WO2012157612A1 - 細胞分化誘導剤および分化誘導方法 - Google Patents

細胞分化誘導剤および分化誘導方法 Download PDF

Info

Publication number
WO2012157612A1
WO2012157612A1 PCT/JP2012/062318 JP2012062318W WO2012157612A1 WO 2012157612 A1 WO2012157612 A1 WO 2012157612A1 JP 2012062318 W JP2012062318 W JP 2012062318W WO 2012157612 A1 WO2012157612 A1 WO 2012157612A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cells
substituent
differentiation
cell
Prior art date
Application number
PCT/JP2012/062318
Other languages
English (en)
French (fr)
Inventor
大輔 辻
伊藤 孝司
茂樹 佐野
允泰 中尾
Original Assignee
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学 filed Critical 国立大学法人徳島大学
Priority to CN201280024397.7A priority Critical patent/CN103562379A/zh
Priority to US14/118,648 priority patent/US20140093960A1/en
Priority to EP12784895.0A priority patent/EP2711419A4/en
Priority to JP2013515149A priority patent/JPWO2012157612A1/ja
Publication of WO2012157612A1 publication Critical patent/WO2012157612A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a cell differentiation inducer comprising a catechol derivative which is a low molecular compound, the use of the catechol derivative for inducing differentiation of an undifferentiated cell, and an undifferentiated cell using a catechol derivative as a neural crest cell, etc.
  • the present invention relates to a method for inducing differentiation into nervous system cells.
  • the cells constituting multicellular organisms are roughly classified into differentiated cells, TA cells (Transient Amplifying Cell) and stem cells.
  • Differentiated cells are also called terminally differentiated cells and terminally differentiated cells, and they do not differentiate into different types of cells such as nerve cells and organ cells, and hardly proliferate.
  • TA cells are intermediate between differentiated cells and stem cells, and after differentiation, actively proliferate to become differentiated cells.
  • Stem cells are defined as cells having both self-renewal ability and differentiation ability, and can self-proliferate and differentiate into TA cells.
  • stem cells can be differentiated into all types of cells, totipotent cells that can form solids, unipotent cells that can only differentiate into single cells, and many cells that can be differentiated into various cells even though they cannot become solid unless special operations are performed. Differentiate into competent cells. Examples of totipotent cells include fertilized eggs. Examples of unipotent cells include germ stem cells such as sperm. Examples of pluripotent cells include pluripotent stem cells.
  • stem cells for example, it is possible to prepare regenerative medicine that does not show rejection by preparing skin tissue or organ tissue from the patient itself, or to proliferate problematic cells from patients with specific diseases such as genetic diseases. , May be able to help create new drugs.
  • Patent Document 1 discloses sesamin compounds as agents for inducing differentiation into nerve cells.
  • Patent Document 2 and Non-Patent Document 1 describe retinoic acid as an agent for inducing differentiation from undifferentiated cells to ectoderm cells.
  • ectoderm By the way, early embryos of multicellular organisms are classified into ectoderm, mesoderm and endoderm.
  • the ectoderm is a nerve or skin tissue
  • the mesoderm is a muscle, bone, blood vessel or blood
  • the endoderm is a specific organ such as the digestive tract or lung.
  • Others are called neural crest cells.
  • neural crest cells are classified as ectoderm, they migrate from the neural crest at the stage of neurogenesis and form melanocytes, peripheral nerve neurons, smooth muscle, cartilage and bones centered on the head, etc. And has an important role, it is also called the fourth germ layer.
  • Patent Document 2 discloses a method for inducing differentiation of undifferentiated cells into neural crest cells without using feeder cells using a medium containing a specific component.
  • Non-Patent Document 2 uses feeder cells, even if neural crest cells derived from patient-derived iPS cells are introduced into the patient, a rejection reaction may occur. There is also a problem that the differentiation induction rate varies greatly depending on the lot of feeder cells. Furthermore, BMP4, which is a secreted protein, is very expensive. When it is used as a differentiation inducer, there is a problem of cost. In the method described in Patent Document 3, feeder cells are not required, but unless bone morphogenetic protein (BMP4) or the like is used, the differentiation induction rate is very low, and there are still problems of cost and efficiency.
  • BMP4 bone morphogenetic protein
  • sesamin used in Patent Document 1 is a low molecule, this technique only induces differentiation of neural cell precursor cells into nerve cells, and induces differentiation of iPS cells. is not. Moreover, although it is a low molecular compound, sesamin must be extracted from sesame oil, and since it has four asymmetric carbons, chemical synthesis is also difficult. Furthermore, although retinoic acid described in Patent Document 2 and Non-Patent Document 1 is also a low molecular weight compound, for example, when retinoic acid is allowed to act on ES cells, cells other than the ectoderm system are also induced to induce differentiation. It cannot be said.
  • the present invention provides a cell differentiation inducer capable of efficiently inducing differentiation of undifferentiated cells into neural cells with high selectivity while being a low-molecular compound that can be easily synthesized, and an undifferentiated cell in the nervous system.
  • a cell differentiation inducer capable of efficiently inducing differentiation of undifferentiated cells into neural cells with high selectivity while being a low-molecular compound that can be easily synthesized, and an undifferentiated cell in the nervous system.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, the inventors have found that a catechol derivative having a specific structure can induce differentiation of undifferentiated cells into neural cells efficiently while having a very simple chemical structure, thereby completing the present invention.
  • the cell differentiation inducer according to the present invention includes a catechol derivative represented by the following formula (I).
  • R 1 has a carboxy group, a (C 1-6 alkoxy) carbonyl group, a C 1-7 alkanoyl group, a C 2-8 alkynyl group, a carbamoyl group, a cyano group, a nitro group or a halogen atom, or a substituent ⁇ .
  • R 2 represents a hydrogen atom, a C 1-6 alkyl group or a benzyl group; n represents an integer of 2 or more and 5 or less;
  • the substituent ⁇ represents one or more selected from a carboxy group, a (C 1-6 alkoxy) carbonyl group, a C 1-7 alkanoyl group, a carbamoyl group, a cyano group, a nitro group, and a halogen atom.
  • the “C 1-6 alkyl group” refers to a linear or branched saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms.
  • a C 1-4 alkyl group is preferred, a C 1-2 alkyl group is more preferred, and a methyl group is most preferred.
  • (C 1-6 alkoxy) carbonyl group refers to a C 1-6 alkyloxycarbonyl group (C 1-6 alkyl-O—C ( ⁇ O) — group).
  • a (C 1-4 alkoxy) carbonyl group is preferred, a (C 1-2 alkoxy) carbonyl group is more preferred, and a methoxycarbonyl group is most preferred.
  • the “C 1-7 alkanoyl group” means a carbonyl group substituted with a formyl group and the above C 1-6 alkyl group. Examples include formyl group, acetyl group, n-propionyl group, isopropionyl group, n-butyryl group, isobutyryl group, pentanoyl group, pivaloyl group, valeryl group and isovaleryl group.
  • a C 1-5 alkanoyl group is preferable, a C 1-3 alkanoyl group is more preferable, and a formyl group or an acetyl group is most preferable.
  • the “C 2-8 alkynyl group” refers to a linear or branched unsaturated aliphatic hydrocarbon group having a carbon-carbon triple bond and having 2 to 8 carbon atoms.
  • the group is preferably one in which the carbon at the 1-position, that is, the carbon atom bonded to the benzene ring of the catechol derivative (I) has a carbon-carbon triple bond.
  • Examples include ethynyl group, 1-propynyl group, 1-butynyl group, 1-pentynyl group, 3-methyl-1-butynyl group, and 4-methyl-1-pentynyl group.
  • a C 2-4 alkynyl group is preferable, and an ethynyl group or a 1-propynyl group is more preferable.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a chlorine atom, a bromine atom or an iodine atom, and more preferably a chlorine atom or a bromine atom.
  • the cell differentiation inducer according to the present invention includes those in which R 2 is a hydrogen atom, those in which at least two —OR 2 groups are adjacent to each other, and those in which R 1 is a cyano group or a carbamoyl group. preferable. According to the experimental findings by the present inventors, these can induce differentiation of undifferentiated cells into neural cells with high efficiency, particularly at a relatively low concentration and with high selectivity.
  • n is preferably an integer of 2 or more and 4 or less, more preferably 2 or 3.
  • a benzene compound has a higher number of substituents, which makes it difficult to synthesize and is expensive.
  • Two or more R 2 O groups may be the same or different from each other, but are preferably the same because they are easier to produce.
  • the compound (I) When the compound (I) has a carboxy group as a substituent, it may be a salt.
  • the salt is preferably pharmaceutically acceptable.
  • examples of such salts include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt; inorganic amine salts such as ammonium salt; organic compounds such as trimethylamine salt, triethylamine salt and pyridine salt. Mention may be made of amine salts.
  • the number of substituents ⁇ in the thiazolyl group is not particularly limited as long as substitution is possible, but is preferably 1 or more and 2 or less, and more preferably 1.
  • the cell differentiation inducer according to the present invention preferably further contains retinoic acid.
  • retinoic acid In combination with retinoic acid, the induction effect on nervous system cells is further improved.
  • the cell differentiation inducer As the cell differentiation inducer according to the present invention, those for inducing differentiation of undifferentiated cells into nervous system cells are preferable.
  • the method for inducing differentiation of undifferentiated cells according to the present invention into neural cells includes a step of allowing the above-mentioned cell differentiation inducer according to the present invention to act on undifferentiated cells.
  • the catechol derivative (I) according to the present invention is an active ingredient of the cell differentiation inducer and is used for inducing differentiation of undifferentiated cells.
  • the method for inducing differentiation of undifferentiated cells into neural cells includes a step of culturing undifferentiated cells in a medium containing a catechol derivative (I) which is an active ingredient of the cell differentiation inducer. It is characterized by that.
  • the catechol derivative (I), which is an active ingredient of the cell differentiation inducer according to the present invention has a very simple chemical structure, it can be obtained at low cost or can be easily synthesized. Therefore, the cost is lower than that of expensive proteins.
  • the catechol derivative (I), which is an active ingredient of the cell differentiation inducer of the present invention is capable of treating undifferentiated cells with high selectivity and good efficiency without using feeder cells even at a relatively low concentration. It becomes possible to induce differentiation into cell lines. Therefore, the present invention is very useful industrially as it can further promote the realization of regenerative medicine and drug discovery research using iPS cells.
  • FIG. 1 is an enlarged photograph of a mouse ES cell treated with the cell differentiation inducer of the present invention and an enlarged photograph of a control treated similarly without using the cell differentiation inducer of the present invention.
  • FIG. 2 is an enlarged photograph of mouse ES cells treated with the cell differentiation inducer of the present invention.
  • FIG. 3 is an enlarged photograph of mouse ES cells treated with the cell differentiation inducer of the present invention.
  • FIG. 4 is an enlarged photograph of mouse ES cells differentiated using the cell differentiation inducer of the present invention or retinoic acid when stained with an ectoderm stem cell marker and a mesoderm stem cell marker.
  • FIG. 1 is an enlarged photograph of a mouse ES cell treated with the cell differentiation inducer of the present invention and an enlarged photograph of a control treated similarly without using the cell differentiation inducer of the present invention.
  • FIG. 2 is an enlarged photograph of mouse ES cells treated with the cell differentiation inducer of the present invention.
  • FIG. 3 is an enlarged photograph of mouse ES cells treated
  • FIG. 5 is an electrophoresis photograph showing the results of analyzing the gene expression of mouse ES cells, their embryoid bodies, and mouse ES cells treated with the differentiation inducer of the present invention.
  • FIG. 6 is an enlarged photograph of human iPS cells treated with the cell differentiation inducer of the present invention and an enlarged photograph of a control treated in the same manner without using the cell differentiation inducer of the present invention.
  • FIG. 7 is a graph showing the combined effect of the cell differentiation inducer of the present invention and retinoic acid.
  • FIG. 8 is an enlarged photograph of mouse ES cells treated with the cell differentiation inducer of the present invention.
  • the cell differentiation inducer according to the present invention contains a catechol derivative represented by the formula (I) and has a very simple chemical structure, and therefore, if it is commercially available, it may be purchased, or Those skilled in the art can easily synthesize them from commercially available compounds by a conventional method.
  • benzene compounds having two or more hydroxyl groups.
  • Those skilled in the art can easily derive such a phenolic hydroxyl group to an alkoxy group or a benzyloxy group.
  • R 1 group or convert a functional group depending on the substitution position of the phenolic hydroxyl group.
  • functional group conversion is possible as follows.
  • the compound (I) having an oxazolinyl group or a thiazolinyl group can be synthesized by reacting a benzonitrile compound with serine or cysteine and closing the ring as follows.
  • the absolute configuration at the carbon atom such as the oxazolinyl ring substituted by the carboxy group can be controlled by using optically active serine or the like.
  • a carboxy group such as an oxazolinyl ring can be converted into a functional group in the same manner as described above.
  • the reaction of introducing a thiazolinyl group using cysteine is shown as a representative.
  • the benzonitrile compound and cysteine may be reacted in the presence of a base.
  • a base As the solvent, cysteine and the like are dissolved in water, but some benzonitrile compounds are difficult to dissolve in water. Therefore, it is preferable to use a mixed solution of water and a water-miscible organic solvent.
  • the water-miscible organic solvent include alcohols such as methanol and ethanol; amides such as dimethylformamide and dimethylacetamide; sulfoxides such as dimethyl sulfoxide.
  • a buffer solution may be used as water.
  • the base examples include alkali metal hydrogen carbonates such as sodium hydrogen carbonate; alkali metal carbonates such as sodium carbonate; alkali metal hydroxides such as sodium hydroxide, and the like.
  • the reaction temperature is not particularly limited and may be adjusted as appropriate, but can usually be about 30 ° C. or higher and 100 ° C. or lower.
  • the compound (I) having an oxazolyl group or a thiazolyl group can be synthesized by reacting a benzamide compound or a benzothioamide compound with a halogenated pyruvate compound and ring-closing as follows.
  • An alkoxycarbonyl group (ester group) such as an oxazolyl ring can be converted into a functional group in the same manner as described above.
  • a reaction for introducing a thiazolyl group using a benzothioamide compound is shown as a representative.
  • Hal represents a halogen atom
  • R represents a C 1-6 alkyl group, particularly a C 1-2 alkyl group.
  • a benzothioamide compound and a halogenated pyruvate compound are reacted.
  • the solvent include alcohols such as methanol and ethanol; halogenated hydrocarbons such as dichloromethane and chloroform; amides such as dimethylformamide and dimethylacetamide.
  • the reaction temperature is not particularly limited and may be adjusted as appropriate, but can usually be about 30 ° C. or higher and 100 ° C. or lower.
  • the catechol derivative according to the present invention may further contain retinoic acid.
  • retinoic acid By using retinoic acid in combination, the induction effect on nervous system cells is further improved.
  • the content of retinoic acid may be appropriately adjusted. For example, it is preferably about 0.5 to 2.0 mol per mol of the catechol derivative according to the present invention. If the ratio is 0.5 times mol or more, a synergistic effect by retinoic acid can be expected. On the other hand, if the ratio is too high, cells other than the ectoderm system may be induced to be differentiated by retinoic acid and the selectivity may be lowered. Therefore, the ratio is preferably 2.0 times mol or less. The ratio is more preferably 0.7 times mol or more, further preferably 0.8 times mol or more, more preferably 1.5 times mol or less, and further preferably 1.2 times mol or less.
  • the catechol derivative which is the main component of the cell differentiation inducer according to the present invention, has a very simple chemical structure and is very easy to synthesize, and is highly capable of transforming undifferentiated cells into nervous system cells. Differentiation can be induced efficiently with selectivity.
  • the differentiation induction method will be described.
  • the undifferentiated cells used in the method of the present invention are not particularly limited as long as they have pluripotency to differentiate into neural cells.
  • ES cells iPS cells
  • mesenchymal cells Those that have the ability to differentiate into neural cells and have the ability to self-replicate, such as stem cells, are particularly useful for application to regenerative medicine.
  • embryoid bodies obtained from these cells are also included in the undifferentiated cells in the present invention. Embryoid bodies generally include ectoderm, mesoderm and endoderm, and nervous system cells are ectodermal cells. Therefore, by using embryoid bodies, it is easier to induce differentiation into nervous system cells. Become.
  • the origin of the undifferentiated cells is not particularly limited, and may be derived from fish, amphibians, birds, mammals, but in view of application to regenerative medicine, those derived from mammals are preferable, those derived from humans More preferred.
  • the undifferentiated cells can be prepared by a conventional method.
  • ES cells can be isolated as an undifferentiated stem cell population by culturing in vitro an inner cell mass inside a blastocyst stage embryo and repeating dissociation and passage of the cell mass.
  • iPS cells are prepared by introducing specific genes into somatic cells such as fibroblasts.
  • Mesenchymal stem cells can be used after culturing those isolated from umbilical cord blood, bone marrow, placenta and the like.
  • An embryoid body can be obtained by suspension culture of these cells in a medium for embryoid body formation.
  • the cell differentiation inducing agent according to the present invention can act on undifferentiated cells by adding it to the culture medium of the undifferentiated cells.
  • a medium for embryoid body formation when an embryoid body is used as an undifferentiated cell, it is preferable to change from a medium for embryoid body formation to a medium suitable for induction of differentiation.
  • a medium include inorganic salts such as sodium chloride, potassium chloride, calcium chloride, iron nitrate, magnesium sulfate, sodium bicarbonate, and sodium dihydrogen phosphate; amino acids such as natural amino acids and unnatural amino acids; calcium pantothenate, folic acid, Examples include vitamins such as inositol, nicotinamide, pyridoxine hydrochloride and thiamine hydrochloride; and other nutrients such as glucose and sodium pyruvate.
  • basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), leukocyte migration inhibitory factor (LIF), serum and the like may be added.
  • the cell differentiation-inducing agent according to the present invention may be added and mixed as it is into the medium of undifferentiated cells, but it may be impossible to mix sufficiently due to problems such as solubility, so it is preferable to prepare a solution in advance.
  • a solvent for such a solution distilled water or the like can be used if the cell differentiation inducer according to the present invention has sufficient water solubility, but if the water solubility is not sufficient, the cell differentiation inducer can be mixed with water. You may add, after melt
  • water-miscible organic solvent examples include alcohol solvents such as methanol and ethanol; amide solvents such as dimethylformamide and dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide.
  • alcohol solvents such as methanol and ethanol
  • amide solvents such as dimethylformamide and dimethylacetamide
  • sulfoxide solvents such as dimethyl sulfoxide.
  • the addition amount of the cell differentiation inducer according to the present invention may be appropriately adjusted depending on the activity of the compound, and can be, for example, about 10 ⁇ M or more and 300 ⁇ M or less with respect to the whole medium.
  • concentration is 10 ⁇ M or more, differentiation induction into nervous system cells can be more reliably promoted.
  • concentration is preferably 300 ⁇ M or less.
  • the concentration is more preferably 15 ⁇ M or more, further preferably 20 ⁇ M or more, more preferably 200 ⁇ M or less, and further preferably 150 ⁇ M or less.
  • the culture conditions after adding the cell differentiation inducer according to the present invention may be appropriately adjusted according to the type of undifferentiated cells used.
  • the atmosphere may be a 5% carbon dioxide atmosphere and cultured at about 25 ° C. or more and 45 ° C. or less for about 1 day or more and 10 days or less.
  • the cell differentiation inducer according to the present invention can induce differentiation of undifferentiated cells into neural cells.
  • neural cells in the present invention include neural cells such as neural cells and glial cells, as well as neural progenitor cells such as neural stem cells, neural progenitor cells, and neural crest cells.
  • the differentiation-induced neural cell can be determined by morphological observation, identification of expressed protein, gene expression analysis, and the like.
  • a general nerve cell has a unique form having a process.
  • neural crest cells are ectodermal cells, they also express Flk1, which is a mesoderm stem cell marker, together with Nestin, which is an ectoderm stem cell marker.
  • examples of neural crest cell markers include Sox9, Sox10, and Slug. Therefore, it is possible to determine whether differentiation-induced cells are neural crest cells by ELISA using antibodies specific to these proteins as primary antibodies, or by expression analysis of genes encoding these proteins.
  • nervous system cells can be identified by morphological observation and separated from other cells.
  • the isolated neural cells can be applied to treatment of diseases related to nerve cells or regenerative medicine.
  • neural crest cells are induced to be differentiated and isolated according to the present invention, they are applied to treatment or regenerative medicine for diseases caused by neural crest induction or formation defects, or neural crest cell migration defects, etc. It can be done.
  • the neural crest cells obtained are induced to differentiate into glial cells, pigment cells, corneal parenchymal cells, smooth muscle cells, chondrocytes, bone cells, etc. by conventional methods, and can be applied to the treatment of diseases related to these cell groups and regenerative medicine. obtain.
  • Example 7 Mouse ES Cell Differentiation Induction Experiment (1) Mouse ES Cell Differentiation Induction Formation of embryoid bodies by mixing an ES medium and NP medium having the composition shown in Table 1 in a ratio of 1: 1 to a 60 mm diameter Petri dish. Medium (4 mL) was added, and 1 ⁇ 10 6 mouse ES cells (obtained from Dr. Alan Bradley, The Wellcome Trust Sanger Institute, AB2-2) were seeded at 37 ° C. in a 5% CO 2 atmosphere for 1 day. Cultured. Next, after detaching the cells by pipetting using a glass pipette, the cells were seeded again in the same petri dish and cultured at 37 ° C. for 3 days in a 5% CO 2 atmosphere to form embryoid bodies. The obtained cell mass was collected and sedimented, and then suspended in NP medium (10 mL) having the composition shown in Table 1.
  • the cultured cell suspension (100 ⁇ L) was then added to a type I collagen-coated 96-well plate and incubated overnight at 37 ° C. in a 5% CO 2 atmosphere. Separately, each test compound was dissolved in a differentiation medium (medium obtained by removing 2-mercaptomethanol and leukemia inhibitory factor from ES medium) and added to each well so that the final concentration was 25 to 100 ⁇ M.
  • a differentiation medium medium obtained by removing 2-mercaptomethanol and leukemia inhibitory factor from ES medium
  • compounds synthesized according to the methods of Examples 1-6 were also used. The structure of the compound is shown in Table 2.
  • bFGF basic fibroblast growth factor
  • FIG. 1 (1) shows a 200x optical micrograph of a control in which only dimethyl sulfoxide was added to a final concentration of 0.5% without adding a compound.
  • FIGS. 1 (2) to 3 show optical micrographs of 50 times, 100 times, or 200 times the minimum density. Table 2 summarizes the minimum concentration of each test compound when morphological changes were observed.
  • the differentiation-inducing agent according to the present invention can induce differentiation of mouse ES cells into cells having protrusions at a relatively low concentration.
  • almost all of the test compounds Nos. 12 to 13 were able to significantly change the cell morphology.
  • retinoic acid which has an action of inducing differentiation of undifferentiated cells into neuroectodermal.
  • photographs using retinoic acid are shown in the left two columns of FIG. 4
  • photographs using the differentiation inducer according to the present invention are shown in the two right columns of FIG. 4, and FITC labeling.
  • a photograph in which the anti-mouse antibody was detected is shown in the upper part of FIG. 4, and a photograph in which the rabbit IgG antibody was detected is shown in the lower part of FIG.
  • cells induced to differentiate using retinoic acid express Nestin but do not express Flk1. Since Nestin is an ectoderm stem cell marker and Flk1 is a mesoderm stem cell marker, it was confirmed that retinoic acid induces differentiation of undifferentiated cells into ectoderm stem cells.
  • the cells induced to differentiate with the differentiation inducer according to the present invention were positive for Nestin and Flk1. From this experimental result, it becomes clear that the differentiation inducer according to the present invention can induce differentiation of undifferentiated cells into neural crest cells that are classified as ectodermal cells but also have properties as mesoderm cells. It was.
  • Example 8 Differentiation Induction Experiment of Human iPS Cells Differentiation was induced in the same manner as in Example 7 (1) except that human iPS cells (obtained from RIKEN, hPS0001 201B7 lot3) were used instead of mouse ES cells.
  • the cells induced to differentiate by the test compound are fixed with paraformaldehyde, washed with PBS, 5% goat serum / 1% BSA / PBS is added at 100 ⁇ L / well, and incubated at room temperature for 60 minutes. Blocking. Then, anti-Nestin mouse IgG (manufactured by SIGMA, final concentration 5 ⁇ g / mL) was added and incubated at 4 ° C. overnight. After washing each well with PBS-0.1% Tween 20, FITC-labeled anti-rabbit IgG antibody (Biosource International, final concentration 1 ⁇ g / mL) was added as a secondary antibody and incubated at room temperature for 2 hours.
  • the number of cells per se was small in the control cells, and the ratio of Nestin positive cells to the whole cells was also clearly small.
  • the compound of the present invention when used, it was confirmed that the whole cell was sufficiently positive for Nestin and differentiated into ectoderm stem cells. From these results, the differentiation-inducing effect of the compound of the present invention was also demonstrated in human iPS cells. Note that the difference between Hoechst 33258 positive cells and Nestin positive cells is that the green color of the cells in the upper part of the photograph has become strong due to auto-contrast by image analysis software, and that Nestin strongly stains the protrusions of the cells. However, it is considered that the staining of the cell body itself has become weak.
  • Example 9 Combined Effect with Retinoic Acid
  • an embryoid body-forming medium (4 mL) in which an ES medium and an NP medium having the composition shown in Table 1 were mixed at a ratio of 1: 1 was added, and the mouse was further added.
  • 1 ⁇ 10 6 ES cells obtained from Dr. Alan Bradley, The Wellcome Trust Sanger Institute, AB2-2
  • ES cells were seeded and cultured at 37 ° C. in a 5% CO 2 atmosphere for 1 day.
  • the cells were seeded again in the same petri dish and cultured at 37 ° C.
  • the number of nervous system cells when the compound of the present invention was used was 1.71 ⁇ 0.51 ⁇ 10 6 , whereas it was 3.23 ⁇ 0.42 in combination with retinoic acid.
  • ⁇ 10 6 markedly increased to about 1.89 times (P value: 0.0023). From the above results, it was revealed that the effect of inducing differentiation into nervous system cells can be further improved by the combined use of the compound of the present invention and retinoic acid.
  • Example 10 Experiment for Inducing Differentiation of Mouse ES Cell
  • the medium for embryoid body formation (4 mL) used in Example 7 was added, and 1 ⁇ 10 6 mouse ES cells (AB2-2) were further added.
  • the seeds were plated and cultured at 37 ° C. for 3 days in a 5% CO 2 atmosphere.
  • the obtained embryoid body was collected in a 15 mL tube.
  • 1 ⁇ PBS (5 mL) was added, and the same PBS was collected in the tube.
  • Half of the collected cells were transferred to another tube and allowed to stand at room temperature for 5 minutes. After removing the supernatant, NP medium (10.5 mL) used in Example 7 was added.
  • 3,4-dihydroxybenzonitrile (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in DMSO and added to each well so that the final concentration was 12.5 ⁇ M, 25 ⁇ M or 50 ⁇ M, and the total amount was 200 ⁇ L. Further, serum was added to each well at a final concentration of 5% and bFGF (basic fibroblast growth factor) was added to a final concentration of 10 ng / mL, and cultured at 37 ° C. for 4 days in a 5% CO 2 atmosphere. did.
  • bFGF basic fibroblast growth factor
  • FIG. 8 (1) shows an enlarged photograph of 50 times when the compound of the present invention is added at a concentration of 50 ⁇ M
  • FIGS. 8 (2) to (3) show enlarged photographs of 100 times.
  • nervous system cells having protrusions as a whole were observed.
  • other forms of cells were not observed, and it was proved that the compound of the present invention can induce differentiation of undifferentiated cells into neural cells with high selectivity.

Abstract

 本発明は、化学合成も容易な低分子化合物でありながらも未分化細胞を神経系細胞へ高い選択率で効率的に分化誘導することができる細胞分化誘導剤と、未分化細胞を神経系細胞へ高い選択率で効率的に分化誘導するための特定のカテコール誘導体の使用、および、特定のカテコール誘導体を用いて未分化細胞を神経系細胞へ高い選択率で効率的に分化誘導するための方法を提供することを目的とする。本発明に係る細胞分化誘導剤は、特定の化学構造を有するカテコール誘導体を含むことを特徴とする。

Description

細胞分化誘導剤および分化誘導方法
 本発明は、低分子化合物であるカテコール誘導体を含む細胞分化誘導剤、未分化細胞の分化を誘導するための当該カテコール誘導体の使用、および、当該カテコール誘導体を用いて未分化細胞を神経堤細胞などの神経系細胞へ分化誘導するための方法に関するものである。
 多細胞生物を構成している細胞としては、大きく分類して分化細胞、TA細胞(Transient Amplifying Cell)および幹細胞がある。分化細胞は最終分化細胞や終末分化細胞とも呼ばれるものであり、神経細胞や臓器細胞など、それ以上は異なる種類の細胞へ分化することはなく、また、ほとんど増殖することはない。TA細胞は分化細胞と幹細胞の中間的なものであり、分化後、活発に増殖して分化細胞となる。幹細胞は自己複製能と分化能の両方を有する細胞と定義付けられ、自己増殖できると共に、分化してTA細胞となる。
 即ち幹細胞は、あらゆる細胞へ分化でき、固体を形成できる全能性細胞、単一の細胞にしか分化できない単能性細胞、特殊な操作をしない限り固体にはなれないながらも様々な細胞へ分化できる多能性細胞へ分化可能である。全能性細胞としては受精卵を挙げることができる。単能性細胞としては、精子などの生殖幹細胞を挙げることができる。多能性細胞としては、多能性幹細胞を挙げることができる。
 幹細胞を利用すれば、例えば患者自身から皮膚組織や臓器組織を調製して拒否反応を示さない再生医療が可能となったり、遺伝病などの特定疾患の患者から問題となっている細胞を増殖させ、新薬の創製に役立てることができるようになる可能性がある。
 特に近年、ES細胞やiPS細胞など多能性を示す未分化細胞を人工的に調製する技術が開発され、再生医療や新薬の創製研究への応用の実用化が近付いている。よって今後は、未分化細胞を目的の機能性細胞へ分化誘導するための技術が求められると考えられる。
 ES細胞などを分化させるに当たっては、無秩序に分化させると細胞種の選別が必要となるなど所望の目的での使用が困難となるおそれがあるので、特定種の細胞へ特異的に分化させることが好ましい。例えば、特許文献1には、神経細胞への分化誘導剤としてセサミン類が開示されている。また、特許文献2と非特許文献1には、未分化細胞から外胚葉系細胞への分化誘導剤としてレチノイン酸が記載されている。
 ところで、多細胞生物の初期胚は、外胚葉、中胚葉および内胚葉に分類される。外胚葉は神経や皮膚組織などとなり、中胚葉は筋肉、骨、血管や血液などとなり、内胚葉は消化管や肺などの特定臓器となる。その他、神経堤細胞と呼ばれるものがある。神経堤細胞は外胚葉に分類されるものではあるが、神経胚形成期において神経堤から遊走し、メラノサイト、末梢神経ニューロン、平滑筋、頭部を中心とする軟骨や硬骨を形成するなど、特異で且つ重要な役割を有することから、第四の胚葉ともいわれている。
 従来、ES細胞などの未分化細胞を神経堤細胞に分化誘導する方法としては、フィーダー細胞を含む無血清培地にES細胞を蒔き、骨形成タンパク質であるBMP4(Bone Morphogenetic Protein 4)を添加するSDIA法が知られている(非特許文献2)。また、特許文献3には、特定成分を含む培地を用い、フィーダー細胞を用いることなく未分化細胞を神経堤細胞に分化誘導する方法が開示されている。
特開2010-202559号公報 特表2007-535957号公報 国際公開第2010/140698号パンフレット
Bain,Gら,Developmental Biology,第168号,第342~357頁(1995年) Kenji MIZUSEKIら,Proceedings of the National Academy of Science of the United States of America,第100号,第5828~5833頁(2003年)
 上述したように、ES細胞などの未分化細胞を神経堤細胞に分化誘導する方法は既に知られていた。しかし非特許文献2に記載されているSDIA法ではフィーダー細胞を用いているため、たとえ患者由来のiPS細胞から誘導された神経堤細胞であっても患者へ導入する際に拒否反応が生じるおそれがあり、また、フィーダー細胞のロットにより分化誘導率が大きく変動するという問題がある。さらに、分泌性タンパク質であるBMP4は非常に高価であり、これを分化誘導剤として用いるとコストの問題が生じる。特許文献3に記載の方法ではフィーダー細胞は必要とされないが、骨形成タンパク質(BMP4)などを用いなければ分化誘導率が非常に低く、やはりコストや効率の問題がある。
 一方、特許文献1で用いられているセサミン類は低分子ではあるが、当該技術では神経細胞の前駆体細胞を神経細胞へ分化誘導しているのみであり、iPS細胞を分化誘導しているわけではない。また、低分子化合物であるとはいってもセサミン類はゴマ油から抽出しなければならないし、不斉炭素を4個も有することから化学合成も難しい。さらに、特許文献2と非特許文献1に記載のレチノイン酸も低分子化合物だが、例えばES細胞にレチノイン酸を作用させると外胚葉系以外の細胞も分化誘導されるため、優れた細胞分化誘導剤であるとはいえない。
 以上のとおり、従来、安価な低分子化合物であって、未分化細胞を選択的かつ効率的に神経系細胞へ分化誘導できるものはなかった。
 そこで本発明は、化学合成も容易な低分子化合物でありながらも未分化細胞を神経系細胞へ高い選択率で効率的に分化誘導することができる細胞分化誘導剤と、未分化細胞を神経系細胞へ高い選択率で効率的に分化誘導するための特定のカテコール誘導体の使用、および、特定のカテコール誘導体を用いて未分化細胞を神経系細胞へ高い選択率で効率的に分化誘導するための方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、特定構造のカテコール誘導体が、非常にシンプルな化学構造を有しながらも未分化細胞を神経系細胞へ効率的に分化誘導できることを見出して、本発明を完成した。
 本発明に係る細胞分化誘導剤は、下記式(I)で表されるカテコール誘導体を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000004
[式中、
 R1は、カルボキシ基、(C1-6アルコキシ)カルボニル基、C1-7アルカノイル基、C2-8アルキニル基、カルバモイル基、シアノ基、ニトロ基もしくはハロゲン原子、または、置換基αを有していてもよいオキサゾリル基、置換基αを有していてもよいチアゾリル基、置換基αを有していてもよいオキサゾリニル基、もしくは置換基αを有していてもよいチアゾリニル基を示し;
 R2は、水素原子、C1-6アルキル基またはベンジル基を示し;
 nは2以上、5以下の整数を示し;
 置換基αは、カルボキシ基、(C1-6アルコキシ)カルボニル基、C1-7アルカノイル基、カルバモイル基、シアノ基、ニトロ基およびハロゲン原子から選択される1以上を示す。
 但し、2以上のR2O基は、互いに同一であっても異なっていてもよい。]
 本発明において「C1-6アルキル基」は、炭素数1~6の直鎖状または分枝鎖状の飽和脂肪族炭化水素基をいう。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等である。好ましくはC1-4アルキル基であり、より好ましくはC1-2アルキル基であり、最も好ましくはメチル基である。
 「(C1-6アルコキシ)カルボニル基」とは、C1-6アルキルオキシカルボニル基(C1-6アルキル-O-C(=O)-基)をいう。例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、t-ブトキシカルボニル基、n-ペントキシカルボニル基、n-ヘキソキシカルボニルシル基等である。好ましくは(C1-4アルコキシ)カルボニル基であり、より好ましくは(C1-2アルコキシ)カルボニル基であり、最も好ましくはメトキシカルボニル基である。
 「C1-7アルカノイル基」は、ホルミル基および上記C1-6アルキル基に置換されたカルボニル基を意味する。例えば、ホルミル基、アセチル基、n-プロピオニル基、イソプロピオニル基、n-ブチリル基、イソブチリル基、ペンタノイル基、ピバロイル基、バレリル基、イソバレリル基を挙げることができる。好ましくはC1-5アルカノイル基であり、より好ましくはC1-3アルカノイル基であり、最も好ましくはホルミル基またはアセチル基である。
 「C2-8アルキニル基」は、炭素-炭素三重結合を有し、炭素数が2~8の直鎖状または分枝鎖状の不飽和脂肪族炭化水素基をいう。当該基としては、1位炭素、即ちカテコール誘導体(I)のベンゼン環に結合している炭素原子が炭素-炭素三重結合を有するものが好ましい。例えば、エチニル基、1-プロピニル基、1-ブチニル基、1-ペンチニル基、3-メチル-1-ブチニル基、4-メチル-1-ペンチニル基を挙げることができる。好ましくはC2-4アルキニル基であり、エチニル基または1-プロピニル基がより好ましい。
 「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子またはヨウ素原子が好ましく、塩素原子または臭素原子がより好ましい。
 本発明に係る上記細胞分化誘導剤としては、R2が水素原子であるもの、少なくとも2つの-OR2基が互いに隣り合っているもの、また、R1がシアノ基またはカルバモイル基であるものが好ましい。本発明者らによる実験的知見によれば、これらが特に比較的低濃度で且つ高い選択性で未分化細胞を神経系細胞へ高効率で分化誘導できる。
 その他、nとしては2以上、4以下の整数がより好ましく、2または3がさらに好ましい。一般的に、ベンゼン化合物は置換基数が多いものほど合成し難くなって高価であることによる。
 2以上のR2O基は、互いに同一であっても異なっていてもよいが、製造がより容易であることから、同一であることが好ましい。
 上記化合物(I)が置換基としてカルボキシ基を有する場合、塩であってもよい。本発明により得られた神経堤細胞を再生医療などに用いる場合には、当該塩は薬学上許容されるものであることが好ましい。かかる塩としては、例えば、ナトリウム塩やカリウム塩などのアルカリ金属塩;カルシウム塩やマグネシウム塩などのアルカリ土類金属塩;アンモニウム塩などの無機アミン塩;トリメチルアミン塩、トリエチルアミン塩、ピリジン塩などの有機アミン塩を挙げることができる。
 チアゾリル基における置換基αの数は、置換可能であれば特に制限されないが、1以上、2以下が好ましく、1がより好ましい。
 本発明に係る細胞分化誘導剤は、さらにレチノイン酸を含むことが好ましい。レチノイン酸の併用により、神経系細胞への誘導効果がより一層向上する。
 本発明に係る細胞分化誘導剤としては、未分化細胞を神経系細胞へ分化誘導するためのものが好ましい。
 また、本発明に係る未分化細胞を神経系細胞へ分化誘導するための方法は、未分化細胞に、本発明に係る上記細胞分化誘導剤を作用させる工程を含むことを特徴とする。
 本発明に係るカテコール誘導体(I)は、上記細胞分化誘導剤の有効成分であり、未分化細胞の分化を誘導するために用いられる。
 また、本発明に係る未分化細胞を神経系細胞へ分化誘導するための方法は、上記細胞分化誘導剤の有効成分であるカテコール誘導体(I)を含む培地で未分化細胞を培養する工程を含むことを特徴とする。
 本発明に係る細胞分化誘導剤の有効成分であるカテコール誘導体(I)は、非常にシンプルな化学構造を有するものであることから、安価で入手可能であるか或いは容易に合成可能である。よって、高価なタンパク質に比べて低コストである。また、本発明の細胞分化誘導剤の有効成分であるカテコール誘導体(I)は、比較的低濃度であっても、フィーダー細胞を用いることなく、高い選択性と良好な効率をもって未分化細胞を神経系細胞へ分化誘導することが可能になる。従って本発明は、iPS細胞を用いた再生医療や創薬研究などの実現をより一層促進できるものとして、産業上非常に有用である。
図1は、本発明の細胞分化誘導剤を用いてマウスES細胞を処理した場合の拡大写真と、本発明の細胞分化誘導剤を用いることなく同様に処理したコントロールの拡大写真である。 図2は、本発明の細胞分化誘導剤を用いてマウスES細胞を処理した場合の拡大写真である。 図3は、本発明の細胞分化誘導剤を用いてマウスES細胞を処理した場合の拡大写真である。 図4は、本発明の細胞分化誘導剤またはレチノイン酸を使って分化誘導したマウスES細胞を、外胚葉幹細胞マーカーおよび中胚葉幹細胞マーカーで染色した場合の拡大写真である。 図5は、マウスES細胞とその胚様体および本発明の分化誘導剤で処理したマウスES細胞の遺伝子発現を解析した結果を示す電気泳動写真である。 図6は、本発明の細胞分化誘導剤を用いてヒトiPS細胞を処理した場合の拡大写真と、本発明の細胞分化誘導剤を用いることなく同様に処理したコントロールの拡大写真である。 図7は、本発明の細胞分化誘導剤とレチノイン酸との併用効果を示すグラフである。 図8は、本発明の細胞分化誘導剤を用いてマウスES細胞を処理した場合の拡大写真である。
 本発明に係る細胞分化誘導剤は式(I)で表されるカテコール誘導体を含むものであり、非常にシンプルな化学構造を有するため、市販のものがあればそれを購入すればよいし、或いは、当業者であれば市販の化合物から常法により容易に合成可能である。
 例えば、2以上の水酸基を有するベンゼン化合物として様々な化合物が市販されている。当業者であれば、かかるフェノール性水酸基をアルコキシ基やベンジルオキシ基へ誘導することは容易である。
 また、当業者であれば、フェノール性水酸基の置換位置に応じてR1基を導入したり、官能基変換することができる。例えば、以下のように官能基変換することが可能である。
Figure JPOXMLDOC01-appb-C000005
[式中、Halはハロゲン原子を示し、RはC1-6アルキル基を示す]
 さらに、オキサゾリニル基またはチアゾリニル基を有する化合物(I)は、以下のとおり、ベンゾニトリル化合物とセリンまたはシステインを反応させ、閉環することにより合成することができる。この際、カルボキシ基が置換しているオキサゾリニル環等の炭素原子における絶対配置は、光学活性なセリン等を用いることで制御可能である。また、オキサゾリニル環等のカルボキシ基は、上記と同様に官能基変換が可能である。なお、以下ではシステインを用いてチアゾリニル基を導入する反応を代表して示す。
Figure JPOXMLDOC01-appb-C000006
 上記反応では、塩基の存在下、ベンゾニトリル化合物とシステインを反応させればよい。溶媒としては、システイン等が水に溶解するのに対してベンゾニトリル化合物の中には水に溶解し難いものもあるので、水と水混和性有機溶媒との混合溶液を用いることが好ましい。かかる水混和性有機溶媒としては、メタノールやエタノールなどのアルコール類;ジメチルホルムアミドやジメチルアセトアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類などを挙げることができる。また、反応液のpHを維持するために、水としては緩衝液を用いてもよい。塩基としては、炭酸水素ナトリウムなどアルカリ金属の炭酸水素塩;炭酸ナトリウムなどアルカリ金属の炭酸塩;水酸化ナトリウムなどのアルカリ金属の水酸化物などを用いることができる。反応温度は特に制限されず適宜調整すればよいが、通常、30℃以上、100℃以下程度とすることができる。
 オキサゾリル基またはチアゾリル基を有する化合物(I)は、以下のとおり、ベンズアミド化合物またはベンゾチオアミド化合物とハロゲン化ピルビン酸エステル化合物を反応させ、閉環することにより合成することができる。オキサゾリル環等のアルコキシカルボニル基(エステル基)は、上記と同様に官能基変換が可能である。なお、以下ではベンゾチオアミド化合物を用いてチアゾリル基を導入する反応を代表して示す。
Figure JPOXMLDOC01-appb-C000007
 上記式中、Halはハロゲン原子を示し、RはC1-6アルキル基、特にC1-2アルキル基を示す。
 上記反応では、ベンゾチオアミド化合物とハロゲン化ピルビン酸エステル化合物を反応させる。溶媒としては、メタノールやエタノールなどのアルコール類;ジクロロメタンやクロロホルムなどのハロゲン化炭化水素類;ジメチルホルムアミドやジメチルアセトアミドなどのアミド類などを挙げることができる。反応温度は特に制限されず適宜調整すればよいが、通常、30℃以上、100℃以下程度とすることができる。
 本発明に係る上記カテコール誘導体は、さらにレチノイン酸を含むものであってもよい。レチノイン酸を併用することにより、神経系細胞への誘導効果がより一層向上する。
 レチノイン酸の含有量は適宜調整すればよいが、例えば、本発明に係る上記カテコール誘導体1モルに対して0.5倍モル以上、2.0倍モル以下程度が好ましい。当該割合が0.5倍モル以上であれば、レチノイン酸による相乗効果が期待できる。一方、当該割合が高過ぎると、レチノイン酸により外胚葉系以外の細胞も分化誘導されて選択率が低下するおそれがあり得るため、当該割合としては2.0倍モル以下が好ましい。当該割合としては、0.7倍モル以上がより好ましく、0.8倍モル以上がさらに好ましく、また、1.5倍モル以下がより好ましく、1.2倍モル以下がさらに好ましい。
 上記のとおり、本発明に係る細胞分化誘導剤の主要成分である上記カテコール誘導体は非常にシンプルな化学構造を有し、合成が極めて容易なものでありながら、未分化細胞を神経系細胞へ高い選択率で効率的に分化誘導することができる。以下、分化誘導方法につき説明する。
 (1) 未分化細胞の調製
 本発明方法で用いる未分化細胞としては、神経系細胞へ分化する多能性を有するものであれば特に制限されないが、例えば、ES細胞、iPS細胞、間葉系幹細胞のように、神経系細胞への分化能を有すると共に自己複製能を有するものが、特に再生医療への適用のために有用である。また、これら細胞から得られる胚様体も本発明における未分化細胞に含めるものとする。胚様体は一般的に外胚葉、中胚葉および内胚葉を含み、神経系細胞は外胚葉系の細胞であるので、胚様体を用いることによって、神経系細胞への分化誘導がより容易となる。
 未分化細胞の由来は特に制限されず、魚類、両生類、鳥類、哺乳類に由来するものであってもよいが、再生医療への適用を考慮すれば哺乳類由来のものが好ましく、ヒト由来のものがより好ましい。
 上記未分化細胞は、常法により調製することができる。例えばES細胞は、胚盤胞期胚の内部にある内部細胞塊をin vitro培養し、細胞塊の解離と継代を繰り返すことにより未分化幹細胞集団として単離できる。iPS細胞は、線維芽細胞などの体細胞に特定の遺伝子を導入することにより調製される。間葉系幹細胞は、臍帯血、骨髄、胎盤などから単離したものを培養して用いることができる。また、胚様体は、これら細胞を胚様体形成用培地中で浮遊培養することにより得られる。
 (2) 本発明に係る細胞分化誘導剤の添加
 本発明に係る細胞分化誘導剤は、上記未分化細胞の培養液に添加することにより、未分化細胞へ作用させることができる。
 特に未分化細胞として胚様体を用いる場合には、胚様体形成用培地から分化誘導に適した培地に変更することが好ましい。かかる培地としては、塩化ナトリウム、塩化カリウム、塩化カルシウム、硝酸鉄、硫酸マグネシウム、炭酸水素ナトリウム、リン酸二水素ナトリウムなどの無機塩;天然アミノ酸や非天然アミノ酸などのアミノ酸;パントテン酸カルシウム、葉酸、イノシトール、ニコチンアミド、ピリドキシン塩酸塩、チアミン塩酸塩などのビタミン類;グルコースやピルビン酸ナトリウムなどのその他の栄養源などを含むものを挙げることができる。また、塩基性線維芽細胞増殖因子(bFGF)、上皮増殖因子(EGF)、白血球遊走阻止因子(LIF)、血清などを添加してもよい。
 本発明に係る細胞分化誘導剤は、未分化細胞の培地へそのまま添加混合してもよいが、溶解性などの問題から十分に混合できないおそれがあり得るため、事前に溶液とすることが好ましい。かかる溶液の溶媒としては、本発明に係る細胞分化誘導剤の水溶性が十分であれば蒸留水などとすることができるが、水溶性が十分でない場合には、細胞分化誘導剤を水混和性有機溶媒に溶解した上で添加してもよい。なお、かかる水混和性有機溶媒としては、メタノールやエタノールなどのアルコール溶媒;ジメチルホルムアミドやジメチルアセトアミドなどのアミド溶媒;ジメチルスルホキシドなどのスルホキシド溶媒などを挙げることができる。但し、これら有機溶媒は、細胞に有害である場合があるので、溶液濃度をできるだけ高くして有機溶媒の添加量を極力低減することが好ましい。
 本発明に係る細胞分化誘導剤の添加量は、化合物の活性などにより適宜調整すればよいが、例えば、培地全体に対して10μM以上、300μM以下程度とすることができる。当該濃度が10μM以上であれば、より確実に神経系細胞への分化誘導を促進することが可能になる。一方、当該濃度が高過ぎるとかえって細胞毒性が表われるおそれがあり得るので、当該濃度としては300μM以下が好ましい。当該濃度としては、15μM以上がより好ましく、20μM以上がさらに好ましく、また、200μM以下がより好ましく、150μM以下がさらに好ましい。
 本発明に係る細胞分化誘導剤を添加した後の培養条件は、用いる未分化細胞の種類などに応じて適宜調整すればよい。例えば、雰囲気を5%二酸化炭素雰囲気とし、25℃以上、45℃以下程度で、1日以上、10日以下程度培養すればよい。
 本発明に係る細胞分化誘導剤は、未分化細胞を神経系細胞へ分化誘導することができる。本発明における神経系細胞としては、神経細胞やグリア細胞などの神経細胞の他、神経幹細胞、神経前駆細胞、神経堤細胞など神経細胞の前駆細胞を挙げることができる。
 分化誘導された神経系細胞であることは、形態観察や発現タンパク質の特定や遺伝子発現解析などにより決定することができる。例えば、一般的な神経細胞は、突起を有する独特の形態を有する。また、神経堤細胞は外胚葉系の細胞でありながら、外胚葉幹細胞マーカーであるNestinと共に中胚葉幹細胞マーカーであるFlk1も発現する。さらに、神経堤細胞マーカーとしてはSox9、Sox10、Slugを挙げることができる。よって、これらタンパク質に特異的な抗体を一次抗体として用いるELISAや、これらタンパク質をコードする遺伝子の発現解析により、分化誘導された細胞が神経堤細胞であるか否か決定可能である。
 上記のとおり形態観察などで神経系細胞を特定し、他の細胞から分離することができる。
 単離された神経系細胞は、神経細胞に関係する疾患の治療や再生医療などに適用できる。例えば、本発明により神経堤細胞を分化誘導して単離した上で、神経堤の誘導や形成の欠陥、また、神経堤細胞の遊走の欠陥などに起因する疾患の治療や再生医療などに適用でき得る。さらに、得られた神経堤細胞を常法によりグリア細胞、色素細胞、角膜実質細胞、平滑筋細胞、軟骨細胞、骨細胞などに分化誘導し、これら細胞群に関する疾患の治療や再生医療に適用でき得る。
 本願は、2011年5月19日に出願された日本国特許出願第2011-112831号に基づく優先権の利益を主張するものである。2011年5月19日に出願された日本国特許出願第2011-112831号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1 2-{2,3-ビス(ベンジルオキシ)フェニル}チアゾール-4-カルボン酸
Figure JPOXMLDOC01-appb-C000008
 (1) 2,3-ジヒドロキシベンズアミド
 2,3-ジヒドロキシ安息香酸(5g,32.4mmol)をメタノール(50mL)に溶解し、得られた溶液を0℃に冷却した。同温にて濃硫酸(3mL)を滴下し、15時間加熱還流した。反応溶液を減圧濃縮し、飽和炭酸水素ナトリウム水溶液を発泡が収まるまで加えた後、酢酸エチル(100mL)で3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧濃縮した。残渣に28%アンモニア水(92mL)を加え、50℃で16時間撹拌した。次いで反応溶液をおよそ20mLまで減圧濃縮し、酢酸エチル(50mL)で5回抽出した。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧濃縮することで、淡桃色固体の目的化合物(3.92g,収率:80%)を得た。
 (2) 2,3-ビス(ベンジルオキシ)ベンズアミド
 2,3-ジヒドロキシベンズアミド(2g,13.06mmol)をジメチルホルムアミド(13.06mL)に溶解し、得られた溶液に室温にて炭酸カリウム(9.03g,65mmol)と臭化ベンジル(3.26mL,27.41mmol)を加え、18時間撹拌した。次いで反応溶液に水(20mL)を加えた後、酢酸エチル(100mL)で3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧濃縮して粗生成物を得た。シリカゲル(関東化学社製,Silica Gel 60N)を用いたカラムクロマトグラフィー(溶離液:クロロホルム)により精製し、淡桃色固体の目的化合物(3.59g,収率:83%)を得た。
 (3) 2,3-ビス(ベンジルオキシ)ベンゾチオアミド
 2,3-ビス(ベンジルオキシ)ベンズアミド(393mg,1.2mmol)を無水ジクロロメタン(4.8mL)に溶解し、得られた溶液に室温にてLawesson試薬(291mg,0.719mmol)を加え、10時間加熱還流した。次いで反応溶液を減圧濃縮して粗生成物を得た。シリカゲル(関東化学社製,Silica Gel 60N)を用いたカラムクロマトグラフィー(溶離液:クロロホルム)により精製し、黄色固体の目的化合物(371mg,収率:86%)を得た。
 (4) 2-{2,3-ビス(ベンジルオキシ)フェニル}チアゾール-4-カルボン酸エチル
 2,3-ビス(ベンジルオキシ)ベンゾチオアミド(371mg,1.06mmol)をエタノール(5.3mL)に溶解し、得られた溶液に室温にて臭化ピルビン酸エチル(160μL,1.27mmol)を加え、4時間加熱還流した。反応溶液を室温まで冷却し、飽和炭酸水素ナトリウム水溶液(10mL)を加えた後、酢酸エチル(50mL)で3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧濃縮して粗生成物を得た。シリカゲル(関東化学社製,Silica Gel 60N)を用いたカラムクロマトグラフィー(溶離液:クロロホルム)により精製し、紫色油状の目的化合物(432mg,収率:92%)を得た。
 (5) 2-{2,3-ビス(ベンジルオキシ)フェニル}チアゾール-4-カルボン酸
 2-{2,3-ビス(ベンジルオキシ)フェニル}チアゾール-4-カルボン酸エチル(432mg,0.97mmol)をメタノール(9.7mL)に溶解し、得られた溶液へ4N水酸化ナトリウム水溶液(2.43mL,9.7mmol)を室温にて加え、3時間撹拌した。次いで反応溶液をおよそ10mLまで減圧濃縮し、6N塩酸(10mL)を加えてクロロホルム(50mL)で3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧濃縮することで、褐色不定形(アモルファス)の目的化合物(324mg,収率:80%)を得た。
 実施例2 (R)-2-{2,3-ビス(ベンジルオキシ)フェニル}-4,5-ジヒドロチアゾール-4-カルボン酸
Figure JPOXMLDOC01-appb-C000009
 (1) 2,3-ビス(ベンジルオキシ)ベンゾニトリル
 2,3-ビス(ベンジルオキシ)ベンズアミド(800mg,2.4mmol)を水-アセトニトリルの混合溶媒(1:1,40mL)に溶解し、得られた溶液へ塩化パラジウム(64mg,0.36mmol)を室温にて加え、50℃で6時間撹拌した。次いで反応溶液をおよそ10mLまで減圧濃縮した後、酢酸エチル(100mL)で3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧濃縮して粗生成物を得た。シリカゲル(関東化学社製,Silica Gel 60N)を用いたカラムクロマトグラフィー(溶離液:n-ヘキサン/酢酸エチル=5/1)により精製し、淡黄色固体の目的化合物(692.3mg,収率:91%)を得た。
 (2) (R)-2-{2,3-ビス(ベンジルオキシ)フェニル}-4,5-ジヒドロチアゾール-4-カルボン酸
 2,3-ビス(ベンジルオキシ)ベンゾニトリル(624mg,1.98mmol)を1/15Mリン酸緩衝液(pH6.4)-メタノールの混合溶媒(1:1,28mL)に懸濁させ、得られた懸濁液へL-システイン塩酸塩・一水和物(469mg,2.97mmol)と炭酸水素ナトリウム(286mg,3.4mmol)を室温にて加え、65℃で20時間撹拌した。反応溶液を氷冷した後、濾過した。残渣を水(10mL)、エタノール(10mL)、ジエチルエーテル(10mL)で洗浄することで黄色固体の目的化合物(185mg,収率:22%)を得た。
 実施例3 2,3-ジヒドロキシベンゾニトリル
Figure JPOXMLDOC01-appb-C000010
 2,3-ジメトキシベンゾニトリル(2g,12.26mmol)を無水ジクロロメタン(12.26mL)に溶解し、得られた溶液を-78℃に冷却した。アルゴン雰囲気下、同温にて三臭化ホウ素(1Mジクロロメタン溶液,30.64mL,30.64mmol)を滴下し、室温にて19.5時間撹拌した。反応溶液を氷冷し、水(20mL)を加えた後、クロロホルム(100mL)で3回、および酢酸エチル(100mL)で3回抽出した。得られた有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧濃縮して粗生成物を得た。シリカゲル(関東化学社製,Silica Gel 60N)を用いたカラムクロマトグラフィー(溶離液:n-ヘキサン/酢酸エチル=1/1)により精製し、淡茶色固体の目的化合物(1.62g,収率:98%)を得た。
 実施例4 2-(2,3-ジヒドロキシフェニル)チアゾール-4-カルボン酸
Figure JPOXMLDOC01-appb-C000011
 (1) (R)-2-(2,3-ジヒドロキシフェニル)-4,5-ジヒドロチアゾール-4-カルボン酸
 2,3-ジヒドロキシベンゾニトリル(1.43g,10.58mmol)を1/15Mリン酸緩衝液(pH6.4)-メタノールの混合溶媒(1:1,151mL)に懸濁し、得られた懸濁液へL-システイン塩酸塩・一水和物(2.5g,15.87mmol)と炭酸水素ナトリウム(1.53g,18.20mmol)を室温にて加え、65℃で20時間撹拌した。反応溶液を室温とした後、溶媒を減圧留去した。残渣を酢酸エチル(50mL)にて洗浄し、0.5M塩酸(20mL)を加え、酢酸エチル(100mL)で3回抽出した。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧濃縮することで黄色固体の目的化合物(2.231g,収率:88%)を得た。
 (2) (R)-2-(2,3-ジメトキシフェニル)-4,5-ジヒドロチアゾール-4-カルボン酸メチル
 (R)-2-(2,3-ジヒドロキシフェニル)-4,5-ジヒドロチアゾール-4-カルボン酸(530mg,2.215mmol)をアセトン(4.5mL)に溶解し、得られた溶液へ硫酸ジメチル(723μL,7.64mmol)と炭酸カリウム(1g,7.64mmol)を室温にて加え、70℃で24時間撹拌した。反応懸濁液をセライトで濾過した後、濾液を減圧濃縮して粗生成物を得た。シリカゲル(関東化学社製,Silica Gel 60N)を用いたカラムクロマトグラフィー(溶離液:n-ヘキサン/酢酸エチル=10/1)により精製し、淡黄色油状の目的化合物(199mg,収率:32%)を得た。
 (3) 2-(2,3-ジメトキシフェニル)チアゾール-4-カルボン酸メチル
 (R)-2-(2,3-ジメトキシフェニル)-4,5-ジヒドロチアゾール-4-カルボン酸メチル(199mg,0.707mmol)を1,4-ジオキサン(3.5mL)に溶解し、得られた溶液へ二酸化マンガン(1.2g,14.15mmol)を室温にて加え、室温で25時間撹拌した。反応懸濁液をセライトで濾過した後、濾液を減圧濃縮することで白色固体の目的化合物(193.3mg,収率:98%)を得た。
 (4) 2-(2,3-ジヒドロキシフェニル)チアゾール-4-カルボン酸
 2-(2,3-ジメトキシフェニル)チアゾール-4-カルボン酸メチル(193mg,0.691mmol)を無水ジクロロメタン(0.691mL)に溶解し、得られた溶液を-78℃に冷却した。アルゴン雰囲気下、同温にて三臭化ホウ素(1Mジクロロメタン溶液,2.1mL,2.073mmol)を滴下し、室温にて1時間撹拌した。次いで反応溶液を冷却し、水(5mL)を加えた後、酢酸エチル(50mL)で5回抽出した。有機層を無水硫酸マグネシウムで乾燥後、濾過し、濾液を減圧濃縮することで黄色固体の目的化合物(153.2mg,収率:93%)を得た。
 実施例5 3,4,5-トリヒドロキシ安息香酸メチル
Figure JPOXMLDOC01-appb-C000012
 3,4,5-トリヒドロキシ安息香酸(400mg,2.35mmol)をメタノール(4mL)に溶解し、得られた溶液を0℃に冷却した。当該溶液へ濃硫酸(0.4mL)をゆっくり滴下した後、17時間加熱還流した。反応溶液を減圧濃縮し、水(10mL)を加えた後、酢酸エチル(50mL)で3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥後、濾過し、濾液を減圧濃縮して白色固体の目的化合物(407mg,収率:94%)を得た。
 実施例6 3,4,5-トリヒドロキシベンズアミド
Figure JPOXMLDOC01-appb-C000013
 (1) 3,4,5-トリメトキシ安息香酸メチル
 3,4,5-トリヒドロキシ安息香酸(500mg,2.94mmol)をアセトン(6mL)に溶解し、得られた溶液に室温にて炭酸カリウム(1.8g,13.2mmol)と硫酸ジメチル(1.25mL,13.2mmol)を加え、13.5時間加熱還流した。反応懸濁液をセライトで濾過した後、濾液を減圧濃縮して粗生成物を得た。シリカゲル(関東化学社製,Silica Gel 60N)を用いたカラムクロマトグラフィー(溶離液:クロロホルム/メタノール=30/1)により精製し、白色固体の目的化合物(630mg,収率:95%)を得た。
 (2) 3,4,5-トリメトキシベンズアミド
 3,4,5-トリメトキシ安息香酸メチル(300mg,1.33mmol)に28%アンモニア水溶液(3.8mL)を室温で加え、50℃で10時間撹拌した。次いで、反応溶液を減圧濃縮して粗生成物を得た。シリカゲル(関東化学社製,Silica Gel 60N)を用いたカラムクロマトグラフィー(溶離液:クロロホルム/メタノール=10/1およびn-ヘキサン/酢酸エチル=1/2→0/100)により精製し、白色固体の目的化合物(175mg,収率:63%)を得た。
 (3) 3,4,5-トリヒドロキシベンズアミド
 3,4,5-トリメトキシベンズアミド(95mg,0.45mmol)を無水ジクロロメタン(0.45mL)に溶解し、得られた溶液を-78℃に冷却した。アルゴン雰囲気下、同温にて三臭化ホウ素(1Mジクロロメタン溶液,1.35mL,1.35mmol)を滴下し、室温にて18時間撹拌した。次いで反応溶液を氷冷し、水(5mL)を加えた後、酢酸エチル(50mL)で3回抽出した。得られた有機層を無水硫酸ナトリウムで乾燥後、濾過し、濾液を減圧濃縮して粗生成物を得た。シリカゲル(関東化学社製,Silica Gel 60N)を用いたカラムクロマトグラフィー(溶離液:酢酸エチル/メタノール=100/0→10/1→5/1)により精製し、淡茶色固体の目的化合物(27.4mg,36%)を得た。
 実施例7 マウスES細胞の分化誘導実験
 (1) マウスES細胞の分化誘導
 直径60mmのペトリディッシュへ、表1に示す組成のES培地とNP培地を1:1の割合で混合した胚様体形成用培地(4mL)を加え、さらにマウスES細胞(The Wellcome Trust Sanger InstituteのDr.Alan Bradleyから入手,AB2-2)を1×106個蒔き、5%CO2雰囲気下、37℃で1日間培養した。次いで、ガラスピペットを用いたピペッティングにより細胞を剥離した後、同じペトリディッシュに蒔き直し、5%CO2雰囲気下、37℃で3日間培養して胚様体を形成させた。得られた細胞塊を回収し、沈降させた後に表1に示す組成のNP培地(10mL)に懸濁した。
Figure JPOXMLDOC01-appb-T000014
 次いで、上記培養細胞懸濁液(100μL)をI型コラーゲンコートされた96ウェルプレートに添加し、5%CO2雰囲気下、37℃で一晩インキュベートした。別途、各被検化合物を分化用培地(ES培地から2-メルカプトメタノールと白血病抑制因子を除いた培地)に溶解し、最終濃度が25~100μMとなるように各ウェルへ添加した。化合物としては実施例1~6の化合物の他、実施例1~6の方法に準じて合成した化合物も用いた。化合物の構造を表2に示す。さらに、各ウェルへ血清を最終濃度で5%、bFGF(塩基性線維芽細胞成長因子)を最終濃度で2ng/mLとなるように添加し、5%CO2雰囲気下、37℃で4日間接着培養した。
 培養後、各ウェルへパラホルムアルデヒドを最終濃度で2%となるように添加して細胞を固定した。細胞をヘマトキシリンで染色し、光学顕微鏡を用いて形態変化を観察した。化合物を添加せずジメチルスルホキシドのみを最終濃度で0.5%となるように添加したコントロールの200倍の光学顕微鏡写真を図1(1)に、各被検化合物を添加して形態変化が認められた場合の最小濃度の50倍、100倍または200倍の光学顕微鏡写真を図1(2)~図3に示す。また、形態変化が認められた場合の各被検化合物の最小濃度を表2にまとめる。
Figure JPOXMLDOC01-appb-T000015
 図1~3と表1のとおり、本発明に係る分化誘導剤は、比較的低濃度でマウスES細胞を、突起を有する形態の細胞に分化誘導できることが実証された。特に被検化合物番号12~13の化合物は、ほぼ全て細胞の形態を顕著に変化させることができた。
 (2) 形態が変化した細胞の特定
 上記(1)のとおり被検化合物1により分化誘導された細胞をパラホルムアルデヒドで固定した後、PBSで洗浄し、5%ヤギ血清/1%BSA/PBSを100μL/ウェルの最終濃度となるように添加し、室温で60分間インキュベートすることによりブロッキングした。次いで、抗NestinマウスIgG(American Research Products社製,最終濃度:5μg/mL)または抗Flk1ウサギIgG(Millipore社製,最終濃度:5μg/mL)を添加し、4℃で一晩インキュベートした。各ウェルをPBS-0.1% Tween20で洗浄した後、二次抗体として、FITC標識抗マウス抗体(Biosource International社製,最終濃度:1μg/mL)またはウサギIgG抗体(Biosource International社製,最終濃度:1μg/mL)を添加し、室温で2時間インキュベートした。各ウェルをPBS-0.1% Tween20で洗浄した後、IN Cell Analyzer 1000(GE Healthcare社製)を用いて蛍光写真を撮影した。
 また、対照として、未分化細胞を神経外胚葉に分化誘導する作用を示すレチノイン酸1μMを使って同様の処理を行った。得られた写真のうち、レチノイン酸を使った場合の写真を図4の左側2列に、本発明に係る分化誘導剤を使った場合の写真を図4の右側2列に、また、FITC標識抗マウス抗体を検出した写真を図4の上段に、ウサギIgG抗体を検出した写真を図4の下段に示す。
 図4のとおり、レチノイン酸を用いて分化誘導された細胞は、Nestinを発現している一方でFlk1を発現していない。Nestinは外胚葉幹細胞マーカーであり、Flk1は中胚葉幹細胞マーカーであるので、レチノイン酸は未分化細胞を外胚葉幹細胞へ分化誘導することが確認できた。一方、本発明に係る分化誘導剤により分化誘導された細胞は、NestinとFlk1が陽性であった。この実験結果により、本発明に係る分化誘導剤は、未分化細胞を、外胚葉系細胞に分類されるものでありながら中胚葉細胞としての性質も有する神経堤細胞へ分化誘導できることが明らかとなった。
 (3) RT-PCRによる遺伝子発現解析
 80μMの被検化合物4を用いて5日間処理した以外は上記(1)と同様にして、マウスES細胞を分化誘導した。得られた細胞からトリゾル試薬を用いて全RNAを抽出し、得られた全RNAから常法に従ってcDNAを合成した。合成したcDNAを鋳型として、Oct3/4・Nanog(未分化細胞マーカー)、Nestin(神経幹細胞マーカー)、Sox9・Sox10・Slug(神経堤細胞マーカー)、GATA2(中胚葉マーカー)、Sca-1(幹細胞マーカー)、c-kit(造血幹細胞マーカー)の各プライマーを用いてPCRを行い、各マーカーの発現解析を行った。また、比較のために、未分化マウスES細胞と、マウスES細胞を3日間培養した胚様体についても同様に発現解析を行った。結果を図5に示す。
 図5のとおり、マウスES細胞とその胚様体では、遺伝子発現にほとんど差が無い。一方、本発明に係る分化誘導剤で処理したマウスES細胞では、マウスES細胞とその胚様体では発現していない神経堤細胞マーカーであるSox9とSox10が発現しており、同じく神経堤細胞マーカーであるSlugの発現が顕著に強くなっている。従って、かかる実験結果からも、本発明に係る分化誘導剤が未分化細胞を神経堤細胞へ分化誘導できることが証明された。
 実施例8 ヒトiPS細胞の分化誘導実験
 実施例7(1)において、マウスES細胞の代わりにヒトiPS細胞(理化学研究所から入手,hPS0001 201B7 lot3)を用いた以外は同様にして分化誘導した。
 上記のとおり被検化合物により分化誘導された細胞をパラホルムアルデヒドで固定した後、PBSで洗浄を行い、5%ヤギ血清/1%BSA/PBSを100μL/ウェルで添加し、室温で60分間インキュベートすることによりブロッキングした。次いで、抗NestinマウスIgG(SIGMA社製,最終濃度5μg/mL)を添加し、4℃で一晩インキュベートした。各ウェルをPBS-0.1% Tween20で洗浄した後、二次抗体として、FITC標識抗ウサギIgG抗体(Biosource International社製,最終濃度1μg/mL)を添加し、室温で2時間インキュベートした。また、Hoechst33258でも染色を行った。各ウェルをPBS-0.1% Tween20で洗浄した後、IN Cell Analyzer 1000(GE Healthcare社製)を用いて蛍光写真を撮影した。画像解析した結果を図6に示す。なお、図6において、緑色部分は外胚葉幹細胞マーカーであるNestin陽性の細胞であり、青色部分は核染色剤であるHoechst33258陽性の細胞である。
 図6のとおり、コントロール細胞では細胞数自体が少なく、また、細胞全体に対するNestin陽性細胞の割合も明らかに少なかった。一方、本発明化合物を用いた場合には、細胞全体が十分にNestinに対して陽性であり、外胚葉幹細胞に分化していることが認められた。かかる結果により、本発明化合物の分化誘導効果がヒトiPS細胞でも実証された。なお、Hoechst33258陽性細胞とNestin陽性細胞とにずれが認められるのは、画像解析ソフトによるオートコントラストのため写真上部の細胞の緑色が強くなってしまったことと、Nestinが細胞の突起部分を強く染色し、細胞体自体の染色が弱くなってしまったことによると考えられる。
 実施例9 レチノイン酸との併用効果
 直径60mmのペトリディッシュへ、表1に示す組成のES培地とNP培地を1:1の割合で混合した胚様体形成用培地(4mL)を加え、さらにマウスES細胞(The Wellcome Trust Sanger InstituteのDr.Alan Bradleyから入手,AB2-2)を1×106個蒔き、5%CO2雰囲気下、37℃で1日間培養した。次いで、ガラスピペットを用いたピペッティングにより細胞を剥離した後、同じペトリディッシュに蒔き直し、5%CO2雰囲気下、37℃で3日間培養して胚様体を形成させた。得られた細胞塊を回収し、沈降させた後に表1に示す組成のNP培地(10mL)に懸濁した。次いで、培養細胞懸濁液(5mL)をI型コラーゲンコートされた96ウェルプレートに添加し、5%CO2雰囲気下、37℃で一晩インキュベートした。翌日、被検化合物5を単独で、或いは被検化合物とレチノイン酸を併用して各最終濃度10nMで添加し、5%CO2雰囲気下、37℃で4日間接着培養した。培養後、PBSで洗浄し、0.25%Trypsinを用いて細胞を剥がし、細胞数を計数した。実験は4回行い、その平均を求めた。結果を図7に示す。なお、図7中、「RA」はレチノイン酸を示す。
 図7のとおり、本発明化合物を用いた場合の神経系細胞数は1.71±0.51×106個であったのに対して、レチノイン酸との併用により3.23±0.42×106個と顕著に増大し、約1.89倍となった(P値:0.0023)。以上の結果より、本件発明化合物とレチノイン酸との併用により、神経系細胞への分化誘導効果がさらに向上できることが明らかとなった。
 実施例10 マウスES細胞の分化誘導実験
 直径60mmのペトリディッシュへ、実施例7で用いた胚様体形成用培地(4mL)を加え、さらにマウスES細胞(AB2-2)を1×106個蒔き、5%CO2雰囲気下、37℃で3日間培養した。得られた胚葉体を15mL容チューブに回収した。上記ペトリディッシュを洗浄するために1×PBS(5mL)を加え、同PBSを上記チューブに回収した。回収された細胞の半量を別のチューブに移し、室温で5分間静置した。上清を除去した後、実施例7で用いたNP培地(10.5mL)を加えた。よく懸濁した後、I型コラーゲンコートされた96ウェルプレートの各ウェルに100μLずつ添加し、5%CO2雰囲気下、37℃で一晩インキュベートした。各ウェルへ、表3の組成を有するDifferentiation mediumを適量添加した。
Figure JPOXMLDOC01-appb-T000016
 さらに、3,4-ジヒドロキシベンゾニトリル(東京化成社製)をDMSOに溶解し、最終濃度が12.5μM、25μMまたは50μM、総量が200μLとなるように各ウェルへ添加した。さらに、各ウェルへ血清を最終濃度で5%、bFGF(塩基性線維芽細胞成長因子)を最終濃度で10ng/mLとなるように添加し、5%CO2雰囲気下、37℃で4日間培養した。
 培養後、各ウェルから培養液を100μL除去した後、パラホルムアルデヒドを最終濃度で4%となるように添加し、一晩静置して細胞を固定した。次いで、パラホルムアルデヒドを除去した。各ウェルへPBS(200μL)を加えてから3分間静置し、PBSを除去するという洗浄操作を10回繰り返した。各ウェルへヘマトキシリン(60μL)加えることにより細胞を染色した。各ウェルへPBS(200μL)を加えてから3分間静置し、PBSを除去するという洗浄操作を10回繰り返した。各ウェルへPBS(100μL)を加えた後、光学顕微鏡を用いて形態変化を観察した。
 50μMの濃度で本発明化合物を添加した場合の50倍の拡大写真を図8(1)に、100倍の拡大写真を図8(2)~(3)に示す。図8のとおり、全体的に突起を有する神経系細胞が観察された。また、他の形態の細胞は見られず、本発明化合物によれば、未分化細胞を高い選択率で神経系細胞へ分化誘導できることが証明された。

Claims (10)

  1.  下記式(I)で表されるカテコール誘導体を含むことを特徴とする細胞分化誘導剤。
    Figure JPOXMLDOC01-appb-C000001

    [式中、
     R1は、カルボキシ基、(C1-6アルコキシ)カルボニル基、C1-7アルカノイル基、C2-8アルキニル基、カルバモイル基、シアノ基、ニトロ基もしくはハロゲン原子、または、置換基αを有していてもよいオキサゾリル基、置換基αを有していてもよいチアゾリル基、置換基αを有していてもよいオキサゾリニル基、もしくは置換基αを有していてもよいチアゾリニル基を示し;
     R2は、水素原子、C1-6アルキル基またはベンジル基を示し;
     nは2以上、5以下の整数を示し;
     置換基αは、カルボキシ基、(C1-6アルコキシ)カルボニル基、C1-7アルカノイル基、カルバモイル基、シアノ基、ニトロ基およびハロゲン原子から選択される1以上を示す。
     但し、2以上のR2O基は、互いに同一であっても異なっていてもよい。]
  2.  R2が水素原子である請求項1に記載の細胞分化誘導剤。
  3.  少なくとも2つの-OR2基が互いに隣り合っている請求項1または2に記載の細胞分化誘導剤。
  4.  R1がシアノ基またはカルバモイル基である請求項1~3のいずれかに記載の細胞分化誘導剤。
  5.  さらにレチノイン酸を含む請求項1~4のいずれかに記載の細胞分化誘導剤。
  6.  未分化細胞を神経系細胞へ分化誘導するためのものである請求項1~5のいずれかに記載の細胞分化誘導剤。
  7.  未分化細胞を神経堤細胞へ分化誘導するためのものである請求項1~5のいずれかに記載の細胞分化誘導剤。
  8.  請求項1~5のいずれかに記載の細胞分化誘導剤を含有することを特徴とする培養液。
  9.  未分化細胞の分化を誘導するために用いられる、下記式(I)で表されるカテコール誘導体。
    Figure JPOXMLDOC01-appb-C000002

    [式中、
     R1は、カルボキシ基、(C1-6アルコキシ)カルボニル基、C1-7アルカノイル基、C2-8アルキニル基、カルバモイル基、シアノ基、ニトロ基もしくはハロゲン原子、または、置換基αを有していてもよいオキサゾリル基、置換基αを有していてもよいチアゾリル基、置換基αを有していてもよいオキサゾリニル基、もしくは置換基αを有していてもよいチアゾリニル基を示し;
     R2は、水素原子、C1-6アルキル基またはベンジル基を示し;
     nは2以上、5以下の整数を示し;
     置換基αは、カルボキシ基、(C1-6アルコキシ)カルボニル基、C1-7アルカノイル基、カルバモイル基、シアノ基、ニトロ基およびハロゲン原子から選択される1以上を示す。
     但し、2以上のR2O基は、互いに同一であっても異なっていてもよい。]
  10.  未分化細胞を神経系細胞へ分化誘導するための方法であって、
     下記式(I)で表されるカテコール誘導体を含む培地で未分化細胞を培養する工程を含むことを特徴とする方法。
    Figure JPOXMLDOC01-appb-C000003

    [式中、
     R1は、カルボキシ基、(C1-6アルコキシ)カルボニル基、C1-7アルカノイル基、C2-8アルキニル基、カルバモイル基、シアノ基、ニトロ基もしくはハロゲン原子、または、置換基αを有していてもよいオキサゾリル基、置換基αを有していてもよいチアゾリル基、置換基αを有していてもよいオキサゾリニル基、もしくは置換基αを有していてもよいチアゾリニル基を示し;
     R2は、水素原子、C1-6アルキル基またはベンジル基を示し;
     nは2以上、5以下の整数を示し;
     置換基αは、カルボキシ基、(C1-6アルコキシ)カルボニル基、C1-7アルカノイル基、カルバモイル基、シアノ基、ニトロ基およびハロゲン原子から選択される1以上を示す。
     但し、2以上のR2O基は、互いに同一であっても異なっていてもよい。]
PCT/JP2012/062318 2011-05-19 2012-05-14 細胞分化誘導剤および分化誘導方法 WO2012157612A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280024397.7A CN103562379A (zh) 2011-05-19 2012-05-14 细胞分化诱导剂以及分化诱导方法
US14/118,648 US20140093960A1 (en) 2011-05-19 2012-05-14 Cell differentiation inducer and differentiation inducing method
EP12784895.0A EP2711419A4 (en) 2011-05-19 2012-05-14 INDUCER OF CELL DIFFERENTIATION AND METHOD OF INDUCING DIFFERENTIATION
JP2013515149A JPWO2012157612A1 (ja) 2011-05-19 2012-05-14 細胞分化誘導剤および分化誘導方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011112831 2011-05-19
JP2011-112831 2011-05-19

Publications (1)

Publication Number Publication Date
WO2012157612A1 true WO2012157612A1 (ja) 2012-11-22

Family

ID=47176929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062318 WO2012157612A1 (ja) 2011-05-19 2012-05-14 細胞分化誘導剤および分化誘導方法

Country Status (5)

Country Link
US (1) US20140093960A1 (ja)
EP (1) EP2711419A4 (ja)
JP (1) JPWO2012157612A1 (ja)
CN (1) CN103562379A (ja)
WO (1) WO2012157612A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199142A1 (ja) * 2017-04-27 2018-11-01 国立大学法人京都大学 神経堤細胞および交感神経細胞の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2874980B1 (en) * 2012-07-19 2017-11-22 Laurus Labs Limited Improved process for preparation of 2,3-dihydroxy benzonitrile
CN105732375B (zh) * 2016-01-30 2018-04-06 张家界久瑞生物科技有限公司 一种没食子酸合成3,4,5—三甲氧基苯甲酸甲酯的方法
CN111492052A (zh) 2017-11-30 2020-08-04 国立大学法人京都大学 细胞的培养方法
CN111733133B (zh) * 2020-07-22 2020-12-01 华夏源(上海)生命科技有限公司 一种促进表皮干细胞分化和生长的方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383020A (ja) * 1986-09-26 1988-04-13 Mitsui Toatsu Chem Inc 中枢性神経退行性疾患の進行防止および治療剤
JPH03251192A (ja) * 1990-02-28 1991-11-08 Hideaki Yamada 有機酸の生物学的製造法
JPH05239005A (ja) * 1992-02-28 1993-09-17 Kitsuen Kagaku Kenkyu Zaidan N−(2−アミノエチル)ベンズアミド類およびその新規中間体
JPH08143525A (ja) * 1994-11-21 1996-06-04 Banyu Pharmaceut Co Ltd ヒドロキシ安息香酸アミド誘導体を有効成分とする骨疾患の予防・治療剤
JP2000290599A (ja) * 1999-04-06 2000-10-17 Toagosei Co Ltd 2−シアノアクリレート系接着剤組成物
JP2002523500A (ja) * 1998-08-31 2002-07-30 ユニバーシティ・オブ・フロリダ・リサーチ・ファンデーション・インコーポレーテッド チアゾリン酸誘導体
WO2003002540A1 (en) * 2001-06-29 2003-01-09 Kowa Co., Ltd. Cyclic diamine compound having five-membered cyclic group
WO2006090745A1 (ja) * 2005-02-22 2006-08-31 Mochida Pharmaceutical Co., Ltd. 神経再生促進剤
JP2007231300A (ja) * 1996-03-14 2007-09-13 Toshiba Corp ポリイミド前駆体組成物、ポリイミド膜の形成方法、電子部品および液晶素子
JP2007535957A (ja) 2004-05-05 2007-12-13 ノバルティス・フォルシュングスシュティフトゥング・ツヴァイクニーダーラッスング・フリードリッヒ・ミーシェー・インスティトゥート・フォー・バイオメディカル・リサーチ Es細胞からの神経細胞分化方法
JP2008543818A (ja) * 2005-06-15 2008-12-04 バイオシンス エーエス アントシアニンの合成方法
JP2009504597A (ja) * 2005-08-10 2009-02-05 バイエル・シエーリング・ファーマ アクチエンゲゼルシャフト アシルトリプトファノール
JP2009513153A (ja) * 2005-11-01 2009-04-02 リセンテイア・リミテツド 末端酸化酵素及びその使用
JP2010202559A (ja) 2009-03-02 2010-09-16 Suntory Holdings Ltd 神経細胞分化誘導剤及びその利用
WO2010140698A1 (ja) 2009-06-03 2010-12-09 国立大学法人東北大学 多能性幹細胞からの神経堤細胞群の分化誘導方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
YU213587A (en) * 1986-11-28 1989-06-30 Orion Yhtymae Oy Process for obtaining new pharmacologic active cateholic derivatives
US8268621B2 (en) * 2008-12-03 2012-09-18 International Stem Cell Corporation Methods of deriving definitive endoderm cells from pluripotent parthenogenetic stem cells

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383020A (ja) * 1986-09-26 1988-04-13 Mitsui Toatsu Chem Inc 中枢性神経退行性疾患の進行防止および治療剤
JPH03251192A (ja) * 1990-02-28 1991-11-08 Hideaki Yamada 有機酸の生物学的製造法
JPH05239005A (ja) * 1992-02-28 1993-09-17 Kitsuen Kagaku Kenkyu Zaidan N−(2−アミノエチル)ベンズアミド類およびその新規中間体
JPH08143525A (ja) * 1994-11-21 1996-06-04 Banyu Pharmaceut Co Ltd ヒドロキシ安息香酸アミド誘導体を有効成分とする骨疾患の予防・治療剤
JP2007231300A (ja) * 1996-03-14 2007-09-13 Toshiba Corp ポリイミド前駆体組成物、ポリイミド膜の形成方法、電子部品および液晶素子
JP2002523500A (ja) * 1998-08-31 2002-07-30 ユニバーシティ・オブ・フロリダ・リサーチ・ファンデーション・インコーポレーテッド チアゾリン酸誘導体
JP2000290599A (ja) * 1999-04-06 2000-10-17 Toagosei Co Ltd 2−シアノアクリレート系接着剤組成物
WO2003002540A1 (en) * 2001-06-29 2003-01-09 Kowa Co., Ltd. Cyclic diamine compound having five-membered cyclic group
JP2007535957A (ja) 2004-05-05 2007-12-13 ノバルティス・フォルシュングスシュティフトゥング・ツヴァイクニーダーラッスング・フリードリッヒ・ミーシェー・インスティトゥート・フォー・バイオメディカル・リサーチ Es細胞からの神経細胞分化方法
WO2006090745A1 (ja) * 2005-02-22 2006-08-31 Mochida Pharmaceutical Co., Ltd. 神経再生促進剤
JP2008543818A (ja) * 2005-06-15 2008-12-04 バイオシンス エーエス アントシアニンの合成方法
JP2009504597A (ja) * 2005-08-10 2009-02-05 バイエル・シエーリング・ファーマ アクチエンゲゼルシャフト アシルトリプトファノール
JP2009513153A (ja) * 2005-11-01 2009-04-02 リセンテイア・リミテツド 末端酸化酵素及びその使用
JP2010202559A (ja) 2009-03-02 2010-09-16 Suntory Holdings Ltd 神経細胞分化誘導剤及びその利用
WO2010140698A1 (ja) 2009-06-03 2010-12-09 国立大学法人東北大学 多能性幹細胞からの神経堤細胞群の分化誘導方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAIN, G ET AL., DEVELOPMENTAL BIOLOGY, vol. 168, 1995, pages 342 - 357
FURUKAWA Y ET AL.: "Catecholamines induce an increase in nerve growth factor content in the medium of mouse L-M cells.", J BIOL CHEM., vol. 261, no. 13, 5 May 1986 (1986-05-05), pages 6039 - 47, XP055135691 *
KENJI MIZUSEKI ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE OF THE UNITED STATES OF AMERICA, vol. 100, 2003, pages 5828 - 5833
See also references of EP2711419A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199142A1 (ja) * 2017-04-27 2018-11-01 国立大学法人京都大学 神経堤細胞および交感神経細胞の製造方法
JPWO2018199142A1 (ja) * 2017-04-27 2020-03-12 国立大学法人京都大学 神経堤細胞および交感神経細胞の製造方法
JP7094567B2 (ja) 2017-04-27 2022-07-04 国立大学法人京都大学 神経堤細胞および交感神経細胞の製造方法

Also Published As

Publication number Publication date
EP2711419A4 (en) 2014-12-31
JPWO2012157612A1 (ja) 2014-07-31
US20140093960A1 (en) 2014-04-03
EP2711419A1 (en) 2014-03-26
CN103562379A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
US20180021383A1 (en) Production of midbrain dopaminergic neurons and methods for the use thereof
CA2569978C (en) Neural stem cells
JP5756145B2 (ja) 幹細胞及び胎児由来の心筋細胞及び予定心筋細胞の精製方法
WO2018164228A1 (ja) Ror1陽性の間葉系幹細胞を含有する、線維症を伴う疾患の予防又は処置のための医薬組成物、及びその調製方法、並びにror1陽性の間葉系幹細胞を用いる線維症を伴う疾患の予防又は処置方法
JP5764598B2 (ja) 幹細胞を培養するための方法及びキット
WO2012157612A1 (ja) 細胞分化誘導剤および分化誘導方法
WO2017038784A1 (ja) Ror1陽性の間葉系幹細胞及びその調製方法、ror1陽性の間葉系幹細胞を含む医薬組成物及びその調製方法、並びにror1陽性の間葉系幹細胞を用いる疾患の予防又は治療方法
US11814652B2 (en) Pluripotent stem cell differentiation-promoting agent
CA3140384A1 (en) Method for purifying neural crest cells or corneal epithelial cells
WO2023127824A1 (ja) 神経堤細胞の培養方法及び製造方法
US20050153941A1 (en) Cell differntiation inhibiting agent, cell culture method using the same, culture medium, and cultured cell line
CN115968401A (zh) 将干细胞分化为多巴胺能祖细胞的方法
JP2008195642A (ja) インドール誘導体
JP2006204292A (ja) ヒト胚性幹細胞分化抑制剤
Fjodorova et al. Robust induction of DARPP32-expressing gabaergic striatal neurons from human pluripotent stem cells
KR100890992B1 (ko) 중간엽 줄기세포에서 신경세포로의 분화 유도 방법
EP3045451B1 (en) Compound promoting differentiation of pluripotent stem cells into cardiomyocytes
WO2017170925A1 (ja) Egfr及びmic-abからなる群より選択される少なくとも1種の細胞表面マーカーを高発現する間葉系幹細胞及びその調製方法、並びに上記間葉系幹細胞を含む医薬組成物及びその調製方法
WO2017188082A1 (ja) 培地添加剤
JP2012044914A (ja) 幹細胞の未分化維持剤及び増殖促進剤
JP2011152111A (ja) 多能性幹細胞培養用培地
WO2019221477A1 (ko) 전구세포 배양액 및 다층 그래핀 필름을 포함하는 줄기세포 분화 촉진용 조성물 및 이의 용도
JP2020129970A (ja) 多能性幹細胞を培養するための組成物及び方法
Veselá et al. Leukaemia inhibitory factor inhibits cardiomyogenesis of mouse embryonic stem cells via STAT3 activation
CN116064372A (zh) 一种制备人卵巢体细胞样细胞的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12784895

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013515149

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012784895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14118648

Country of ref document: US