WO2010140698A1 - 多能性幹細胞からの神経堤細胞群の分化誘導方法 - Google Patents

多能性幹細胞からの神経堤細胞群の分化誘導方法 Download PDF

Info

Publication number
WO2010140698A1
WO2010140698A1 PCT/JP2010/059576 JP2010059576W WO2010140698A1 WO 2010140698 A1 WO2010140698 A1 WO 2010140698A1 JP 2010059576 W JP2010059576 W JP 2010059576W WO 2010140698 A1 WO2010140698 A1 WO 2010140698A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
neural crest
corneal
differentiation
Prior art date
Application number
PCT/JP2010/059576
Other languages
English (en)
French (fr)
Inventor
西田幸二
大家義則
林竜平
萩原邦恵
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2011518523A priority Critical patent/JP5700301B2/ja
Publication of WO2010140698A1 publication Critical patent/WO2010140698A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor

Definitions

  • the present invention relates to a method of inducing differentiation of neural crest cell groups from pluripotent stem cells, and acquired of cells derived from neural crest disease or neural crest due to a congenital abnormality of neural crest cell groups induced to differentiate by the method.
  • the present invention relates to clinical application to treatment of diseases caused by various disorders. It is also related to drug discovery research using cells derived from neural crests and basic research such as development using neural crest cells.
  • the human embryo forms three germ layers at the stage of development: endoderm, mesoderm, and ectoderm.
  • endoderm is the mucosal epithelium, liver, pancreas, etc. of the stomach and small intestine
  • mesoderm is muscle, bone, blood vessels, blood, subcutaneous tissue, heart, kidney, etc.
  • ectoderm is nerve, eye, epidermis, etc. Form.
  • Neural crest cells are a group of cells characteristic of vertebrates, and are generated between the neuroectodermal and epidermal ectoderm when the neural tube is formed from the neural plate in the early stage of development. This cell group then begins to migrate throughout the body and differentiates into pigment cells, peripheral nerves, endocrine cells, head connective tissue, and the like. From this point, neural crest cells are classified as ectoderm cells, but are sometimes referred to as fourth germ layers.
  • Neural crest cells are cells that differentiate into many types of cells such as peripheral nerve cells, glial cells, pigment cells, corneal endothelial cells, and corneal parenchymal cells, and abnormalities thereof include neuroblastoma, Hirschsprun disease, Wadenburg syndrome, Recklinghausen It is known to be involved in diseases, Peters malformations, Reger malformations and the like.
  • ES cells embryonic stem cells
  • induced pluripotent stem cells having the same differentiation pluripotency as ES cells have been established by introducing specific factors into somatic cells and undifferentiated stem cells.
  • a typical example is iPS cells established by Yamanaka et al. (Patent Document 1, Non-Patent Documents 1 and 2).
  • Regenerative medicine using artificial pluripotent stem cells has few ethical problems because it does not destroy fertilized eggs, and it can be established from patient-derived cells. Can also be avoided.
  • Regenerative medicine using the above ES cells and induced pluripotent stem cells can also be applied to the treatment of diseases caused by abnormalities in cells and tissues derived from neural crests.
  • the SDIA (Stroma cell-induced inducing activity) method reported by Sasai and Mizuseki et al. Is known.
  • the SDIA method is a method of inducing differentiation of neural crest cells from ES cells by using mouse-derived stromal cells (PA6 cells) as feeder cells (Patent Documents 2 and 3, Non-Patent Documents 3 to 5).
  • PA6 cells mouse-derived stromal cells
  • Non-Patent Documents 3 to 5 Non-Patent Documents 3 to 5
  • a method using ST2 cells Non-Patent Document 6
  • a method using MS-5 cells Non-Patent Document 7 are also known.
  • Non-patent document 8 there is a problem to be considered in terms of safety in clinical application.
  • SFEB Sterum-free Floating culture of Body-like aggregates
  • Watanabe et al. Is known as a method of inducing differentiation of neurons from ES cells without using feeder cells or serum ( Patent Document 4, Non-Patent Document 9).
  • Watanabe et al. Efficiently combine neurons in the telencephalon (part of the developing forebrain) from mouse ES cells by combining a special serum-free medium and floating aggregate culture in the absence of feeder cells. It is reported that it was able to guide.
  • the SFEB method is considered to be a useful method for realizing regenerative medicine using ES cells or induced pluripotent stem cells because animal-derived feeder cells and animal-derived serum are not used.
  • An object of the present invention is to develop a method for safely inducing differentiation of neural crest cells using ES cells or induced pluripotent stem cells as a cell source, and to develop regenerative medicine for diseases caused by abnormalities of cells derived from neural crests. It is to provide a new means.
  • the inventors have intensively studied a method for inducing differentiation of neural crest cells from pluripotent stem cells without using feeder cells or animal serum, and by performing suspension culture in a serum-free medium containing a specific component, It was found that p75 positive and Sox-10 positive cell groups, which are cell markers, were obtained.
  • neural crest cells can be created using pluripotent stem cells prepared from the patient's own cells, the neural crest induction, formation, and migration defects can be eliminated without worrying about rejection and heterogeneous infections. It can be used for regenerative medicine for various diseases caused and abnormalities of cells and tissues derived from neural crests. That is, the obtained neural crest cell group can be used for regenerative medicine for various diseases by further inducing differentiation into neural cells, glial cells, pigment cells, corneal endothelial cells, corneal parenchymal cells, and the like.
  • the present invention provides a method for inducing differentiation of neural crest cell groups, characterized by inducing differentiation into neural crest cell groups by suspension culture of pluripotent stem cells in the absence of feeder cells in a serum-free medium. About.
  • the neural crest cell group induced to differentiate by the method of the present invention is characterized by expression of neural crest cell markers, that is, p75 positive and Sox10 positive.
  • p75 positive and Sox10 positive in the neural crest cell group means that the expression of these markers is detected in substantially many cells of the neural crest cell group.
  • the pluripotent stem cells are cultured in suspension as described above, and then further cultured by adhesion.
  • the medium used in the method of the present invention contains one or more selected from serum substitutes, non-essential amino acids, pyruvic acid, and 2-mercaptoethanol.
  • a serum substitute such as KSR.
  • the medium used in the method of the present invention preferably further contains a growth factor such as Wnt, FGF (fibroblast growth factor), and BMP4, and particularly preferably contains BMP4.
  • a growth factor such as Wnt, FGF (fibroblast growth factor), and BMP4, and particularly preferably contains BMP4.
  • the pluripotent stem cell is an induced pluripotent stem cell such as an iPS cell. In another embodiment, the pluripotent stem cell is an ES cell.
  • the present invention also provides a culture containing a neural crest cell group obtained by the method of the present invention.
  • the present invention also provides cell preparations for treating diseases caused by abnormalities in cells and tissues derived from neural crests, including the neural crest cell group obtained by the method of the present invention.
  • diseases caused by abnormalities in cells and tissues derived from the neural crest include corneal endothelial dysfunction including bullous keratopathy, corneal dystrophy, developmental glaucoma, Rieger malformation, congenital hereditary corneal endothelial dystrophy, limbal delmoid, Corneal shape abnormalities such as keratosis, keratoconus and perosidic corneal degeneration, corneal scar, corneal infiltration, corneal deposition, corneal edema, corneal ulcer, ocular trauma including chemicals and heat, keratitis, corneal degeneration, cornea Examples include eye diseases such as infectious diseases, Hirschsprung disease, Wadenburg syndrome, localized baldness, and Recklinghausen disease.
  • the present invention relates to a neural crest cell group obtained by the above-described method, and further, peripheral nerve cells, glial cells, pigment cells, corneal endothelial cells, corneal parenchymal cells, trabecular cells, iris parenchymal cells, smooth muscle cells, cartilage
  • peripheral nerve cells glial cells, pigment cells, corneal endothelial cells, corneal parenchymal cells, trabecular cells, iris parenchymal cells, smooth muscle cells, cartilage
  • a method of inducing differentiation into any cell group selected from the group consisting of cells, bone cells, adipocytes, endocrine cells, and chromaffin cells, and a culture and cell preparation containing the cell groups induced to differentiate by the above method provide.
  • neural crest cell groups can be induced to differentiate from pluripotent stem cells without using heterogeneous feeder cells or serum. Therefore, the induced neural crest cell group is not likely to be contaminated by foreign unknown pathogens and can be safely used for clinical application.
  • the neural crest cell group obtained by the method of the present invention has pluripotency and can be further induced to differentiate into various cell groups derived from the neural crest. Therefore, it is a useful cell source for regenerative medicine of various diseases such as neural crest disease caused by defects in neural crest induction, formation, and migration.
  • FIG. 1 shows cells at each time point after differentiation-inducing culture.
  • FIG. 2 shows the results of the expression of p75, Sox-10, AP-2 by immunostaining of differentiation-inducing cells from mouse iPS cells.
  • FIG. 3 shows the analysis result of the p75 positive cell rate by flow cytometry of differentiation-inducing cells from mouse iPS cells.
  • FIG. 3 shows the analysis result of the p75 positive cell rate by flow cytometry of differentiation-inducing cells from mouse iPS cells.
  • C BMP4 (5 nM) added at day 0-5
  • D BMP4 (5 nM), Wnt3a (5 ng / ml) added at day 0-5
  • E BMP4 (0.5 nM), Wnt3a (5 ng / ml), bFGF (10 ng) / Ml) added at day 0-5
  • FIG. 4 shows the results of the expression of p75 and Sox-10 by immunostaining of differentiation-inducing cells from human iPS cells.
  • FIG. 5 shows the analysis result of the p75 positive cell rate by flow cytometry of differentiation-inducing cells from human iPS cells.
  • FIG. 6 shows sphere formation ability and migration ability of differentiation-inducing cells from mouse iPS cells.
  • A Sphere formation of mouse iPS differentiation-inducing cells
  • B (c) Mouse iPS differentiation-inducing cells after chick embryo transplantation
  • D DiI positive cells (transplanted neural crest cells) and HNK-1 staining of chicken Localization of neural crest cells
  • the present invention is a method for inducing differentiation of neural crest cells, characterized by inducing differentiation into neural crest cells by suspension culture of pluripotent stem cells in the absence of feeder cells in a serum-free medium, and
  • the present invention relates to clinical application of neural crest cells obtained by the above method to the treatment of neural crest disease.
  • the “pluripotent stem cell” includes all cells having differentiation pluripotency that can be differentiated into all cells other than the placenta, in addition to ES cells and ES cell lines, It includes both induced pluripotent stem cells such as iPS cells.
  • the “artificial pluripotent stem cell” is a reprogramming (initial stage) that has a differentiation pluripotency similar to that of an ES cell by introducing a specific factor into a mammalian somatic cell or an undifferentiated stem cell. Cell).
  • “Artificial pluripotent stem cells” were first established by Yamanaka et al. By introducing 4 factors of Oct3 / 4, Sox2, Klf4, c-Myc into mouse fibroblasts, “iPS cells (Induced Pluripotent Stem Cell)”. (Takahashi K, Yamanaka S., Cell, (2006) 126: 663-676). Subsequently, human iPS was also established by introducing the same four factors into human fibroblasts (Takahashi K, Yamanaka S., et al. Cell, (2007) 131: 861-872.), And c-Myc. (Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26, 101-106), etc. successfully established a method for establishing highly safe iPS cells with low tumorigenesis. is doing.
  • Sakurada et al. are not somatic cells, but are induced artificially more efficiently by introducing Oct3 / 4, Sox2, Klf4, c-Myc, and the like using undifferentiated stem cells present in postnatal tissues as cell sources. Reportable stem cells (JP 2008-307007).
  • artificial pluripotent stem cells (Shi Y., Ding S., et al., Cell Stem Cell, (2008)) prepared by introducing OCT3 / 4, KLF4, a low molecular compound into mouse neural progenitor cells, etc. Vol3, Issue 5, 568-574), induced pluripotent stem cells (Kim JB., Produced by introducing OCT3 / 4, KLF4 into mouse neural stem cells that endogenously express SOX2, C-MYC.
  • JP 2008-307007 JP 2008-283972, US 2008-2336610, US 2009-047263, WO 2007-069666, WO 2008-118220, WO 2008-124133.
  • WO2008-151058 2009-006930, WO2009-006997, WO2009-007852, and the like.
  • the “artificial pluripotent stem cell” used in the present invention satisfies the definition described at the beginning, and does not impair the purpose of the present invention, a known induced pluripotent stem cell and an equivalent induced pluripotent stem cell
  • the cell source, introduction factor, introduction method and the like are not particularly limited.
  • the cell source is derived from humans, more preferably from the patient himself who needs cells derived from neural crests induced to differentiate from the cells.
  • Neural crest cells are a group of cells characteristic of vertebrates, and when the neural tube is formed from the neural plate in the early stage of development, the neuroectodermal and epidermal ectoderm. Occurs from between. Neural crest cells differentiate into various tissues and organs such as pigment cells, peripheral nerves, endocrine cells, and connective tissue of the head. Neural crest cells are classified as ectoderm cells, but because they play such an important role, they are sometimes called the fourth germ layer.
  • Neural crest cells are peripheral neurons, glial cells, pigment cells, corneal endothelial cells, corneal parenchymal cells, iris parenchymal cells, trabecular meshwork cells, smooth muscle cells, chondrocytes, bone cells, adipocytes, endocrine cells, chromaffinity Differentiate into many types of cells, including cells.
  • the “neural crest cell” according to the present invention is characterized by expression of p75 and Sox-10, which are specific markers. Details of each marker will be described later.
  • Feeder cells The method of the present invention is characterized by culturing pluripotent stem cells without using “feeder cells”.
  • “Feeder cell (or sometimes abbreviated as“ feeder ”)” means a cell type different from cultured cells, which is used for assisting and preparing the culture conditions of the target cells.
  • feeder cells differ depending on the purpose of the experiment and the type of cells, they are usually pretreated with X-ray irradiation, mitomycin C (MMC) or the like so as not to grow themselves.
  • MMC mitomycin C
  • the differentiation induction method of the present invention itself does not use “feeder cells”, but “feeder cells” may be used for maintaining ES cells (strains) serving as cell sources and induced pluripotent stem cells.
  • ES cells strains
  • iPS cells MEF (mouse fetal fibroblasts), SNL and SNLP are used.
  • Serum-free medium used in the present invention refers to a medium not containing animal serum.
  • the serum-free medium has no fear of infection by pathogens derived from animal serum, and the obtained cells and cultures can be safely applied to clinical applications.
  • the “serum-free medium” may contain an artificial serum substitute that does not cause the risk of infection.
  • artificial serum substitutes include, for example, KSR (knockout serum replacement: manufactured by Invitrogen (GIBCO)), albumin such as lipid-rich albumin, transferrin, fatty acid, insulin, collagen precursor, trace element, 2-mercaptoethanol And 3 'thiol glycerol, or an equivalent thereof.
  • Neural crest cell marker p75, AP-2, Sox-10
  • a marker specific for neural crest cells is used to identify differentiation-induced cells.
  • neural crest cells according to the present invention are characterized by p75 positive and Sox-10 positive.
  • AP-2 positive cells were also observed.
  • p75 is known as a low affinity neurotrophin receptor and is a marker of migrating neural crest cells. Since it is a surface marker, cells can be purified using this marker as an index. In fact, p75 positive cells were purified from rat sciatic nerves by fluorescence activated cell sorting (FACS), and it was proved that the cells have pluripotency (Morrison SJ et al. Proactive identification, flow-by cytometry). , And in vivo self-renewal of multi-portable mammarian neural crest stem cells. Cell 1999; 96: 737-49.).
  • AP-2 is a transcription factor, among which AP-2a is known as a marker for the cranial nerve crest. From the analysis of knockout mice, it is known as indispensable for the formation of neural crests.
  • Sox-10 is known as a transcription factor belonging to the group E subfamily of the sox family gene, and is known as a marker for neural crest cells.
  • induced pluripotent stem cells such as ES cells and iPS cells are induced to differentiate into neural crest cell groups by suspension culture in a serum-free medium without using feeder cells.
  • ES cells and induced pluripotent stem cells are maintained on feeder cells such as MEF and SNL using an appropriate medium (commercial medium for ES cells, medium for iPS cells, etc.). You may keep it.
  • a serum-free medium containing no animal serum is used.
  • the basic medium DMEM medium, BME medium, ⁇ MEM medium, Dulbecco MEM medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, Ham medium, Any medium that can be used for culturing animal cells, such as RPMI 1640 medium, Fischer's medium, McCoy's medium, Williams E medium, and mixed medium thereof, can be used.
  • the basic medium is prepared by adding various nutrient sources necessary for the maintenance and growth of cells and components necessary for differentiation induction.
  • nutrient sources include glycerol, glucose, fructose, sucrose, lactose, honey, starch, dextrin and other carbon sources, fatty acids, fats and oils, lecithin, alcohols and other hydrocarbons, ammonium sulfate, ammonium nitrate, ammonium chloride , Nitrogen sources such as urea and sodium nitrate, salt, potassium salt, phosphate, magnesium salt, calcium salt, iron salt, manganese salt and other inorganic salts, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride , Ferrous sulfate, sodium molybdate, sodium tungstate and manganese sulfate, various vitamins, amino acids and the like.
  • components suitable for differentiation induction include various cytokines such as growth factors, artificial serum substitutes such as 2-mercaptoethanol and KSR, non-essential amino acids, and pyruvic acid.
  • 2-mercaptoethanol is added at a final concentration of, for example, about 0.05 to 1.0 mM, preferably about 0.1 to 0.5 mM, more preferably about 0.1 mM.
  • Non-essential amino acids mean amino acids other than essential amino acids (amino acids that cannot be synthesized in the animal's body and must be taken as nutrients). In the case of humans, asparagine, aspartic acid, arginine, glutamine, and glutamic acid.
  • non-essential amino acids correspond to non-essential amino acids.
  • the “non-essential amino acid” does not need to include all of the above 11 types, and may be a part of them.
  • the pH of the medium obtained by blending these components is 6.0 to 8.5, preferably 6.4 to 8.0, and more preferably 7.0 to 7.4.
  • the serum-free medium may contain an artificial serum substitute that does not cause infection.
  • artificial serum substitutes include albumin such as lipid-rich albumin, transferrin, fatty acid, insulin, collagen precursor, trace element, 2-mercaptoethanol, 3 ′ thiol glycerol, and equivalents thereof.
  • commercially available products include knockout Serum Replacement (KSR), Chemically-defined Lipid concentrated (Gibco), Glutmax (Gibco), and the like.
  • BMP4 Breast Cancer 4
  • TGF- ⁇ transforming growth factor- ⁇
  • the amount of BMP added to the medium is not particularly limited, but is preferably about 0.005 nM to 50 nM, particularly about 0.1 nM to 10 nM.
  • differentiation differentiation substances other than those described above can be used in combination with the medium.
  • differentiation inducers include FGF and Wnt.
  • Wnt can be added at about 0.1 to 20 ng / ml, preferably about 1 to 10 ng / ml.
  • bFGF can be added at about 0.1 to 50 ng / ml, preferably about 1 to 20 ng / ml.
  • feeder cells are usually used to induce differentiation of pluripotent stem cells from neural crest cells.
  • suspension culture is performed in the above serum-free medium without using feeder cells. I do.
  • the suspension culture is performed at about 36.0 to 38.0 ° C, preferably about 36.5 to 37.5 ° C under normal conditions such as 20% O 2 and 5% CO 2 .
  • the culture vessel used for suspension culture is preferably non-cell-adhesive. Accordingly, those coated with a hydrophilic polymer are preferred.
  • GMEM is used as a basal medium, and non-essential amino acids, pyruvic acid, 2-mercaptoethanol and the like are used.
  • adhesion culture a dish coated with poly-D-lysine, laminin, fibronectin or the like is used, and the same medium as that for suspension culture is used.
  • p75-positive, AP-2-positive, and Sox10-positive neural crest cells appear 7 to 9 days after switching to normal adhesion culture.
  • the concentration of pluripotent stem cells at the start of culture is not particularly limited and can be set as appropriate.
  • seeding is performed at an initial concentration of about 1.0 ⁇ 10 3 to about 1.0 ⁇ 10 6 cells / ml, preferably about 1.0 ⁇ 10 4 to about 1.0 ⁇ 10 5 cells / ml.
  • the neural crest cell group induced to differentiate by the method of the present invention can be further induced to differentiate into various other neural crest-derived cell groups.
  • Examples of cells that can be induced to differentiate from neural crest cells include, for example, peripheral nerve cells, glial cells, pigment cells, corneal endothelial cells, corneal parenchymal cells, iris parenchymal cells, trabecular meshwork cells, smooth muscle cells, chondrocytes, Examples include bone cells, adipocytes, endocrine cells, and chromaffin cells.
  • differentiation can be selectively induced to a smooth muscle cell.
  • differentiation into osteoblasts can be selectively induced by using a medium containing dexamethasone, ascorbic acid, serum or the like (such as a Lonza human mesenchymal stem cell osteoblast differentiation medium kit).
  • induction of differentiation into chondrocytes selectively by using a medium containing ITS (insulin, transferring, selenium), ascorbic acid, dexamethasone, etc. (Lonza's human mesenchymal stem cell chondrocyte differentiation medium kit, etc.) Can do.
  • differentiation into adipocytes can be selectively induced by using a medium containing insulin, IBMX, dexamethasone, serum or the like (such as a Lonza human mesenchymal stem cell adipocyte differentiation medium kit).
  • the neural crest cell group induced to differentiate by the method of the present invention can be easily isolated (purified) using the surface marker p75. It can also be isolated using a surface marker such as PDGFRa or Sca-1.
  • the antibody can be isolated using immunomagnetic beads labeled with an antibody specific for p75, a column on which a p75 antibody is immobilized, and separation using a cell sorter (FACS) using a fluorescently labeled p75 antibody.
  • FACS cell sorter
  • a commercially available antibody may be used, or the antibody may be prepared according to a conventional method.
  • the neural crest cell group that has been induced to differentiate by the method of the present invention and / or the cell group that has been induced to differentiate from the cell group is used to treat a disease caused by the neural crest cell. It can be used as a cell preparation.
  • the administration method of the cell preparation of the present invention is not particularly limited, and depending on the application site, local transplantation by surgical means, intravenous administration, lumbar puncture administration, local injection administration, subcutaneous administration, intradermal administration, intraperitoneal administration, Intramuscular administration, intracerebral administration, intraventricular administration, administration to the eye (intravenous administration, intracorneal administration, intracorneal administration, anterior chamber administration, intravitreal administration, etc.) are considered.
  • the cell preparation of the present invention may contain scaffold materials and components for assisting cell maintenance / proliferation and administration to the affected area, and other pharmaceutically acceptable carriers.
  • Components necessary for cell maintenance / proliferation include media components such as carbon sources, nitrogen sources, vitamins, minerals, salts, various cytokines, and extracellular matrix preparations such as Matrigel TM .
  • scaffold materials and components that assist administration to the affected area include biodegradable polymers; for example, collagen, polylactic acid, hyaluronic acid, cellulose, and derivatives thereof, and a complex composed of two or more thereof, an aqueous solution for injection;
  • biodegradable polymers for example, collagen, polylactic acid, hyaluronic acid, cellulose, and derivatives thereof, and a complex composed of two or more thereof, an aqueous solution for injection
  • examples include physiological saline, medium, physiological buffer such as PBS, and isotonic solutions (eg, D-sorbitol, D-mannose, D-mannitol, sodium chloride) containing glucose and other adjuvants.
  • An auxiliary agent such as alcohol, specifically ethanol, polyalcohol such as propylene glycol, polyethylene glycol, nonionic surfactant such as polysorbate 80, HCO-50, etc. may be used.
  • organic solvents polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose as necessary , Ethyl cellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, mannitol, sorbitol, lactose, surfactants acceptable as pharmaceutical additives, It may contain a buffer, an emulsifier, a suspension, a soothing agent, a stabilizer and the like.
  • a purified antibody is dissolved in a solvent such as physiological saline, buffer solution, glucose solution, etc., and an adsorption inhibitor such as Tween 80, Tween 20, gelatin or the like is added thereto.
  • a solvent such as physiological saline, buffer solution, glucose solution, etc.
  • an adsorption inhibitor such as Tween 80, Tween 20, gelatin or the like is added thereto.
  • Tween 80, Tween 20, gelatin or the like is added thereto.
  • a cell sheet can be prepared by monolayer or stratification of a neural crest cell group obtained by the method of the invention or a cell group induced to differentiate therefrom.
  • a temperature-responsive culture dish developed by Okano et al. Is used cells can be collected in a sheet form only by low-temperature treatment.
  • cells can be collected while preserving intercellular adhesion proteins such as cadherin and adhesion proteins with basement membrane such as integrins, which is superior to the cell collection method using an enzyme (Yamada N et al. Chem). Rapid Commun 1990; 11: 571.
  • corneal endothelial dysfunction including bullous keratopathy, corneal dystrophy, developmental glaucoma, Rieger malformation, congenital hereditary corneal endothelial dystrophy , Limbal delmoid, sclera, corneal abnormalities such as keratoconus and perosidic corneal degeneration, corneal scar, corneal infiltration, corneal deposition, corneal edema, corneal ulcer, ocular trauma including chemicals and heat, keratitis , Eye diseases such as corneal degeneration and corneal infection, neuroblastoma, Hirschsprung disease, Waadenburg syndrome, localized baldness Recklinghausen disease.
  • Example 1 Induction of neural crest cell differentiation from mouse iPS cells
  • Mouse iPS cell culture Mouse iPS cells were provided by Professor Shinya Yamanaka of Kyoto University (Okita K. et al., (2007) Nature, 448: 313-317).
  • SNLP puromycin-resistant SNL cells
  • SNLP feeder medium also provided by Professor Yamanaka was prepared according to a conventional method and maintained using the following SNLP feeder medium.
  • Gelatin-coated culture dishes were seeded with SNLP cells treated with mitomycin (MMC) and used as feeder cells.
  • mouse iPS cells were seeded and maintained at 37 ° C., 5% CO 2 , 20% O 2 in iPS cell culture medium.
  • iPS cell culture medium DMEM Nacalai Tesque
  • FBS Biological Industries
  • L-Glutamine Invitrogen
  • Penicillin-Streptomycin Invitrogen
  • Puromycin Sigma
  • nonessential amino acids Invitrogen
  • 2-mercaptoethanol Invitrogen
  • GMEM 5% Knockout serum replacement (Invitrogen) Nonessential amino acids (Invitrogen) Pyruvate (Invitrogen) 2-mercaptoethanol (Invitrogen)
  • the iPS cells on the SNLP feeder are treated with 0.25% trypsin / EDTA to collect the iPS cells, and pipetting is performed to obtain a cell suspension (single of iPS cells). cell suspension).
  • the obtained cells were left in a gelatin-coated dish with cell suspension in a serum-free medium for about 1 hour, and the supernatant was collected to remove feeder cells, and iPS cells were collected.
  • the iPS cells were cultured in suspension in the above serum-free medium at 37 ° C. and 5% CO 2 for 5 days. Then, the culture
  • AP-2 The cells were fixed with PFA, blocked with 5% NST (60 minutes), reacted with a primary antibody (AP-2 (5E4): Developmental studies hybridoma bank) overnight (4 ° C.), and then washed with TBS. And reacted with the secondary antibody for 2 hours. (Room temperature) Cell nuclei were stained with Hoechst 33342.
  • ⁇ Flow cytometry analysis> The cells were collected with collagenase and Trypsin / EDTA, and a primary antibody (p75: Advanced Targeting Systems) was added at a 1000-fold dilution, and allowed to stand at 4 ° C. for 30 minutes. The pellet was washed by centrifugation, and a secondary antibody (anti-rabbit alexa647) was added at a 100-fold dilution and allowed to stand at 4 ° C. for 30 minutes. The pellet was washed by centrifugation and then suspended in 1-2 ml of PBS. The suspension was supplied to a flow cytometer, and the p75 positive cell rate was examined.
  • p75 Advanced Targeting Systems
  • FIGS. 1 (a)-(c) The cells gradually increased in size.
  • the differentiation induction efficiency was 0.9% when no factor such as BMP4, Wnt3a, and bFGF was added, whereas 0.5 day time of BMP4 was increased during day 0-5. It increased to 3.1% when added and increased to 4.0% when 5 nM BMP4 was added during day 0-5. Further, during day 0-5, 2.0% was added when 0.5 nM BMP4 and 5 ng / ml Wnt3a were added, and 1.7% when 0.5 nM BMP4, 5 ng / ml Wnt3a and 10 ng / ml bFGF were added. It was. (Figure 3).
  • neural crest cells can be induced to differentiate from mouse iPS cells by culture without using feeder cells in a serum-free medium using the SFEB method. It was confirmed that the differentiation induction efficiency into neural crest cells was significantly improved by the addition of BMP4.
  • Example 2 Induction of neural crest cell differentiation from human iPS cells
  • Human iPS cell culture Human iPS cells were provided by Professor Shinya Yamanaka of Kyoto University (Takahashi K, Yamanaka S., et al. Cell, (2007) 131: 861-872). MEF cells (KBL 9284600 Kitayama Labes) were maintained using the following medium for MEF feeders.
  • MMC mitomycin
  • iPS cell culture medium Primate ES cell culture medium (Reprocell) Basic FGF (Wako) (4 ng / ml)
  • SFEB method Differentiation induction from human iPS cells to neural crest cells by the SFEB method was performed based on the induction conditions in mouse iPS cells. That is, human iPS cell colonies were collected using PBS containing 0.25% trypsin, 0.1 mg / ml collagenase IV, 1 mM CaCl 2 and 20% KSR, and 5 to 10 cell clusters were obtained by pipetting. Feeder cells were removed using a gelatin coated dish. The human iPS cell mass prepared in this manner was subjected to suspension culture for 21 days on a non-adhesive culture dish, and then subjected to adhesion culture for 4 days.
  • the suspension culture was performed using a medium prepared by adding BMP4, Wnt, and FGF to the following differentiation induction medium (either differentiation induction medium 1 or 2).
  • Adhesion culture was performed using a culture dish coated with poly-D-lysine, laminin, and fibrectin, using the same medium as that for suspension culture. The outline is shown below.
  • Differentiation medium 1 DMEM / F-12 (Invitrogen) KSR (Invitrogen) Nonessential amino acid (Invitrogen) L-glutamine (Invitrogen) 2-mercaptoethanol (Invitrogen)
  • GMEM Invitrogen
  • KSR Invitrogen
  • Nonessential amino acids Invitrogen
  • Pyruvate Invitrogen
  • 2-mercaptoethanol Invitrogen
  • neural crest cells can be induced to differentiate from human iPS cells by culture without using feeder cells in a serum-free medium using the SFEB method.
  • Example 3 Functional analysis of mouse iPS-induced neural crest cells (introduction into chicken embryo) After differentiation induction by the SFEB method, p75 positive induced neural crest cells separated by FCAS had sphere-forming ability (FIG. 6a). In order to confirm the migration ability of this cell, a transplantation experiment was performed on a chicken embryo (HH13).
  • the cells sorted by FACS were subjected to suspension culture in a non-adhesive culture dish using the following medium to prepare a neutral crest sphere.
  • the prepared sphere was transplanted into a neutral cress media or lateral pathway (9 and 12-13 according to the stage classification of Hamburger and Hamilton) to examine the migration and differentiation ability of the cells.
  • DMEM / F-12 (1: 1) (Invitrogen) 20 ng / ml EGF (Sigma-Aldrich) 10 ng / ml bFGF (Invitrogen) LIF (leukemia inhibitory factor) B27 supplement (Invitrogen)
  • Tissue was fixed 24 hours after dorsal transplantation, and the localization of chicken neural crest cells by DiI positive cells (transplanted neural crest cells) and HNK-1 staining was confirmed (FIG. 6d). As a result, it was suggested that the transplanted iPS-derived neural crest cells have a migration ability characteristic of neural crest cells.
  • the method of the present invention can induce differentiation of neural crest cells from pluripotent stem cells without using heterogeneous feeder cells or serum. Therefore, there is no possibility that the induced neural crest cell group is contaminated by foreign unknown pathogens, which is an ideal method for realizing clinical application.
  • the neural crest cell group obtained by the method of the present invention has pluripotency, and can further induce differentiation into various cells derived from the neural crest. Therefore, it can be used for regenerative medicine of various diseases such as neural crest disease caused by defects in neural crest induction, formation, and migration.

Abstract

本発明は、多能性幹細胞から神経堤細胞群を分化誘導する方法、及び前記方法によって分化誘導された神経堤細胞群の先天的な異常による神経堤症もしくは神経堤に由来する細胞の後天的な障害によって引き起こされた疾患への治療等への臨床応用に関する。さらに神経堤に由来する細胞を用いた創薬研究、及び神経堤細胞を用いた発生などの基礎研究にも関連する。

Description

多能性幹細胞からの神経堤細胞群の分化誘導方法
 本発明は、多能性幹細胞から神経堤細胞群を分化誘導する方法、及び前記方法によって分化誘導された神経堤細胞群の先天的な異常による神経堤症もしくは神経堤に由来する細胞の後天的な障害によって引き起こされた疾患への治療等への臨床応用に関する。さらに神経堤に由来する細胞を用いた創薬研究、及び神経堤細胞用いた発生などの基礎研究にも関連する。
 ヒトの胚は、発生の段階で3つの胚葉、すなわち内胚葉、中胚葉、外胚葉を形成する。このうち内胚葉は、胃や小腸の粘膜上皮、肝臓、膵臓等になり、中胚葉は筋肉、骨、血管や血液、皮下組織、心臓、腎臓等になり、外胚葉は神経、目、表皮等を形成する。
 神経堤細胞は脊椎動物に特徴的な細胞群であり、発生初期において神経板から神経管が形成される際に神経外胚葉と表皮外胚葉の間から発生する。この細胞群はそのあと全身へ遊走を始め、色素細胞、末梢神経、内分泌細胞、頭部の結合組織などへ分化する。このような点から、神経堤細胞は外胚葉系の細胞に分類されるが、これとは別に、第4の胚葉と言われることもある。
 神経堤細胞は末梢神経細胞、グリア細胞、色素細胞、角膜内皮細胞や角膜実質細胞など多くの種類の細胞へと分化する細胞であり、その異常は神経芽細胞腫やHirschsprung病、Waadenburg症候群、Recklinghausen病、Peters奇形、Reger奇形などに関与することが知られている。
 近年、未分化な細胞(幹細胞)を分化誘導することで、損傷した組織器官の補填を図る再生医療(細胞医療)の研究が進められている。特に胚性幹細胞(ES細胞)は、胎盤以外のすべての細胞に分化可能であるため、各細胞系譜への分化誘導やその分化決定因子の同定が注目されているが、樹立する際の受精卵の破壊という倫理的問題からその研究や利用には制約が多く、また移植を受ける患者由来のES細胞の樹立ができないため、拒絶反応の問題もあることから、未だ臨床応用には至っていない。
 これに対し、最近、体細胞や未分化な幹細胞に特定の因子を導入することでES細胞と同様の分化多能性を有する人工多能性幹細胞が樹立された。その代表的なものは、Yamanakaらによって樹立されたiPS細胞である(特許文献1、非特許文献1及び2)。人工多能性幹細胞を利用した再生医療は、受精卵を破壊しないため倫理的問題が少ないばかりか、患者由来の細胞から樹立することができることから、自家細胞をソースとすることで拒絶反応の問題も回避することができる。
 神経堤に由来する細胞、組織の異常に起因する疾患の治療にも、上記したES細胞や人工多能性幹細胞を利用した再生医療の応用が可能である。
 ES細胞から神経堤細胞を誘導する方法としては、SasaiやMizusekiらによって報告されたSDIA(Stromal cell−derived inducing activity)法が知られている。SDIA法はマウス由来の間質細胞(PA6細胞)をフィーダー細胞として利用することで、ES細胞から神経堤細胞を分化誘導する方法である(特許文献2及び3、非特許文献3~5)。このほか、ES細胞から神経堤細胞を誘導する方法としては、ST2細胞を用いる方法(非特許文献6)や、MS−5細胞を用いる方法(非特許文献7)も知られている。しかしながら、上記の方法はいずれも異種由来のフィーダー細胞を用いるため、異種由来感染症の危険性や異種由来フィーダー細胞との共培養によってヒト細胞がヒトに抗原性を持つ蛋白を発現する危険性など(非特許文献8)、臨床応用にあたっては安全性の点で配慮すべき問題がある。
 一方、フィーダー細胞や血清を用いることなく、ES細胞から神経細胞を分化誘導する方法として、Watanabeらによって報告されたSFEB(Serum−free Floating culture of Embryoid Body−like aggregates)法が知られている(特許文献4、非特許文献9)。Watanabeらは、フィーダー細胞の非存在下で、特別な無血清培養液と浮遊凝集塊培養を組み合わせることで、マウスES細胞から効率よく終脳(発生期の前脳の一部)の神経細胞を誘導できたことを報告している。SFEB法は、動物由来フィーダー細胞や動物由来血清を用いないことから、ES細胞や人工多能性幹細胞を利用した再生医療を実現するうえで有用な方法と考えられる。
 しかしながら、神経堤細胞については、ES細胞や人工多能性幹細胞から動物由来フィーダー細胞や動物血清を用いずに安全に分化誘導する臨床応用可能な方法は、現在のところ報告されていない。
WO2007/069666 WO2001/088100 WO2003/042384 WO2005/123902
Takahashi K,Yamanaka S.,Cell,(2006)126:663−676 Takahashi K,Yamanaka S.,et al.Cell,(2007)131:861−872. Kawasaki,H.,Sasai,Y.et al.(2000)Neuron 28,31−40. Kawasaki,H.,Sasai,Y.et al.(2002)Proc.Natl.Acad.Sci.USA 99,1580−1585 Mizuseki,K.,Sasai,Y.et al.(2003)Proc.Natl.Acad.Sci.USA 100,5828−5833 Motohashi T et al.Stem Cells.2007;25:402−10. Lee G et al.Nat Biotechnol.2007;25:1468−75. Martin MJ et al.(2005)Nature Medicine.11:228−232 Watanabe K et al.Nature Neuroscience 2005;8:288−96
 本発明の課題は、ES細胞や人工多能性幹細胞を細胞源として、安全に神経堤細胞を分化誘導する方法を開発し、神経堤に由来する細胞の異常に起因する疾患等に対する再生医療の新たな手段を提供することにある。
 発明者らは、多能性幹細胞からフィーダー細胞や動物血清を用いることなく神経堤細胞を分化誘導する方法について鋭意検討し、特定の成分を含む無血清培地で浮遊培養を行うことにより、神経堤細胞マーカーであるp75陽性、Sox−10陽性の細胞群が得られることを見出した。
 この方法により、患者自身の細胞から作製した多能性幹細胞を用いて神経堤細胞を創出することができれば、拒絶反応や異種由来感染症の心配なく、神経堤の誘導、形成、遊走の欠陥に起因する各種疾患や神経堤に由来する細胞・組織の異常に起因する疾患の再生医療に利用することができる。すなわち得られた神経堤細胞群を、さらに神経細胞、グリア細胞、色素細胞、角膜内皮細胞や角膜実質細胞等に分化誘導することにより、さまざまな疾患の再生医療にも用いることができる。
 すなわち本発明は、多能性幹細胞を、無血清培地においてフィーダー細胞の非存在下で浮遊培養することにより、神経堤細胞群に分化誘導することを特徴とする、神経堤細胞群の分化誘導方法に関する。
 本発明の方法で分化誘導される神経堤細胞群は、神経堤細胞のマーカーの発現、すなわちp75陽性及びSox10陽性によって特徴づけられる。なお、神経堤細胞群がp75陽性及びSox10陽性とは、実質的に神経堤細胞群の多くの細胞において、これらのマーカーの発現が検出されるということを意味する。
 本発明の方法は、上記のとおり多能性幹細胞を浮遊培養した後、さらに接着培養することが好ましい。
 本発明の方法で用いられる培地には、血清代替物、非必須アミノ酸、ピルビン酸、及び2−メルカプトエタノールから選ばれるいずれか1又は2以上が含まれる。特に、KSR等の血清代替物の存在下で行われることが望ましい。
 本発明の方法で用いられる培地には、さらにWnt、FGF(fibroblast growth factor)、及びBMP4等の増殖因子を含むことが好ましく、特にBMP4を含有することが好ましい。
 1つの実施形態において、多能性幹細胞はiPS細胞等の人工多能性幹細胞である。
 別な実施形態において、多能性幹細胞はES細胞である。
 本発明は、本発明の方法で得られた神経堤細胞群を含む培養物も提供する。
 また本発明は、本発明の方法で得られた神経堤細胞群を含む、神経堤に由来する細胞、組織の異常に起因する疾患を治療するための細胞製剤も提供する。
 前記神経堤に由来する細胞、組織の異常に起因する疾患としては、水疱性角膜症を含む角膜内皮機能不全、角膜ジストロフィー、発達緑内障、Rieger奇形、先天性遺伝性角膜内皮ジストロフィー、輪部デルモイド、強膜化角膜、円錐角膜やペルーシド角膜変性などの角膜形状異常、角膜瘢痕、角膜浸潤、角膜沈着、角膜浮腫、角膜潰瘍、化学物質や熱によるものを含む眼外傷、角膜炎、角膜変性、角膜感染症などの眼疾患やHirschsprung病、Waadenburg症候群、限局性白皮症、Recklinghausen病を挙げることができる。
 本発明は、上記した方法で得られた神経堤細胞群を、さらに末梢神経細胞、グリア細胞、色素細胞、角膜内皮細胞、角膜実質細胞、線維柱帯細胞、虹彩実質細胞、平滑筋細胞、軟骨細胞、骨細胞、脂肪細胞、内分泌細胞、クロム親和性細胞からなる群より選ばれるいずれかの細胞群に分化誘導させる方法、及び前記方法で分化誘導された細胞群を含む培養物ならびに細胞製剤も提供する。
 本発明によれば、異種フィーダー細胞や血清を用いることなく、多能性幹細胞から神経堤細胞群を分化誘導することができる。そのため、誘導された神経堤細胞群は外来の未知の病原体によって汚染される可能性がなく、臨床応用に安全に利用しうる。
 本発明の方法で得られる神経堤細胞群は多分化能を有しており、神経堤由来のさまざまな細胞群にさらに分化誘導しうる。そのため、神経堤の誘導、形成、遊走の欠陥に起因する神経堤症等様々な疾患の再生医療に対する有用な細胞源となる。
図1は、分化誘導培養後の各時点における細胞を示す。(a)Day1、(b)Day2、(c)Day4、(d)Day7、(e)Day9 図2は、マウスiPS細胞からの分化誘導細胞の免疫染色によるp75,Sox−10,AP−2の発現をみた結果を示す。(a)p75、(b)Sox10、(c)AP−2、(d)(e)青:Hoechst(核染色)緑:p75赤:Sox10による多重染色。 図3は、マウスiPS細胞からの分化誘導細胞のフローサイトメトリーによるp75陽性細胞率の解析結果を示す。A:増殖因子を添加していない B:BMP4(0.5nM)をday0−5で添加 図3は、マウスiPS細胞からの分化誘導細胞のフローサイトメトリーによるp75陽性細胞率の解析結果を示す。C:BMP4(5nM)をday0−5で添加 D:BMP4(5nM),Wnt3a(5ng/ml)をday0−5で添加 E:BMP4(0.5nM),Wnt3a(5ng/ml),bFGF(10ng/ml)をday0−5で添加 図4は、ヒトiPS細胞からの分化誘導細胞の免疫染色によるp75,Sox−10の発現をみた結果を示す。(a)青:Hoechst(核染色)緑:p75赤:Sox10による多重染色 図5は、ヒトiPS細胞からの分化誘導細胞のフローサイトメトリーによるp75陽性細胞率の解析結果を示す。 図6は、マウスiPS細胞からの分化誘導細胞のスフェア形成能と遊走能を示す。(a)マウスiPS分化誘導細胞のスフェア形成、(b)(c)ニワトリ胚移植後のマウスiPS分化誘導細胞、(d)DiI陽性細胞(移植した神経堤細胞)及びHNK−1染色によるchickの神経堤細胞の局在
 本明細書は、本願の優先権の基礎である特願2009−134182号の明細書に記載された内容を包含する。
 本発明は、多能性幹細胞を、無血清培地においてフィーダー細胞の非存在下で浮遊培養することにより、神経堤細胞に分化誘導することを特徴とする、神経堤細胞群の分化誘導方法、及び前記方法によって得られた神経堤細胞の神経堤症治療等への臨床応用に関する。
1.定義
 以下、本発明にかかる用語のいくつかについて説明する。
(1)多能性幹細胞
 本発明にかかる「多能性幹細胞」とは、胎盤以外のすべての細胞に分化可能な分化多能性を有する細胞すべてを含み、ES細胞やES細胞株のほか、iPS細胞等の人工多能性幹細胞の両方を含む。
(2)人工多能性幹細胞(iPS細胞等)
 本発明にかかる「人工多能性幹細胞」とは、哺乳動物体細胞又は未分化幹細胞に、特定の因子を導入することにより、ES細胞と同様の分化多能性を有するように再プログラミング(初期化)された細胞を言う。
 「人工多能性幹細胞」は、Yamanakaらにより、マウス繊維芽細胞にOct3/4・Sox2・Klf4・c−Mycの4因子を導入することにより、初めて樹立され「iPS細胞(induced Pluripotent Stem Cell)」と命名された(Takahashi K,Yamanaka S.,Cell,(2006)126:663−676)。その後、同様の4因子をヒト繊維芽細胞に導入することにより、ヒトiPSも樹立され(Takahashi K,Yamanaka S.,et al.Cell,(2007)131:861−872.)、さらにc−Mycを含まない方法等(Nakagawa M,Yamanaka S.,et al.Nature Biotechnology,(2008)26,101−106)、腫瘍形成誘導が低いより安全性の高いiPS細胞を樹立する方法の確立にも成功している。
 Wisconsin大学のThomsonらは、OCT3/4,SOX2,NANOG,LIN28の4遺伝子をヒト繊維芽細胞に導入して作製した人工多能性幹細胞の樹立に成功している(Yu J.,Thomson JA.et al.,Science(2007)318:1917−1920.)。また、Harvard大学のDaleyらは、皮膚細胞にOCT3/4,SOX2,KLF4,C−MYC,hTERT,SV40 large Tの6遺伝子を導入して作製した人工多能性幹細胞の樹立について報告している(Park IH,Daley GQ.et al.,Nature(2007)451:141−146)。
 Sakuradaらは、体細胞ではなく、出生後の組織に存在する未分化幹細胞を細胞源として、Oct3/4、Sox2、Klf4及びc−Myc等を導入することで、より効率よく誘導される人工多能性幹細胞を報告している(特開2008−307007)。
 このほか、OCT3/4,KLF4,低分子化合物をマウス神経前駆細胞等に導入して作製された人工多能性幹細胞(Shi Y.,Ding S.,et al.,Cell Stem Cell,(2008)Vol3,Issue 5,568−574,)、SOX2,C−MYCを内因性に発現しているマウス神経幹細胞にOCT3/4,KLF4を導入して作製された人工多能性幹細胞(Kim JB.,Scholer HR.,et al.,Nature,(2008)454,646−650)、C−MYCを用いることなく、Dnmt阻害剤やHDAC阻害剤を利用して作製された人工多能性幹細胞(Huangfu D.,Melton,DA.,et al.,Nature Biotechnology,(2008)26,No7,795−797)が報告されている。
 上記を含めて、人工多能性幹細胞に関する公知の特許としては、特開2008−307007号、特開2008−283972号、US2008−2336610、US2009−047263、WO2007−069666、WO2008−118220、WO2008−124133、WO2008−151058、2009−006930WO2009−006997、WO2009−007852等を挙げることができる。
 本発明で用いられる「人工多能性幹細胞」は、冒頭に記載した定義を満たし、本発明の目的を損なわない限りにおいて、公知の人工多能性幹細胞及びこれと等価な人工多能性幹細胞細胞のすべてを含み、細胞源、導入因子、導入方法等は特に限定されない。
 好ましくは、細胞源はヒト由来であり、より好ましくは、当該細胞から分化誘導された神経堤に由来する細胞を必要とする患者自身に由来する。
(3)神経堤細胞
 本発明に係る「神経堤細胞」とは、脊椎動物に特徴的な細胞群であり、発生初期において神経板から神経管が形成される際に神経外胚葉と表皮外胚葉の間から発生する。神経堤細胞群は、色素細胞、末梢神経、内分泌細胞、頭部の結合組織など、さまざまな組織・器官へと分化する。神経堤細胞は外胚葉系の細胞に分類されるが、このように重要な役割を担うことから、これとは別に第4の胚葉と言われることもある。
 神経堤細胞は末梢神経細胞、グリア細胞、色素細胞、角膜内皮細胞、角膜実質細胞、虹彩実質細胞、線維柱帯細胞、平滑筋細胞、軟骨細胞、骨細胞、脂肪細胞、内分泌細胞、クロム親和性細胞など多くの種類の細胞へと分化する。
 本発明にかかる「神経堤細胞」は、その特異的マーカーであるp75、Sox−10の発現によって特徴づけられる。各マーカーの詳細については、後述する。
(4)フィーダー細胞
 本発明の方法は「フィーダー細胞」を用いることなく多能性幹細胞を培養することを特徴とする。「フィーダー細胞(あるいは「フィーダー」と略記されることもある)」とは、目的とする細胞の培養条件を補助、調製するために用いられる、培養細胞とは異なる種類の細胞を意味する。フィーダー細胞は、実験の目的や細胞の種類によって異なるが、通常それ自体増殖することがないようX線照射やマイトマイシンC(MMC)等で前処理が施される。
 本発明の分化誘導方法自体は「フィーダー細胞」を用いることはないが、細胞源となるES細胞(株)や人工多能性幹細胞の維持においては、「フィーダー細胞」を利用してもよい。例えば、ES細胞やiPS細胞を維持する場合は,MEF(マウス胎児線維芽細胞)やSNLやSNLPが用いられる。
(5)無血清培地
 本発明で用いられる「無血清培地」とは、動物血清を含まない培地を言う。無血清培地は、動物血清に由来する病原体による感染の恐れがなく、得られた細胞や培養物は安全に、臨床応用に適用することができる。なお、「無血清培地」は、感染の恐れがない人工血清代替物を含んでいてもよい。そのような人工血清代替物としては、例えば、KSR(knockout serum replacement:invitrogen社(GIBCO)製)、脂質リッチアルブミン等のアルブミン、トランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2−メルカプトエタノールや3’チオールグリセロール、あるいはこれらの均等物を挙げられる。
(6)神経堤細胞マーカー:p75、AP−2、Sox−10
 本発明では、分化誘導された細胞を同定するために、神経堤細胞に特異的なマーカーを利用する。具体的には、本発明にかかる神経堤細胞は、p75陽性やSox−10陽性によって特徴づけられる。さらに、AP−2陽性の細胞もみられた。
 p75:
 p75はLow affinity neurotrophin recepterとして知られており、遊走している神経堤細胞のマーカーである。また表面マーカーであることから、このマーカーを指標にして細胞を純化することができる。実際にラットの坐骨神経からp75陽性細胞群をfluorescence activated cell sorting(FACS)によって純化し、その細胞が多分化能をもつことが証明されている(Morrison SJ et al.Prospective identification,isolation by flow cytometry,and in vivo self−renewal of multipotent mammalian neural crest stem cells.Cell 1999;96:737−49.)。
 AP−2:
 AP−2は転写因子であるが、そのなかでもAP−2aは、頭部神経堤のマーカーとして知られている。ノックアウトマウスの解析からも神経堤の形成に不可欠なものとして知られている。
 Sox−10:
 Sox−10はsoxファミリー遺伝子のグループEサブファミリーに属する転写因子として知られており、神経堤細胞のマーカーとして知られている。
2.分化誘導方法
 本発明においては、ES細胞やiPS細胞等の人工多能性幹細胞を、フィーダー細胞を用いることなく無血清培地で浮遊培養することにより神経堤細胞群へと分化誘導する。
 なお、分化誘導前において、ES細胞や人工多能性幹細胞を、MEFやSNL等のフィーダー細胞上で、適当な培地(市販のES細胞用培地や、iPS細胞用培地等)を用いて維持しておいてもよい。
2.1 培地の調製
 本発明の方法では、動物血清を含まない無血清培地を用いる。
 基本培地としては、DMEM培地、BME培地、α MEM培地、Dulbecco MEM培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、ハム培地、RPMI 1640培地、Fischer’s培地、McCoy’s培地、ウイリアムスE培地、及びこれらの混合培地など、動物細胞の培養に用いることのできる培地であればいずれも用いることができる。この基本培地に、細胞の維持増殖に必要な各種栄養源や分化誘導に必要な各成分を添加して作成される。
 例えば、栄養源としては、グリセロール、グルコース、果糖、ショ糖、乳糖、ハチミツ、デンプン、デキストリン等の炭素源、また、脂肪酸、油脂、レシチン、アルコール類等の炭化水素類、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源、食塩、カリウム塩、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等の無機塩類、リン酸一カリウム、リン酸二カリウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、モリブデン酸ナトリウム、タングステン酸ナトリウム及び硫酸マンガン、各種ビタミン類、アミノ酸類等を含むことができる。
 分化誘導に好適な成分としては、増殖因子等の各種サイトカイン、2−メルカプトエタノール、KSR等の人工血清代替物、非必須アミノ酸、ピルビン酸等が挙げられる。2−メルカプトエタノールは、例えば約0.0.05−1.0mM、好ましくは約0.1~0.5mM、より好ましくは約0.1mMの終濃度で添加する。なお、非必須アミノ酸とは、必須アミノ酸(その動物の体内で合成できず、栄養分として摂取しなければならないアミノ酸)以外のアミノ酸を意味し、ヒトの場合、アスパラギン、アスパラギン酸、アルギニン、グルタミン、グルタミン酸、グリシン、プロリン、オルニチン、チロシン、セリン、アラニンの11種が非必須アミノ酸に該当する。本発明において、「非必須アミノ酸」は、上記11種のすべてを含む必要はなく、これらの一部であってもよい。
 これらの成分を配合して得られる培地のpHは6.0~8.5、好ましくは6.4~8.0、より好ましくは7.0~7.4の範囲である。
 なお、前述したとおり、無血清培地は、感染の恐れがない人工血清代替物を含んでいてもよい。そのような人工血清代替物としては、例えば、脂質リッチアルブミン等のアルブミン、トランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2−メルカプトエタノールや3’チオールグリセロール、あるいはこれらの均等物を挙げられる。例えば、市販品であれば、knockout Serum Replacement(KSR)、Chemically−defined Lipid concentrated(Gibco)、Glutmax(Gibco)等が挙げられる。
 培地には、BMP4(Bone Morphogenetic Protein 4)を添加すると、より良好な神経堤細胞群への分化誘導が達成できる。BMP4は骨形成因子の一つで、transforming growth factor−β(TGF−β)スーパーファミリーに属し、分化、増殖及び様々な細胞機能を調節することが知られているが、神経管の背側化を行うKey Factorであることが知られている。培地へのBMPの添加量は特に制限されないが、0.005nM~50nM、とくに0.1nM~10nM程度が好ましい。
 培地には、さらに上記した以外の分化誘導物質を併用できる。そのような分化誘導物質としては、例えば、FGF、Wnt等を挙げることができる。Wntは、0.1~20ng/ml程度、好ましくは1−10ng/ml程度添加することができる。bFGFは、0.1~50ng/ml程度、好ましくは1~20ng/ml程度添加することができる。
2.2 培養方法
 多能性幹細胞から神経堤細胞の分化誘導には、通常フィーダー細胞を用いるのが常法であるが、本発明においては、フィーダー細胞を用いることなく上記無血清培地で浮遊培養を行う。
 浮遊培養は、約36.0~38.0℃、好ましくは約36.5℃~37.5℃で、20%O、5%COといった通常の条件下で行われる。
 浮遊培養で用いられる培養容器は、細胞非接着性であることが好ましい。よって、親水性ポリマーでコーティング処理がされたものが好ましい。
 なお、培養開始後~5日程度までは、浮遊状態で細胞を培養し、浮遊凝集体を形成させるが、その後、接着培養にて培養を行うことが好ましい。
 例えば、浮遊培養においてはGMEMを基礎培地として使用し、非必須アミノ酸、ピルビン酸、2−メルカプトエタノール等を使用する。接着培養にはpoly−D−lysine、ラミニン、ファイブロネクチン等をコーティングしたディッシュを用い、培地は浮遊培養と同様のものを用いる。
 条件にもよるが、通常接着培養に切り替えてから7日~9日以降において、p75陽性、AP−2陽性、Sox10陽性の神経堤細胞が出現してくる。
 培養開始時の多能性幹細胞の濃度は特に限定されず、適宜設定できる。例えば、約1.0×10~約1.0×10cells/ml、好ましくは約1.0×10~約1.0×10cells/mlの開始濃度で播種する。
3.神経堤細胞群からの分化誘導
 本発明の方法によって分化誘導された神経堤細胞群は、他のさまざまな神経堤由来の細胞群にさらに分化誘導することができる。
 神経堤細胞群から分化誘導可能な細胞群としては、例えば、末梢神経細胞、グリア細胞、色素細胞、角膜内皮細胞、角膜実質細胞、虹彩実質細胞、線維柱帯細胞、平滑筋細胞、軟骨細胞、骨細胞、脂肪細胞、内分泌細胞、クロム親和性細胞、が挙げられる。
 例えば、TGF−bを添加することにより、選択的にsmooth muscle cellに分化誘導することができる。またdexamethasone,アスコルビン酸、血清などを含んだ培地(Lonza社のヒト間葉系幹細胞骨芽細胞分化培地キットなど)などを使用することにより選択的に骨芽細胞に分化誘導することができる。さらにITS(insulin,transferring,selenium)、アスコルビン酸、デキサメサゾンなどを含む培地(Lonza社のヒト間葉系幹細胞軟骨細胞分化培地キットなど)などを使用することによって選択的に軟骨細胞へ分化誘導することができる。また、インスリン、IBMX、デキサメサゾン、血清などを含む培地(Lonza社のヒト間葉系幹細胞脂肪細胞分化培地キットなど)などを使用することで選択的に脂肪細胞へ分化誘導することができる。
4.細胞の単離(純化)
 本発明の方法によって分化誘導された神経堤細胞群は、表面マーカーであるp75を利用して、簡便に単離(純化)することができる。またPDGFRaやSca−1といった表面マーカーを用いても単離することができる。
 例えば、p75に特異的な抗体で標識された免疫磁気ビーズ、p75抗体を固相化したカラム、蛍光標識されたp75抗体を用いたセルソーター(FACS)による分離を用いて単離することができる。抗体は、市販のものを利用してもよいし、常法にしたがって作製してもよい。
5.再生医療への利用
5.1 培養物
 本発明の方法によって得られた神経堤細胞群、及び/又は前記細胞群から分化誘導された細胞群を含む培養物は、それ自体、研究、再生医療あるいは後述する細胞製剤の原料として利用することができる。
5.2 細胞製剤
 本発明の方法によって、分化誘導され、単離された神経堤細胞群、及び/又は前記細胞群から分化誘導された細胞群は、神経堤細胞に起因する疾患を治療するための細胞製剤として利用できる。
 本発明の細胞製剤の投与方法は特に限定されず、適用部位に応じて、外科的手段による局所移植、静脈内投与、腰椎穿刺投与、局所注入投与、皮下投与、皮内投与、腹腔内投与、筋肉内投与、脳内投与、脳室内投与、眼への投与(静脈投与、角膜上投与、角膜内投与、前房内投与、硝子体内投与など)などが考えられる。
 本発明の細胞製剤は、細胞の維持・増殖、患部への投与を補助する足場材料や成分、他の医薬的に許容しうる担体を含んでいてもよい。
 細胞の維持・増殖に必要な成分としては、炭素源、窒素源、ビタミン、ミネラル、塩類、各種サイトカイン等の培地成分、あるいはマトリゲルTM等の細胞外マトリックス調製品、が挙げられる。
 患部への投与を補助する足場材料や成分としては、生分解性ポリマー;例えば、コラーゲン、ポリ乳酸、ヒアルロン酸、セルロース、及びこれらの誘導体、ならびにその2種以上からなる複合体、注射用水溶液;例えば生理食塩水、培地、PBSなどの生理緩衝液、ブドウ糖やその他の補助剤を含む等張液(例えばD−ソルビトール、D−マンノース、D−マンニトール、塩化ナトリウム)等が挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80、HCO−50等と併用してもよいが挙げられる。
 その他、必要に応じて、医薬的に許容される有機溶剤、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、マンニトール、ソルビトール、ラクトース、医薬添加物として許容される界面活性剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤等を含んでいてもよい。
 実際の添加物は、本発明の治療剤の剤型に応じて上記の中から単独で又は適宜組み合わせて選ばれるが、これらに限定するものではない。例えば、注射用製剤として使用する場合、精製された抗体を溶剤、例えば生理食塩水、緩衝液、ブドウ糖溶液等に溶解し、これに吸着防止剤、例えばTween80、Tween20、ゼラチン等を加えたものを使用することができる。
5.3 細胞シート
 細胞の投与方法として、これら以外に細胞シートとして投与する方があげられる。すなわち、発明の方法で得られた神経堤細胞群やこれから分化誘導された細胞群を単層であるいは重層化して細胞シートを作製することができる。
 特に岡野らによって開発された温度応答性培養皿を用いれば、低温処理のみで細胞をシート状に回収することができる。この方法ではカドヘリンなどの細胞間接着蛋白やインテグリンなどの基底膜との接着蛋白を保存したまま細胞の回収が可能であり、酵素を用いた細胞回収法より優れている(Yamada N et al.Chem Rapid Commun 1990;11:571.Yamato M et al.Tissue Eng 2001;7:473)。またこの方法を用いて角膜上皮や心筋の再生治療が既に臨床応用されている(Nishida K et al.N Eng J Med 2004;351:1187−96.)。
 これらの方法を用いた本発明の細胞製剤や細胞シート移植の対象となりうる疾患としては、水疱性角膜症を含む角膜内皮機能不全、角膜ジストロフィー、発達緑内障、Rieger奇形、先天性遺伝性角膜内皮ジストロフィー、輪部デルモイド、強膜化角膜、円錐角膜やペルーシド角膜変性などの角膜形状異常、角膜瘢痕、角膜浸潤、角膜沈着、角膜浮腫、角膜潰瘍、化学物質や熱によるものを含む眼外傷、角膜炎、角膜変性、角膜感染症などの眼疾患や神経芽細胞腫、Hirschsprung病、Waadenburg症候群、限局性白皮症Recklinghausen病が挙げられる。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1:マウスiPS細胞からの神経堤細胞の分化誘導
1.マウスiPS細胞の培養:
 マウスiPS細胞は、京都大学 山中伸弥教授より供与を受けた(Okita K.et al.,(2007)Nature,448:313−317)。同じく山中教授より供与を受けたSNLP(ピューロマイシン耐性のSNL細胞)を常法に従って調製し、下記に示すSNLPフィーダー用培地を用いて維持した。
 ゲラチンコートした培養皿にマイトマイシン(MMC)処理したSNLP細胞を播種し、これをフィーダー細胞とした。この上にマウスiPS細胞を播種し、iPS細胞培養用培地中37℃5%CO,20%Oで維持した。
SNLPフィーダー培地                          
 DMEM(Nacalai Tesque)
 7%FBS(Sigma)
 L−Glutamine(Invitorgen)
 Penicillin−Streptomycin(Invitrogen) 
iPS細胞培養用培地                           
 DMEM(Nacalai Tesque)
 15%FBS(Biological Industries)
 L−Glutamine(Invitorgen)
 Penicillin−Streptomycin(Invitrogen)
 Puromycin(Sigma)
 nonessential amino acids(Invitrogen)
 2−mercaptoethanol(Invitrogen)       
2.分化誘導系の準備
 (1)無血清培地の調製
 Watanabeら(Watanabe K et al.Directed differentiation of telencephalic precursors from embryonic stem cells Nature Neuroscience 2005;8:288−96)の記載に従い、下記に示す無血清培地を調製した。
培地組成                                   
 GMEM(Invitrogen)
5%Knockout serum replacement(Invitrogen)
 Nonessential amino acids(Invitrogen)
 Pyruvate(Invitrogen)
 2−mercaptoethanol(Invitrogen)         
(2)iPS細胞の分化誘導培養
 SNLPフィーダー上のiPS細胞を0.25%トリプシン/EDTA処理することにより、iPS細胞を回収し、さらにピペッティングを行うことによりiPS細胞の細胞懸濁液(single cell suspension)を作製した。
 得られた細胞を無血清培地でcell suspensionにしてゲラチンコートしたディッシュに1時間程度静置し、上清を回収することでフィーダー細胞を除去して、iPS細胞を回収した。このiPS細胞を上述の無血清培地を用いて37℃5%COで、5日間浮遊培養した。その後、同様の培地を用いて接着での培養を37℃で、8日間行った。
(3)BMP4の影響
 培地にBMP4 0.5nMから5nMをday0−5もしくはday3−5の間添加する以外は、上記と同様にしてiPS細胞の分化誘導を行い、神経堤細胞誘導効率に対する影響を検討した。
(4)FGFの影響
 培地にday0−5の間、BMP4(0.5nM)及びWnt3a(5ng/ml)及びbFGF(10ng/ml)を添加する以外は、上記と同様にiPS細胞の分化誘導を行い、神経堤細胞誘導効率に対する影響を検討した。
(5)Wntの影響
 培地にday0−5の間、BMP4(0.5nM)及びWnt3a(5ng/ml)を添加して、上記と同様にiPS細胞の分化誘導を行い、神経堤細胞誘導効率に対する影響を検討した。
3.分化誘導細胞の検証
 分化誘導後の細胞について、免疫染色法により神経堤細胞マーカーであるp75、AP−2、Sox−10の発現をみた。また、フローサイトメトリーによりp75陽性細胞率を解析した。免疫染色法及びフローサイトメトリー解析の詳細は下記に示す。
<免疫染色法>
 Low affinity NGF receptor(p75)
 PFA(paraformaldehyde)で細胞を固定した後、5%NSTを入れ60分室温に置きブロッキングした。その後、1次抗体(p75:Advanced Targeting Systems)で1晩反応(4℃)させた後、TBSで洗浄し、2次抗体に2時間反応(室温)させた。細胞核はHoechst33342で染色した。
 (AP−2)
 PFAで細胞を固定した後、5%NSTでブロッキングをおこない(60分)、一次抗体(AP−2(5E4):Developmental studies hybridoma bank)で一晩反応(4℃)させた後、TBSで洗浄し、2次抗体に2時間反応させた。(室温)細胞核はHoechst33342で染色を行った。
 (Sox10)
 PFAで細胞を固定した後、5%NSTでブロッキングをおこない(60分)、一次抗体(Sox−10:Santacruz)で一晩反応(4℃)させた後、TBSで洗浄し、2次抗体に2時間反応させた。(室温)細胞核はHoechst33342で染色を行った。
<フローサイトメトリー解析>
 細胞をコラゲナーゼ及びTrypsin/EDTAで回収し、1次抗体(p75:Advanced Targeting Systems)を1000倍希釈で添加し、30分4℃に静置した。遠心分離によりペレットを洗浄し、さらに2次抗体(anti−rabbit alexa647)を100倍希釈で添加し、30分4℃で静置した。遠心分離によりペレットを洗浄した後、PBS1−2mlに縣濁した。縣濁液をフローサイトメーターに供与し、p75陽性細胞率を調べた。
4.結果
 無血清培地での浮遊培養後Day1、Day2、Day4の細胞を図1(a)−(c)に示す。細胞は浮遊細胞塊は徐々に大きくなっていった。(図1)。接着培養に切り替えてからの、Day7、Day9の細胞を図1(d)(e)に示す。浮遊培養した細胞塊から細胞が遊走しているのが確認された。
 Day7以降において、神経堤細胞マーカーであるp75、AP−2、Sox10を発現する細胞が認められた(図2)。
 P75陽性細胞のフローサイトメトリー解析の結果、分化誘導効率は、BMP4,Wnt3a,bFGFといったファクターを添加しない場合は0.9%であるのに対してday0−5の間、0.5nMのBMP4を添加すると3.1%へ増加し、day0−5の間、5nMのBMP4を添加すると4.0%へと増加した。さらにday0−5の間、0.5nMのBMP4及び5ng/mlWnt3aを添加すると2.0%、0.5nMのBMP4及び5ng/mlのWnt3a及び10ng/mlのbFGFを添加すると1.7%であった。(図3)。
5.考察
 以上の結果から、SFEB法を利用した無血清培地でのフィーダー細胞を使わない培養により、マウスiPS細胞から神経堤細胞を分化誘導できることが確認された。神経堤細胞への分化誘導効率は、BMP4の添加により、有意に向上することが確認された。
実施例2:ヒトiPS細胞からの神経堤細胞の分化誘導
1.ヒトiPS細胞の培養:
 ヒトiPS細胞は、京都大学 山中伸弥教授より供与を受けた(Takahashi K,Yamanaka S.,et al.Cell,(2007)131:861−872)。MEF細胞(KBL9284600北山ラベス)は、下記に示すMEFフィーダー用培地を用いて維持した。
 ゲラチンコートした培養皿にマイトマイシン(MMC)処理したMEF細胞を播種し、これをフィーダー細胞とした。この上にヒトiPS細胞を播種し、iPS細胞培養用培地中37℃5%CO,20%Oで維持した。
MEFフィーダー培地                    
 DMEM(Invitrogen)
 10%FBS(Sigma)                
iPS細胞培養用培地                    
 霊長類ES細胞用培地(リプロセル)
 Basic FGF(Wako)(4ng/ml)      
2.分化誘導系(SFEB法)の準備
 マウスiPS細胞での誘導条件をもとに、ヒトiPS細胞からSFEB法による神経堤細胞への分化誘導を行った。すなわち、0.25%トリプシン、0.1mg/mlコラゲナーゼIV、1mMCaCl2、20%KSRを含んだPBSを用いてヒトiPS細胞のコロニーを回収し、ピペッティングによって5から10個の細胞塊とした。ゲラチンコートディッシュを用いてフィーダー細胞を除去した。このようにして用意したヒトiPS細胞塊を非接着性の培養皿上で21日間浮遊培養を行った後、4日間接着培養を行った。浮遊培養は、下記分化誘導培地(分化誘導培地1あるいは2のいずれか)にBMP4,Wnt,FGFを加えて調製した培地を用いて行った。接着培養はpoly−D−lysine,laminin,fibronectinをコーティングした培養皿を用いて、浮遊培養と同様の培地を用いて行った。概要を下記に示す。
Figure JPOXMLDOC01-appb-C000001
分化用培地1                              
 DMEM/F−12(Invitrogen)
 KSR(Invitrogen)
 Nonessential amino acid(Invitrogen)
 L−glutamine(Invitrogen)
 2−mercaptoethanol(Invitrogen)      
分化用培地2                               
 GMEM(Invitrogen)
 KSR(Invitrogen)
 Nonessential amino acids(Invitrogen)
 Pyruvate(Invitrogen)
 2−mercaptoethanol(Invitrogen)       
3.分化誘導細胞の検証
 分化誘導後の細胞について、実施例1と同様にして、免疫染色法により神経堤細胞マーカーであるp75とSox−10の発現をみた。また、フローサイトメトリーによりp75陽性細胞率を解析した。
4.結果
 免疫染色の結果、ヒトiPS細胞からSFEB法により誘導された細胞について、p75/sox10陽性細胞はday25で約30%認められ、day25以降は、減少する傾向がみられた(図4)。
 フローサイトメトリーの結果、ヒトiPS細胞からSFEB法により誘導された細胞のうち39.6%が神経堤細胞マーカーであるp75陽性であることが確認された(図5)。
5.考察
 以上の結果から、SFEB法を利用した無血清培地でのフィーダー細胞を使わない培養により、ヒトiPS細胞から神経堤細胞を分化誘導できることが確認された。
実施例3:マウスiPS誘導神経堤細胞の機能解析(ニワトリ胚への導入)
 SFEB法による分化誘導後、FCASにより分離したp75陽性誘導神経堤細胞はスフェア形成能を有していた(図6a)。この細胞の遊走能を確認するためニワトリ胚(HH13)へ移植実験を行った。
 FACSによってソーティングした細胞を非接着性培養皿で下記培地を用いて浮遊培養を行い、neural crest sphereを作成した。作成したsphereをneural crestのmedialもしくはlateral pathway(Hamburger and Hamiltonのステージ分類による9及び12−13)へ移植して細胞のmigration及び分化能について検討した。
Neural crest sphere用培地             
 DMEM/F−12(1:1)(Invitrogen)
 20ng/ml EGF(Sigma−Aldrich)
 10ng/ml bFGF(Invitrogen)
 LIF(leukemia inhibitory factor)
 B27 supplement(Invitrogen)        
 背側移植24時間後に組織を固定し、DiI陽性細胞(移植した神経堤細胞)及びHNK−1染色によるニワトリ神経堤細胞の局在を確認した(図6d)。その結果、移植したiPS由来神経堤細胞は、神経堤細胞に特徴的な遊走能を有していることが示唆された。
 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。
 本発明の方法は、異種フィーダー細胞や血清を用いることなく、多能性幹細胞から神経堤細胞群を分化誘導することができる。そのため、誘導された神経堤細胞群が外来の未知の病原体によって汚染される可能性がなく、臨床応用実現化のために理想的な方法である。
 本発明の方法で得られる神経堤細胞群は多分化能を有しており、神経堤由来のさまざまな細胞にさらに分化誘導しうる。そのため、神経堤の誘導、形成、遊走の欠陥に起因する神経堤症等様々な疾患の再生医療に利用しうる。

Claims (15)

  1.  多能性幹細胞を、無血清培地においてフィーダー細胞の非存在下で浮遊培養することにより、神経堤細胞群に分化誘導することを特徴とする、神経堤細胞群の分化誘導方法。
  2.  神経堤細胞群が、p75陽性及びSox10陽性である、請求項1に記載の方法。
  3.  多能性幹細胞を浮遊培養した後、接着培養することを特徴とする、請求項1又は2に記載の方法。
  4.  培地が、血清代替物、非必須アミノ酸、ピルビン酸、及び2−メルカプトエタノールから選ばれるいずれか1又は2以上を含有することを特徴とする、請求項1~3のいずれか1項に記載の方法。
  5.  培地が、血清代替物を含有することを特徴とする、請求項4に記載の方法。
  6.  培地が、さらにWnt、FGF(fibroblast growth factor)、及びBMP4から選ばれる1又は2以上を含有することを特徴とする、請求項1~5のいずれか1項に記載の方法。
  7.  培地が、BMP4を含有することを特徴とする、請求項6に記載の方法。
  8.  多能性幹細胞が人工多能性幹細胞である、請求項1~7のいずれか1項に記載の方法。
  9.  多能性幹細胞がES細胞である、請求項1~8のいずれか1項に記載の方法。
  10.  請求項1~9のいずれか1項に記載の方法で得られた神経堤細胞群を含む培養物。
  11.  請求項1~9のいずれか1項に記載の方法で得られた神経堤細胞群を含む、神経堤に由来する細胞、組織の異常に起因する疾患を治療するための細胞製剤。
  12.  神経堤に由来する細胞、組織の異常に起因する疾患が、水疱性角膜症を含む角膜内皮機能不全、角膜ジストロフィー、発達緑内障、Rieger奇形、先天性遺伝性角膜内皮ジストロフィー、輪部デルモイド、強膜化角膜、円錐角膜及びペルーシド角膜変性を含む角膜形状異常、角膜瘢痕、角膜浸潤、角膜沈着、角膜浮腫、角膜潰瘍、化学物質及び熱によるものを含む眼外傷、角膜炎、角膜変性、角膜感染症、Hirschsprung病、Waadenburg症候群、ならびに限局性白皮症Recklinghausen病からなる群より選ばれるいずれかの疾患をである、請求項11に記載の細胞製剤。
  13.  請求項1~9のいずれか1項に記載の方法で得られた神経堤細胞群を、さらに末梢神経細胞、グリア細胞、色素細胞、角膜内皮細胞、角膜実質細胞、線維柱帯細胞、虹彩実質細胞、平滑筋細胞、軟骨細胞、骨細胞、脂肪細胞、内分泌細胞、及びクロム親和性細胞からなる群より選ばれるいずれかの細胞群に分化誘導させる方法。
  14.  請求項13に記載の方法で分化誘導された細胞群を含む培養物。
  15.  請求項13に記載の方法で分化誘導された細胞群を含む細胞製剤。
PCT/JP2010/059576 2009-06-03 2010-05-31 多能性幹細胞からの神経堤細胞群の分化誘導方法 WO2010140698A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011518523A JP5700301B2 (ja) 2009-06-03 2010-05-31 多能性幹細胞からの神経堤細胞群の分化誘導方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009134182 2009-06-03
JP2009-134182 2009-06-03

Publications (1)

Publication Number Publication Date
WO2010140698A1 true WO2010140698A1 (ja) 2010-12-09

Family

ID=43297829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059576 WO2010140698A1 (ja) 2009-06-03 2010-05-31 多能性幹細胞からの神経堤細胞群の分化誘導方法

Country Status (2)

Country Link
JP (1) JP5700301B2 (ja)
WO (1) WO2010140698A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147853A1 (ja) * 2011-04-27 2012-11-01 独立行政法人国立国際医療研究センター 多能性幹細胞由来褐色脂肪細胞、多能性幹細胞由来細胞凝集物と、その製造方法及び細胞療法、内科療法
WO2012157612A1 (ja) 2011-05-19 2012-11-22 国立大学法人徳島大学 細胞分化誘導剤および分化誘導方法
JP2014501101A (ja) * 2010-12-17 2014-01-20 ビオラミナ アーベー 組換えラミニン−521
JPWO2016114285A1 (ja) * 2015-01-15 2017-09-14 国立大学法人大阪大学 多能性幹細胞からの角膜上皮細胞の分化誘導
JP2018525986A (ja) * 2015-07-29 2018-09-13 ハダシット メディカル リサーチ サービシーズ アンド ディベロップメント リミテッド 網膜色素上皮細胞の大規模生産
WO2018199142A1 (ja) * 2017-04-27 2018-11-01 国立大学法人京都大学 神経堤細胞および交感神経細胞の製造方法
JP2018534934A (ja) * 2015-11-27 2018-11-29 中山大学 ヒト誘導多能性幹細胞からライディッヒ細胞への分化誘導方法及びその用途
WO2019124348A1 (ja) * 2017-12-19 2019-06-27 国立大学法人京都大学 新規骨分化誘導方法
JP2019520079A (ja) * 2016-07-06 2019-07-18 クリスパー セラピューティクス アクチェンゲゼルシャフト 疼痛関連障害を処置するための物質及び方法
WO2021045217A1 (ja) * 2019-09-06 2021-03-11 学校法人慶應義塾 グリア前駆細胞を含む細胞凝集体の製造方法
US11801313B2 (en) 2016-07-06 2023-10-31 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
US11959100B2 (en) 2017-11-30 2024-04-16 Kyoto University Method for culture of cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512439A (ja) * 1999-10-22 2003-04-02 バイオジェン インコーポレイテッド 眼の免疫学的合併症を処置するためのcd40:cd154結合遮断剤の使用
WO2005123902A1 (ja) * 2004-06-18 2005-12-29 Riken 無血清浮遊培養による胚性幹細胞の神経分化誘導法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2409703A1 (en) * 2000-05-16 2001-11-22 Shin-Ichi Nishikawa Novel differentiation inducing process of embryonic stem cell to ectodermal cell and its use
US20060281179A1 (en) * 2001-11-15 2006-12-14 Yoshiki Sasai Inducer for differentiation of embryo stem cells into ectodermal cells method of obtaining the same and use thereof
WO2008018190A1 (fr) * 2006-08-09 2008-02-14 Biomaster, Inc. Cellules de la crête neurale dérivées de tissu adipeux

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512439A (ja) * 1999-10-22 2003-04-02 バイオジェン インコーポレイテッド 眼の免疫学的合併症を処置するためのcd40:cd154結合遮断剤の使用
WO2005123902A1 (ja) * 2004-06-18 2005-12-29 Riken 無血清浮遊培養による胚性幹細胞の神経分化誘導法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIICHI WATANABE ET AL.: "Directed differentiation of telencephalic precursors from embryonic stem cells.", NATURE NEUROSCIENCE, vol. 8, no. 3, 2005, pages 288 - 296, XP002487263, DOI: doi:10.1038/nn1402 *
STUART M CHAMBERS ET AL.: "Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling.", NATURE BIOTECHNOLOGY, vol. 27, no. 3, March 2009 (2009-03-01), pages 275 - 280, XP055007827, DOI: doi:10.1038/nbt.1529 *
YUKO AIHARA ET AL.: "Mouse ES Saibo kara Yudo sareta Shinkeitei Saibo no Tokusei Kaiseki", THE JOURUNAL OF EXPERIMENTAL & APPLIED CELL CULTURE RESEARCH, vol. 28, no. 1, 31 March 2009 (2009-03-31), pages 58 *
YUKO AIHARA ET AL.: "Mukessei Tanso Baiyokei ni yoru Mouse ES Saibo kara no Shinkeitei Saibo no Koritsuteki Yudo", YOKOHAMA IGAKU (HEISEI 21 NEN 5 GATSU 30 NICHI), vol. 60, no. 1/2, pages 156 - 157 *
YUKO AIHARA ET AL.: "Mukessei Tanso Baiyokei ni yoru Mouse ES Saibo kara no Shinkeitei Saibo no Koritsuteki Yudoho no Kakuritsu", THE JOURUNAL OF EXPERIMENTAL & APPLIED CELL CULTURE RESEARCH, vol. 27, no. 1, 2008, pages 53 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501101A (ja) * 2010-12-17 2014-01-20 ビオラミナ アーベー 組換えラミニン−521
WO2012147853A1 (ja) * 2011-04-27 2012-11-01 独立行政法人国立国際医療研究センター 多能性幹細胞由来褐色脂肪細胞、多能性幹細胞由来細胞凝集物と、その製造方法及び細胞療法、内科療法
CN103517982A (zh) * 2011-04-27 2014-01-15 独立行政法人国立国际医疗研究中心 源自多能干细胞的褐色脂肪细胞、源自多能干细胞的细胞凝聚物,其制造方法以及细胞疗法、内科疗法
CN103517982B (zh) * 2011-04-27 2018-02-06 独立行政法人国立国际医疗研究中心 源自多能干细胞的褐色脂肪细胞、源自多能干细胞的细胞凝聚物,其制造方法以及细胞疗法、内科疗法
WO2012157612A1 (ja) 2011-05-19 2012-11-22 国立大学法人徳島大学 細胞分化誘導剤および分化誘導方法
JPWO2016114285A1 (ja) * 2015-01-15 2017-09-14 国立大学法人大阪大学 多能性幹細胞からの角膜上皮細胞の分化誘導
US11066641B2 (en) 2015-01-15 2021-07-20 Osaka University Method for inducing differentiation of corneal epithelial cells from pluripotent stem cells
JP2018525986A (ja) * 2015-07-29 2018-09-13 ハダシット メディカル リサーチ サービシーズ アンド ディベロップメント リミテッド 網膜色素上皮細胞の大規模生産
US11230696B2 (en) 2015-07-29 2022-01-25 Hadasit Medical Research Services And Development Ltd. Large scale production of retinal pigment epithelial cells
JP7055095B2 (ja) 2015-07-29 2022-04-15 ハダシット メディカル リサーチ サービシーズ アンド ディベロップメント リミテッド 網膜色素上皮細胞の大規模生産
JP2018534934A (ja) * 2015-11-27 2018-11-29 中山大学 ヒト誘導多能性幹細胞からライディッヒ細胞への分化誘導方法及びその用途
US11459587B2 (en) 2016-07-06 2022-10-04 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
JP2022132353A (ja) * 2016-07-06 2022-09-08 バーテックス ファーマシューティカルズ インコーポレイテッド 疼痛関連障害を処置するための物質及び方法
JP2019520079A (ja) * 2016-07-06 2019-07-18 クリスパー セラピューティクス アクチェンゲゼルシャフト 疼痛関連障害を処置するための物質及び方法
US11801313B2 (en) 2016-07-06 2023-10-31 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
JP7429264B2 (ja) 2016-07-06 2024-02-07 バーテックス ファーマシューティカルズ インコーポレイテッド 疼痛関連障害を処置するための物質及び方法
JP7094567B2 (ja) 2017-04-27 2022-07-04 国立大学法人京都大学 神経堤細胞および交感神経細胞の製造方法
JPWO2018199142A1 (ja) * 2017-04-27 2020-03-12 国立大学法人京都大学 神経堤細胞および交感神経細胞の製造方法
WO2018199142A1 (ja) * 2017-04-27 2018-11-01 国立大学法人京都大学 神経堤細胞および交感神経細胞の製造方法
US11959100B2 (en) 2017-11-30 2024-04-16 Kyoto University Method for culture of cells
JPWO2019124348A1 (ja) * 2017-12-19 2020-12-03 国立大学法人京都大学 新規骨分化誘導方法
WO2019124348A1 (ja) * 2017-12-19 2019-06-27 国立大学法人京都大学 新規骨分化誘導方法
US11859209B2 (en) 2017-12-19 2024-01-02 Kyoto University Method for inducing osteogenic differentiation
CN114375328A (zh) * 2019-09-06 2022-04-19 学校法人庆应义塾 包含胶质前体细胞的细胞聚集体的制备方法
WO2021045217A1 (ja) * 2019-09-06 2021-03-11 学校法人慶應義塾 グリア前駆細胞を含む細胞凝集体の製造方法

Also Published As

Publication number Publication date
JP5700301B2 (ja) 2015-04-15
JPWO2010140698A1 (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5700301B2 (ja) 多能性幹細胞からの神経堤細胞群の分化誘導方法
JP6850455B2 (ja) 網膜色素上皮細胞の製造方法
US9458428B2 (en) Methods and compositions for the rapid production of retinal pigmented epithelial cells from pluripotent cells
WO2010134619A1 (ja) 人工多能性幹細胞からの上皮系前駆細胞・幹細胞群及び角膜上皮細胞群の分化誘導方法
JP2019141074A (ja) 軟骨細胞系統細胞及び/又は軟骨様組織を作製するための方法及び組成物
US11111476B2 (en) Method for manufacturing ciliary marginal zone-like structure
WO2013012087A1 (ja) 角膜内皮細胞の調製方法
CN104508125B (zh) 用于产生睫状边缘带样结构的方法
EP2828380B1 (en) Methods and media for differentiating eye cells
JP2018521678A (ja) 網膜色素上皮細胞の調製法
JP2020508653A (ja) 網膜前駆体、網膜色素上皮細胞及び神経網膜細胞を得るフィーダーフリーの方法
WO2023127824A1 (ja) 神経堤細胞の培養方法及び製造方法
US9290740B2 (en) Use of basic fibroblast growth factor in the de-differentiation of animal connective tissue cells
JP2016093178A (ja) 幹細胞由来の分化細胞用培地、幹細胞からの分化細胞の製造及び該分化細胞を含む細胞医薬組成物の製造のための方法
JP7094567B2 (ja) 神経堤細胞および交感神経細胞の製造方法
JP2012125207A (ja) 角膜実質細胞培養用スキャフォールド
CN107164325A (zh) MSCs来源的少突胶质细胞的制备方法及试剂盒
JP6785516B2 (ja) ヒト臍帯由来間葉系幹細胞から骨芽細胞の製造を目的としたアクチン重合阻害剤による分化誘導技術
WO2022138803A1 (ja) 視細胞を含む層状の網膜組織の促成製造方法
JP2016192962A (ja) ヒトiPS細胞から、ヒト歯原性上皮細胞やヒト歯原性間葉細胞を製造する方法
Kaur et al. Neural stem cell assays
JP2024512385A (ja) 乏突起膠細胞前駆細胞を生成する方法及びその使用
Dawson Cardiac Tissue Engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518523

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783480

Country of ref document: EP

Kind code of ref document: A1