-1122 is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and particularly preferably 100% by mass in the working medium (100% by mass).
  • Hydrocarbon is a working medium component that improves the solubility of the working medium in mineral-based lubricating oil.
  • the hydrocarbon preferably has 2 to 5 carbon atoms, and may be linear or branched. Specifically, propane, propylene, cyclopropane, butane, isobutane, pentane and isopentane are preferable as the hydrocarbon, and propane, butane and isobutane are particularly preferable.
  • a hydrocarbon may be used individually by 1 type and may be used in combination of 2 or more type.
  • the hydrocarbon content is preferably 1 to 20% by mass and more preferably 1 to 10% by mass in the working medium (100% by mass). When the hydrocarbon content is 1% by mass or more, the solubility of the lubricating oil in the working medium is sufficiently improved. If the hydrocarbon content is 20% by mass or less, the coefficient of performance and the refrigerating capacity will not be significantly lower than the value of HCFO-1122.
  • HFC HFC
  • Capacity a working medium component that improves the cycle performance (capacity) of a thermal cycle system.
  • HFC an HFC that has little influence on the ozone layer and little influence on global warming is preferable.
  • the HFC preferably has 1 to 5 carbon atoms, and may be linear or branched.
  • Specific examples of the HFC include difluoromethane, difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane, and the like.
  • difluoromethane (HFC-32), 1,1-difluoroethane (HFC-152a), 1,1,2,2-tetra have little impact on the ozone layer and little impact on global warming.
  • HFC-134 1,1,1,2-tetrafluoroethane
  • HFC-134a 1,1,1,2-tetrafluoroethane
  • HFC-125 pentafluoroethane
  • One HFC may be used alone, or two or more HFCs may be used in combination.
  • the content of HFC in the working medium (100% by mass) is preferably 1 to 20% by mass, and more preferably 1 to 10% by mass.
  • the refrigerating capacity is greatly improved without causing a decrease in the coefficient of performance in the range of 1 to 20 mass%.
  • the refrigerating capacity is greatly improved without causing a decrease in the coefficient of performance in the range of 1 to 20% by mass.
  • the refrigerating capacity is greatly improved without a large decrease in the coefficient of performance in the range of 1 to 20% by mass.
  • the refrigerating capacity is greatly improved without causing a decrease in the coefficient of performance in the range of 1 to 10% by mass.
  • the refrigerating capacity is greatly improved without causing a decrease in the coefficient of performance in the range of 1 to 10% by mass.
  • the HFC content can be controlled according to the required characteristics of the working medium.
  • HFO HFO is a working medium component that improves the cycle performance (capacity) of a thermal cycle system. As HFO, HFO which has little influence on the ozone layer and has little influence on global warming is preferable.
  • HFO preferably has 2 to 5 carbon atoms, and may be linear or branched. Specific examples of HFO include difluoroethylene, trifluoroethylene, trifluoropropene, tetrafluoropropene, and pentafluoropropene. Of these, 1,1-difluoroethylene (HFO-1132a), 1,2-difluoroethylene (HFO-1132), and 1,1 are less affected by the ozone layer and less affected by global warming. , 2-trifluoroethylene (HFO-1123) is particularly preferred. In addition, although HFO-1132 exists in E form and Z form, either may be sufficient and they may be a mixture. HFO may be used individually by 1 type and may be used in combination of 2 or more type.
  • the content of HFO is preferably 1 to 99% by mass in the working medium (100% by mass).
  • the refrigerating capacity can be greatly improved.
  • the content of HFO is 1 to 40% by mass, the decrease in the coefficient of performance can be maintained at the same value as HFC-245fa, and the refrigerating capacity can be greatly improved. That is, a thermal cycle system having excellent cycle performance (efficiency and capacity) as compared with the working medium of HCFO-1122 is provided.
  • the lubricating oil used in the working medium-containing composition a known lubricating oil used in a heat cycle system is used.
  • the lubricating oil include oxygen-containing synthetic oils (such as ester-based lubricating oils and ether-based lubricating oils), fluorine-based lubricating oils, mineral oils, and hydrocarbon-based synthetic oils.
  • ester-based lubricating oil examples include dibasic acid ester oil, polyol ester oil, complex ester oil, and polyol carbonate oil.
  • the dibasic acid ester oil includes a dibasic acid having 5 to 10 carbon atoms (glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) and a carbon number having a linear or branched alkyl group.
  • Esters with 1 to 15 monohydric alcohols methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, etc. are preferred.
  • ditridecyl glutarate di (2-ethylhexyl) adipate, diisodecyl adipate, ditridecyl adipate, di (3-ethylhexyl) sebacate and the like.
  • Polyol ester oils include diols (ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, 1,2-butanediol, 1,5-pentadiol, neopentyl glycol, 1,7- Heptanediol, 1,12-dodecanediol, etc.) or polyol having 3 to 20 hydroxyl groups (trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, glycerin, sorbitol, sorbitan, sorbitol glycerin condensate, etc.); Fatty acids having 6 to 20 carbon atoms (hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, eicosanoic acid,
  • the polyol ester oil may have a free hydroxyl group.
  • examples of polyol ester oils include esters of hindered alcohols (neopentyl glycol, trimethylol ethane, trimethylol propane, trimethylol butane, pentaerythritol, etc.) (trimethylol propane tripelargonate, pentaerythritol 2-ethylhexanoate). And pentaerythritol tetrapelargonate) are preferred.
  • the complex ester oil is an ester of a fatty acid and a dibasic acid, a monohydric alcohol and a polyol.
  • fatty acid, dibasic acid, monohydric alcohol, and polyol the same ones as described above can be used.
  • the polyol carbonate oil is an ester of carbonic acid and polyol.
  • examples of the polyol include the same diol as described above and the same polyol as described above.
  • the polyol carbonate oil may be a ring-opening polymer of cyclic alkylene carbonate.
  • ether lubricant examples include polyvinyl ether oil and polyoxyalkylene lubricant.
  • polyvinyl ether oil include those obtained by polymerizing vinyl ether monomers such as alkyl vinyl ether, and copolymers obtained by copolymerizing vinyl ether monomers and hydrocarbon monomers having olefinic double bonds.
  • a vinyl ether monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • hydrocarbon monomers having an olefinic double bond examples include ethylene, propylene, various butenes, various pentenes, various hexenes, various heptenes, various octenes, diisobutylene, triisobutylene, styrene, ⁇ -methylstyrene, various alkyl-substituted styrenes, etc. Is mentioned.
  • the hydrocarbon monomer which has an olefinic double bond may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polyvinyl ether copolymer may be either a block or a random copolymer. A polyvinyl ether may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyoxyalkylene-based lubricating oil examples include polyoxyalkylene monool, polyoxyalkylene polyol, polyoxyalkylene monool and alkyl etherified product of polyoxyalkylene polyol, polyoxyalkylene monool and esterified product of polyoxyalkylene polyol, and the like. Can be mentioned. Polyoxyalkylene monools and polyoxyalkylene polyols are used to open a C 2-4 alkylene oxide (ethylene oxide, propylene oxide, etc.) in an initiator such as water or a hydroxyl group-containing compound in the presence of a catalyst such as an alkali hydroxide. Examples thereof include those obtained by a method of addition polymerization.
  • the oxyalkylene units in the polyalkylene chain may be the same in one molecule, or two or more oxyalkylene units may be included. It is preferable that at least an oxypropylene unit is contained in one molecule.
  • the initiator include water, monohydric alcohols such as methanol and butanol, and polyhydric alcohols such as ethylene glycol, propylene glycol, pentaerythritol, and glycerol.
  • polyoxyalkylene-based lubricating oil an alkyl etherified product or an esterified product of polyoxyalkylene monool or polyoxyalkylene polyol is preferable.
  • the polyoxyalkylene polyol is preferably polyoxyalkylene glycol.
  • an alkyl etherified product of polyoxyalkylene glycol in which the terminal hydroxyl group of polyoxyalkylene glycol is capped with an alkyl group such as a methyl group, called polyglycol oil is preferable.
  • fluorine-based lubricating oils include compounds in which hydrogen atoms of synthetic oils (mineral oils, poly ⁇ -olefins, alkylbenzenes, alkylnaphthalenes, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, and the like. .
  • a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation or vacuum distillation is refined (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, hydrorefining, And paraffinic mineral oils, naphthenic mineral oils, etc., which are refined by appropriately combining white clay treatment and the like.
  • hydrocarbon synthetic oil examples include poly ⁇ -olefin, alkylbenzene, alkylnaphthalene and the like.
  • a lubricating oil may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the lubricating oil may be in a range that does not significantly reduce the effects of the present invention, and varies depending on the application, the type of the compressor, etc.
  • the amount is preferably 20 to 50 parts by mass.
  • the stabilizer used in the working medium-containing composition is a component that improves the stability of the working medium against heat and oxidation.
  • the stabilizer include an oxidation resistance improver, a heat resistance improver, and a metal deactivator.
  • oxidation resistance improver and heat resistance improver examples include N, N′-diphenylphenylenediamine, p-octyldiphenylamine, p, p′-dioctyldiphenylamine, N-phenyl-1-naphthylamine, and N-phenyl-2-naphthylamine.
  • the oxidation resistance improver and the heat resistance improver may be used alone or in combination of two or more.
  • metal deactivators examples include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimethylcaptothiadiazole, salicyridin-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzamidazole, 3,5- Imethylpyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acids Examples thereof include an amine salt of phosphate or a derivative thereof.
  • the content of the stabilizer may be in a range that does not significantly reduce the effect of the present invention, and is preferably 5% by mass or less, more preferably 1% by mass or less in the working medium-containing composition (100% by mass).
  • leak detection substance examples of leak detection substances used in the working medium-containing composition include ultraviolet fluorescent dyes, odorous gases and odor masking agents.
  • the ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-T-10-502737, JP-T 2007-511645, JP-T 2008-500437, JP-T 2008-531836.
  • known ultraviolet fluorescent dyes examples of the odor masking agent include known fragrances such as those described in JP-T-2008-500337 and JP-T-2008-531836.
  • a solubilizing agent that improves the solubility of the leak detection substance in the working medium may be used.
  • the solubilizer include those described in JP-T-2007-511645, JP-T-2008-500437, JP-T-2008-531836.
  • the content of the leak detection substance may be in a range that does not significantly reduce the effect of the present invention, and is preferably 2% by mass or less, more preferably 0.5% by mass or less in the working medium-containing composition (100% by mass). .
  • the working medium or the working medium-containing composition of the present invention is an alcohol having 1 to 4 carbon atoms, or a compound used as a conventional working medium, refrigerant, or heat transfer medium (hereinafter, the alcohol and the compound are collectively referred to as May be included as other compounds).
  • Fluorine-containing ether perfluoropropyl methyl ether (C 3 F 7 OCH 3 ), perfluorobutyl methyl ether (C 4 F 9 OCH 3 ), perfluorobutyl ethyl ether (C 4 F 9 OC 2 H 5 ), 1, 1, 2 , 2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (CF 2 HCF 2 OCH 2 CF 3 , manufactured by Asahi Glass Co., Ltd., AE-3000).
  • the content of other compounds may be in a range that does not significantly reduce the effect of the present invention, and is preferably 30% by mass or less, more preferably 20% by mass or less, in the working medium-containing composition (100% by mass), 15 A mass% or less is particularly preferred.
  • the thermal cycle system of the present invention is a system using the working medium of the present invention.
  • Examples of the heat cycle system include a Rankine cycle system, a heat pump cycle system, a refrigeration cycle system, and a heat transport system.
  • Refrigeratoration cycle system A refrigeration cycle system will be described as an example of a heat cycle system.
  • the refrigeration cycle system is a system that cools the load fluid to a lower temperature by removing the thermal energy from the load fluid in the evaporator in the evaporator.
  • FIG. 1 is a schematic configuration diagram showing an example of the refrigeration cycle system of the present invention.
  • the refrigeration cycle system 10 compresses the working medium vapor A into a high-temperature and high-pressure working medium vapor B, and cools and liquefies the working medium vapor B discharged from the compressor 11 to operate at a low temperature and high pressure.
  • the condenser 12 as the medium C, the expansion valve 13 that expands the working medium C discharged from the condenser 12 to form the low-temperature and low-pressure working medium D, and the working medium D discharged from the expansion valve 13 are heated.
  • the working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 to obtain a high-temperature and high-pressure working medium vapor B.
  • the working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to obtain a low temperature and high pressure working medium C.
  • the fluid F is heated to become a fluid F ′ and discharged from the condenser 12.
  • the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to obtain a low-temperature and low-pressure working medium D.
  • the refrigeration cycle system 10 is a cycle composed of adiabatic / isentropic change, isenthalpy change and isobaric change, and the state change of the working medium can be expressed as shown in FIG. 2 on a temperature-entropy diagram.
  • the AB process is a process in which adiabatic compression is performed by the compressor 11 and the high-temperature and low-pressure working medium vapor A is converted into a high-temperature and high-pressure working medium vapor B.
  • the BC process is a process in which isobaric cooling is performed by the condenser 12 and the high-temperature and high-pressure working medium vapor B is converted into a low-temperature and high-pressure working medium C.
  • the CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 and the low-temperature and high-pressure working medium C is used as the low-temperature and low-pressure working medium D.
  • the DA process is a process in which isobaric heating is performed by the evaporator 14 and the low-temperature and low-pressure working medium D is returned to the high-temperature and low-pressure working medium vapor A.
  • the water concentration of the working medium in the heat cycle system is preferably 100 ppm or less, and more preferably 20 ppm or less.
  • a method for suppressing the water concentration in the heat cycle system a method using a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned.
  • a desiccant sica gel, activated alumina, zeolite, etc.
  • a zeolitic desiccant is preferable from the viewpoint of the chemical reactivity between the desiccant and the working medium and the moisture absorption capacity of the desiccant.
  • a zeolitic desiccant when a lubricating oil having a higher moisture absorption than conventional mineral-based lubricating oils is used, the compound represented by the following formula (1) is used as a main component from the viewpoint of excellent hygroscopic capacity.
  • Zeolite desiccants are preferred.
  • M is a Group 1 element such as Na or K, or a Group 2 element such as Ca
  • n is a valence of M
  • x and y are values determined by a crystal structure.
  • pore diameter and breaking strength are important.
  • a desiccant having a pore size larger than the molecular diameter of the working medium is used, the working medium is adsorbed in the desiccant, resulting in a chemical reaction between the working medium and the desiccant, and generation of a non-condensable gas.
  • Undesirable phenomena such as a decrease in the strength of the desiccant and a decrease in the adsorption capacity will occur. Therefore, it is preferable to use a zeolitic desiccant having a small pore size as the desiccant.
  • a sodium / potassium A type synthetic zeolite having a pore diameter of 3.5 mm or less is preferable.
  • the shape is preferably granular or cylindrical.
  • the zeolitic desiccant can be formed into an arbitrary shape by solidifying powdered zeolite with a binder (such as bentonite). As long as the zeolitic desiccant is mainly used, other desiccants (silica gel, activated alumina, etc.) may be used in combination.
  • the use ratio of the zeolitic desiccant with respect to the working medium is not particularly limited.
  • Non-condensable gas concentration If a non-condensable gas is mixed in the heat cycle system, it adversely affects the heat transfer in the condenser or the evaporator and the operating pressure rises. Therefore, it is necessary to suppress the mixing as much as possible.
  • oxygen which is one of non-condensable gases, reacts with the working medium and lubricating oil to promote decomposition.
  • the non-condensable gas concentration is preferably 1.5% by volume or less, particularly preferably 0.5% by volume or less in terms of the volume ratio with respect to the working medium in the gas phase part of the working medium.
  • the refrigeration cycle performance (refrigeration capacity and coefficient of performance) was evaluated as the cycle performance (capacity and efficiency) when the working medium was applied to the refrigeration cycle system 10 of FIG.
  • the evaluation sets the average evaporation temperature of the working medium in the evaporator 14, the average condensation temperature of the working medium in the condenser 12, the degree of supercooling of the working medium in the condenser 12, and the degree of superheating of the working medium in the evaporator 14, respectively. Carried out. In addition, it was assumed that there was no pressure loss in equipment efficiency and piping and heat exchanger.
  • the refrigeration capacity Q and the coefficient of performance ⁇ can be obtained from the following equations (2) and (3) when the enthalpy h of each state (where the subscript h represents the state of the working medium).
  • Q h A ⁇ h D (2).
  • the coefficient of performance represents the efficiency of the refrigeration cycle system. The higher the coefficient of performance, the higher the output (refrigeration capacity) with the smaller input (the amount of power required to operate the compressor). Means you can.
  • the refrigerating capacity means the ability to cool the load fluid, and the higher the refrigerating capacity, the more work can be done in the same system. In other words, when having a large refrigeration capacity, it means that the target performance can be obtained with a small amount of working medium, and the system can be downsized.
  • Thermodynamic properties necessary for calculation of the refrigeration cycle performance were calculated based on a generalized equation of state (Soave-Redrich-Kwong equation) based on the corresponding state principle and thermodynamic relational equations. When characteristic values were not available, calculations were performed using an estimation method based on the group contribution method.
  • Example 1 In the refrigeration cycle system 10 of FIG. 1, HCFO-1122, 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123), 1,1,1,3,3-pentafluoropropane ( The refrigeration cycle performance (refrigeration capacity and coefficient of performance) when HFC-245fa) or HFC-134a was applied was evaluated.
  • the evaporation temperature of the working medium in the evaporator 14, the condensation temperature of the working medium in the condenser 12, the degree of supercooling of the working medium in the condenser 12, and the degree of superheating of the working medium in the evaporator 14 were the temperatures shown in Table 1.
  • the relative performance (each working medium / HFC-245fa) of the refrigeration cycle performance (refrigeration capacity and coefficient of performance) of each working medium relative to HFC-245fa was determined. It shows in Table 1 for every working medium.
  • Example 2 The refrigeration cycle performance (refrigeration capacity and coefficient of performance) when a working medium composed of HCFO-1122 and HFO shown in Table 2 was applied to the refrigeration cycle system 10 of FIG. 1 was evaluated.
  • the average evaporation temperature of the working medium in the evaporator 14 is 0 ° C.
  • the average condensation temperature of the working medium in the condenser 12 is 50 ° C.
  • the degree of supercooling of the working medium in the condenser 12 is 5 ° C.
  • the operation in the evaporator 14 is performed.
  • the medium was heated at a degree of superheat of 5 ° C.
  • the relative performance (each working medium / HFC-245fa) of the refrigeration cycle performance (refrigeration capacity and coefficient of performance) of each working medium relative to HFC-245fa was determined. It shows in Table 2 for every working medium.
  • Example 3 The refrigeration cycle performance (refrigeration capacity and coefficient of performance) was evaluated when a working medium comprising HCFO-1122 and HCFC or HFC shown in Table 3 or Table 4 was applied to the refrigeration cycle system 10 of FIG.
  • the average evaporation temperature of the working medium in the evaporator 14 is 0 ° C.
  • the average condensation temperature of the working medium in the condenser 12 is 50 ° C.
  • the degree of supercooling of the working medium in the condenser 12 is 5 ° C.
  • the operation in the evaporator 14 is performed.
  • the medium was heated at a degree of superheat of 5 ° C.
  • the relative performance (each working medium / HFC-245fa) of the refrigeration cycle performance (refrigeration capacity and coefficient of performance) of each working medium relative to HFC-245fa was determined. It shows in Table 3 and Table 4 for every working medium.
  • Example 4 The refrigeration cycle performance (refrigeration capacity and coefficient of performance) when a working medium composed of HCFO-1122 and hydrocarbons shown in Table 5 was applied to the refrigeration cycle system 10 of FIG. 1 was evaluated.
  • the average evaporation temperature of the working medium in the evaporator 14 is 0 ° C.
  • the average condensation temperature of the working medium in the condenser 12 is 50 ° C.
  • the degree of supercooling of the working medium in the condenser 12 is 5 ° C.
  • the medium was heated at a degree of superheat of 5 ° C.
  • the relative performance (each working medium / HFC-245fa) of the refrigeration cycle performance (refrigeration capacity and coefficient of performance) of each working medium relative to HFC-245fa was determined. It shows in Table 5 for every working medium.
  • Example 5 The refrigeration cycle performance (refrigeration capacity and coefficient of performance) was evaluated when HCFO-1212, HCFC-123, or HCFO-1233zd (E) was applied as the working medium to the refrigeration cycle system 10 of FIG.
  • the average evaporation temperature of the working medium in the evaporator 14 is ⁇ 10 to + 50 ° C.
  • the average condensation temperature of the working medium in the condenser 12 is the average evaporation temperature + 50 ° C.
  • the supercooling degree of the working medium in the condenser 12 is 5 ° C.
  • the superheating degree of the working medium in the evaporator 14 was set to 5 ° C.
  • the relative performance (respective working media / HCFC-123) of the refrigeration cycle performance (refrigeration capacity and coefficient of performance) of each working medium with respect to HCFC-123 was determined. It shows in Table 6 for every working medium.
  • the working medium of the present invention includes a refrigerant for a refrigerator, a refrigerant for an air conditioner, a working fluid for a power generation system (waste heat recovery power generation, etc.), a working medium for a latent heat transport device (heat pipe, etc.), a secondary cooling medium, etc. It is useful as a working medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

L'invention fournit un fluide moteur pour cycle thermique qui présente des propriétés de combustion régulées, et un faible impact sur la couche d'ozone ainsi que sur le réchauffement de la planète, et qui confère un système à cycle thermique excellent en termes de performances cycliques (rendement et capacités). Ainsi l'invention fournit également un système à cycle thermique excellent en termes de performances cycliques (rendement et capacités) dont la sécurité est garantie. Ce fluide moteur pour cycle thermique qui contient un 1-chloro-1,2-difluoroéthylène, est mis en œuvre dans un système à cycle thermique (tel qu'un système à cycle Rankine, un système à cycle de pompe à chaleur, un système à cycle frigorifique (10), un système de transfert de chaleur, ou similaire).
PCT/JP2012/062841 2011-05-19 2012-05-18 Fluide moteur, et système à cycle thermique WO2012157762A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-112414 2011-05-19
JP2011112414A JP2014141538A (ja) 2011-05-19 2011-05-19 作動媒体および熱サイクルシステム

Publications (1)

Publication Number Publication Date
WO2012157762A1 true WO2012157762A1 (fr) 2012-11-22

Family

ID=47177076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062841 WO2012157762A1 (fr) 2011-05-19 2012-05-18 Fluide moteur, et système à cycle thermique

Country Status (2)

Country Link
JP (1) JP2014141538A (fr)
WO (1) WO2012157762A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178352A1 (fr) * 2013-04-30 2014-11-06 旭硝子株式会社 Composition contenant du trifluoroéthylène
WO2014178353A1 (fr) * 2013-04-30 2014-11-06 旭硝子株式会社 Matériau actif pour cycle de chaleur
WO2015008695A1 (fr) * 2013-07-16 2015-01-22 旭硝子株式会社 Procédé de stockage de trifluoroéthylène et réservoir de stockage de trifluoroéthylène
JP2015083899A (ja) * 2013-10-25 2015-04-30 三菱重工業株式会社 冷媒循環装置、冷媒循環方法および異性化抑制方法
WO2015125874A1 (fr) * 2014-02-20 2015-08-27 旭硝子株式会社 Milieu actif pour cycle thermique
WO2015133587A1 (fr) * 2014-03-06 2015-09-11 旭硝子株式会社 Fluide actif pour cycle thermique, et système à cycles thermiques
JP2016027296A (ja) * 2014-07-02 2016-02-18 旭硝子株式会社 熱サイクルシステム
WO2016063400A1 (fr) * 2014-10-23 2016-04-28 三菱電機株式会社 Séparateur d'huile
CN107532073A (zh) * 2015-05-12 2018-01-02 旭硝子株式会社 热循环系统用组合物以及热循环系统
WO2018212308A1 (fr) 2017-05-17 2018-11-22 ダイキン工業株式会社 Composition contenant un composé utile en tant que réfrigérant, détergent, agent propulseur, ou similaire, et machine réfrigérante, climatiseur de grande taille, ou refroidisseur de processus industriel comprenant chacun ladite composition
US10443912B2 (en) 2013-10-25 2019-10-15 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerant circulation device, method for circulating refrigerant and acid suppression method
US11548267B2 (en) * 2016-08-29 2023-01-10 AGC Inc. Heat cycle system
EP4146764A4 (fr) * 2020-05-08 2024-06-19 Arkema Inc Compositions de transfert de chaleur d'hydrofluorocarbones

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574802A (zh) * 2014-08-12 2017-04-19 旭硝子株式会社 热循环系统
ES2959807T3 (es) 2016-07-11 2024-02-28 Daikin Ind Ltd Método para producir 1-cloro-1,2-difluoroetileno
GB201813237D0 (en) * 2018-08-14 2018-09-26 Mexichem Fluor Sa De Cv Refrigerant composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107572A (ja) * 1992-09-30 1994-04-19 Showa Denko Kk 1,1,1,2−テトラフルオロエタンの精製方法
JPH10506131A (ja) * 1994-07-11 1998-06-16 ソルヴェイ 冷媒類
JP2005314376A (ja) * 2004-03-29 2005-11-10 Showa Denko Kk 1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンの製造方法およびその用途
JP2007529730A (ja) * 2004-03-17 2007-10-25 ソルヴェイ(ソシエテ アノニム) 1,1,1,2−テトラフルオロエタンの分析方法
JP2010513827A (ja) * 2006-09-01 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 閉ループ・サイクル中の選択された伝熱流体の循環方法
JP2010533678A (ja) * 2007-07-20 2010-10-28 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング 精製ヒドロフルオロアルカンを得るための方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107572A (ja) * 1992-09-30 1994-04-19 Showa Denko Kk 1,1,1,2−テトラフルオロエタンの精製方法
JPH10506131A (ja) * 1994-07-11 1998-06-16 ソルヴェイ 冷媒類
JP2007529730A (ja) * 2004-03-17 2007-10-25 ソルヴェイ(ソシエテ アノニム) 1,1,1,2−テトラフルオロエタンの分析方法
JP2005314376A (ja) * 2004-03-29 2005-11-10 Showa Denko Kk 1,1,1,2−テトラフルオロエタンおよび/またはペンタフルオロエタンの製造方法およびその用途
JP2010513827A (ja) * 2006-09-01 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 閉ループ・サイクル中の選択された伝熱流体の循環方法
JP2010533678A (ja) * 2007-07-20 2010-10-28 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング 精製ヒドロフルオロアルカンを得るための方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014178353A1 (ja) * 2013-04-30 2017-02-23 旭硝子株式会社 熱サイクル用作動媒体
WO2014178353A1 (fr) * 2013-04-30 2014-11-06 旭硝子株式会社 Matériau actif pour cycle de chaleur
CN115160988B (zh) * 2013-04-30 2024-05-14 Agc株式会社 包含三氟乙烯的组合物
CN115160988A (zh) * 2013-04-30 2022-10-11 Agc株式会社 包含三氟乙烯的组合物
EP2993213B1 (fr) 2013-04-30 2020-07-15 AGC Inc. Composition contenant du trifluoroéthylène
RU2669280C2 (ru) * 2013-04-30 2018-10-09 ЭйДжиСи Инк. Композиция, содержащая трифторэтилен
US10081749B2 (en) 2013-04-30 2018-09-25 AGC Inc. Composition containing trifluoroethylene
US10053607B2 (en) 2013-04-30 2018-08-21 Asahi Glass Company, Limited Working fluid for heat cycle
WO2014178352A1 (fr) * 2013-04-30 2014-11-06 旭硝子株式会社 Composition contenant du trifluoroéthylène
JPWO2014178352A1 (ja) * 2013-04-30 2017-02-23 旭硝子株式会社 トリフルオロエチレンを含む組成物
US9638371B2 (en) 2013-07-16 2017-05-02 Asahi Glass Company, Limited Storage method for trifluoroethylene, and storage container for trifluoroethylene
CN105358511A (zh) * 2013-07-16 2016-02-24 旭硝子株式会社 三氟乙烯的保存方法及三氟乙烯的保存容器
WO2015008695A1 (fr) * 2013-07-16 2015-01-22 旭硝子株式会社 Procédé de stockage de trifluoroéthylène et réservoir de stockage de trifluoroéthylène
JPWO2015008695A1 (ja) * 2013-07-16 2017-03-02 旭硝子株式会社 トリフルオロエチレンの保存方法およびトリフルオロエチレンの保存容器
CN110041163A (zh) * 2013-07-16 2019-07-23 Agc株式会社 三氟乙烯的保存方法
US10465959B2 (en) 2013-10-25 2019-11-05 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerant circulation device, method for circulating refrigerant and method for suppressing isomerization
US10443912B2 (en) 2013-10-25 2019-10-15 Mitsubishi Heavy Industries Thermal Systems, Ltd. Refrigerant circulation device, method for circulating refrigerant and acid suppression method
CN105473954A (zh) * 2013-10-25 2016-04-06 三菱重工业株式会社 冷媒循环装置、冷媒循环方法以及异构化抑制方法
CN105473954B (zh) * 2013-10-25 2018-05-25 三菱重工制冷空调系统株式会社 冷媒循环装置、冷媒循环方法以及异构化抑制方法
JP2015083899A (ja) * 2013-10-25 2015-04-30 三菱重工業株式会社 冷媒循環装置、冷媒循環方法および異性化抑制方法
WO2015060400A1 (fr) * 2013-10-25 2015-04-30 三菱重工業株式会社 Dispositif et procédé de circulation de réfrigérant et procédé de suppression d'isomérisation
JPWO2015125874A1 (ja) * 2014-02-20 2017-03-30 旭硝子株式会社 熱サイクル用作動媒体
WO2015125874A1 (fr) * 2014-02-20 2015-08-27 旭硝子株式会社 Milieu actif pour cycle thermique
US10072194B2 (en) 2014-02-20 2018-09-11 Asahi Glass Company, Limited Working fluid for heat cycle
WO2015133587A1 (fr) * 2014-03-06 2015-09-11 旭硝子株式会社 Fluide actif pour cycle thermique, et système à cycles thermiques
JP2016027296A (ja) * 2014-07-02 2016-02-18 旭硝子株式会社 熱サイクルシステム
JPWO2016063400A1 (ja) * 2014-10-23 2017-04-27 三菱電機株式会社 油分離器
WO2016063400A1 (fr) * 2014-10-23 2016-04-28 三菱電機株式会社 Séparateur d'huile
US11015850B2 (en) 2014-10-23 2021-05-25 Mitsubishi Electric Corporation Oil separator
CN107532073A (zh) * 2015-05-12 2018-01-02 旭硝子株式会社 热循环系统用组合物以及热循环系统
US11548267B2 (en) * 2016-08-29 2023-01-10 AGC Inc. Heat cycle system
WO2018212308A1 (fr) 2017-05-17 2018-11-22 ダイキン工業株式会社 Composition contenant un composé utile en tant que réfrigérant, détergent, agent propulseur, ou similaire, et machine réfrigérante, climatiseur de grande taille, ou refroidisseur de processus industriel comprenant chacun ladite composition
EP4146764A4 (fr) * 2020-05-08 2024-06-19 Arkema Inc Compositions de transfert de chaleur d'hydrofluorocarbones

Also Published As

Publication number Publication date
JP2014141538A (ja) 2014-08-07

Similar Documents

Publication Publication Date Title
JP7456473B2 (ja) 作動媒体および熱サイクルシステム
JP7167975B2 (ja) 組成物
JP5935799B2 (ja) 作動媒体および熱サイクルシステム
WO2012157762A1 (fr) Fluide moteur, et système à cycle thermique
WO2015141678A1 (fr) Fluide moteur pour cycle thermique, composition pour système de cycle thermique, et système de cycle thermique
WO2013015201A1 (fr) Fluide moteur pour cycle de chauffage, et système de cycle de chauffage
WO2015129548A1 (fr) Fluide de travail pour cycle thermique, composition pour système à cycle thermique, et système à cycle thermique
WO2012157761A1 (fr) Fluide moteur, et système à cycle thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP