WO2012157180A1 - 受信回路及び信号受信方法 - Google Patents

受信回路及び信号受信方法 Download PDF

Info

Publication number
WO2012157180A1
WO2012157180A1 PCT/JP2012/002403 JP2012002403W WO2012157180A1 WO 2012157180 A1 WO2012157180 A1 WO 2012157180A1 JP 2012002403 W JP2012002403 W JP 2012002403W WO 2012157180 A1 WO2012157180 A1 WO 2012157180A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
threshold
input terminal
voltage
Prior art date
Application number
PCT/JP2012/002403
Other languages
English (en)
French (fr)
Inventor
帰山 隼一
晃一 山口
浩一 野瀬
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to CN201280023531.1A priority Critical patent/CN103563316B/zh
Priority to US14/117,760 priority patent/US9716440B2/en
Priority to JP2013514966A priority patent/JP5613833B2/ja
Publication of WO2012157180A1 publication Critical patent/WO2012157180A1/ja
Priority to US15/646,582 priority patent/US10187117B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/50Systems for transmission between fixed stations via two-conductor transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0266Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling

Definitions

  • the present invention relates to a receiving circuit and a signal receiving method, and more particularly to a receiving circuit and a signal receiving method for receiving a signal via an AC coupling element.
  • the semiconductor chip When a signal is transmitted between a plurality of semiconductor chips having different power supply voltages, if the signal is directly transmitted by wiring, the semiconductor chip may be damaged or a signal transmission failure may occur due to a voltage difference generated in a DC voltage component of the transmitted signal. is there. Therefore, when signals are transmitted between a plurality of semiconductor chips having different power supply voltages, the semiconductor chips are connected by an AC coupling element and only the AC signal is transmitted.
  • This AC coupling element includes a capacitor and a transformer.
  • the transformer is an AC coupling element in which the primary coil and the secondary coil are magnetically coupled.
  • a transformer is used as the AC coupling element, the voltage ratio of the signal (transmission signal) transmitted from the transmission-side semiconductor chip is adjusted by adjusting the winding ratio between the primary coil and the secondary coil of the transformer. Instead, a signal (reception signal) having an appropriate voltage amplitude is transmitted to the receiving-side semiconductor chip. For this reason, it is not necessary to adjust the voltage amplitude of the transmission signal or the reception signal on the semiconductor chip by performing communication between the semiconductor chips operating at different power supply voltages via the transformer.
  • a transformer formed on a semiconductor chip is referred to as an on-chip transformer depending on the case.
  • Patent Documents 1 to 6 Examples of signal transmission technology using a transformer are disclosed in Patent Documents 1 to 6 and Non-Patent Document 1.
  • Patent Documents 1 and 2 using two on-chip transformers, when the data value transitions from the first value to the second value, a pulse signal is sent to the first transformer, and the data value is the second value.
  • a technique is disclosed in which a pulse signal is transmitted to a second transformer when a transition from a value of 1 to a first value is made.
  • Patent Document 3 discloses a configuration in which a transformer is formed on another chip provided between a first semiconductor chip and a second semiconductor chip.
  • Patent Document 4 when the data value transitions from the first value to the second value, a signal consisting of one pulse is sent to the on-chip transformer, and the data value changes from the second value to the first value.
  • a technique for transmitting a signal composed of two continuous pulses to an on-chip transformer upon transition is disclosed.
  • Patent Document 5 a continuous pulse signal is continuously sent to the on-chip transformer during a period in which the data value is the first value, and a signal is fixed to the on-chip transformer during a period in which the data value is the second value.
  • Patent Document 6 discloses a technique for performing signal transmission between an insulated primary circuit and a secondary circuit using a transformer.
  • Non-Patent Document 1 discloses a technique for performing signal transmission between a high-voltage power circuit unit and a low-voltage control circuit unit via an on-chip transformer.
  • FIG. 40 is a diagram illustrating a signal transmission system 100 in which a general transformer configuration is employed.
  • a signal transmission system 100 shown in FIG. 40 includes a transmission circuit 120 that operates based on a first power supply (power supply voltage VDD1, ground voltage GND1) belonging to a first power supply system, and a second power supply that belongs to a second power supply system.
  • a receiving circuit 130 that operates based on (power supply voltage VDD2, ground voltage GND2) and a transformer 110 are provided.
  • the transmission circuit 120 includes a transmission buffer 121.
  • the reception circuit 130 includes a reception buffer 133.
  • a transformer 110 is provided between the transmission circuit 120 and the reception circuit 130.
  • the transformer 110 is composed of a primary side coil 111 and a secondary side coil 112 and is an AC coupling element that transmits an AC signal from the primary side coil 111 to the secondary side coil 112.
  • the primary side coil 111 and the secondary side coil 112 are magnetically coupled to each other.
  • the primary coil 111 has one end connected to the output terminal of the transmission buffer 121 and the other end connected to a ground voltage terminal (hereinafter referred to as GND1) to which the ground voltage GND1 is supplied.
  • GND1 ground voltage terminal
  • GND2 ground voltage terminal
  • the transmission buffer 121 converts the transmission data VIN into a pulse signal and outputs it as a transmission signal V1 to the primary coil 111.
  • the transmission signal V1 is converted into a magnetic signal by the primary coil 111, and the magnetic signal is converted into a reception signal V2 by the secondary coil 112.
  • the reception buffer 133 reproduces the transmission data VIN based on the reception signal V2 and outputs it as output data VOUT. This enables signal transmission between the first and second semiconductor chips that are electrically isolated.
  • the ground voltage GND1 on the transmission circuit 120 side and the ground voltage GND2 on the reception circuit 130 side greatly fluctuate.
  • a difference voltage between the ground voltage GND1 and the ground voltage GND2 is referred to as a common mode voltage.
  • the common mode voltage fluctuates greatly, noise between power sources is generated by the parasitic coupling capacitance Cc formed between the primary side coil 111 and the secondary side coil 112 constituting the transformer 110, and erroneous signal transmission occurs. There's a problem. This problem will be specifically described with reference to FIG.
  • FIG. 41 is a timing chart showing the operation of the signal transmission system 100.
  • V1-GND1 in FIG. 41 a positive amplitude pulse signal is superimposed on the transmission signal V1 output from the transmission buffer 121 in a period in which the transmission data VIN is at a high level, and in a period in which the transmission data VIN is in a low level.
  • a negative amplitude pulse signal is superimposed.
  • GND2-GND1 in FIG. 41 between the ground voltage GND1 and the ground voltage GND2
  • the potential difference between the reception signal V2 received by the reception buffer 133 and the ground voltage GND2 Has a waveform as indicated by V2-GND2 in FIG. That is, a relative potential difference between the ground voltage GND1 and the ground voltage GND2, that is, a common mode voltage is superimposed on the reception signal V2.
  • the voltage level of the reception signal V2 exceeds the upper threshold voltage Vth1 of the reception buffer 133 even when the transmission buffer 121 is not transmitting a positive amplitude pulse signal as the transmission signal V1.
  • a defect occurs in the waveform of the output data VOUT reproduced by the reception buffer 133.
  • the transmission buffer 121 does not transmit a negative amplitude pulse signal as the transmission signal V1
  • the voltage level of the reception signal V2 falls below the lower threshold voltage Vth2 of the reception buffer 133, and the reception buffer 133 causes a problem in the waveform of the output data VOUT reproduced.
  • erroneous signal transmission occurs in the period X of VOUT-GND2 in FIG.
  • the conventional signal transmission technology between a plurality of semiconductor chips having different power supply voltages has a problem that erroneous signal transmission occurs due to the influence of the common mode voltage.
  • a receiving circuit operates in a power supply system different from a transmitting circuit that outputs a transmission signal, and has a primary side coil through which the transmission signal flows and a secondary side having a center tap to which a predetermined voltage is supplied from an external terminal
  • a pulse width amplifier circuit that outputs the second hold signal
  • a comparison circuit that compares the voltage of the first hold signal with the voltage of the second hold signal and outputs a comparison result.
  • a signal receiving method of a receiving circuit operates in a power supply system different from a transmitting circuit that outputs a transmission signal, and includes a primary side coil through which the transmission signal flows and a center tap to which a predetermined voltage is supplied from an external terminal.
  • the circuit configuration and method as described above can prevent the transmission of signals by suppressing the influence of the common mode voltage without increasing the circuit scale.
  • the present invention it is possible to provide a receiving circuit and its signal receiving method capable of preventing signal transmission by suppressing the influence of the common mode voltage without increasing the circuit scale.
  • the signal transmission system 100a illustrated in FIG. 42 includes a transmission circuit 120, a reception circuit 130, and a transformer 110a.
  • the transmission circuit 120 is formed on the first semiconductor chip and operates based on a first power supply (power supply voltage VDD1, ground voltage GND1) belonging to the first power supply system.
  • the receiving circuit 130 is formed on the second semiconductor chip and operates based on a second power supply (power supply voltage VDD2, ground voltage GND2) belonging to the second power supply system.
  • the transformer 110a may be formed on either the first or second semiconductor chip, or may be formed on a separate chip.
  • the transmission circuit 120 includes a transmission buffer 121.
  • the reception circuit 130 includes a reception buffer 133 and a differential amplifier 132.
  • a transformer 110 a is provided between the transmission circuit 120 and the reception circuit 130.
  • the transformer 110a is composed of a primary side coil 111 and a secondary side coil 112, and is an AC coupling element that transmits an AC signal from the primary side coil 111 to the secondary side coil 112.
  • the primary side coil 111 and the secondary side coil 112 are magnetically coupled to each other.
  • a center tap is provided on the secondary coil 112.
  • one end is connected to the output terminal of the transmission buffer 121, and the other end is connected to the ground voltage terminal GND1.
  • the secondary side coil 112 one end is connected to the non-inverting input terminal of the differential amplifier 132, the other end is connected to the inverting input terminal of the differential amplifier 132, and the center tap is connected to the ground voltage terminal GND2.
  • the pair of output terminals of the differential amplifier 132 are connected to corresponding input terminals of the reception buffer 133, respectively.
  • FIG. 43 is a timing chart showing the operation of the signal transmission system 100a. Since the basic operation of the signal transmission system 100a is the same as that of the signal transmission system 100 shown in FIG. 40, the characteristic part of the operation of the signal transmission system 100a will be mainly described here.
  • the voltage of the reception signal V2P generated at one end of the secondary coil 112 and the ground voltage GND2 As indicated by GND1-GND2 in FIG. 43, the voltage of the reception signal V2P generated at one end of the secondary coil 112 and the ground voltage GND2 And the potential difference between the first and second waveforms has a waveform as indicated by V2P-GND2 in FIG.
  • the potential difference between the voltage of the reception signal V2N generated at the other end of the secondary coil 112 and the ground voltage GND2 has a waveform as indicated by V2N-GND2 in FIG.
  • the differential amplifier 132 cancels the common mode voltage superimposed on the reception signals V2P and V2N, and outputs a waveform as indicated by V3-GND2 in FIG.
  • the reception buffer 133 reproduces the transmission data VIN based on the output pulse of the differential amplifier 132 and outputs it as output data VOUT.
  • the signal transmission system 100a uses the secondary coil 112 having the center tap and the differential amplifier 132 to suppress the influence of the common mode voltage and prevent erroneous signal transmission.
  • the differential amplifier when the differential amplifier is formed of a fine CMOS, the differential amplifier can amplify a high-frequency input signal.
  • a differential amplifier constituted by a fine CMOS is not suitable for a power control semiconductor to which a high voltage is supplied.
  • FIG. 1 is a diagram showing a signal transmission system 1 according to the first exemplary embodiment of the present invention.
  • the receiving circuit 3 provided in the signal transmission system 1 according to the present embodiment expands the pulse width of the pulse signal generated at both ends of the secondary coil 12 having the center tap, and serves as the first and second holding signals.
  • An output pulse width amplifier circuit is provided.
  • a predetermined voltage is supplied from the external terminal to the center tap of the secondary coil.
  • the receiving circuit 3 can prevent signal transmission by suppressing the influence of the common mode voltage without increasing the circuit scale. This will be specifically described below.
  • the signal transmission system 1 shown in FIG. 1 includes a transmission circuit 2, a reception circuit 3, and a transformer 10.
  • the transformer 10 includes a primary side coil 11 and a secondary side coil 12.
  • the transformer 10 is an AC coupling element that transmits an AC signal from the primary coil 11 to the secondary coil 12.
  • the primary side coil 11 and the secondary side coil 12 are magnetically coupled to each other.
  • parasitic coupling capacitance Cc is formed between the primary side coil 11 and the secondary side coil 12.
  • the parasitic coupling capacitance Cc is a capacitor having a dielectric film as an insulator filled between the metal wiring constituting the primary coil 11 and the metal wiring constituting the secondary coil 12.
  • the parasitic coupling capacitance Cc is formed with the same configuration in other embodiments.
  • FIG. 2 shows an implementation example of the signal transmission system 1.
  • the first semiconductor chip 4 and the second semiconductor chip 5 are mounted on the semiconductor package 6.
  • the first semiconductor chip 4 and the second semiconductor chip 5 each have a pad Pd.
  • the pads Pd of the first semiconductor chip 4 and the second semiconductor chip 5 are connected to lead terminals 7 provided on the semiconductor package 6 through bonding wires (not shown).
  • the transmission circuit 2 is formed on the first semiconductor chip 4.
  • the receiving circuit 3, the primary side coil 11, and the secondary side coil 12 are formed.
  • a pad connected to the transmission circuit 2 is formed on the first semiconductor chip 4, and a pad connected to the primary coil 11 is formed on the second semiconductor chip 5.
  • the transmission circuit 2 is connected to one end of the primary coil 11 formed on the second semiconductor chip 5 through the pad and the bonding wire W.
  • the other end of the primary coil 11 is connected to the ground voltage terminal GND1 on the first semiconductor chip 4 side through a pad and a bonding wire W.
  • the primary side coil 11 and the secondary side coil 12 are respectively formed in the first wiring layer and the second wiring layer that are stacked in the vertical direction in one semiconductor chip. .
  • the transmission circuit 2 operates based on a first power supply belonging to the first power supply system.
  • the first power supply includes a high potential side voltage (for example, power supply voltage VDD1) and a low potential side voltage (for example, ground voltage GND1).
  • the receiving circuit 3 operates based on a second power supply belonging to the second power supply system.
  • the second power supply includes a high potential side voltage (for example, power supply voltage VDD2) and a low potential side voltage (for example, ground voltage GND2).
  • the transmission circuit 2 has a transmission buffer 21.
  • the transmission buffer 21 converts the transmission data VIN into a pulse signal and outputs it as a transmission signal V1.
  • the transformer 10 includes the primary side coil 11 and the secondary side coil 12 as described above.
  • a center tap is provided on the secondary coil 12.
  • the center tap is provided at a portion other than both ends on the secondary coil 12, and more preferably at a portion having an equal length from both ends so that the inductance components are substantially the same.
  • one end is connected to the output terminal of the transmission buffer 21, and the other end is connected to a ground voltage terminal (hereinafter referred to as GND1) to which the ground voltage GND1 is supplied.
  • GND1 ground voltage terminal
  • one end of the secondary coil 12 is connected to one input terminal of the pulse width amplification circuit 31 of the reception circuit 3, and the other end is connected to the other input terminal of the pulse width amplification circuit 31.
  • a predetermined voltage is supplied to the center tap of the secondary coil 12 from an external terminal.
  • the impedance between the ground voltage terminal GND2 of the receiving circuit 3 and the center tap of the secondary coil 12 is an impedance generated by the parasitic coupling capacitance Cc between the primary coil 11 and the secondary coil 12. Is preferably sufficiently smaller than that. Therefore, it is preferable that a fixed voltage having a low impedance such as the ground voltage GND2 or the power supply voltage VDD2 is supplied to the center tap of the secondary coil 12 from the external terminal, for example.
  • a ground voltage GND2 is supplied to the center tap of the secondary coil 12 from a ground voltage terminal (hereinafter referred to as GND2).
  • GND2 ground voltage terminal
  • the external terminal and the center tap of the secondary coil 12 are connected via metal (including vias).
  • the transmission signal V1 output from the transmission buffer 21 is converted into a magnetic signal by the primary side coil 11, and the magnetic signal is converted into reception signals V2P and V2N by the secondary side coil 12. Specifically, a pulse signal corresponding to the reception signal V2P is generated at one end of the secondary side coil 12, and a pulse signal corresponding to the reception signal V2N is generated at the other end of the secondary side coil 12.
  • the reception circuit 3 includes a pulse width amplification circuit 31, a differential amplifier (comparison circuit) 32, and a reception buffer 33.
  • the pulse width amplifier circuit 31 operates using the power supply voltage VDD2 and the ground voltage GND2 as power supplies.
  • the pulse width amplification circuit 31 holds the reception signals V2P and V2N received via the secondary coil 12 of the transformer 10 for a predetermined period, and holds the holding signal (first holding signal) V3P and the holding signal (second holding), respectively. Signal) is output as V3N.
  • the pulse width amplification circuit 31 expands the pulse width of the pulse signal superimposed on the reception signals V2P and V2N by holding the reception signals V2P and V2N generated at both ends of the secondary coil 12 for a predetermined period. Are output as a holding signal V3P and a holding signal V3N, respectively.
  • the differential amplifier 32 operates using the power supply voltage VDD2 and the ground voltage GND2 as power supplies. Further, the differential amplifier 32 reduces in-phase signal components among the AC components included in the two input signals.
  • the holding signal V3P is input to the non-inverting input terminal, and the holding signal V3N is input to the inverting input terminal. Then, the differential amplifier 32 compares the voltage of the holding signal V3P and the voltage of the holding signal V3N, and outputs transmission signals V4P and V4N as comparison results.
  • the differential amplifier 32 sets the value of the transmission signal V4P to a high level if the potential difference (value of V3P ⁇ V4N) between the holding signals V3P and V3N is positive, and if the potential difference is negative, the differential signal 32 The value of V4N is set to the low level. At this time, the common-mode voltages of the same phase included in the holding signals V3P and V3N are canceled out.
  • the transmission signals V4P and V4N output from the differential amplifier 32 have pulse signals that are inverted with respect to the amplitude center potential.
  • the reception buffer 33 operates using the power supply voltage VDD2 and the ground voltage GND2 as power supplies.
  • the reception buffer 33 is a hysteresis comparator, for example, and reproduces the transmission data VIN based on the transmission signals V4P and V4N and outputs it as output data VOUT. More specifically, the reception buffer 33 sets the value of the output data VOUT to a high level if the potential difference (V4P ⁇ V4N value) between the transmission signals V4P and V4N is positive, and if the potential difference is negative, the value of the output data VOUT Is low level.
  • the reception buffer 33 is a hysteresis comparator
  • the upper threshold voltage Vth1 and the lower threshold voltage Vth2 are set in the reception buffer 33.
  • the output is switched from the low level to the high level, and when the potential difference is lower than the lower threshold voltage Vth2, the output is switched from the high level to the low level.
  • the pulse width amplifier circuit 31 detects the pulse signal superimposed on the received signals V2P and V2P, holds the pulse signal for a predetermined period, and outputs it as the hold signals V3P and V3N. That is, the pulse width amplification circuit 31 expands the pulse width of the pulse signal superimposed on the reception signals V2P and V2N, and outputs it as the holding signals V3P and V3N. Therefore, the differential amplifier 32 at the subsequent stage can operate with high accuracy even if it is not constituted by a fine CMOS. In other words, since the receiving circuit 3 can expand the pulse width of the pulse signal superimposed on the received signals V2P and V2N, the circuit scale of the transformer 10 is not increased for the purpose of expanding the pulse width. The differential amplifier 32 can be operated with high accuracy.
  • the transformer 10 includes a primary coil 11 and a secondary coil 12 having a center tap to which a predetermined voltage is supplied from an external terminal.
  • the reception circuit 3 can cancel the common mode voltage superimposed on the reception signals V2P and V2N generated at both ends of the secondary coil 12 using the differential amplifier at the subsequent stage. For these reasons, the receiving circuit 3 can prevent signal transmission by suppressing the influence of the common mode voltage without increasing the circuit scale.
  • FIG. 3 is a diagram illustrating a configuration example of the pulse width amplifier circuit 31.
  • the pulse width amplifier circuit 31 includes a peak hold circuit (first peak hold circuit) 311 and a peak hold circuit (second peak hold circuit) 312.
  • the input terminal is connected to one end of the secondary coil 12, and the output terminal is connected to the non-inverting input terminal of the differential amplifier 32.
  • the input terminal is connected to the other end of the secondary coil 12, and the output terminal is connected to the inverting input terminal of the differential amplifier 32.
  • the peak hold circuits 311 and 312 detect positive amplitude pulse signals among the pulse signals superimposed on the reception signals V2P and V2N, respectively, hold them for a predetermined period, and then output them as holding signals V3P and V3N. That is, the peak hold circuits 311 and 312 detect a positive amplitude pulse signal among the pulse signals superimposed on the reception signals V2P and V2N, respectively, expand the pulse width of the pulse signal, and output it as the holding signals V3P and V3N. To do.
  • FIG. 4 is a timing chart showing the operation of the signal transmission system 1.
  • V1-GND1 in FIG. 4 the transmission signal V1 output from the transmission buffer 21 is superposed with a pulse signal having a positive amplitude during a period in which the transmission data VIN is at a high level, and in a period in which the transmission data VIN is at a low level.
  • a negative amplitude pulse signal is superimposed.
  • the peak hold circuit 311 expands the pulse width of the pulse signal superimposed on the received signal V2P by holding the received signal V2P for a predetermined period, and outputs it as the held signal V3P.
  • the peak hold circuit 312 expands the pulse width of the pulse signal superimposed on the received signal V2N by holding the received signal V2N for a predetermined period, and outputs it as the held signal V3N.
  • the potential difference between the holding signal V3P and the ground voltage GND2 has a waveform as shown by V3P-GND2 in FIG. 4, and the potential difference between the holding signal V3N and the ground voltage GND2 is V3N ⁇ in FIG. The waveform is as shown in GND2.
  • the differential amplifier 32 cancels the common mode voltage superimposed on the holding signal V3P and the holding signal V3N, and outputs transmission signals V4P and V4N.
  • the potential difference between the transmission signal V4P and the ground voltage GND2 has a waveform as indicated by V4-GND2 in FIG.
  • the reception buffer 33 reproduces the transmission data VIN based on the output pulse of the differential amplifier 32 and outputs it as output data VOUT.
  • the potential difference between the output data VOUT and the ground voltage GND2 has a waveform as shown by VOUT ⁇ GND2 in FIG.
  • the peak hold circuits 311 and 312 detect the positive amplitude pulse signals among the pulse signals superimposed on the reception signals V2P and V2P, respectively, hold them for a predetermined period, and then output them as holding signals V3P and V3N. That is, the peak hold circuits 311 and 312 detect a positive amplitude pulse signal among the pulse signals superimposed on the reception signals V2P and V2N, respectively, expand the pulse width of the pulse signal, and output it as the holding signals V3P and V3N. To do. Therefore, the differential amplifier 32 at the subsequent stage can operate with high accuracy even if it is not constituted by a fine CMOS. In other words, since the receiving circuit 3 can expand the pulse width of the pulse signal superimposed on the received signals V2P and V2N, the circuit scale of the transformer 10 is not increased for the purpose of expanding the pulse width. The differential amplifier 32 can be operated with high accuracy.
  • the transformer 10 includes a primary coil 11 and a secondary coil 12 having a center tap to which a predetermined voltage is supplied from an external terminal.
  • the reception circuit 3 can cancel the common mode voltage superimposed on the reception signals V2P and V2N generated at both ends of the secondary coil 12 using the differential amplifier at the subsequent stage. For these reasons, the receiving circuit 3 can prevent signal transmission by suppressing the influence of the common mode voltage without increasing the circuit scale.
  • the differential amplifier 32 when the pulse width of the pulse signal superimposed on the reception signals V2P and V2N is 200 ps and the differential amplifier 32 is configured by a CMOS having a gate size of 0.5 ⁇ m, the differential amplifier 32 V2P and V2N cannot be directly amplified. However, in the receiving circuit 3 according to the present embodiment, the peak hold circuits 311 and 312 expand and output the pulse width superimposed on the received signals V2P and V2N. Therefore, the differential amplifier 32 can amplify the reception signals V2P and V2N (holding signals V3P and V3N) whose pulse width is expanded.
  • FIG. 5 is a diagram illustrating a specific configuration example of the peak hold circuits 311 and 312.
  • the peak hold circuit 311 includes a threshold element (first threshold element) 319, a resistance element (first resistance element) 315, and a capacitor element (first capacitor element) 317.
  • the peak hold circuit 312 includes a threshold element (second threshold element) 320, a resistor element (second resistor element) 316, and a capacitor element (second capacitor element) 318.
  • a diode using a PN junction or a Schottky junction may be used as the threshold element, or the gate of an n-channel MOS transistor or p-channel MOS transistor is short-circuited to its own source or drain. Other configurations may be used. At this time, either the drain or the source of the transistor is connected to the input terminal of the threshold element, and the other of the drain and the source of the transistor is connected to the output terminal of the threshold element.
  • a stable threshold can be obtained at about 0.7 V regardless of the power supply voltage or the like.
  • the threshold value is about 0.2V to 1V depending on the generation of the CMOS process and the minimum processing size.
  • the fluctuation of the threshold is often suppressed to about ⁇ 0.1V.
  • These threshold fluctuations are generally smaller than hysteresis circuit threshold fluctuations. Therefore, by using these, it is possible to configure the receiving circuit 3 with a stable threshold.
  • the threshold elements 319 and 320 are PN junction diodes will be described as an example.
  • the anode of the diode 319 is connected to one end of the secondary coil 12, and the cathode of the diode 319 is connected to the non-inverting input terminal of the differential amplifier 32.
  • the resistance element 315 has one end connected to the non-inverting input terminal of the differential amplifier 32 and the other end connected to the ground voltage terminal GND2.
  • the capacitive element 317 one end is connected to the non-inverting input terminal of the differential amplifier 32, and the other end is connected to the ground voltage terminal GND2.
  • the anode of the diode 320 is connected to the other end of the secondary coil 12, and the cathode of the diode 319 is connected to the inverting input terminal of the differential amplifier 32.
  • the resistance element 316 has one end connected to the inverting input terminal of the differential amplifier 32 and the other end connected to the ground voltage terminal GND2.
  • the capacitive element 318 one end is connected to the inverting input terminal of the differential amplifier 32, and the other end is connected to the ground voltage terminal GND2.
  • the capacitor element 317 When the voltage of the reception signal V2P exceeds the threshold value of the diode 319, a current flows through the diode 319. As a result, the capacitor element 317 is charged. That is, a positive amplitude pulse signal among the pulse signals superimposed on the reception signal V2P is held in the capacitor 317. As a result, the pulse width of the positive amplitude pulse signal is expanded and input to the non-inverting input terminal of the differential amplifier 32 as the holding signal V3P. Thereafter, if the capacitor 317 is not charged for a certain time or more, the voltage of the holding signal V3P converges to the ground voltage (reference voltage) GND2 via the resistor 315. Note that the magnitude of the pulse width is determined by the RC time constant, which is the product of the resistance value of the resistance element 315 and the capacitance value of the capacitance element 317.
  • the capacitor element 318 is charged. That is, a positive amplitude pulse signal among the pulse signals superimposed on the reception signal V ⁇ b> 2 ⁇ / b> N is held in the capacitor 318. As a result, the pulse width of the positive amplitude pulse signal is expanded and input to the inverting input terminal of the differential amplifier 32 as the holding signal V3N. Thereafter, if the capacitor 318 is not charged for a certain time or more, the voltage of the holding signal V3N converges to the ground voltage (reference voltage) GND2 via the resistor 316. Note that the magnitude of the pulse width is determined by the RC time constant, which is the product of the resistance value of the resistance element 316 and the capacitance value of the capacitance element 318.
  • the peak hold circuits 311 and 312 detect the positive amplitude pulse signals among the pulse signals superimposed on the reception signals V2P and V2P, respectively, hold them for a predetermined period, and then output them as holding signals V3P and V3N. That is, the peak hold circuits 311 and 312 detect a positive amplitude pulse signal among the pulse signals superimposed on the reception signals V2P and V2N, respectively, expand the pulse width of the pulse signal, and output it as the holding signals V3P and V3N. To do. Therefore, the differential amplifier 32 at the subsequent stage can operate with high accuracy even if it is not constituted by a fine CMOS. In other words, since the receiving circuit 3 can expand the pulse width of the pulse signal superimposed on the received signals V2P and V2N, the circuit scale of the transformer 10 is not increased for the purpose of expanding the pulse width. The differential amplifier 32 can be operated with high accuracy.
  • the transformer 10 includes a primary coil 11 and a secondary coil 12 having a center tap to which a predetermined voltage is supplied from an external terminal.
  • the reception circuit 3 can cancel the common mode voltage superimposed on the reception signals V2P and V2N generated at both ends of the secondary coil 12 using the differential amplifier at the subsequent stage. For these reasons, the receiving circuit 3 can prevent signal transmission by suppressing the influence of the common mode voltage without increasing the circuit scale.
  • FIG. 7 is a diagram illustrating a signal transmission system 1a according to the second embodiment of the present invention.
  • the signal transmission system 1 a according to the present embodiment further includes protection diodes 35 and 36.
  • the other circuit configuration of the signal transmission system 1a according to the present embodiment is the same as that of the signal transmission system 1 according to the first embodiment shown in FIG.
  • the anode of the protection diode 35 is connected to the ground voltage terminal GND2, and the cathode of the protection diode 35 is connected to one end of the secondary coil 12.
  • the anode of the protection diode 36 is connected to the ground voltage terminal GND2, and the cathode of the protection diode 36 is connected to the other end of the secondary coil 12.
  • the peak hold circuit 312 connected to one end of the secondary coil 12 detects only a positive amplitude pulse signal among pulse signals superimposed on the reception signal V2P, and does not detect a negative amplitude pulse signal.
  • the peak hold circuit 312 connected to the other end of the secondary coil 12 detects only a positive amplitude pulse signal among pulse signals superimposed on the reception signal V2N, and does not detect a negative amplitude pulse signal.
  • the receiving circuit 3 according to the present embodiment can prevent the element from being destroyed by letting the electromotive force corresponding to these negative amplitude pulse signals to the ground voltage terminal GND2 via the protective diodes 35 and 36.
  • FIG. 8 is a diagram showing a signal transmission system 1b according to the third exemplary embodiment of the present invention.
  • the signal transmission system 1b according to the present exemplary embodiment differs from the signal transmission system 1a according to the second exemplary embodiment in the configuration of the pulse width amplification circuit 31. Since the other circuit configuration of the signal transmission system 1b according to the present embodiment is the same as that of the signal transmission system 1a according to the second embodiment, the description thereof is omitted.
  • the pulse width amplifier circuit 31 shown in FIG. The anode of the diode 319 is connected to one end of the secondary coil 12, and the cathode of the diode 319 is connected to the non-inverting input terminal of the differential amplifier 32.
  • the resistance element 315 one end is connected to the non-inverting input terminal of the differential amplifier 32 and the other end is connected to one end of the secondary coil 12.
  • the anode of the diode 320 is connected to the other end of the secondary coil 12, and the cathode of the diode 320 is connected to the inverting input terminal of the differential amplifier 32.
  • the resistance element 316 has one end connected to the inverting input terminal of the differential amplifier 32 and the other end connected to the other end of the secondary coil 12. In the capacitive element 321, one end is connected to the non-inverting input terminal of the differential amplifier 32 and the other end is connected to the inverting input terminal of the differential amplifier 32.
  • a peak hold circuit 311 is configured by the diode 319, the resistance element 315, and the capacitor 321.
  • the peak hold circuit 312 is configured by the diode 320, the resistance element 316, and the capacitance element 321.
  • the peak hold circuit 311 and the peak hold circuit 312 share the capacitive element 321.
  • the receiving circuit 3 according to the present embodiment can reduce the occupied area of the capacitive element provided in the pulse width amplifier circuit 31 to about half compared with the receiving circuit 3 according to the first embodiment. it can.
  • the other ends of the resistance elements 315 and 316 are connected to one end and the other end of the secondary coil 12, respectively.
  • the RC time constant determined by the product of the resistance value of the resistance element 315 and the capacitance value of the capacitance element 321 and the RC time constant determined by the product of the resistance value of the resistance element 316 and the capacitance value of the capacitance element 321 are: They are adjusted so as to be smaller than the period of the common-mode voltage of the common phase superimposed on the reception signals V2P and V2N, respectively.
  • the pulse width amplifier circuit 31 shown in FIG. 8 the common mode voltage is more actively propagated to the differential amplifier 32 in the subsequent stage as an in-phase component.
  • the pulse signal superimposed on the received signals V2P and V2N is propagated as a differential component mainly to the subsequent differential amplifier 32 via the diodes 319 and 320.
  • the reception circuit 3 actively propagates the common-mode voltage superimposed on the reception signals V2P and V2N to the differential amplifier 32 at the subsequent stage, so that the diodes 319 and 320 Variations in the effective threshold (potential difference between V2P and V3P, potential difference between V2N and V3N) are alleviated. That is, the receiving circuit 3 according to the present embodiment positively propagates a relatively low-frequency common mode voltage to the differential amplifier 32 in the subsequent stage, thereby causing a potential difference between the anode and the cathode of the diode 319 and the diode.
  • the variation in potential difference between the anode and the cathode of 320 is suppressed, and the diodes 319 and 320 can be operated with high accuracy.
  • the common-mode voltage having the same phase is canceled (removed) by the differential amplifier 32.
  • the present invention is not limited to this, and each configuration may be applied independently.
  • FIG. 9 is a diagram showing a modification of the signal transmission system 1b shown in FIG.
  • the modification of the signal transmission system 1b shown in FIG. 9 includes protective diodes 37 and 38 instead of the protective diodes 35 and 36, and further includes capacitive elements 41 and 42 and resistive elements 39 and 40.
  • the center tap of the secondary coil 12 is supplied with a power supply voltage VDD2 which is a predetermined voltage from a power supply voltage terminal VDD2 which is an external terminal, instead of the ground voltage GND2.
  • the cathode of the protection diode 37 is connected to the power supply voltage terminal VDD 2, and the anode of the protection diode 37 is connected to one end of the secondary coil 12.
  • the cathode of the protection diode 38 is connected to the power supply voltage terminal VDD2, and the anode of the protection diode 38 is connected to the other end of the secondary coil 12.
  • the capacitive element 41 is provided between one end of the secondary coil 12 and the anode of the diode 319.
  • the capacitive element 42 is provided between the other end of the secondary coil 12 and the anode of the diode 320.
  • the resistance elements 39 and 40 are connected in series between the anode of the diode 319 and the anode of the diode 320, and a bias voltage VBIAS is supplied to a connection point between the resistance element 39 and the resistance element 40.
  • the anode of the diode 319 and the anode of the diode 320 are biased by the bias voltage VBIAS.
  • both input terminals of the differential amplifier 32 are also biased by the bias voltage VBIAS via the resistance elements 315 and 316. Thereby, for example, the voltage levels of both input terminals of the differential amplifier 32 can be adjusted.
  • FIG. 10 is a diagram illustrating a signal transmission system 1c according to the fourth embodiment of the present invention.
  • the signal transmission system 1c according to the present embodiment differs from the signal transmission system 1b according to the third embodiment shown in FIG. 8 in the configuration of the pulse width amplification circuit 31 and the protection diode.
  • the other circuit configuration of the signal transmission system 1c according to the present embodiment is the same as that of the signal transmission system 1b according to the third embodiment shown in FIG.
  • the receiving circuit 3 includes protective diodes 37 and 38 instead of the protective diodes 35 and 36 shown in FIG.
  • the cathode of the diode 323 is connected to one end of the secondary coil 12, and the anode of the diode 323 is connected to the non-inverting input terminal of the differential amplifier 32.
  • the cathode of the diode 324 is connected to the other end of the secondary coil 12, and the anode of the diode 324 is connected to the inverting input terminal of the differential amplifier 32. Since the connection relationship between the resistor elements 315 and 316 and the capacitor element 321 is the same as that in Embodiment 3, the description thereof is omitted.
  • a bottom hold circuit (first bottom hold circuit) 325 is configured by the diode 323, the resistor element 315, and the capacitor element 321.
  • a bottom hold circuit (second bottom hold circuit) 326 is configured by the diode 324, the resistance element 316, and the capacitance element 321.
  • the center tap of the secondary coil 12 is supplied with a power supply voltage VDD2 that is a predetermined voltage from a power supply voltage terminal VDD2 that is an external terminal, instead of the ground voltage GND2.
  • the bottom hold circuits 325 and 326 detect negative amplitude pulse signals among the pulse signals superimposed on the reception signals V2P and V2N, respectively, hold them for a predetermined period, and then output them as holding signals V3P and V3N. That is, the bottom hold circuits 325 and 326 detect negative amplitude pulse signals among the pulse signals superimposed on the reception signals V2P and V2N, respectively, expand the pulse width of the pulse signals, and output them as holding signals V3P and V3N. To do. This will be specifically described below.
  • the voltage of the reception signal V2N exceeds the threshold value of the diode 324, a current flows through the diode 324. Thereby, the electric charge accumulated in the capacitor 321 is discharged. That is, a negative amplitude pulse signal among the pulse signals superimposed on the reception signal V2N is held in the capacitor 321. As a result, the pulse width of the negative amplitude pulse signal is increased and is input to the inverting input terminal of the differential amplifier 32 as the hold signal V3N. Thereafter, if the capacitor 321 is not discharged for a certain time or more, the voltage of the holding signal V3N converges to the power supply voltage (reference voltage) VDD2 via the resistor 316. Note that the magnitude of the pulse width is determined by the RC time constant, which is the product of the resistance value of the resistance element 316 and the capacitance value of the capacitance element 321.
  • the cathode of the protection diode 37 is connected to the power supply voltage terminal VDD2, and the anode of the protection diode 37 is connected to one end of the secondary coil 12.
  • the cathode of the protection diode 38 is connected to the power supply voltage terminal VDD2, and the anode of the protection diode 38 is connected to the other end of the secondary coil 12.
  • the bottom hold circuit 325 connected to one end of the secondary coil 12 detects only a negative amplitude pulse signal among pulse signals superimposed on the reception signal V2P, and does not detect a positive amplitude pulse signal.
  • the bottom hold circuit 326 connected to the other end of the secondary coil 12 detects only a negative amplitude pulse signal among pulse signals superimposed on the reception signal V2N, and does not detect a positive amplitude pulse signal.
  • the receiving circuit 3 can prevent element destruction by letting electromotive force corresponding to these positive amplitude pulse signals to the power supply voltage terminal VDD2 via the protective diodes 37 and 38.
  • the receiving circuit 3 includes, in principle, the peak hold circuits 311 and 312 by including the pulse width amplifier circuit 31 configured by the bottom hold circuits 325 and 326.
  • the same operation as in the case of the pulse width amplifier circuit 31 can be realized, and the same effect can be obtained.
  • the configuration in which the pulse width amplifier circuit 31 includes two bottom hold circuits in addition to the configuration in which the pulse width amplifier circuit 31 includes two bottom hold circuits, as an example, the configuration in which the bottom hold circuit 325 and the bottom hold circuit 326 share the capacitor 321 and the resistance element 315 are used.
  • 316 has been described in the case where the configuration in which the other end of the secondary coil 12 is connected to the one end and the other end of the secondary coil 12 and the configuration in which the protection diodes 37 and 38 are provided is described.
  • Each configuration may be applied alone or in combination with any one of them. Therefore, for example, the other end of each of the resistance elements 315 and 316 may be directly connected to the power supply voltage terminal VDD2, or the two bottom hold circuits may each have a capacitance element alone.
  • FIG. 11 is a diagram illustrating a signal transmission system 1d according to the fifth exemplary embodiment of the present invention.
  • the pulse width amplifier circuit 31 including the two peak hold circuits or the two bottom hold circuits described above detects only a pulse signal having one of positive and negative amplitudes among the pulse signals superimposed on the reception signals V2P and V2N. No pulse signal with positive or negative amplitude was detected. That is, the pulse width amplifying circuit 31 performs half-wave rectification on the reception signals V2P and V2N. Therefore, the receiving circuit 3 provided in the pulse width amplifying circuit 31 can use only half of the electromotive force generated in the secondary coil 12 for reproducing the transmission data VIN.
  • the pulse width amplifier circuit 31 performs full-wave rectification on the reception signals V2P and V2N. Thereby, the reception circuit 3 according to the present embodiment can reproduce the transmission data VIN more efficiently based on the reception signals V2P and V2N.
  • a signal transmission system 1 d shown in FIG. 11 includes a transmission circuit 2, a reception circuit 3, and a transformer 10. Since the circuit configurations of the transmission circuit 2 and the transformer 10 according to the present embodiment are the same as those of the transmission circuit 2 and the transformer 10 according to the first to fourth embodiments, the description thereof is omitted.
  • the reception circuit 3 includes a pulse width amplification circuit 31, differential amplifiers 32, 43, and 44, a reception buffer 33, capacitive elements 41 and 42, and resistance elements 39 and 40.
  • the pulse width amplifier circuit 31 includes a diode (first threshold element) 319, a diode (second threshold element) 320, a diode (third threshold element) 323, a diode (fourth threshold element) 324, and a resistance element 315. , 316, 309, 310, a capacitor (fourth capacitor) 321, and a capacitor (third capacitor) 322.
  • the differential amplifiers 32, 43, and 44 constitute a comparison circuit.
  • the capacitive element 41 is provided between one end of the secondary coil 12 and the node N1.
  • the capacitive element 42 is provided between the other end of the secondary coil 12 and the node N2.
  • the resistance elements 39 and 40 are connected in series between the node N1 and the node N2, and a bias voltage VBIAS is supplied to a connection point between the resistance element 39 and the resistance element 40.
  • the center tap of the secondary coil 12 is supplied with a power supply voltage VDD2 that is a predetermined voltage from a power supply voltage terminal VDD2 that is an external terminal.
  • the node N1 and the node N2 are biased by the bias voltage VBIAS.
  • both input terminals of differential amplifiers 43 and 44 to be described later are also biased by the bias voltage VBIAS via the resistance elements 315, 316, 309 and 310. Thereby, for example, the voltage levels of both input terminals of the differential amplifier 32 can be adjusted.
  • the anode of the diode 319 is connected to the node N1, and the cathode of the diode 319 is connected to the node N3.
  • the resistance element 315 is connected between the anode and the cathode of the diode 319.
  • the anode of diode 320 is connected to node N2, and the cathode of diode 320 is connected to node N4.
  • the resistance element 316 is connected between the anode and the cathode of the diode 320.
  • the anode of the diode 323 is connected to the node N5, and the cathode of the diode 323 is connected to the node N1.
  • the resistance element 309 is connected between the anode and the cathode of the diode 323.
  • the anode of diode 324 is connected to node N6, and the cathode of diode 324 is connected to node N2.
  • the resistance element 310 is connected between the anode and the cathode of the diode 324.
  • the capacitive element 321 is provided between the node N4 and the node N5.
  • Capacitance element 322 is provided between nodes N3 and N6.
  • the peak hold circuit 311 is configured by the diode 319, the resistor element 315, and the capacitor element 322.
  • the peak hold circuit 312 is configured by the diode 320, the resistance element 316, and the capacitance element 321.
  • a bottom hold circuit 325 is configured by the diode 323, the resistor element 309, and the capacitor element 321.
  • a bottom hold circuit 326 is configured by the diode 324, the resistor 310, and the capacitor 322. Since the operations of the peak hold circuits 311 and 312 and the bottom hold circuits 325 and 326 are the same as those in the above embodiment, the description thereof is omitted.
  • the non-inverting input terminal is connected to the node N3, the inverting input terminal is connected to the node N4, and the output terminal is connected to the non-inverting input terminal of the differential amplifier 32.
  • the inverting input terminal is connected to the node N5
  • the non-inverting input terminal is connected to the node N6
  • the output terminal is connected to the inverting input terminal of the differential amplifier 32.
  • the pair of output terminals of the differential amplifier 32 are connected to corresponding input terminals of the reception buffer 33, respectively.
  • the peak hold circuits 311 and 312 detect a positive amplitude pulse signal among the pulse signals superimposed on the reception signals V2P and V2N, respectively, expand the pulse width of the pulse signal, and output it as holding signals V3AP and V3AN.
  • the differential amplifier 43 outputs an amplified signal V4A corresponding to the potential difference between the holding signals V3AP and V3AN output from the peak hold circuits 311 and 312. At this time, the in-phase common mode voltage superimposed on the holding signals V3AP and V3AN is canceled.
  • the bottom hold circuits 325 and 326 detect negative amplitude pulse signals among the pulse signals superimposed on the reception signals V2P and V2N, respectively, expand the pulse width of the pulse signals, and output the signals as holding signals V3BP and V3BN.
  • the differential amplifier 44 outputs an amplified signal V4B corresponding to the potential difference between the holding signals V3BP and V3BN output from the bottom hold circuits 325 and 326. At this time, the common-mode voltage of the same phase superimposed on the holding signals V3BP and V3BN is canceled out.
  • the amplified signal V4B output from the differential amplifier 44 is a polarity inversion signal of the amplified signal V4A output from the differential amplifier 43.
  • the non-inverting input terminal of the differential amplifier 43 is The holding signal V3AP on which the positive amplitude pulse signal is superimposed is input, and the holding signal V3AN on which the pulse signal is not superimposed is input to the inverting input terminal of the differential amplifier 43. Therefore, the differential amplifier 43 outputs the amplified signal V4A on which the common mode voltage is removed and the positive amplitude pulse signal is superimposed.
  • the holding signal V3BN on which the negative amplitude pulse signal is superimposed is input to the non-inverting input terminal of the differential amplifier 44, and the holding signal on which the pulse signal is not superimposed is input to the inverting input terminal of the differential amplifier 44.
  • V3BP is input. Therefore, the differential amplifier 44 outputs an amplified signal V4B in which the common mode voltage is removed and a negative amplitude pulse signal is superimposed. As a result, the output data VOUT becomes high level through the operations of the differential amplifier 32 and the reception buffer 33 described above.
  • the non-inverting input terminal of the differential amplifier 43 is connected. Is supplied with a holding signal V3AP on which no pulse signal is superimposed, and a holding signal V3AN on which a positive amplitude pulse signal is superimposed is input to the inverting input terminal of the differential amplifier 43. Therefore, the differential amplifier 43 outputs an amplified signal V4A in which the common mode voltage is removed and a negative amplitude pulse signal is superimposed.
  • the non-inverted input terminal of the differential amplifier 44 receives the holding signal V3BN on which no pulse signal is superimposed, and the inverted input terminal of the differential amplifier 44 receives the held signal on which a negative amplitude pulse signal is superimposed.
  • V3BP is input. Therefore, the differential amplifier 44 outputs an amplified signal V4B from which the common mode voltage is removed and a pulse signal having a positive amplitude is superimposed. As a result, the output data VOUT becomes low level through the operations of the differential amplifier 32 and the reception buffer 33 described above.
  • the pulse width amplification circuit 31 performs full-wave rectification on the reception signals V2P and V2N.
  • the receiving circuit 3 can reproduce the transmission data VIN more efficiently based on the reception signals V2P and V2N and output it as output data VOUT.
  • the peak hold circuit 311 and the bottom hold circuit 326 include a capacitive element 322.
  • a configuration in which the peak hold circuit 312 and the bottom hold circuit 325 share the capacitive element 321, and a configuration in which the resistance elements 315, 316, 309, and 310 are connected between the anode and cathode of the corresponding diode Although the case where the configuration in which the bias voltage VBIAS is supplied is described, the present invention is not limited to this, and each configuration may be applied alone or in combination.
  • the other ends (terminals connected to the node N1 or the node N2 side) of the resistance elements 315, 316, 309, and 310 may be directly connected to the power supply voltage terminal VDD2, respectively, or two peak holds.
  • the circuit and the two bottom hold circuits may each independently have a capacitor element. Further, the protection diode described above may be applied.
  • FIG. 12 is a diagram showing a modification of the signal transmission system 1d shown in FIG.
  • the modification of the signal transmission system 1d shown in FIG. 12 is partly different in the connection relationship of the circuit group constituting the pulse width amplifier circuit 31.
  • an RS latch circuit 45 is provided instead of the differential amplifier 32 and the reception buffer 33.
  • the differential amplifiers 43 and 44 constitute a comparison circuit
  • the RS latch circuit 45 has a function corresponding to a reception buffer.
  • the anode of the diode 320 is connected to the node N2, and the cathode of the diode 320 is connected to the node N6.
  • the anode of the diode 324 is connected to the node N4, and the cathode of the diode 324 is connected to the node N2.
  • Capacitance element 321 is provided between nodes N5 and N6.
  • the capacitor 322 is provided between the node N3 and the node N4. There is no change in other connection relationships in the pulse width amplifier circuit 31.
  • the amplified signal V4A is input to the S terminal, the amplified signal V4B is input to the R terminal, and the output data VOUT is output from the Q terminal.
  • the differential amplifier 43 receives the signals output from the peak hold circuit 311 and the bottom hold circuit 326 as holding signals V3AP and V3AN, and outputs an amplified signal V4A corresponding to the potential difference between these holding signals.
  • the differential amplifier 44 receives the signals output from the peak hold circuit 312 and the bottom hold circuit 325 as the holding signals V3BP and V3BN, and outputs an amplified signal V4B corresponding to the potential difference between these holding signals.
  • the non-inverting input terminal of the differential amplifier 43 is The holding signal V3AP on which the positive amplitude pulse signal is superimposed is input, and the holding signal V3AN on which the negative amplitude pulse signal is superimposed is input to the inverting input terminal of the differential amplifier 43. Therefore, the differential amplifier 43 outputs the amplified signal V4A on which the common mode voltage is removed and the positive amplitude pulse signal is superimposed.
  • the holding signals V3BP and V3BN on which no pulse signal is superimposed are input to the non-inverting input terminal and the inverting input terminal of the differential amplifier 44, respectively. Therefore, the differential amplifier 44 outputs an amplified signal V4B on which no pulse signal is superimposed.
  • the RS latch circuit 45 outputs high-level output data VOUT because the amplified signal V4A on which the positive amplitude pulse signal is superimposed is input to the S terminal.
  • the non-inverting input terminal of the differential amplifier 43 and Holding signals V3AP and V3AN on which no pulse signal is superimposed are input to the inverting input terminal. Therefore, the differential amplifier 43 outputs an amplified signal V4A on which no pulse signal is superimposed.
  • the holding signal V3BN on which the positive amplitude pulse signal is superimposed is input to the non-inverting input terminal of the differential amplifier 44, and the negative amplitude pulse signal is superimposed on the inverting input terminal of the differential amplifier 44.
  • the holding signal V3BP is input.
  • the differential amplifier 44 outputs an amplified signal V4B from which the common mode voltage is removed and a pulse signal having a positive amplitude is superimposed.
  • the RS latch circuit 45 outputs low-level output data VOUT because the amplified signal V4B on which the positive amplitude pulse signal is superimposed is input to the R terminal.
  • the transmission data VIN can be more efficiently reproduced and output as the output data VOUT based on the reception signals V2P and V2N.
  • FIG. 13 is a diagram showing another modification of the signal transmission system 1d shown in FIG.
  • the connection relationship of the circuit group constituting the pulse width amplifier circuit 31 is changed in the same manner as the pulse width amplifier circuit 31 shown in FIG.
  • FIG. 14 is a diagram showing a signal transmission system 1e according to the sixth embodiment of the present invention.
  • the signal transmission system 1 e according to the present embodiment includes a pulse width amplification circuit 31 including a threshold circuit (first threshold circuit) 313 and a threshold.
  • a circuit (second threshold circuit) 314, resistive elements 315 and 316, and capacitive elements 317 and 318 are provided.
  • the other circuit configuration of the signal transmission system 1e according to the present embodiment is the same as that of the signal transmission system 1 according to the first embodiment shown in FIG.
  • the input terminal is connected to one end of the secondary coil 12, and the output terminal is connected to the non-inverting input terminal of the differential amplifier 32.
  • the resistance element 315 has one end connected to the non-inverting input terminal of the differential amplifier 32 and the other end connected to the ground voltage terminal GND2.
  • the capacitive element 317 one end is connected to the non-inverting input terminal of the differential amplifier 32, and the other end is connected to the ground voltage terminal GND2.
  • the input terminal is connected to the other end of the secondary coil 12, and the output terminal is connected to the inverting input terminal of the differential amplifier 32.
  • the resistance element 316 has one end connected to the inverting input terminal of the differential amplifier 32 and the other end connected to the ground voltage terminal GND2.
  • the capacitive element 318 one end is connected to the inverting input terminal of the differential amplifier 32, and the other end is connected to the ground voltage terminal GND2.
  • FIG. 15 is a graph showing the operation of the threshold circuits 313 and 314. Since the threshold circuits 313 and 314 have the same circuit configuration, the threshold circuit 313 will be described below as a representative.
  • the threshold circuit 313 When the potential difference Vm across the threshold circuit 313 is larger than the threshold voltage Vth3, a current im having a magnitude proportional to the voltage Vm flows through the threshold circuit 313. Further, even when the potential difference Vm between both ends becomes smaller than the threshold voltage Vth4, a current im having a magnitude proportional to the magnitude of the voltage Vm flows through the threshold circuit 313.
  • the potential difference Vm between both ends is not less than the threshold voltage Vth4 and not more than Vth3, no current flows in the threshold circuit 313.
  • FIG. 16 is a specific configuration example of the threshold circuits 313 and 314 having diodes as threshold elements.
  • the threshold circuit 313 includes a diode (first threshold circuit) 319 and a diode (third threshold circuit) 323 that are two threshold elements through which a current flows when a certain potential difference is generated between the input terminal and the output terminal. .
  • the anode of the diode 319 and the cathode of the diode 323 are connected to one end of the secondary coil 12.
  • the cathode of the diode 319 and the anode of the diode 323 are connected to the non-inverting input terminal of the differential amplifier 32.
  • the threshold circuit 314 includes a diode (second threshold circuit) 320, a diode (fourth threshold circuit) 324, which are two threshold elements through which a current flows when a certain potential difference occurs between the input terminal and the output terminal.
  • the anode of the diode 320 and the cathode of the diode 324 are connected to the other end of the secondary coil 12.
  • the cathode of the diode 320 and the anode of the diode 324 are connected to the inverting input terminal of the differential amplifier 32.
  • the threshold element is not limited to a diode, and a configuration in which a gate terminal of an n-channel MOS transistor or a p-channel MOS transistor is short-circuited to a source terminal or a drain terminal may be used.
  • FIG. 17 is a timing chart showing the operation of the signal transmission system 1e shown in FIGS.
  • FIG. 17 differences from the operation of the signal transmission system 1 according to the first embodiment will be mainly described.
  • the capacitor element 317 is charged or discharged. That is, the pulse signal superimposed on the reception signal V2P is held in the capacitor 317. As a result, the pulse width of the pulse signal superimposed on the reception signal V2P is expanded and input to the non-inverting input terminal of the differential amplifier 32 as the holding signal V3P. Thereafter, if the capacitor 317 is not charged or discharged for a certain time or more, the voltage of the holding signal V3P converges to the ground voltage GND2 via the resistor element 315. At this time, the potential difference between the holding signal V3P and the ground voltage GND2 has a waveform as indicated by V3P-GND2 in FIG.
  • the capacitor element 318 is charged or discharged. That is, the pulse signal superimposed on the reception signal V2N is held in the capacitor 318. As a result, the pulse width of the pulse signal superimposed on the reception signal V2N is expanded and input to the inverting input terminal of the differential amplifier 32 as the holding signal V3N. Thereafter, if the capacitor 318 is not charged or discharged for a certain time or more, the voltage of the holding signal V3N converges to the ground voltage GND2 via the resistor 316. At this time, the potential difference between the holding signal V3N and the ground voltage GND2 has a waveform as indicated by V3N-GND2 in FIG.
  • the differential amplifier 32 cancels the common mode voltage superimposed on the holding signal V3P and the holding signal V3N, and outputs transmission signals V4P and V4N.
  • the potential difference between the transmission signal V4P and the ground voltage GND2 has a waveform as indicated by V4-GND2 in FIG.
  • the reception buffer 33 reproduces the transmission data VIN based on the output pulse of the differential amplifier 32 and outputs it as output data VOUT.
  • the potential difference between the output data VOUT and the ground voltage GND2 has a waveform as shown by VOUT ⁇ GND2 in FIG.
  • the pulse width amplifier circuit 31 provided with the threshold circuits 313 and 314 detects the pulse signal superimposed on the reception signals V2P and V2N, holds the pulse signal for a predetermined period, and outputs it as the hold signals V3P and V3N. That is, the pulse width amplification circuit 31 provided with the threshold circuits 313 and 314 expands the pulse width of the pulse signal superimposed on the reception signals V2P and V2N, and outputs it as the holding signals V3P and V3N. Therefore, the differential amplifier 32 at the subsequent stage can operate with high accuracy even if it is not constituted by a fine CMOS. In other words, since the receiving circuit 3 can expand the pulse width of the pulse signal superimposed on the received signals V2P and V2N, the circuit scale of the transformer 10 is not increased for the purpose of expanding the pulse width. The differential amplifier 32 can be operated with high accuracy.
  • the transformer 10 includes a primary coil 11 and a secondary coil 12 having a center tap to which a predetermined voltage is supplied from an external terminal.
  • the reception circuit 3 can cancel the common mode voltage superimposed on the reception signals V2P and V2N generated at both ends of the secondary coil 12 using the differential amplifier at the subsequent stage. For these reasons, the receiving circuit 3 can prevent signal transmission by suppressing the influence of the common mode voltage without increasing the circuit scale.
  • FIG. 18 is a diagram illustrating a signal transmission system 1f according to the seventh embodiment of the present invention.
  • the signal transmission system 1f according to the present embodiment differs from the signal transmission system 1e according to the sixth embodiment in the configuration of the pulse width amplification circuit 31, and includes resistance elements 39 and 40 and capacitive elements 41 and 42. Further prepare. Since the other circuit configuration of the signal transmission system 1f according to the present embodiment is the same as that of the signal transmission system 1e according to the sixth embodiment, the description thereof is omitted.
  • the pulse width amplification circuit 31 shown in FIG. 18 includes a capacitive element 321 instead of the capacitive elements 317 and 318, as compared with the pulse width amplification circuit 31 shown in FIG.
  • the capacitive element 321 one end is connected to the non-inverting input terminal of the differential amplifier 32 and the other end is connected to the inverting input terminal of the differential amplifier 32. That is, the capacitive element 321 is shared.
  • the receiving circuit 3 according to the present embodiment can reduce the occupation area of the capacitive element to about half as described above.
  • the resistance element 315 is connected in parallel with the diodes 319 and 323.
  • Resistance element 316 is connected in parallel with diodes 320 and 324.
  • the receiving circuit 3 actively propagates a relatively low-frequency common mode voltage to the differential amplifier 32 at the subsequent stage, so that each input / output terminal of the threshold circuits 313 and 314 is input. Therefore, the threshold value circuits 313 and 314 can be operated with high accuracy.
  • the common-mode voltage having the same phase is canceled (removed) by the differential amplifier 32.
  • the power supply voltage VDD2 which is a predetermined voltage is supplied to the center tap of the secondary coil 12 from the power supply voltage terminal VDD2 which is an external terminal, instead of the ground voltage GND2.
  • the capacitive element 41 is provided between one end of the secondary coil 12 and the anode of the diode 319.
  • the capacitive element 42 is provided between the other end of the secondary coil 12 and the anode of the diode 320.
  • a bias voltage VBIAS is supplied to the anode of the diode 319 and the anode of the diode 320 via the resistance elements 39 and 40, respectively.
  • the anode of the diode 319 and the anode of the diode 320 are biased by the bias voltage VBIAS.
  • both input terminals of the differential amplifier 32 are also biased by the bias voltage VBIAS via the resistance elements 315 and 316. Thereby, for example, the voltage levels of both input terminals of the differential amplifier 32 can be adjusted.
  • the threshold circuit 313 side and the threshold circuit 314 side share the capacitor element 321 and the resistor elements 315 and 316 are connected between the input and output terminals of the corresponding threshold circuit.
  • the case where the configuration and the configuration to which the bias voltage VBIAS is supplied has been described.
  • the present invention is not limited to this, and each configuration may be applied alone or may be applied in combination. Therefore, for example, the other ends (terminals connected to the secondary coil 12 side) of the resistance elements 315 and 316 may be directly connected to the power supply voltage terminal VDD2, or the threshold circuit 313 side and the threshold circuit may be connected.
  • a configuration may be employed in which each of the 314 side has a capacitor element alone. Further, the protection diode described above may be applied.
  • FIG. 19 is a diagram showing a modification of the signal transmission system 1f shown in FIG. In the modification of the signal transmission system 1 f shown in FIG. 19, different bias voltages are supplied to the anode and cathode of each diode constituting the threshold circuits 313 and 314. This will be specifically described below.
  • the reception circuit 3 illustrated in FIG. 19 includes resistance elements 47 and 48 and capacitance elements 49 and 50. Further prepare.
  • the resistance element 315 one end is connected to the non-inverting input terminal of the differential amplifier 32, and the other end is supplied with the bias voltage VBIAS3. That is, the bias voltage VBIAS3 is supplied to the cathode of the diode 319 and the anode of the diode 323 via the resistance element 315.
  • the resistance element 316 has one end connected to the inverting input terminal of the differential amplifier 32 and the other end supplied with the bias voltage VBIAS3. That is, the bias voltage VBIAS3 is supplied to the cathode of the diode 320 and the anode of the diode 324 via the resistance element 316.
  • the anode of the diode 319 is connected to one end of the secondary coil 12 through the capacitive element 41.
  • the anode of the diode 320 is connected to the other end of the secondary coil 12 through the capacitive element 42.
  • the resistance element 39 one end is connected to the anode of the diode 319, and the other end is supplied with the bias voltage VBIAS2.
  • the resistance element 40 one end is connected to the anode of the diode 320, and the other end is supplied with the bias voltage VBIAS2. That is, the bias voltage VBIAS2 is supplied to the anodes of the diodes 319 and 320 via the resistance elements 39 and 40, respectively.
  • the cathode of the diode 323 is connected to one end of the secondary coil 12 through the capacitive element 49.
  • the cathode of the diode 324 is connected to the other end of the secondary coil 12 via the capacitive element 50.
  • the resistance element 47 one end is connected to the cathode of the diode 323, and the other end is supplied with the bias voltage VBIAS1.
  • the resistance element 48 one end is connected to the cathode of the diode 324, and the other end is supplied with the bias voltage VBIAS1. That is, the bias voltage VBIAS1 is supplied to the cathodes of the diodes 323 and 324 via the resistance elements 47 and 48, respectively.
  • the threshold value of a threshold element is a value unique to the element, the threshold value may not be changed in circuit design.
  • different bias voltages are applied to the anodes and cathodes of the diodes 319, 320, 323, and 324 which are threshold elements. Therefore, even if the voltages of the reception signals V2P and V2N generated in the secondary coil 12 are the same, the effective threshold value of these diodes can be arbitrarily adjusted by adjusting the level of each bias voltage. Is possible.
  • FIG. 20 is a diagram of a signal transmission system 1g according to the eighth embodiment of the present invention.
  • the signal transmission system 1g according to the present embodiment further includes an integrator 34 between the differential amplifier 32 and the reception buffer 33.
  • the other circuit configuration of the signal transmission system 1g according to the present exemplary embodiment is the same as that of the signal transmission system 1e according to the sixth exemplary embodiment illustrated in FIG.
  • FIG. 21 is a timing chart showing the operation of the signal transmission system 1g shown in FIG.
  • the receiving buffer 33 determines the logic level based on the polarity of one pulse output from the differential amplifier 32. Instead, the logic level is determined by the integrated value of a plurality of pulses output from the differential amplifier 32. Thereby, the receiving circuit 3 according to the present embodiment is not easily affected by the one-shot pulse due to noise.
  • the integrator 34 may be provided before the differential amplifier 32 as shown in FIG.
  • the case where the pulse width amplifier circuit 31 has two threshold circuits 313 and 314 has been described as an example.
  • the present invention is not limited to this.
  • the configuration can be appropriately changed to any of the configurations of the pulse width amplification circuit 31 described in the above embodiment, such as a configuration in which the pulse width amplification circuit 31 includes two peak hold circuits.
  • FIG. 23 is a diagram illustrating a signal transmission system 1h according to the ninth embodiment of the present invention.
  • the receiving circuit 3 further includes resistance elements 327 and 328 as compared with the signal transmission system 1f according to the seventh embodiment illustrated in FIG.
  • the other circuit configuration of the signal transmission system 1h according to the present exemplary embodiment is the same as that of the signal transmission system 1f according to the seventh exemplary embodiment illustrated in FIG.
  • the resistance element 327 is provided between one end of the capacitive element 321 and the cathode of the diode 319.
  • the resistance element 328 is provided between the other end of the capacitive element 321 and the cathode of the diode 320. That is, the capacitor 321 and the resistance elements 327 and 328 constitute an integrator.
  • the capacitive element 321 is used not only for pulse width amplification but also as a part of the integrator. Thereby, an increase in circuit scale is suppressed.
  • an integrator constituted by the resistance elements 327 and 328 and the capacitive element 51 may be provided between the differential amplifier 32 and the reception buffer 33.
  • the capacitive element 321 is not used as a part of the integrator, the circuit scale is larger than that of the circuit illustrated in FIG.
  • the pulse width amplifying circuit 31 detects the pulse signal superimposed on the reception signals V2P and V2P, holds it for a predetermined period, and outputs it as the holding signals V3P and V3N. That is, the pulse width amplification circuit 31 expands the pulse width of the pulse signal superimposed on the reception signals V2P and V2N, and outputs it as the holding signals V3P and V3N. Therefore, the differential amplifier 32 at the subsequent stage can operate with high accuracy even if it is not constituted by a fine CMOS. In other words, since the receiving circuit 3 according to the first to ninth embodiments can increase the pulse width of the pulse signal superimposed on the received signals V2P and V2N, the transformer is intended to increase the pulse width. The differential amplifier 32 can be operated with high accuracy without increasing the circuit scale of 10.
  • the transformer 10 includes a primary coil 11 and a secondary coil 12 having a center tap to which a predetermined voltage is supplied from an external terminal.
  • the receiving circuit 3 according to the first to ninth embodiments cancels the common mode voltage superimposed on the received signals V2P and V2N generated at both ends of the secondary coil 12 by using the differential amplifier at the subsequent stage. can do.
  • the receiving circuits 3 according to the first to ninth embodiments can prevent the signal transmission by suppressing the influence of the common mode voltage without increasing the circuit scale.
  • the reception buffer 33 is not limited to a hysteresis comparator, and may be a Schmitt trigger circuit or a state circuit that holds a value exceeding a predetermined threshold for a certain period.
  • the full-wave rectification receiving circuit 3 shown in FIGS. 11 to 13 is independent of the anode and cathode of each diode constituting the pulse width amplifying circuit 31 as in the case of the receiving circuit 3 shown in FIG.
  • the configuration can be appropriately changed to a configuration in which a bias voltage is supplied.
  • the arrangement of the transmission circuit 2, the reception circuit 3, and the transformer 10 is not limited to the configuration shown in FIG. FIG. 25 to FIG. 35 show other implementation examples of the signal transmission system according to the present invention.
  • the transmission circuit 2 is formed on the first semiconductor chip 4.
  • a primary coil 11, a secondary coil 12, and a receiving circuit 4 are formed.
  • a pad connected to the transmission circuit 2 is formed on the first semiconductor chip 4, and a pad connected to the primary coil 11 is formed on the second semiconductor chip 5.
  • the transmission circuit 3 is connected to one end of the primary coil 11 formed on the second semiconductor chip 5 via the pad and the bonding wire W.
  • the other end of the primary coil 11 is connected to the ground voltage terminal GND1 on the first semiconductor chip 4 side through a pad and a bonding wire W.
  • the primary coil 11 and the secondary coil 12 are formed in the same wiring layer in one semiconductor chip.
  • the primary side coil 11 and the secondary side coil 12 are formed as windings having substantially the same center position.
  • the transmission circuit 2 is formed on the first semiconductor chip 4.
  • a primary coil 11, a secondary coil 12, and a receiving circuit 4 are formed.
  • a pad connected to the transmission circuit 2 is formed on the first semiconductor chip 4, and a pad connected to the primary coil 11 is formed on the second semiconductor chip 5.
  • the transmission circuit 3 is connected to the primary coil 11 formed on the second semiconductor chip 5 through the pad and the bonding wire W.
  • the center tap of the primary coil 11 is connected to the ground voltage terminal GND1 on the first semiconductor chip 4 side through the pad and the bonding wire W.
  • the primary side coil 11 and the secondary side coil 12 are each formed in the 1st wiring layer and the 2nd wiring layer which are laminated
  • the transmission circuit 2, the primary coil 11, and the secondary coil 12 are formed on the first semiconductor chip 4.
  • a receiving circuit 3 is formed on the second semiconductor chip 5.
  • a pad connected to the secondary coil 12 is formed on the first semiconductor chip 4, and a pad connected to the receiving circuit 3 is formed on the second semiconductor chip 5.
  • the receiving circuit 3 is connected to the secondary coil 12 formed on the first semiconductor chip 4 via the pad and the bonding wire W.
  • the center tap of the secondary coil 12 is connected to the ground voltage terminal GND2 on the second semiconductor chip 5 side through the pad and the bonding wire W.
  • the primary side coil 11 and the secondary side coil 12 are respectively formed in the first wiring layer and the second wiring layer stacked in the vertical direction in one semiconductor chip. Is done. Furthermore, in the example shown in FIG. 29, the primary side coil 11 is formed by two windings with a center tap interposed therebetween, and the secondary side coil 12 is formed by two windings with a center tap interposed therebetween.
  • the primary side coil 11 and the secondary side coil 12 are each formed on the same wiring layer in one semiconductor chip.
  • the primary side coil 11 and the secondary side coil 12 are formed as windings having substantially the same center position.
  • the transmission circuit 2 is formed on the first semiconductor chip 4, the reception circuit 3 is formed on the second semiconductor chip 5, and the primary coil 11 and the secondary coil are formed on the third semiconductor chip 8.
  • a side coil 12 is formed.
  • the first semiconductor chip 4 is formed with a pad connected to the transmission circuit 2
  • the second semiconductor chip 5 is formed with a pad connected to the reception circuit 3, and the third semiconductor chip 8.
  • the transmission circuit 3 is connected to one end of the primary coil 11 formed on the third semiconductor chip 8 through the pad and the bonding wire W.
  • the other end of the primary coil 11 is connected to the ground voltage terminal GND1 on the first semiconductor chip 4 side through a pad and a bonding wire W.
  • the receiving circuit 3 is connected to the secondary coil 12 formed on the third semiconductor chip 8 via the pad and the bonding wire W.
  • the center tap of the secondary coil 12 is connected to the ground voltage terminal GND2 on the second semiconductor chip 5 side through the pad and the bonding wire
  • the primary side coil 11 and the secondary side coil 12 are respectively formed on the first wiring layer and the second wiring layer that are stacked in the vertical direction in one semiconductor chip.
  • the transmission circuit 2 and the primary side coil 11 are formed on the first semiconductor chip 4, the reception circuit 2 and the secondary side coil 12 are formed on the second semiconductor chip 5, In this example, one semiconductor chip 4 and a second semiconductor chip 5 are stacked. In the example shown in FIGS. 31 and 32, the first semiconductor chip 4 and the center position of the primary side coil 11 and the center position of the secondary side coil 12 are aligned in the stacked state. A second semiconductor chip 5 is arranged.
  • the transmission circuit 2, the reception circuit 3, the primary side coil 11, and the secondary side coil 12 are formed on the same semiconductor chip 9.
  • the primary side coil 11 and the secondary side coil 12 are respectively formed in the first wiring layer and the second wiring layer stacked in the vertical direction in the semiconductor chip 9.
  • the region where the transmission circuit 2 is disposed and the region where the reception circuit 3 is disposed are insulated from each other by an insulating layer formed in the substrate of the semiconductor chip 9.
  • the region where the transmission circuit 2 is formed and the region where the reception circuit 3 is formed are electrically separated by an insulating layer.
  • the primary side coil 11 and the secondary side coil 12 are provided in the area
  • the region where the transmission circuit 2 is formed and the region where the reception circuit 3 is formed are electrically separated by an insulating layer.
  • the primary side coil 11 and the secondary side coil 12 are provided in the area
  • FIG. 36 shows a layout example of the secondary coil 12.
  • FIG. 37 is an equivalent circuit of FIG. One end P1 and the other end P2 of the secondary coil 12 are connected to a receiving circuit 3 (not shown).
  • the shape of the winding is a shape close to a line object.
  • the differential amplifier 32 provided in the subsequent stage of the receiving circuit 3 can accurately remove the common mode voltage in phase.
  • one of the two intersecting wirings is an adjacent wiring layer (for example, , The second wiring layer).
  • the second wiring layer For example, when the coil is traced with the one end P1 of the secondary coil 12 as the starting point and the other end P2 as the ending point, the coil is sequentially connected to the second wiring layer and the first wiring at the plurality of intersecting portions X. It is desirable that wiring is performed on the wiring layers alternately with the first wiring layer, the second wiring layer, and the first wiring layer.
  • FIGS. 38 and 39 show examples of the layout of the two peak hold circuits provided in the reception circuit 3 and the differential amplifier 32 at the subsequent stage. As shown in FIGS. 38 and 39, it is preferable that the two peak hold circuits are arranged with respect to each other, and the wiring between the two peak hold circuits and the subsequent differential amplifier 32 has a length, It is preferable that the shapes and the like are equivalent to each other. Furthermore, as shown in FIG. 39, the differential amplifier 32 may be divided into two and laid out as a line target.
  • the inventor also examined a signal transmission system 100b as shown in FIG.
  • the signal transmission system 100b shown in FIG. 44 includes a transmission circuit 120, a reception circuit 130b, and a transformer 110.
  • the transmission circuit 120 and the transformer 110 shown in FIG. 44 are the same as the circuit configuration of the transmission circuit 120 and the transformer 110 shown in FIG.
  • the reception circuit 130b includes a peak hold circuit 131a, a bottom hold circuit 131b, a comparison circuit 134, and a reception buffer 133.
  • the input terminal of the peak hold circuit 131a and the input terminal of the peak hold circuit 131b are connected to one terminal of the secondary coil 12.
  • the output terminal of the peak hold circuit 131 a is connected to one input terminal of the comparison circuit 134.
  • the output terminal of the bottom hold circuit 131b is connected to the other input terminal of the comparison circuit 134.
  • the output terminal of the comparison circuit 134 is connected to the input terminal of the reception buffer 133.
  • the output terminal of the reception buffer 133 is connected to the external output terminal of the reception circuit 3.
  • FIG. 45 is a diagram illustrating a specific configuration example of the peak hold circuit 131a, the bottom hold circuit 131b, and the comparison circuit 134 illustrated in FIG. 45 further includes resistance elements 137 and 138 and capacitive elements 135 and 136 in order to supply a bias voltage VBIAS between the input / output terminals of the peak hold circuit 131a and the bottom hold circuit 131b.
  • the peak hold circuit 131a includes a diode 159, a capacitor element 155, and a resistance element 157.
  • the bottom hold circuit 131b includes a diode 160, a capacitor element 156, and a resistance element 158.
  • the comparison circuit 134 includes differential amplifiers 151 to 153.
  • the anode is connected to one end of the capacitive element 135, and the cathode is connected to the non-inverting input terminal of the differential amplifier 151.
  • the capacitive element 155 one end is connected to the cathode of the diode 159, and the other end is connected to the ground voltage terminal GND2.
  • the resistance element 157 one end is connected to the cathode of the diode 159, and the bias voltage VBIAS is supplied to the other end.
  • the resistance element 137 has one end connected to the anode of the diode 159 and the other end supplied with the bias voltage VBIAS.
  • the other end of the capacitive element 135 is connected to one end of the secondary coil 112.
  • the cathode is connected to one end of the capacitive element 136, and the anode is connected to the inverting input terminal of the differential amplifier 152.
  • the capacitive element 156 one end is connected to the anode of the diode 160, and the other end is connected to the ground voltage terminal GND2.
  • the resistance element 158 has one end connected to the anode of the diode 160 and the other end supplied with the bias voltage VBIAS.
  • the resistance element 138 one end is connected to the cathode of the diode 160, and the other end is supplied with the bias voltage VBIAS.
  • the other end of the capacitive element 136 is connected to one end of the secondary coil 112.
  • the bias voltage VBIAS is supplied to the inverting input terminal, and the output terminal is connected to the non-inverting input terminal of the differential amplifier 153.
  • the bias voltage VBIAS is supplied to the non-inverting input terminal, and the output terminal is connected to the inverting input terminal of the differential amplifier 153.
  • a pair of output terminals of the differential amplifier 153 are connected to corresponding input terminals of the reception buffer 133, respectively.
  • the peak hold circuit 131a detects a positive amplitude pulse signal from among the pulse signals superimposed on the reception signal V2, and outputs the hold signal V3P after holding it for a predetermined period.
  • the bottom hold circuit 131b detects a negative amplitude pulse signal from among the pulse signals superimposed on the reception signal V2, and outputs the hold signal V3N after holding the pulse signal for a predetermined period.
  • the differential amplifier 151 outputs an amplified signal V4A corresponding to the potential difference between the hold signal V3P, which is a positive amplitude pulse signal with an expanded pulse width, and the bias voltage VBIAS.
  • the differential amplifier 152 outputs an amplified signal V4B corresponding to the potential difference between the holding signal V3N, which is a negative amplitude pulse signal with an expanded pulse width, and the bias voltage VBIAS.
  • the differential amplifier 153 outputs transmission signals V4P and V4N corresponding to the potential difference between the amplified signal V4A and the amplified signal V4B.
  • the reception buffer 133 reproduces the transmission data VIN based on the transmission signals V4P and V4N and outputs it as output data VOUT.
  • the peak hold circuit 131a and the bottom hold circuit 131b expand the pulse width of the pulse signal superimposed on the reception signal V2, and hold signals V3P and V3N, respectively. Is output. Therefore, the subsequent differential amplifier can operate even if it is not constituted by a fine CMOS.
  • 46 and 47 are examples of a circuit configuration in which a circuit configuration including one peak hold circuit and one bottom hole circuit and a configuration of the secondary coil 12 having a center tap are simply combined. . 46 is an example of a circuit configuration for half-wave rectifying the received signals V2P and V2N, and FIG. 47 is an example of a circuit configuration for full-wave rectifying the received signals V2P and V2N.
  • the voltage level of the holding signal V3P output from the peak hold circuit 131a always shows the bias voltage VBIAS or higher.
  • the voltage level of the hold signal V2N output from the bottom hold circuit 131b always shows the bias voltage VBIAS or lower. Therefore, the output data VOUT is likely to be at a high level regardless of the value of the transmission data VIN.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dc Digital Transmission (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 本発明にかかる受信回路(3)は、送信信号(V1)を出力する送信回路(2)とは異なる電源系において動作し、送信信号(V1)の流れる一次側コイル(11)と、外部端子から所定電圧の供給されるセンタータップを有する二次側コイル(12)と、が磁気的に結合された交流結合素子を介して、送信信号(V1)を受信する受信回路(3)であって、二次側コイル(12)の両端に発生するパルス信号を所定期間保持し、それぞれ保持信号(V3P,V3N)として出力するパルス幅増幅回路(31)と、保持信号(V3P)の電圧と保持信号(V3N)の電圧とを比較して比較結果を出力する差動アンプ(32)と、を備える。

Description

受信回路及び信号受信方法
 本発明は、受信回路及び信号受信方法に関し、特に交流結合素子を介して信号を受信する受信回路及び信号受信方法に関する。
 電源電圧の異なる複数の半導体チップ間で信号を伝達する場合、配線により直接信号を伝達すると、伝達する信号の直流電圧成分に生じた電圧差によって半導体チップの破損や信号伝達の不具合が生じることがある。そこで、電源電圧の異なる複数の半導体チップ間で信号を伝達する場合、半導体チップ間を交流結合素子で接続し、交流信号のみを伝達することが行われる。この交流結合素子には、コンデンサやトランスフォーマがある。
 トランスフォーマは、一次側コイルと二次側コイルとが磁気的に結合される交流結合素子である。交流結合素子としてトランスフォーマを用いた場合、トランスフォーマの一次側コイルと二次側コイルとの巻線比を調整することにより、送信側の半導体チップから送信される信号(送信信号)の電圧振幅に関わらず、受信側の半導体チップに適切な電圧振幅の信号(受信信号)が伝達される。そのため、異なる電源電圧で動作する半導体チップ間の通信をトランスフォーマを介して行うことにより、送信信号又は受信信号の電圧振幅を半導体チップ上で調整する必要が無くなる。以下の説明では、半導体チップ上に形成されたトランスフォーマを場合に応じてオンチップトランスフォーマと称す。
 トランスフォーマを用いた信号伝達技術の例が特許文献1~6及び非特許文献1に開示されている。
 特許文献1、2には、2つのオンチップトランスフォーマを用いて、データの値が第1の値から第2の値に遷移すると第1のトランスフォーマにパルス信号を送出し、データの値が第2の値から第1の値に遷移すると第2のトランスフォーマにパルス信号を送出する技術が開示されている。
 特許文献3には、第1の半導体チップと第2の半導体チップとの間に設けられた別チップ上にトランスフォーマが形成された構成が開示されている。
 特許文献4には、データの値が第1の値から第2の値に遷移するとオンチップトランスフォーマに1つのパルスからなる信号を送出し、データの値が第2の値から第1の値に遷移するとオンチップトランスフォーマに連続する2つのパルスからなる信号を送出する技術が開示されている。
 特許文献5には、データの値が第1の値の期間はオンチップトランスフォーマに連続的なパルス信号を送出し続け、データの値が第2の値の期間はオンチップトランスフォーマに信号を固定する技術が開示されている。
 特許文献6には、絶縁された1次回路と2次回路との間の信号伝達を、トランスフォーマを用いて行う技術が開示されている。
 非特許文献1には、高電圧のパワー回路部と低電圧の制御回路部との間の信号伝達を、オンチップトランスフォーマを介して行う技術が開示されている。
米国特許第6873065B2号明細書 米国特許第6262600B1号明細書 米国特許第7064442B1号明細書 米国特許第7075329B2号明細書 米国特許第7302247B2号明細書 特開昭61-218210号公報
進藤智則、「ルネサスの新型アイソレータ電力回路をフォトカプラ・レスに」、日経エレクトロニクス、2010年9月6日号、p.12-13
 ところで、発明者は、上記特許文献1~6及び非特許文献1に開示された信号伝達技術には、一般的に図40に示すようなトランスフォーマの構成が採用されることを発見した。図40は、一般的なトランスフォーマの構成が採用された信号伝達システム100を示す図である。図40に示す信号伝達システム100は、第1の電源系に属する第1の電源(電源電圧VDD1、接地電圧GND1)に基づき動作する送信回路120と、第2の電源系に属する第2の電源(電源電圧VDD2、接地電圧GND2)に基づき動作する受信回路130と、トランスフォーマ110と、を備える。
 送信回路120は、送信バッファ121を備える。受信回路130は、受信バッファ133を備える。そして、送信回路120と受信回路130との間には、トランスフォーマ110が設けられる。トランスフォーマ110は、一次側コイル111及び二次側コイル112からなり、交流信号を一次側コイル111から二次側コイル112に伝達する交流結合素子である。一次側コイル111と二次側コイル112とは互いに磁気的に結合される。
 一次側コイル111では、一端が送信バッファ121の出力端子に接続され、他端が接地電圧GND1の供給される接地電圧端子(以下、GND1と称す)に接続される。二次側コイル112では、一端が受信バッファ133の入力端子に接続され、他端が接地電圧GND2の供給される接地電圧端子(以下、GND2と称す)に接続される。
 信号伝達システム100において、送信バッファ121は送信データVINをパルス信号に変換して送信信号V1として一次側コイル111に出力する。この送信信号V1は一次側コイル111によって磁気信号に変換され、当該磁気信号は二次側コイル112によって受信信号V2に変換される。受信バッファ133は、当該受信信号V2に基づいて送信データVINを再生し出力データVOUTとして出力する。これによって、電気的に絶縁された第1及び第2の半導体チップ間の信号伝達が可能になる。
 ここで、図40に示す信号伝達システム100は、主として数百ボルトを扱う電力制御回路に用いられるため、送信回路120側の接地電圧GND1と受信回路130側の接地電圧GND2とが大きく変動する場合がある。この接地電圧GND1と接地電圧GND2との差電圧をコモンモード電圧と呼ぶ。コモンモード電圧が大きく変動すると、トランスフォーマ110を構成する一次側コイル111と二次側コイル112との間に形成される寄生結合容量Ccにより電源間ノイズが発生し、信号の誤伝達が発生するという問題がある。この問題について図41を用いて具体的に説明する。
 図41は、信号伝達システム100の動作を示すタイミングチャートである。送信バッファ121が出力する送信信号V1には、図41のV1-GND1において示されるように、送信データVINがハイレベルの期間において正振幅のパルス信号が重畳され、送信データVINがロウレベルの期間において負振幅のパルス信号が重畳される。このとき、接地電圧GND1と接地電圧GND2の間に図41のGND2-GND1において示されるような相対的な電位差がある場合、受信バッファ133が受信する受信信号V2と接地電圧GND2との間の電位差は、図41のV2-GND2において示されるような波形となる。つまり、受信信号V2には、接地電圧GND1と接地電圧GND2との間の相対的な電位差、即ち、コモンモード電圧が重畳される。
 コモンモード電圧が大きく変動すると、送信バッファ121が送信信号V1として正振幅のパルス信号を送信していない期間であっても、受信信号V2の電圧レベルが受信バッファ133の上側閾値電圧Vth1を上回ってしまい、受信バッファ133によって再生される出力データVOUTの波形に不具合が生じる。また、送信バッファ121が送信信号V1として負振幅のパルス信号を送信していない期間であっても、受信信号V2の電圧レベルが受信バッファ133の下側閾値電圧Vth2を下回ってしまい、受信バッファ133によって再生される出力データVOUTの波形に不具合が生じる。その結果、例えば、図41のVOUT-GND2の期間Xにおいて、信号の誤伝達が発生する。
 このように、電源電圧の異なる複数の半導体チップ間の従来の信号伝達技術では、コモンモード電圧の影響により、信号の誤伝達が発生するという問題があった。
 本発明にかかる受信回路は、送信信号を出力する送信回路とは異なる電源系において動作し、前記送信信号の流れる一次側コイルと、外部端子から所定電圧の供給されるセンタータップを有する二次側コイルと、が磁気的に結合された交流結合素子を介して、当該送信信号を受信する受信回路であって、前記二次側コイルの両端に発生するパルス信号を所定期間保持し、それぞれ第1及び第2保持信号として出力するパルス幅増幅回路と、前記第1保持信号の電圧と前記第2保持信号の電圧とを比較して比較結果を出力する比較回路と、を備える。
 本発明にかかる受信回路の信号受信方法は、送信信号を出力する送信回路とは異なる電源系において動作し、前記送信信号の流れる一次側コイルと、外部端子から所定電圧の供給されるセンタータップを有する二次側コイルと、が磁気的に結合された交流結合素子を介して、当該送信信号を受信する受信回路の信号受信方法であって、前記二次側コイルの両端に発生するパルス信号を所定期間保持し、それぞれ第1及び第2保持信号として出力し、前記第1保持信号の電圧と前記第2保持信号の電圧とを比較して比較結果を出力する。
 上述のような回路構成及び方法により、回路規模を増大させることなく、コモンモード電圧の影響を抑制して信号の伝達を防止することができる。
 本発明により、回路規模を増大させることなく、コモンモード電圧の影響を抑制して信号の伝達を防止することが可能な受信回路及びその信号受信方法を提供することができる。
本発明の実施の形態1にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態1にかかる信号伝達システムの実装状態を示す模式図である。 本発明の実施の形態1にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態1にかかる信号伝達システムの動作を示すタイミングチャートである。 本発明の実施の形態1にかかる信号伝達システムを示すブロック図である。 閾値素子の構成例を示す図である。 本発明の実施の形態2にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態3にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態3にかかる信号伝達システムの変形例を示すブロック図である。 本発明の実施の形態4にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態5にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態5にかかる信号伝達システムの変形例を示すブロック図である。 本発明の実施の形態5にかかる信号伝達システムの変形例を示すブロック図である。 本発明の実施の形態6にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態6にかかる閾値回路の出力特性を示す図である。 本発明の実施の形態6にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態6にかかる信号伝達システムの動作を示すタイミングチャートである。 本発明の実施の形態7にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態7にかかる信号伝達システムの変形例を示すブロック図である。 本発明の実施の形態8にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態8にかかる信号伝達システムの動作を示すタイミングチャートである。 本発明の実施の形態8にかかる信号伝達システムの変形例を示すブロック図である。 本発明の実施の形態9にかかる信号伝達システムを示すブロック図である。 本発明の実施の形態9にかかる信号伝達システムの変形例を示すブロック図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる信号伝達システムの実装状態を示す模式図である。 本発明にかかる二次側コイルのレイアウトの一例を示す図である。 図36の等価回路を示す図である。 本発明にかかる受信回路のレイアウトの一例を示す図である。 本発明にかかる受信回路のレイアウトの一例を示す図である。 従来技術の信号伝達システムを示すブロック図である。 従来技術の信号伝達システムの動作を示すタイミングチャートである。 本発明に至る前の構想にかかる信号伝達システムを示すブロック図である。 本発明に至る前の構想にかかる信号伝達システムの動作を示すタイミングチャートである。 本発明に至る前の構想にかかる信号伝達システムを示すブロック図である。 本発明に至る前の構想にかかる信号伝達システムを示すブロック図である。 本発明に至る前の構想にかかる信号伝達システムを示すブロック図である。 本発明に至る前の構想にかかる信号伝達システムを示すブロック図である。
 まず、発明者は、本発明に至る前に図42に示すような信号伝達システム100aを検討した。図42に示す信号伝達システム100aは、送信回路120と、受信回路130と、トランスフォーマ110aと、を備える。送信回路120は、第1の半導体チップ上に形成され、第1の電源系に属する第1の電源(電源電圧VDD1、接地電圧GND1)に基づき動作する。受信回路130は、第2の半導体チップ上に形成され、第2の電源系に属する第2の電源(電源電圧VDD2、接地電圧GND2)に基づき動作する。トランスフォーマ110aは、第1及び第2半導体チップのいずれに形成されても良いし、別チップに形成されても良い。
 送信回路120は、送信バッファ121を備える。受信回路130は、受信バッファ133と差動アンプ132とを備える。そして、送信回路120と受信回路130との間には、トランスフォーマ110aが設けられる。
 トランスフォーマ110aは、一次側コイル111及び二次側コイル112からなり、交流信号を一次側コイル111から二次側コイル112に伝達する交流結合素子である。一次側コイル111と二次側コイル112とは互いに磁気的に結合される。なお、二次側コイル112上にはセンタータップが設けられている。
 一次側コイル111では、一端が送信バッファ121の出力端子に接続され、他端が接地電圧端子GND1に接続される。一方、二次側コイル112では、一端が差動アンプ132の非反転入力端子に接続され、他端が差動アンプ132の反転入力端子に接続され、センタータップが接地電圧端子GND2に接続される。そして、差動アンプ132の一対の出力端子は、それぞれ受信バッファ133の対応する入力端子に接続される。
 図43は、信号伝達システム100aの動作を示すタイミングチャートである。なお、信号伝達システム100aの基本動作は図40に示す信号伝達システム100の場合と同様であるため、ここでは、主として信号伝達システム100aの動作の特徴的部分について説明する。接地電圧GND1と接地電圧GND2との間に図43のGND1-GND2において示されるような相対的な電位差がある場合、二次側コイル112の一端に発生する受信信号V2Pの電圧と、接地電圧GND2と、の間の電位差は、図43のV2P-GND2において示されるような波形となる。一方、二次側コイル112の他端に発生する受信信号V2Nの電圧と、接地電圧GND2と、の間の電位差は、図43のV2N-GND2において示されるような波形となる。
 これら2つの波形を見てもわかるように、送信信号V1として正振幅のパルス信号が伝達された場合、二次側コイル112の一端には正振幅のパルス信号が発生し、二次側コイル112の他端には負振幅のパルス信号が発生する。一方、送信信号V1として負振幅のパルス信号が伝達された場合、二次側コイル112の一端には負振幅のパルス信号が発生し、二次側コイル112の他端には正振幅のパルス信号が発生する。つまり、二次側コイル12の両端には、互いに振幅方向の異なるパルス信号が発生する。換言すると、二次側コイル12の両端には、振幅中心電位に対して互いに反転したパルス信号が発生する。それに対し、二次側コイル112の両端に発生する受信信号V2P,V2Nには、同相のコモンモード電圧が重畳される。
 したがって、差動アンプ132は、受信信号V2P,V2Nに重畳された同相のコモンモード電圧を相殺して、図43のV3-GND2において示されるような波形を出力する。そして、受信バッファ133は、差動アンプ132の出力パルスに基づいて送信データVINを再生し出力データVOUTとして出力する。このように、信号伝達システム100aは、センタータップを有する二次側コイル112と差動アンプ132とを用いることにより、コモンモード電圧の影響を抑制し、信号の誤伝達を防止している。
 ここで、信号伝達システム100aを動作可能にするためには、差動アンプ132が動作可能な周波数までキャリア信号(搬送波)の周波数を下げる必要がある。しかし、キャリア信号の周波数を下げるためにはトランスフォーマ110aのサイズを大きくする必要があるため、その結果、回路規模が増大してしまうという問題があった。
 なお、一般的に、差動アンプが微細CMOSによって構成されている場合、当該差動アンプは高周波の入力信号を増幅することが可能である。しかし、微細CMOSによって構成された差動アンプは、高電圧が供給される電力制御用半導体には適さない。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。なお、図面は簡略的なものであるから、この図面の記載を根拠として本発明の技術的範囲を狭く解釈してはならない。また、同一の要素には、同一の符号を付し、重複する説明は省略する。
 実施の形態1
 図1は、本発明の実施の形態1にかかる信号伝達システム1を示す図である。本実施の形態にかかる信号伝達システム1に設けられた受信回路3は、センタータップを有する二次側コイル12の両端に発生するパルス信号のパルス幅を拡大し、第1及び第2保持信号として出力するパルス幅増幅回路を備える。なお、二次側コイルのセンタータップには外部端子から所定電圧が供給される。それにより、受信回路3は、回路規模を増大させることなく、コモンモード電圧の影響を抑制して信号の伝達を防止することができる。以下、具体的に説明する。
 図1に示す信号伝達システム1は、送信回路2と、受信回路3と、トランスフォーマ10と、を備える。トランスフォーマ10は、一次側コイル11と二次側コイル12とを有する。トランスフォーマ10は、交流信号を一次側コイル11から二次側コイル12に伝達する交流結合素子である。一次側コイル11と二次側コイル12とは互いに磁気的に結合される。
 ここで、一次側コイル11と二次側コイル12との間には寄生結合容量Ccが形成されるものとする。この寄生結合容量Ccは、一次側コイル11を構成する金属配線と、二次側コイル12を構成する金属配線と、の間に充填される絶縁体を誘電体膜とするコンデンサである。以下、他の実施例においても寄生結合容量Ccは同様の構成により形成されるものとする。
 図2は、信号伝達システム1の実装例を示す。図2に示す実装状態は、半導体パッケージ6に第1の半導体チップ4及び第2の半導体チップ5が搭載される。この第1の半導体チップ4及び第2の半導体チップ5は、それぞれパッドPdを有する。そして、第1の半導体チップ4及び第2の半導体チップ5のパッドPdは、図示しないボンディングワイヤを介して半導体パッケージ6に設けられたリード端子7と接続される。
 第1の半導体チップ4には送信回路2が形成される。第2の半導体チップ5には、受信回路3、一次側コイル11及び二次側コイル12が形成される。また、第1の半導体チップ4には、送信回路2と接続されるパッドが形成され、第2の半導体チップ5には、一次側コイル11と接続されるパッドが形成される。そして、送信回路2は、パッドとボンディングワイヤWとを介して第2の半導体チップ5に形成された一次側コイル11の一端と接続される。また、一次側コイル11の他端は、パッドとボンディングワイヤWとを介して第1の半導体チップ4側の接地電圧端子GND1と接続される。
 なお、図2に示す例では、一次側コイル11及び二次側コイル12が、それぞれ1つの半導体チップ内において上下方向に積層される第1の配線層及び第2の配線層に形成されている。
 続いて、信号伝達システム1の構成例の詳細について図1を用いて説明する。送信回路2は、第1の電源系に属する第1の電源に基づき動作する。第1の電源は、高電位側電圧(例えば、電源電圧VDD1)と低電位側電圧(例えば、接地電圧GND1)とを含む。一方、受信回路3は、第2の電源系に属する第2の電源に基づき動作する。第2の電源は、高電位側電圧(例えば、電源電圧VDD2)と低電位側電圧(例えば、接地電圧GND2)とを含む。
 送信回路2は、送信バッファ21を有する。送信バッファ21は、送信データVINをパルス信号に変換して送信信号V1として出力する。
 トランスフォーマ10は、上述のように、一次側コイル11及び二次側コイル12を有する。なお、二次側コイル12上にはセンタータップが設けられている。このセンタータップは、二次側コイル12上の両端以外の部分に設けられ、より好ましくは、インダクタンス成分が略同一となるように、両端から等しい長さの部分に設けられる。
 一次側コイル11では、一端が送信バッファ21の出力端子に接続され、他端が接地電圧GND1の供給される接地電圧端子(以下、GND1と称す)に接続される。一方、二次側コイル12では、一端が受信回路3のパルス幅増幅回路31の一方の入力端子に接続され、他端がパルス幅増幅回路31の他方の入力端子に接続される。
 また、二次側コイル12のセンタータップには、外部端子から所定電圧が供給される。なお、受信回路3の接地電圧端子GND2と、二次側コイル12のセンタータップと、の間のインピーダンスは、一次側コイル11と二次側コイル12との間の寄生結合容量Ccにより発生するインピーダンスよりも十分に小さいことが好ましい。したがって、二次側コイル12のセンタータップには、例えば、外部端子から接地電圧GND2や電源電圧VDD2のような低インピーダンスの固定電圧が供給されることが好ましい。本実施の形態では、二次側コイル12のセンタータップには、接地電圧端子(以下、GND2と称す)から接地電圧GND2が供給される。外部端子と二次側コイル12のセンタータップとの間は、メタル(ビアを含む)を介して接続されている。
 送信バッファ21から出力された送信信号V1は一次側コイル11によって磁気信号に変換され、当該磁気信号は二次側コイル12によって受信信号V2P、V2Nに変換される。具体的には、二次側コイル12の一端に受信信号V2Pに相当するパルス信号が発生し、二次側コイル12の他端に受信信号V2Nに相当するパルス信号が発生する。
 受信回路3は、パルス幅増幅回路31と、差動アンプ(比較回路)32と、受信バッファ33と、を備える。
 パルス幅増幅回路31は、電源電圧VDD2及び接地電圧GND2を電源として動作する。パルス幅増幅回路31は、トランスフォーマ10の二次側コイル12を介して受信される受信信号V2P,V2Nを所定期間保持して、それぞれ保持信号(第1保持信号)V3P及び保持信号(第2保持信号)V3Nとして出力する。換言すると、パルス幅増幅回路31は、二次側コイル12の両端に発生する受信信号V2P,V2Nを所定期間保持することにより、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅を拡大して、それぞれ保持信号V3P及び保持信号V3Nとして出力する。
 差動アンプ32は、電源電圧VDD2及び接地電圧GND2を電源として動作する。また、差動アンプ32は、2つの入力信号に含まれる交流成分のうち同相の信号成分を低減する。差動アンプ32では、非反転入力端子に保持信号V3Pが入力され、反転入力端子に保持信号V3Nが入力される。そして、差動アンプ32は、保持信号V3Pの電圧と保持信号V3Nの電圧とを比較し、比較結果として伝達用信号V4P,V4Nを出力する。より具体的には、差動アンプ32は、保持信号V3P,V3Nの電位差(V3P-V4Nの値)が正であれば、伝達用信号V4Pの値をハイレベルとし、負であれば伝達用信号V4Nの値をロウレベルとする。このとき、保持信号V3P,V3Nに含まれる同相のコモンモード電圧は相殺される。なお、差動アンプ32が出力する伝達用信号V4P,V4Nは、振幅中心電位に対して互いに反転したパルス信号を有する。
 受信バッファ33は、電源電圧VDD2及び接地電圧GND2を電源として動作する。受信バッファ33は、例えばヒステリシスコンパレータであって、伝達用信号V4P,V4Nに基づいて送信データVINを再生し出力データVOUTとして出力する。より具体的には、受信バッファ33は、伝達用信号V4P,V4Nの電位差(V4P-V4Nの値)が正であれば出力データVOUTの値をハイレベルとし、負であれば出力データVOUTの値をロウレベルとする。
 なお、受信バッファ33がヒステリシスコンパレータである場合、当該受信バッファ33には上側閾値電圧Vth1と下側閾値電圧Vth2とが設定される。伝達用信号V4P,V4Nの電位差が上側閾値電圧Vth1を上回った場合には出力をロウレベルからハイレベルに切り換え、下側閾値電圧Vth2を下回った場合には出力をハイレベルからロウレベルに切り換える。
 このように、パルス幅増幅回路31は、受信信号V2P,V2Pに重畳されたパルス信号を検出し、所定期間保持した後に保持信号V3P,V3Nとして出力する。つまり、パルス幅増幅回路31は、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅を拡大し、保持信号V3P,V3Nとして出力する。そのため、後段の差動アンプ32は、微細CMOSによって構成されていなくても、精度良く動作することができる。換言すると、受信回路3は、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅を拡大することができるため、当該パルス幅を拡大することを目的としてトランスフォーマ10の回路規模を増大させることなく、差動アンプ32を精度良く動作させることができる。
 また、トランスフォーマ10は、一次側コイル11と、外部端子から所定電圧の供給されるセンタータップを有する二次側コイル12と、により構成される。それにより、受信回路3は、二次側コイル12の両端に発生する受信信号V2P,V2Nにそれぞれ重畳されるコモンモード電圧を後段の差動アンプを用いて相殺することができる。これらのことから、受信回路3は、回路規模を増大させることなく、コモンモード電圧の影響を抑制して信号の伝達を防止することができる。
(パルス幅増幅回路31の構成例)
 以下では、パルス幅増幅回路31の構成例及び動作について説明する。図3は、パルス幅増幅回路31の構成例を示す図である。図3に示すように、パルス幅増幅回路31は、ピークホールド回路(第1ピークホールド回路)311とピークホールド回路(第2ピークホールド回路)312とを有する。
 ピークホールド回路311では、入力端子が二次側コイル12の一端に接続され、出力端子が差動アンプ32の非反転入力端子に接続される。ピークホールド回路312では、入力端子が二次側コイル12の他端に接続され、出力端子が差動アンプ32の反転入力端子に接続される。
 ここで、ピークホールド回路311,312は、それぞれ受信信号V2P,V2Nに重畳されたパルス信号のうち正振幅のパルス信号を検出し、所定期間保持した後に保持信号V3P,V3Nとして出力する。つまり、ピークホールド回路311,312は、それぞれ受信信号V2P,V2Nに重畳されたパルス信号のうち正振幅のパルス信号を検出し、当該パルス信号のパルス幅を拡大して保持信号V3P,V3Nとして出力する。
 図4は、信号伝達システム1の動作を示すタイミングチャートである。送信バッファ21が出力する送信信号V1には、図4のV1-GND1において示されるように、送信データVINがハイレベルの期間において正振幅のパルス信号が重畳され、送信データVINがロウレベルの期間において負振幅のパルス信号が重畳される。
 このとき、接地電圧GND1と接地電圧GND2の間に図4のGND1-GND2において示されるような相対的な電位差(コモンモード電圧)がある場合、二次側コイル12の一端に発生する受信信号V2Pと接地電圧GND2との間の電位差は、図4のV2P-GND2において示されるような波形となる。一方、二次側コイル12の他端に発生する受信信号V2Nと接地電圧GND2との間の電位差は、図4のV2N-GND2において示されるような波形となる。
 これら2つの波形を見てもわかるように、送信信号V1として正振幅のパルス信号が伝達された場合、二次側コイル12の一端には正振幅のパルス信号が発生し、二次側コイル12の他端には負振幅のパルス信号が発生する。一方、送信信号V1として負振幅のパルス信号が伝達された場合、二次側コイル12の一端には負振幅のパルス信号が発生し、二次側コイル12の他端には正振幅のパルス信号が発生する。つまり、二次側コイル12の両端には、互いに振幅方向の異なるパルス信号が発生する。換言すると、二次側コイル12の両端には、振幅中心電位に対して互いに反転したパルス信号が発生する。それに対し、二次側コイル12の両端に発生する受信信号V2P,V2Nには、同相のコモンモード電圧が重畳される。
 ピークホールド回路311は、受信信号V2Pを所定期間保持することにより、受信信号V2Pに重畳されたパルス信号のパルス幅を拡大して、保持信号V3Pとして出力する。ピークホールド回路312は、受信信号V2Nを所定期間保持することにより、受信信号V2Nに重畳されたパルス信号のパルス幅を拡大して、保持信号V3Nとして出力する。このとき、保持信号V3Pと接地電圧GND2との間の電位差は、図4のV3P-GND2において示されるような波形となり、保持信号V3Nと接地電圧GND2との間の電位差は、図4のV3N-GND2において示されるような波形となる。
 その後、差動アンプ32は、保持信号V3P及び保持信号V3Nに重畳されたコモンモード電圧を相殺して、伝達用信号V4P,V4Nを出力する。伝達用信号V4Pと接地電圧GND2との間の電位差は、図4のV4-GND2において示されるような波形となる。そして、受信バッファ33は、差動アンプ32の出力パルスに基づいて送信データVINを再生し出力データVOUTとして出力する。出力データVOUTと接地電圧GND2との間の電位差は、図4のVOUT-GND2に示されるような波形となる。
 このように、ピークホールド回路311,312は、それぞれ受信信号V2P,V2Pに重畳されたパルス信号のうち正振幅のパルス信号を検出し、所定期間保持した後に保持信号V3P,V3Nとして出力する。つまり、ピークホールド回路311,312は、それぞれ受信信号V2P,V2Nに重畳されたパルス信号のうち正振幅のパルス信号を検出し、当該パルス信号のパルス幅を拡大して保持信号V3P,V3Nとして出力する。そのため、後段の差動アンプ32は、微細CMOSによって構成されていなくても、精度良く動作することができる。換言すると、受信回路3は、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅を拡大することができるため、当該パルス幅を拡大することを目的としてトランスフォーマ10の回路規模を増大させることなく、差動アンプ32を精度良く動作させることができる。
 また、トランスフォーマ10は、一次側コイル11と、外部端子から所定電圧の供給されるセンタータップを有する二次側コイル12と、により構成される。それにより、受信回路3は、二次側コイル12の両端に発生する受信信号V2P,V2Nにそれぞれ重畳されるコモンモード電圧を後段の差動アンプを用いて相殺することができる。これらのことから、受信回路3は、回路規模を増大させることなく、コモンモード電圧の影響を抑制して信号の伝達を防止することができる。
 例えば、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅が200psであって、差動アンプ32が0.5μmのゲートサイズのCMOSによって構成されている場合、差動アンプ32は、受信信号V2P,V2Nを直接増幅することはできない。しかし、本実施の形態にかかる受信回路3では、ピークホールド回路311,312が受信信号V2P,V2Nに重畳されたパルス幅を拡大して出力している。そのため、差動アンプ32は、パルス幅の拡大された受信信号V2P,V2N(保持信号V3P,V3N)を増幅することができる。
(ピークホールド回路311,312の構成例)
 以下では、ピークホールド回路311,312の具体的な構成例及び動作について説明する。図5は、ピークホールド回路311,312の具体的な構成例を示す図である。
 図5に示すように、ピークホールド回路311は、閾値素子(第1閾値素子)319と、抵抗素子(第1抵抗素子)315と、容量素子(第1容量素子)317と、を有する。ピークホールド回路312は、閾値素子(第2閾値素子)320と、抵抗素子(第2抵抗素子)316と、容量素子(第2容量素子)318と、を有する。
 ここで、図6を用いて、閾値素子の具体例について説明する。図6に示すように、閾値素子には、PN接合やショットキー接合を用いたダイオードが用いられても良いし、nチャネルMOSトランジスタまたはpチャネルMOSトランジスタのゲートを自己のソースまたはドレインに短絡させた構成が用いられても良い。このとき、閾値素子の入力端子には、トランジスタのドレインとソースのいずれか一方が接続され、閾値素子の出力端子にはトランジスタのドレインとソースの他方が接続される。
 一般的なCMOSプロセスのPN接合ダイオードを用いた場合には、電源電圧等に関係なく0.7V程度で安定した閾値を得ることが可能である。トランジスタを用いた場合には、その閾値はCMOSプロセスの世代や最小加工寸法に依存し0.2V程度から1V程度である。しかし、プロセス、電源電圧、温度などの変動条件を考慮しても、閾値の変動は±0.1V程度に抑えられる場合が多い。これらの閾値の変動は、一般にヒステリシス回路のしきい値の変動よりも小さい。そのため、これらを用いることで、閾値の安定した受信回路3を構成することが可能になる。図5では、閾値素子319,320がそれぞれPN接合ダイオードである場合を例に説明する。
 ピークホールド回路311において、ダイオード319のアノードは二次側コイル12の一端に接続され、ダイオード319のカソードは差動アンプ32の非反転入力端子に接続される。抵抗素子315では、一端が差動アンプ32の非反転入力端子に接続され、他端が接地電圧端子GND2に接続される。容量素子317では、一端が差動アンプ32の非反転入力端子に接続され、他端が接地電圧端子GND2に接続される。
 ピークホールド回路312において、ダイオード320のアノードは二次側コイル12の他端に接続され、ダイオード319のカソードは差動アンプ32の反転入力端子に接続される。抵抗素子316では、一端が差動アンプ32の反転入力端子に接続され、他端が接地電圧端子GND2に接続される。容量素子318では、一端が差動アンプ32の反転入力端子に接続され、他端が接地電圧端子GND2に接続される。
 受信信号V2Pの電圧がダイオード319の閾値を超えると、ダイオード319に電流が流れる。それにより、容量素子317に電荷がチャージされる。つまり、受信信号V2Pに重畳されたパルス信号のうち正振幅のパルス信号が容量素子317に保持される。その結果、正振幅のパルス信号のパルス幅は拡大し、保持信号V3Pとして差動アンプ32の非反転入力端子に入力される。その後、一定以上の時間、容量素子317のチャージが行われなければ、保持信号V3Pの電圧は、抵抗素子315を介して接地電圧(基準電圧)GND2に収束する。なお、パルス幅の大きさは、抵抗素子315の抵抗値と容量素子317の容量値の積であるRC時定数によって決定される。
 同様に、受信信号V2Nの電圧がダイオード320の閾値を超えると、ダイオード320に電流が流れる。それにより、容量素子318に電荷がチャージされる。つまり、受信信号V2Nに重畳されたパルス信号のうち正振幅のパルス信号が容量素子318に保持される。その結果、正振幅のパルス信号のパルス幅は拡大し、保持信号V3Nとして差動アンプ32の反転入力端子に入力される。その後、一定以上の時間、容量素子318のチャージが行われなければ、保持信号V3Nの電圧は、抵抗素子316を介して接地電圧(基準電圧)GND2に収束する。なお、パルス幅の大きさは、抵抗素子316の抵抗値と容量素子318の容量値の積であるRC時定数によって決定される。
 その後の差動アンプ32、受信バッファ33の動作については、上述した動作と同様であるため説明を省略する。
 このように、ピークホールド回路311,312は、それぞれ受信信号V2P,V2Pに重畳されたパルス信号のうち正振幅のパルス信号を検出し、所定期間保持した後に保持信号V3P,V3Nとして出力する。つまり、ピークホールド回路311,312は、それぞれ受信信号V2P,V2Nに重畳されたパルス信号のうち正振幅のパルス信号を検出し、当該パルス信号のパルス幅を拡大して保持信号V3P,V3Nとして出力する。そのため、後段の差動アンプ32は、微細CMOSによって構成されていなくても、精度良く動作することができる。換言すると、受信回路3は、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅を拡大することができるため、当該パルス幅を拡大することを目的としてトランスフォーマ10の回路規模を増大させることなく、差動アンプ32を精度良く動作させることができる。
 また、トランスフォーマ10は、一次側コイル11と、外部端子から所定電圧の供給されるセンタータップを有する二次側コイル12と、により構成される。それにより、受信回路3は、二次側コイル12の両端に発生する受信信号V2P,V2Nにそれぞれ重畳されるコモンモード電圧を後段の差動アンプを用いて相殺することができる。これらのことから、受信回路3は、回路規模を増大させることなく、コモンモード電圧の影響を抑制して信号の伝達を防止することができる。
 実施の形態2
 図7は、本発明の実施の形態2にかかる信号伝達システム1aを示す図である。本実施の形態にかかる信号伝達システム1aは、図5に示す実施の形態1にかかる信号伝達システム1の場合と比較して、保護ダイオード35,36をさらに備える。本実施の形態にかかる信号伝達システム1aのその他の回路構成は、図5に示す実施の形態1にかかる信号伝達システム1と同様であるため、説明を省略する。
 保護ダイオード35のアノードは接地電圧端子GND2に接続され、保護ダイオード35のカソードは二次側コイル12の一端に接続される。保護ダイオード36のアノードは接地電圧端子GND2に接続され、保護ダイオード36のカソードは二次側コイル12の他端に接続される。
 受信信号V2Pの電圧が接地電圧GND2より低くなると、保護ダイオード35に電流が流れ、当該受信信号V2Pの電圧は接地電圧GND2程度に収束する。同様に、受信信号V2Nの電圧が接地電圧GND2より低くなると、保護ダイオード36に電流が流れ、当該受信信号V2Nの電圧は接地電圧GND2程度に収束する。
 ここで、二次側コイル12の一端に接続されたピークホールド回路312は、受信信号V2Pに重畳されたパルス信号のうち正振幅のパルス信号のみを検出し、負振幅のパルス信号を検出しない。同様に、二次側コイル12の他端に接続されたピークホールド回路312は、受信信号V2Nに重畳されたパルス信号のうち正振幅のパルス信号のみを検出し、負振幅のパルス信号を検出しない。本実施の形態にかかる受信回路3は、これら負振幅のパルス信号に相当する起電力を、保護ダイオード35,36を介して接地電圧端子GND2に逃がすことにより、素子の破壊を防ぐことができる。
 実施の形態3
 図8は、本発明の実施の形態3にかかる信号伝達システム1bを示す図である。本実施の形態にかかる信号伝達システム1bは、実施の形態2にかかる信号伝達システム1aと比較して、パルス幅増幅回路31の構成が異なる。本実施の形態にかかる信号伝達システム1bのその他の回路構成は、実施の形態2にかかる信号伝達システム1aと同様であるため、説明を省略する。
 図8に示すパルス幅増幅回路31は、ダイオード319,320と、抵抗素子315,316と、容量素子(第3容量素子)321と、を備える。ダイオード319のアノードは二次側コイル12の一端に接続され、ダイオード319のカソードは差動アンプ32の非反転入力端子に接続される。抵抗素子315では、一端が差動アンプ32の非反転入力端子に接続され、他端が二次側コイル12の一端に接続される。ダイオード320のアノードは二次側コイル12の他端に接続され、ダイオード320のカソードは差動アンプ32の反転入力端子に接続される。抵抗素子316では、一端が差動アンプ32の反転入力端子に接続され、他端が二次側コイル12の他端に接続される。そして、容量素子321では、一端が差動アンプ32の非反転入力端子に接続され、他端が差動アンプ32の反転入力端子に接続される。なお、ダイオード319、抵抗素子315及び容量素子321によりピークホールド回路311が構成される。ダイオード320、抵抗素子316及び容量素子321によりピークホールド回路312が構成される。
 図8に示すパルス幅増幅回路31は、ピークホールド回路311とピークホールド回路312が容量素子321を共用している。それにより、本実施の形態にかかる受信回路3は、実施の形態1にかかる受信回路3と比較して、パルス幅増幅回路31に設けられる容量素子の占有面積を約半分にまで小さくすることができる。
 さらに、図8に示すパルス幅増幅回路31では、抵抗素子315,316の他端がそれぞれ二次側コイル12の一端及び他端に接続される。ここで、抵抗素子315の抵抗値及び容量素子321の容量値の積によって決定されるRC時定数及び抵抗素子316の抵抗値及び容量素子321の容量値の積によって決定されるRC時定数は、それぞれ受信信号V2P,V2Nに重畳された同相のコモンモード電圧の周期より小さくなるように調整される。それにより、図8に示すパルス幅増幅回路31では、コモンモード電圧が後段の差動アンプ32に同相成分としてより積極的に伝搬される。一方、受信信号V2P,V2Nに重畳されたパルス信号は、主としてダイオード319,320を介して後段の差動アンプ32に差動成分として伝搬される。
 なお、図7のように抵抗素子315,316の他端がそれぞれ二次側コイル12を介さずに直接接地電圧端子GND2に接続された構成の場合、受信信号V2P,V2Nに重畳された同相のコモンモード電圧は、それぞれダイオード319,320の閾値以下であれば後段の差動アンプ32には伝搬されない。
 このように、本実施の形態にかかる受信回路3は、受信信号V2P,V2Nに重畳された同相のコモンモード電圧を積極的に後段の差動アンプ32に伝搬させることにより、ダイオード319,320の実効的な閾値(V2P-V3P間の電位差、V2N-V3N間の電位差)の変動を緩和している。つまり、本実施の形態にかかる受信回路3は、比較的低周波のコモンモード電圧を積極的に後段の差動アンプ32に伝搬させることにより、ダイオード319のアノードとカソードとの間の電位差及びダイオード320のアノードとカソードとの間の電位差の変動を抑制し、当該ダイオード319,320を精度良く動作できるようにしている。なお、同相のコモンモード電圧は差動アンプ32によって相殺(除去)される。
 本実施の形態では、一例として、ピークホールド回路311とピークホールド回路312が容量素子321を共用している構成と、抵抗素子315,316が対応するダイオードのアノード及びカソード間に接続される構成と、保護ダイオード37,38が備えられた構成と、が適用された場合について説明したが、これに限られず、各構成が単独で適用されても良い。
(信号伝達システム1bの変形例)
 図9は、図8に示す信号伝達システム1bの変形例を示す図である。図9に示す信号伝達システム1bの変形例は、保護ダイオード35,36に代えて保護ダイオード37,38を備えるとともに、容量素子41,42と、抵抗素子39,40をさらに備える。
 二次側コイル12のセンタータップには、接地電圧GND2に代えて、外部端子である電源電圧端子VDD2から所定電圧である電源電圧VDD2が供給される。また、保護ダイオード37のカソードは電源電圧端子VDD2に接続され、保護ダイオード37のアノードは二次側コイル12の一端に接続される。保護ダイオード38のカソードは電源電圧端子VDD2に接続され、保護ダイオード38のアノードは二次側コイル12の他端に接続される。容量素子41は、二次側コイル12の一端とダイオード319のアノードとの間に設けられる。容量素子42は、二次側コイル12の他端とダイオード320のアノードとの間に設けられる。抵抗素子39,40は、ダイオード319のアノードとダイオード320のアノードとの間に直列に接続され、抵抗素子39と抵抗素子40との間の接続点にバイアス電圧VBIASが供給される。
 このような回路構成により、ダイオード319のアノード及びダイオード320のアノードはバイアス電圧VBIASによりバイアスされる。同時に、差動アンプ32の両入力端子も抵抗素子315,316を介してバイアス電圧VBIASによりバイアスされる。それにより、例えば、差動アンプ32の両入力端子の電圧レベルの調整をすることができる。
 実施の形態4
 図10は、本発明の実施の形態4にかかる信号伝達システム1cを示す図である。本実施の形態にかかる信号伝達システム1cは、図8に示す実施の形態3にかかる信号伝達システム1bと比較して、パルス幅増幅回路31及び保護ダイオードの構成が異なる。本実施の形態にかかる信号伝達システム1cのその他の回路構成は、図8に示す実施の形態3にかかる信号伝達システム1bと同様であるため、説明を省略する。
 図10に示すパルス幅増幅回路31は、ダイオード(第1閾値素子)323と、ダイオード(第2閾値素子)324と、抵抗素子315,316と、容量素子321と、を備える。受信回路3は、図8に示す保護ダイオード35,36に代えて、保護ダイオード37,38を備える。
 ダイオード323のカソードは二次側コイル12の一端に接続され、ダイオード323のアノードは差動アンプ32の非反転入力端子に接続される。ダイオード324のカソードは二次側コイル12の他端に接続され、ダイオード324のアノードは差動アンプ32の反転入力端子に接続される。抵抗素子315,316及び容量素子321の接続関係は、実施の形態3の場合と同様であるため説明を省略する。なお、ダイオード323、抵抗素子315及び容量素子321によりボトムホールド回路(第1ボトムホールド回路)325が構成される。ダイオード324、抵抗素子316及び容量素子321によりボトムホールド回路(第2ボトムホールド回路)326が構成される。また、二次側コイル12のセンタータップには、接地電圧GND2に代えて、外部端子である電源電圧端子VDD2から所定電圧である電源電圧VDD2が供給される。
 ここで、ボトムホールド回路325,326は、それぞれ受信信号V2P,V2Nに重畳されたパルス信号のうち負振幅のパルス信号を検出し、所定期間保持した後に保持信号V3P,V3Nとして出力する。つまり、ボトムホールド回路325,326は、それぞれ受信信号V2P,V2Nに重畳されたパルス信号のうち負振幅のパルス信号を検出し、当該パルス信号のパルス幅を拡大して保持信号V3P,V3Nとして出力する。以下、具体的に説明する。
 受信信号V2Pの電圧がダイオード323の閾値を超えると、ダイオード323に電流が流れる。それにより、容量素子321に蓄積された電荷がディスチャージされる。つまり、受信信号V2Pに重畳されたパルス信号のうち負振幅のパルス信号が容量素子321に保持される。その結果、負振幅のパルス信号のパルス幅は大きくなり、保持信号V3Pとして差動アンプ32の非反転入力端子に入力される。その後、一定以上の時間、容量素子321のディスチャージが行われなければ、保持信号V3Pの電圧は、抵抗素子315を介して電源電圧(基準電圧)VDD2に収束する。なお、パルス幅の大きさは、抵抗素子315の抵抗値と容量素子323の容量値の積であるRC時定数によって決定される。
 受信信号V2Nの電圧がダイオード324の閾値を超えると、ダイオード324に電流が流れる。それにより、容量素子321に蓄積された電荷がディスチャージされる。つまり、受信信号V2Nに重畳されたパルス信号のうち負振幅のパルス信号が容量素子321に保持される。その結果、負振幅のパルス信号のパルス幅は大きくなり、保持信号V3Nとして差動アンプ32の反転入力端子に入力される。その後、一定以上の時間、容量素子321のディスチャージが行われなければ、保持信号V3Nの電圧は、抵抗素子316を介して電源電圧(基準電圧)VDD2に収束する。なお、パルス幅の大きさは、抵抗素子316の抵抗値と容量素子321の容量値の積であるRC時定数によって決定される。
 その後の差動アンプ32、受信バッファ33の動作については、上述した動作と同様であるため説明を省略する。
 また、保護ダイオード37のカソードは電源電圧端子VDD2に接続され、保護ダイオード37のアノードは二次側コイル12の一端に接続される。保護ダイオード38のカソードは電源電圧端子VDD2に接続され、保護ダイオード38のアノードは二次側コイル12の他端に接続される。
 受信信号V2Pの電圧が電源電圧VDD2より高くなると、保護ダイオード37に電流が流れ、当該受信信号V2Pの電圧は電源電圧VDD2程度に収束する。同様に、受信信号V2Nの電圧が電源電圧VDD2より高くなると、保護ダイオード38に電流が流れ、当該受信信号V2Nの電圧は電源電圧VDD2程度に収束する。
 二次側コイル12の一端に接続されたボトムホールド回路325は、受信信号V2Pに重畳されたパルス信号のうち負振幅のパルス信号のみを検出し、正振幅のパルス信号を検出しない。同様に、二次側コイル12の他端に接続されたボトムホールド回路326は、受信信号V2Nに重畳されたパルス信号のうち負振幅のパルス信号のみを検出し、正振幅のパルス信号を検出しない。本実施の形態にかかる受信回路3は、これら正振幅のパルス信号に相当する起電力を、保護ダイオード37,38を介して電源電圧端子VDD2に逃がすことにより、素子の破壊を防ぐことができる。
 このように、本実施の形態にかかる受信回路3は、ボトムホールド回路325,326によって構成されたパルス幅増幅回路31を備えることにより、原理的には、ピークホールド回路311,312によって構成されたパルス幅増幅回路31の場合と同様の動作を実現することができ、同様の効果を奏することができる。
 本実施の形態では、パルス幅増幅回路31が2つのボトムホールド回路からなる構成に加え、一例として、ボトムホールド回路325とボトムホールド回路326が容量素子321を共用している構成と、抵抗素子315,316の他端がそれぞれ二次側コイル12の一端及び他端に接続される構成と、保護ダイオード37,38が備えられた構成と、が適用された場合について説明したが、これに限られず、各構成が単独で適用されても、何れかが組み合わされて適用されても良い。したがって、例えば、抵抗素子315,316の他端がそれぞれ直接電源電圧端子VDD2に接続される構成としても良いし、2つのボトムホールド回路は、それぞれ単独で容量素子を有する構成としても良い。
 実施の形態5
 図11は、本発明の実施の形態5にかかる信号伝達システム1dを示す図である。上記した2つのピークホールド回路又は2つのボトムホールド回路からなるパルス幅増幅回路31は、受信信号V2P,V2Nに重畳されたパルス信号のうち正又は負の一方の振幅を有するパルス信号のみを検出し、正又は負の他方の振幅を有するパルス信号を検出しなかった。つまり、当該パルス幅増幅回路31は、受信信号V2P,V2Nを半波整流していた。したがって、当該パルス幅増幅回路31に設けられた受信回路3は、二次側コイル12に生じる起電力の半分しか送信データVINの再生に利用できていなかった。これに対し、本実施の形態にかかるパルス幅増幅回路31は、受信信号V2P,V2Nを全波整流する。これにより、本実施の形態にかかる受信回路3は、受信信号V2P,V2Nに基づいて、より効率良く送信データVINを再生することができる。
 図11に示す信号伝達システム1dは、送信回路2と、受信回路3と、トランスフォーマ10と、を備える。本実施の形態にかかる送信回路2及びトランスフォーマ10の回路構成は、実施の形態1~4にかかる送信回路2及びトランスフォーマ10と同様であるため、説明を省略する。
 受信回路3は、パルス幅増幅回路31と、差動アンプ32,43,44と、受信バッファ33と、容量素子41,42と、抵抗素子39,40と、を備える。パルス幅増幅回路31は、ダイオード(第1閾値素子)319と、ダイオード(第2閾値素子)320と、ダイオード(第3閾値素子)323と、ダイオード(第4閾値素子)324と、抵抗素子315,316,309,310と、容量素子(第4容量素子)321、容量素子(第3容量素子)322と、を有する。なお、差動アンプ32,43,44により比較回路が構成される。
 容量素子41は、二次側コイル12の一端とノードN1との間に設けられる。容量素子42は、二次側コイル12の他端とノードN2との間に設けられる。抵抗素子39,40は、ノードN1とノードN2との間に直列に接続され、抵抗素子39と抵抗素子40との間の接続点にバイアス電圧VBIASが供給される。なお、二次側コイル12のセンタータップには、外部端子である電源電圧端子VDD2から所定電圧である電源電圧VDD2が供給される。
 このような回路構成により、ノードN1及びノードN2はバイアス電圧VBIASによりバイアスされる。同時に、後述する差動アンプ43,44のそれぞれの両入力端子も抵抗素子315,316,309,310を介してバイアス電圧VBIASによりバイアスされる。それにより、例えば、差動アンプ32の両入力端子の電圧レベルの調整をすることができる。
 ダイオード319のアノードはノードN1に接続され、ダイオード319のカソードはノードN3に接続される。抵抗素子315は、ダイオード319のアノード及びカソード間に接続される。ダイオード320のアノードはノードN2に接続され、ダイオード320のカソードはノードN4に接続される。抵抗素子316は、ダイオード320のアノード及びカソード間に接続される。ダイオード323のアノードはノードN5に接続され、ダイオード323のカソードはノードN1に接続される。抵抗素子309は、ダイオード323のアノード及びカソード間に接続される。ダイオード324のアノードはノードN6に接続され、ダイオード324のカソードはノードN2に接続される。抵抗素子310は、ダイオード324のアノード及びカソード間に接続される。容量素子321は、ノードN4とノードN5との間に設けられる。容量素子322は、ノードN3とノードN6との間に設けられる。
 なお、ダイオード319、抵抗素子315及び容量素子322によりピークホールド回路311が構成される。ダイオード320、抵抗素子316及び容量素子321によりピークホールド回路312が構成される。ダイオード323、抵抗素子309及び容量素子321によりボトムホールド回路325が構成される。ダイオード324、抵抗素子310及び容量素子322によりボトムホールド回路326が構成される。これらピークホールド回路311,312及びボトムホールド回路325,326の動作は、上記実施の形態と同様であるため、説明を省略する。
 差動アンプ43では、非反転入力端子がノードN3に接続され、反転入力端子がノードN4に接続され、出力端子が差動アンプ32の非反転入力端子に接続される。差動アンプ44では、反転入力端子がノードN5に接続され、非反転入力端子がノードN6に接続され、出力端子が差動アンプ32の反転入力端子に接続される。そして、差動アンプ32の一対の出力端子は、それぞれ受信バッファ33の対応する入力端子に接続される。
 ピークホールド回路311,312は、それぞれ受信信号V2P,V2Nに重畳されたパルス信号のうち正振幅のパルス信号を検出し、当該パルス信号のパルス幅を拡大して保持信号V3AP,V3ANとして出力する。差動アンプ43は、ピークホールド回路311,312から出力された保持信号V3AP,V3ANの電位差に応じた増幅信号V4Aを出力する。このとき、保持信号V3AP,V3ANに重畳された同相のコモンモード電圧は相殺される。したがって、コモンモード電圧の影響により受信信号V2P,V2Pの電圧がいずれも同一方向(正又は負)に変動した場合でも、それに応じて保持信号V3AP,V3ANの電圧は変動するが、増幅信号V4Aの電圧は変動しない。
 ボトムホールド回路325,326は、それぞれ受信信号V2P,V2Nに重畳されたパルス信号のうち負振幅のパルス信号を検出し、当該パルス信号のパルス幅を拡大して保持信号V3BP,V3BNとして出力する。差動アンプ44は、ボトムホールド回路325,326から出力された保持信号V3BP,V3BNの電位差に応じた増幅信号V4Bを出力する。このとき、保持信号V3BP,V3BNに重畳された同相のコモンモード電圧は相殺される。したがって、コモンモード電圧の影響により受信信号V2P,V2Pの電圧がいずれも同一方向(正又は負)に変動した場合でも、それに応じて保持信号V3BP,V3ANの電圧は変動するが、増幅信号V4Bの電圧は変動しない。なお、差動アンプ44が出力する増幅信号V4Bは、差動アンプ43が出力する増幅信号V4Aの極性反転信号である。
 例えば、二次側コイル12の一端に正振幅のパルス信号が発生し、二次側コイル12の他端に負振幅のパルス信号が発生した場合、差動アンプ43の非反転入力端子には、正振幅のパルス信号の重畳された保持信号V3APが入力され、差動アンプ43の反転入力端子には、パルス信号の重畳されていない保持信号V3ANが入力される。したがって、差動アンプ43は、コモンモード電圧が除去され正振幅のパルス信号が重畳された増幅信号V4Aを出力する。同時に、差動アンプ44の非反転入力端子には、負振幅のパルス信号の重畳された保持信号V3BNが入力され、差動アンプ44の反転入力端子には、パルス信号の重畳されていない保持信号V3BPが入力される。したがって、差動アンプ44は、コモンモード電圧が除去され負振幅のパルス信号が重畳された増幅信号V4Bを出力する。その結果、上記した差動アンプ32及び受信バッファ33の動作を経て、出力データVOUTはハイレベルとなる。
 一方、例えば、二次側コイル12の一端に負振幅のパルス信号が発生し、二次側コイル12の他端に正振幅のパルス信号が発生した場合、差動アンプ43の非反転入力端子には、パルス信号の重畳されていない保持信号V3APが入力され、差動アンプ43の反転入力端子には、正振幅のパルス信号の重畳された保持信号V3ANが入力される。したがって、差動アンプ43は、コモンモード電圧が除去され負振幅のパルス信号が重畳された増幅信号V4Aを出力する。同時に、差動アンプ44の非反転入力端子には、パルス信号の重畳されていない保持信号V3BNが入力され、差動アンプ44の反転入力端子には、負振幅のパルス信号の重畳された保持信号V3BPが入力される。したがって、差動アンプ44は、コモンモード電圧が除去され正振幅のパルス信号が重畳された増幅信号V4Bを出力する。その結果、上記した差動アンプ32及び受信バッファ33の動作を経て、出力データVOUTはロウレベルとなる。
 このように、本実施の形態にかかるパルス幅増幅回路31は、受信信号V2P,V2Nを全波整流する。これにより、本実施の形態にかかる受信回路3は、受信信号V2P,V2Nに基づいて、より効率良く送信データVINを再生し出力データVOUTとして出力することができる。
 本実施の形態では、パルス幅増幅回路31が2つのピークホールド回路及び2つのボトムホールド回路からなる全波整流用の構成に加え、一例として、ピークホールド回路311とボトムホールド回路326が容量素子322を共用し、ピークホールド回路312とボトムホールド回路325が容量素子321を共用している構成と、抵抗素子315,316,309,310が対応するダイオードのアノード及びカソード間に接続される構成と、バイアス電圧VBIASが供給される構成と、が適用された場合について説明したが、これに限られず、各構成が単独で適用されても、何れかが組み合わされて適用されても良い。したがって、例えば、抵抗素子315,316,309,310の他端(ノードN1又はノードN2側に接続される端子)がそれぞれ直接電源電圧端子VDD2に接続される構成としても良いし、2つのピークホールド回路及び2つのボトムホールド回路は、それぞれ単独で容量素子を有する構成としても良い。また、上記した保護ダイオードが適用されても良い。
(信号伝達システム1dの変形例)
 図12は、図11に示す信号伝達システム1dの変形例を示す図である。図12に示す信号伝達システム1dの変形例は、パルス幅増幅回路31を構成する回路群の接続関係が一部異なる。また、差動アンプ32及び受信バッファ33に代えてRSラッチ回路45を備える。ここでは、差動アンプ43,44により比較回路が構成され、RSラッチ回路45が受信バッファに相当する機能を有する。
 ダイオード320のアノードはノードN2に接続され、ダイオード320のカソードはノードN6に接続される。ダイオード324のアノードはノードN4に接続され、ダイオード324のカソードはノードN2に接続される。容量素子321は、ノードN5とノードN6との間に設けられる。容量素子322は、ノードN3とノードN4との間に設けられる。パルス幅増幅回路31内のその他の接続関係に変更はない。
 RSラッチ回路45では、増幅信号V4AがS端子に入力され、増幅信号V4BがR端子に入力され、Q端子から出力データVOUTが出力される。
 差動アンプ43は、ピークホールド回路311及びボトムホールド回路326から出力された信号を保持信号V3AP,V3ANとして受け、これら保持信号の電位差に応じた増幅信号V4Aを出力する。また、差動アンプ44は、ピークホールド回路312及びボトムホールド回路325から出力された信号を保持信号V3BP,V3BNとして受け、これら保持信号の電位差に応じた増幅信号V4Bを出力する。
 例えば、二次側コイル12の一端に正振幅のパルス信号が発生し、二次側コイル12の他端に負振幅のパルス信号が発生した場合、差動アンプ43の非反転入力端子には、正振幅のパルス信号の重畳された保持信号V3APが入力され、差動アンプ43の反転入力端子には、負振幅のパルス信号の重畳された保持信号V3ANが入力される。したがって、差動アンプ43は、コモンモード電圧が除去され正振幅のパルス信号が重畳された増幅信号V4Aを出力する。同時に、差動アンプ44の非反転入力端子及び反転入力端子には、いずれもパルス信号の重畳されていない保持信号V3BP,V3BNが入力される。したがって、差動アンプ44は、パルス信号が重畳されていない増幅信号V4Bを出力する。RSラッチ回路45は、S端子に正振幅のパルス信号の重畳された増幅信号V4Aが入力されるため、ハイレベルの出力データVOUTを出力する。
 一方、例えば、二次側コイル12の一端に負振幅のパルス信号が発生し、二次側コイル12の他端に正振幅のパルス信号が発生した場合、差動アンプ43の非反転入力端子及び反転入力端子には、パルス信号の重畳されていない保持信号V3AP,V3ANが入力される。したがって、差動アンプ43は、パルス信号が重畳されていない増幅信号V4Aを出力する。同時に、差動アンプ44の非反転入力端子には、正振幅のパルス信号の重畳された保持信号V3BNが入力され、差動アンプ44の反転入力端子には、負振幅のパルス信号の重畳された保持信号V3BPが入力される。したがって、差動アンプ44は、コモンモード電圧が除去され正振幅のパルス信号が重畳された増幅信号V4Bを出力する。RSラッチ回路45は、R端子に正振幅のパルス信号の重畳された増幅信号V4Bが入力されるため、ロウレベルの出力データVOUTを出力する。
 図12に示す受信回路3の場合にも、受信信号V2P,V2Nに基づいて、より効率良く送信データVINを再生し出力データVOUTとして出力することができる。
(信号伝達システム1dの他の変形例)
 図13は、図11に示す信号伝達システム1dの他の変形例を示す図である。図13に示す信号伝達システム1dの変形例では、パルス幅増幅回路31を構成する回路群の接続関係が図12に示すパルス幅増幅回路31と同様に変更されている。
 図12に示す受信回路3では、コモンモード電圧の影響により受信信号V2P,V2Pの電圧がいずれも正の方向に変動した場合、それに応じて保持信号V3AP,V3BNも正の方向に変動しやすくなるため、同様に増幅信号V4A,V4Bの電圧も正の方向に変動しやすくなる。また、コモンモード電圧の影響により受信信号V2P,V2Pの電圧がいずれも負の方向に変動した場合、それに応じて保持信号V3AN,V3BPも負の方向に変動しやすくなるため、同様に増幅信号V4A,V4Bの電圧も負の方向に変動しやすくなる。しかしながら、図13に示す受信回路3は、図11に示す受信回路3と同様に、パルス幅増幅回路31の後段に差動アンプ32及び受信バッファ33を備えるため、差動アンプ32によりコモンモード電圧を除去することができる。
 実施の形態6
 図14は、本発明の実施の形態6にかかる信号伝達システム1eを示す図である。本実施の形態にかかる信号伝達システム1eは、図3に示す実施の形態1にかかる信号伝達システム1の場合と異なり、パルス幅増幅回路31が、閾値回路(第1閾値回路)313と、閾値回路(第2閾値回路)314と、抵抗素子315,316と、容量素子317,318と、を備える。本実施の形態にかかる信号伝達システム1eのその他の回路構成は、図3に示す実施の形態1にかかる信号伝達システム1と同様であるため、説明を省略する。
 閾値回路313では、入力端子が二次側コイル12の一端に接続され、出力端子が差動アンプ32の非反転入力端子に接続される。抵抗素子315では、一端が差動アンプ32の非反転入力端子に接続され、他端が接地電圧端子GND2に接続される。容量素子317では、一端が差動アンプ32の非反転入力端子に接続され、他端が接地電圧端子GND2に接続される。
 閾値回路314では、入力端子が二次側コイル12の他端に接続され、出力端子が差動アンプ32の反転入力端子に接続される。抵抗素子316では、一端が差動アンプ32の反転入力端子に接続され、他端が接地電圧端子GND2に接続される。容量素子318では、一端が差動アンプ32の反転入力端子に接続され、他端が接地電圧端子GND2に接続される。
 閾値回路313の入力端子と出力端子との間の電位差Vmが一定以上になると、当該閾値回路313には電流imが流れる。同様に、閾値回路314の入力端子と出力端子との間の電位差Vmが一定以上になると、当該閾値回路314には電流imが流れる。
 図15に閾値回路313,314の動作を表すグラフを示す。なお、閾値回路313,314の回路構成は同じであるため、以下では代表して閾値回路313について説明する。閾値回路313の両端の電位差Vmが閾値電圧Vth3よりも大きくなると、閾値回路313には電圧Vmに比例した大きさの電流imが流れる。また、両端の電位差Vmが閾値電圧Vth4よりも小さくなった場合にも、閾値回路313には電圧Vmの大きさに比例した大きさの電流imが流れる。一方、両端の電位差Vmが閾値電圧Vth4以上Vth3以下である場合には、閾値回路313には電流は流れない。
(閾値回路313,314の構成例)
 図16は、閾値素子としてダイオードを有する閾値回路313,314の具体的な構成例である。閾値回路313は、入力端子と出力端子の間に一定の電位差が生じると電流が流れる2つの閾値素子であるダイオード(第1閾値回路)319と、ダイオード(第3閾値回路)323と、を有する。ダイオード319のアノード及びダイオード323のカソードは、二次側コイル12の一端に接続される。また、ダイオード319のカソード及びダイオード323のアノードは、差動アンプ32の非反転入力端子に接続される。また、閾値回路314は、入力端子と出力端子の間に一定の電位差が生じると電流が流れる2つの閾値素子であるダイオード(第2閾値回路)320と、ダイオード(第4閾値回路)324と、を有する。ダイオード320のアノード及びダイオード324のカソードは、二次側コイル12の他端に接続される。また、ダイオード320のカソード及びダイオード324のアノードは、差動アンプ32の反転入力端子に接続される。なお、閾値素子は、ダイオードに限られるものではなく、nチャネルMOSトランジスタまたはpチャネルMOSトランジスタのゲート端子をソース端子またはドレイン端子に短絡させた構成を用いてもよい。
 図17は、図14、図16に示す信号伝達システム1eの動作を示すタイミングチャートである。以下では、主として実施の形態1にかかる信号伝達システム1の動作と異なる点について説明する。
 受信信号V2Pの電圧が閾値電圧Vth3を超える場合または閾値電圧Vth4を下回る場合には、閾値回路313に電流imが流れる。それにより、容量素子317に電荷がチャージまたはディスチャージされる。つまり、受信信号V2Pに重畳されたパルス信号が容量素子317に保持される。その結果、受信信号V2Pに重畳されたパルス信号のパルス幅は拡大し、保持信号V3Pとして差動アンプ32の非反転入力端子に入力される。その後、一定以上の時間、容量素子317のチャージ、ディスチャージが行われなければ、保持信号V3Pの電圧は、抵抗素子315を介して接地電圧GND2に収束する。このとき、保持信号V3Pと接地電圧GND2との間の電位差は、図17のV3P-GND2において示されるような波形となる。
 同様に、受信信号V2Nの電圧が閾値電圧Vth3を超える場合または閾値電圧Vth4を下回る場合には、閾値回路314に電流imが流れる。それにより、容量素子318に電荷がチャージまたはディスチャージされる。つまり、受信信号V2Nに重畳されたパルス信号が容量素子318に保持される。その結果、受信信号V2Nに重畳されたパルス信号のパルス幅は拡大し、保持信号V3Nとして差動アンプ32の反転入力端子に入力される。その後、一定以上の時間、容量素子318のチャージ、ディスチャージが行われなければ、保持信号V3Nの電圧は、抵抗素子316を介して接地電圧GND2に収束する。このとき、保持信号V3Nと接地電圧GND2との間の電位差は、図17のV3N-GND2において示されるような波形となる。
 次に、差動アンプ32は、保持信号V3P及び保持信号V3Nに重畳されたコモンモード電圧を相殺して、伝達用信号V4P,V4Nを出力する。伝達用信号V4Pと接地電圧GND2との間の電位差は、図17のV4-GND2において示されるような波形となる。そして、受信バッファ33は、差動アンプ32の出力パルスに基づいて送信データVINを再生し出力データVOUTとして出力する。出力データVOUTと接地電圧GND2との間の電位差は、図17のVOUT-GND2に示されるような波形となる。
 このように、閾値回路313,314が設けられたパルス幅増幅回路31は、受信信号V2P,V2Nに重畳されたパルス信号を検出し、所定期間保持した後に保持信号V3P,V3Nとして出力する。つまり、閾値回路313,314が設けられたパルス幅増幅回路31は、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅を拡大して、保持信号V3P,V3Nとして出力する。そのため、後段の差動アンプ32は、微細CMOSによって構成されていなくても、精度良く動作することができる。換言すると、受信回路3は、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅を拡大することができるため、当該パルス幅を拡大することを目的としてトランスフォーマ10の回路規模を増大させることなく、差動アンプ32を精度良く動作させることができる。
 また、トランスフォーマ10は、一次側コイル11と、外部端子から所定電圧の供給されるセンタータップを有する二次側コイル12と、により構成される。それにより、受信回路3は、二次側コイル12の両端に発生する受信信号V2P,V2Nにそれぞれ重畳されるコモンモード電圧を後段の差動アンプを用いて相殺することができる。これらのことから、受信回路3は、回路規模を増大させることなく、コモンモード電圧の影響を抑制して信号の伝達を防止することができる。
 実施の形態7
 図18は、本発明の実施の形態7にかかる信号伝達システム1fを示す図である。本実施の形態にかかる信号伝達システム1fは、実施の形態6にかかる信号伝達システム1eと比較して、パルス幅増幅回路31の構成が異なるとともに、抵抗素子39,40と容量素子41,42をさらに備える。本実施の形態にかかる信号伝達システム1fのその他の回路構成は、実施の形態6にかかる信号伝達システム1eと同様であるため、説明を省略する。
 図18に示すパルス幅増幅回路31は、図16に示すパルス幅増幅回路31と比較して、容量素子317,318に代えて容量素子321を備える。容量素子321では、一端が差動アンプ32の非反転入力端子に接続され、他端が差動アンプ32の反転入力端子に接続される。つまり、容量素子321が共用されている。それにより、本実施の形態にかかる受信回路3は、上記したように容量素子の占有面積を約半分にまで小さくすることができる。
 また、抵抗素子315は、ダイオード319,323と並列に接続される。抵抗素子316は、ダイオード320,324と並列に接続される。本実施の形態にかかる受信回路3は、上記したように、比較的低周波のコモンモード電圧を積極的に後段の差動アンプ32に伝搬させることにより、閾値回路313,314の各入出力端子間の電位差の変動を抑制し、当該閾値回路313,314を精度良く動作できるようにしている。なお、同相のコモンモード電圧は差動アンプ32によって相殺(除去)される。
 また、二次側コイル12のセンタータップには、接地電圧GND2に代えて、外部端子である電源電圧端子VDD2から所定電圧である電源電圧VDD2が供給される。容量素子41は、二次側コイル12の一端とダイオード319のアノードとの間に設けられる。容量素子42は、二次側コイル12の他端とダイオード320のアノードとの間に設けられる。そして、ダイオード319のアノード及びダイオード320のアノードには、それぞれ抵抗素子39,40を介してバイアス電圧VBIASが供給される。
 このような回路構成により、ダイオード319のアノード及びダイオード320のアノードはバイアス電圧VBIASによりバイアスされる。同時に、差動アンプ32の両入力端子も抵抗素子315,316を介してバイアス電圧VBIASによりバイアスされる。それにより、例えば、差動アンプ32の両入力端子の電圧レベルの調整をすることができる。
 本実施の形態では、一例として、閾値回路313側と閾値回路314側とが容量素子321を共用している構成と、抵抗素子315,316が対応する閾値回路の入出力端子間に接続される構成と、バイアス電圧VBIASが供給される構成と、が適用された場合について説明したが、これに限られず、各構成が単独で適用されても、何れかが組み合わされて適用されても良い。したがって、例えば、抵抗素子315,316の他端(二次側コイル12側に接続されている端子)がそれぞれ直接電源電圧端子VDD2に接続される構成としても良いし、閾値回路313側と閾値回路314側とがそれぞれ単独で容量素子を有する構成としても良い。また、上記した保護ダイオードが適用されても良い。
(信号伝達システム1fの変形例)
 図19は、図18に示す信号伝達システム1fの変形例を示す図である。図19に示す信号伝達システム1fの変形例は、閾値回路313,314を構成する各ダイオードのアノード及びカソードに異なるバイアス電圧を供給している。以下、具体的に説明する。
 図19に示す受信回路3は、パルス幅増幅回路31、差動アンプ32、受信バッファ33、抵抗素子39,40及び容量素子41,42に加え、抵抗素子47,48及び容量素子49,50をさらに備える。
 抵抗素子315では、一端が差動アンプ32の非反転入力端子に接続され、他端にバイアス電圧VBIAS3が供給される。つまり、ダイオード319のカソード及びダイオード323のアノードには、抵抗素子315を介してバイアス電圧VBIAS3が供給される。抵抗素子316では、一端が差動アンプ32の反転入力端子に接続され、他端にバイアス電圧VBIAS3が供給される。つまり、ダイオード320のカソード及びダイオード324のアノードには、抵抗素子316を介してバイアス電圧VBIAS3が供給される。
 ダイオード319のアノードは、容量素子41を介して二次側コイル12の一端に接続される。ダイオード320のアノードは、容量素子42を介して二次側コイル12の他端に接続される。抵抗素子39では、一端がダイオード319のアノードに接続され、他端にバイアス電圧VBIAS2が供給される。抵抗素子40では、一端がダイオード320のアノードに接続され、他端にバイアス電圧VBIAS2が供給される。つまり、ダイオード319,320のアノードには、それぞれ抵抗素子39,40を介してバイアス電圧VBIAS2が供給される。
 ダイオード323のカソードは、容量素子49を介して二次側コイル12の一端に接続される。ダイオード324のカソードは、容量素子50を介して二次側コイル12の他端に接続される。抵抗素子47では、一端がダイオード323のカソードに接続され、他端にバイアス電圧VBIAS1が供給される。抵抗素子48では、一端がダイオード324のカソードに接続され、他端にバイアス電圧VBIAS1が供給される。つまり、ダイオード323,324のカソードには、それぞれ抵抗素子47,48を介してバイアス電圧VBIAS1が供給される。
 一般に、閾値素子の閾値は、その素子固有の値であるため、回路設計においてその閾値を変えることができない場合がある。本実施の形態においては、閾値素子であるダイオード319,320,323,324のアノード及びカソードに異なるバイアス電圧が印加される。そのため、二次側コイル12に発生する受信信号V2P,V2Nの電圧が同じ大きさであっても、各バイアス電圧のレベルを調整することにより、これらダイオードの実効的な閾値を任意に調整することが可能となる。
 実施の形態8
 図20は、本発明の実施の形態8にかかる信号伝達システム1gを示す図である。本実施の形態にかかる信号伝達システム1gは、図14に示す実施の形態6にかかる信号伝達システム1eの場合と比較して、差動アンプ32と受信バッファ33との間に積分器34をさらに備える。本実施の形態にかかる信号伝達システム1gのその他の回路構成は、図14に示す実施の形態6にかかる信号伝達システム1eと同様であるため、説明を省略する。
 図21は、図20に示す信号伝達システム1gの動作を示すタイミングチャートである。図21のV5-GND2において示される波形でも明らかなように、本実施の形態にかかる受信回路3では、受信バッファ33が、差動アンプ32から出力される1つのパルスの極性によって論理レベルを判定するのではなく、差動アンプ32から出力される複数のパルスの積分値によって論理レベルを判定する。それにより、本実施の形態にかかる受信回路3は、ノイズによるワンショットパルスの影響を受けにくい。
 なお、積分器34は、図22に示すように、差動アンプ32の前段に設けられても良い。また、本実施の形態では、パルス幅増幅回路31が2つの閾値回路313,314を有する構成の場合を例に説明したが、これに限られない。例えば、パルス幅増幅回路31が2つのピークホールド回路を備える構成等、上記実施の形態で説明したパルス幅増幅回路31の構成のうちいずれの構成にも適宜変更可能である。
 実施の形態9
 図23は、本発明の実施の形態9にかかる信号伝達システム1hを示す図である。本実施の形態にかかる信号伝達システム1hは、図18に示す実施の形態7にかかる信号伝達システム1fと比較して、受信回路3が抵抗素子327,328をさらに備える。本実施の形態にかかる信号伝達システム1hのその他の回路構成は、図18に示す実施の形態7にかかる信号伝達システム1fと同様であるため、説明を省略する。
 抵抗素子327は、容量素子321の一端とダイオード319のカソードとの間に設けられる。抵抗素子328は、容量素子321の他端とダイオード320のカソードとの間に設けられる。つまり、容量素子321と抵抗素子327,328とにより積分器が構成される。
 このように、本実施の形態にかかる受信回路3では、容量素子321が、パルス幅増幅用としてだけでなく、積分器の一部として用いられる。それにより、回路規模の増大が抑制される。
 なお、図24に示すように、抵抗素子327,328及び容量素子51により構成される積分器が差動アンプ32と受信バッファ33との間に設けられる構成としても良い。ただし、この場合、容量素子321が積分器の一部として用いられないため、図23に示す回路よりも回路規模が大きくなる点に留意する。
 以上のように、パルス幅増幅回路31は、受信信号V2P,V2Pに重畳されたパルス信号を検出し、所定期間保持した後に保持信号V3P,V3Nとして出力する。つまり、パルス幅増幅回路31は、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅を拡大し、保持信号V3P,V3Nとして出力する。そのため、後段の差動アンプ32は、微細CMOSによって構成されていなくても、精度良く動作することができる。換言すると、上記実施の形態1~9にかかる受信回路3は、受信信号V2P,V2Nに重畳されたパルス信号のパルス幅を拡大することができるため、当該パルス幅を拡大することを目的としてトランスフォーマ10の回路規模を増大させることなく、差動アンプ32を精度良く動作させることができる。
 また、トランスフォーマ10は、一次側コイル11と、外部端子から所定電圧の供給されるセンタータップを有する二次側コイル12と、により構成される。それにより、本実施の形態1~9にかかる受信回路3は、二次側コイル12の両端に発生する受信信号V2P,V2Nにそれぞれ重畳されるコモンモード電圧を後段の差動アンプを用いて相殺することができる。これらのことから、上記実施の形態1~9にかかる受信回路3は、回路規模を増大させることなく、コモンモード電圧の影響を抑制して信号の伝達を防止することができる。
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、受信バッファ33は、ヒステリシスコンパレータに限られず、所定の閾値を超えた値を一定期間保持するシュミットトリガ回路又は状態回路であっても良い。
 また、図11~図13に示す全波整流用の受信回路3は、図19に示す受信回路3の場合と同様に、パルス幅増幅回路31を構成する各ダイオードのアノード及びカソードにそれぞれ独立したバイアス電圧が供給される構成に適宜変更可能である。
 また、送信回路2、受信回路3及びトランスフォーマ10の配置は、図2に示した構成に限られるものではない。以下、図25~図35に本発明にかかる信号伝達システムのその他の実装例を示す。
 図25に示す実装状態では、第1の半導体チップ4に送信回路2が形成される。第2の半導体チップ5には、一次側コイル11、二次側コイル12及び受信回路4が形成される。また、第1の半導体チップ4には、送信回路2と接続されるパッドが形成され、第2の半導体チップ5には、一次側コイル11と接続されるパッドが形成される。そして、送信回路3は、パッドとボンディングワイヤWとを介して第2の半導体チップ5に形成された一次側コイル11の一端と接続される。また、一次側コイル11の他端は、パッドとボンディングワイヤWとを介して第1の半導体チップ4側の接地電圧端子GND1に接続される。
 なお、図25に示す例では、一次側コイル11と二次側コイル12とが、1つの半導体チップにおける同一配線層に形成される。また、一次側コイル11と二次側コイル12とは、略同一の中心位置を有する巻線として形成される。
 図26に示す実装状態では、第1の半導体チップ4に送信回路2が形成される。第2の半導体チップ5には、一次側コイル11、二次側コイル12及び受信回路4が形成される。また、第1の半導体チップ4には、送信回路2と接続されるパッドが形成され、第2の半導体チップ5には、一次側コイル11と接続されるパッドが形成される。そして、送信回路3は、パッドとボンディングワイヤWとを介して第2の半導体チップ5に形成された一次側コイル11と接続される。また、一次側コイル11のセンタータップは、パッドとボンディングワイヤWとを介して第1の半導体チップ4側の接地電圧端子GND1に接続される。
 なお、図26に示す例では、一次側コイル11と二次側コイル12とが、それぞれ1つの半導体チップにおいて上下方向に積層される第1の配線層及び第2の配線層に形成される。また、一次側コイル11がセンタータップを挟んで2つの巻線により形成され、二次側コイル12がセンタータップを挟んで2つの巻線により形成される。
 図27、図28及び図29に示す実装状態では、第1の半導体チップ4に送信回路2、一次側コイル11及び二次側コイル12が形成される。第2の半導体チップ5には受信回路3が形成される。また、第1の半導体チップ4には、二次側コイル12と接続されるパッドが形成され、第2の半導体チップ5には、受信回路3と接続されるパッドが形成される。そして、受信回路3は、パッドとボンディングワイヤWとを介して第1の半導体チップ4に形成された二次側コイル12に接続される。また、二次側コイル12のセンタータップは、パッドとボンディングワイヤWとを介して第2の半導体チップ5側の接地電圧端子GND2に接続される。
 なお、図27及び図29に示す例では、一次側コイル11と二次側コイル12とが、それぞれ1つの半導体チップにおいて上下方向に積層される第1の配線層及び第2の配線層に形成される。さらに、図29に示す例では、一次側コイル11がセンタータップを挟んで2つの巻線により形成され、二次側コイル12がセンタータップを挟んで2つの巻線により形成される。
 また、図28に示す例では、一次側コイル11と二次側コイル12とが、それぞれ1つの半導体チップにおける同一配線層に形成される。また、一次側コイル11と二次側コイル12とは、略同一の中心位置を有する巻線として形成される。
 図30に示す実装状態では、第1の半導体チップ4に送信回路2が形成され、第2の半導体チップ5に受信回路3が形成され、第3の半導体チップ8に一次側コイル11及び二次側コイル12が形成される。また、第1の半導体チップ4には、送信回路2と接続されるパッドが形成され、第2の半導体チップ5には、受信回路3と接続されるパッドが形成され、第3の半導体チップ8には、一次側コイル11と接続されるパッド及び二次側コイル12と接続されるパッドが形成される。そして、送信回路3は、パッドとボンディングワイヤWとを介して第3の半導体チップ8に形成された一次側コイル11の一端と接続される。また、一次側コイル11の他端は、パッドとボンディングワイヤWとを介して第1の半導体チップ4側の接地電圧端子GND1に接続される。受信回路3は、パッドとボンディングワイヤWとを介して第3の半導体チップ8に形成された二次側コイル12に接続される。また、二次側コイル12のセンタータップは、パッドとボンディングワイヤWとを介して第2の半導体チップ5側の接地電圧端子GND2に接続される。
 なお、図30に示す例では、一次側コイル11と二次側コイル12とが、それぞれ1つの半導体チップにおいて上下方向に積層される第1の配線層及び第2の配線層に形成される。
 図31及び図32に示す例は、送信回路2及び一次側コイル11が第1の半導体チップ4に形成され、受信回路2及び二次側コイル12が第2の半導体チップ5に形成され、第1の半導体チップ4と第2の半導体チップ5とが積層される例である。また、図31及び図32に示す例では、積層された状態において、一次側コイル11の中心位置と二次側コイル12の中心位置とが同一直線状になるように第1の半導体チップ4及び第2の半導体チップ5が配置される。
 図33に示す例は、同一の半導体チップ9上に送信回路2、受信回路3及び一次側コイル11及び二次側コイル12が形成される例である。図33に示す例では、一次側コイル11と二次側コイル12が、それぞれ当該半導体チップ9において上下方向に積層される第1の配線層と第2の配線層に形成される。そして、送信回路2が配置される領域と受信回路3が配置される領域は、半導体チップ9の基板中に形成される絶縁層により互いに絶縁される。
 ここで、半導体チップ9の基板の断面図を図34及び図35に示す。図34に示す例では、送信回路2が形成される領域と受信回路3が形成される領域とが絶縁層により電気的に分断される。そして、一次側コイル11及び二次側コイル12は受信回路3が形成される領域に設けられる。一方、図35に示す例では、送信回路2が形成される領域と受信回路3が形成される領域とが絶縁層により電気的に分断される。そして、一次側コイル11及び二次側コイル12は送信回路2が形成される領域に設けられる。
 図36は、二次側コイル12のレイアウト例を示す。図37は、図36の等価回路である。二次側コイル12の一端P1及び他端P2は、図示しない受信回路3と接続される。図36に示すように、巻線の形状が線対象に近い形状であることが望ましい。それにより、図37に示すように、二次側コイル12の一端P1に形成される寄生結合容量C1の容量値と、二次側コイル12の他端P2に形成される寄生結合容量C2の容量値と、がほぼ等しくなる。その結果、受信回路3の後段に設けられた差動アンプ32は、精度良く同相のコモンモード電圧を除去することができる。なお、二次側コイル12が主として第1の配線層に配線されている場合、二次側コイル12の配線の交差部分Xでは、交差する2つ配線のうちいずれか一方が隣接配線層(例えば、第2の配線層)に配線されることとなる。例えば、二次側コイル12の一端P1を始点とし他端P2を終点としてコイルを辿っていった場合、当該コイルは、複数の交差部分Xにおいて、順に、第2の配線層、第1の配線層、第2の配線層、第1の配線層、と交互の配線層に配線されることが望ましい。
 図38及び図39は、受信回路3に設けられた2つのピークホールド回路及び後段の差動アンプ32のレイアウトの例を示す。図38及び図39に示すように、2つのピークホールド回路は、互いに線対象に配置されることが好ましく、2つのピークホールド回路と後段の差動アンプ32との間の配線は、長さ、形状等が互いに等価であることが好ましい。さらに、図39に示すように、差動アンプ32は、2つに分割して線対象にレイアウトされる構成としても良い。
(従来技術との比較)
 なお、発明者は、図44に示すような信号伝達システム100bも検討した。図44に示す信号伝達システム100bは、送信回路120と、受信回路130bと、トランスフォーマ110と、を備える。図44に示す送信回路120及びトランスフォーマ110は、図40に示す送信回路120及びトランスフォーマ110の回路構成と同様であるため、説明を省略する。
 受信回路130bは、ピークホールド回路131aと、ボトムホールド回路131bと、比較回路134と、受信バッファ133と、を備える。
 ピークホールド回路131aの入力端子及びピークホールド回路131bの入力端子は、二次側コイル12の一方の端子に接続される。ピークホールド回路131aの出力端子は、比較回路134の一方の入力端子に接続される。ボトムホールド回路131bの出力端子は、比較回路134の他方の入力端子に接続される。比較回路134の出力端子は、受信バッファ133の入力端子に接続される。受信バッファ133の出力端子は、受信回路3の外部出力端子に接続される。
 図45は、図44に示すピークホールド回路131a、ボトムホールド回路131b及び比較回路134の具体的な構成例を示す図である。なお、図45に示す信号伝達システム1bは、ピークホールド回路131a及びボトムホールド回路131bの各入出力端子間にバイアス電圧VBIASを供給するために、抵抗素子137,138及び容量素子135,136をさらに備える。
 ピークホールド回路131aは、ダイオード159と、容量素子155と、抵抗素子157と、を有する。ボトムホールド回路131bは、ダイオード160と、容量素子156と、抵抗素子158と、を有する。比較回路134は、差動アンプ151~153を有する。
 ダイオード159では、アノードが容量素子135の一端に接続され、カソードが差動アンプ151の非反転入力端子に接続される。容量素子155では、一端がダイオード159のカソードに接続され、他端が接地電圧端子GND2に接続される。抵抗素子157では、一端がダイオード159のカソードに接続され、他端にバイアス電圧VBIASが供給される。抵抗素子137では、一端がダイオード159のアノードに接続され、他端にバイアス電圧VBIASが供給される。容量素子135の他端は、二次側コイル112の一端に接続される。
 ダイオード160では、カソードが容量素子136の一端に接続され、アノードが差動アンプ152の反転入力端子に接続される。容量素子156では、一端がダイオード160のアノードに接続され、他端が接地電圧端子GND2に接続される。抵抗素子158では、一端がダイオード160のアノードに接続され、他端にバイアス電圧VBIASが供給される。抵抗素子138では、一端がダイオード160のカソードに接続され、他端にバイアス電圧VBIASが供給される。容量素子136の他端は、二次側コイル112の一端に接続される。
 差動アンプ151では、反転入力端子にバイアス電圧VBIASが供給され、出力端子が差動アンプ153の非反転入力端子に接続される。差動アンプ152では、非反転入力端子にバイアス電圧VBIASが供給され、出力端子が差動アンプ153の反転入力端子に接続される。差動アンプ153の一対の出力端子は、それぞれ受信バッファ133の対応する入力端子に接続される。
 ピークホールド回路131aは、受信信号V2に重畳されたパルス信号のうち正振幅のパルス信号を検出し、所定期間保持した後に保持信号V3Pを出力する。ボトムホールド回路131bは、受信信号V2に重畳されたパルス信号のうち負振幅のパルス信号を検出し、所定期間保持した後に保持信号V3Nを出力する。
 比較回路134において、差動アンプ151は、パルス幅の拡大された正振幅のパルス信号である保持信号V3Pと、バイアス電圧VBIASと、の電位差に応じた増幅信号V4Aを出力する。差動アンプ152は、パルス幅の拡大された負振幅のパルス信号である保持信号V3Nと、バイアス電圧VBIASと、の電位差に応じた増幅信号V4Bを出力する。その後、差動アンプ153は、増幅信号V4Aと増幅信号V4Bとの電位差に応じた伝達用信号V4P,V4Nを出力する。受信バッファ133は、伝達用信号V4P,V4Nに基づいて送信データVINを再生し出力データVOUTとして出力する。
 このように、図44及び図45に示す信号伝達システム1bでは、ピークホールド回路131a及びボトムホールド回路131bが、受信信号V2に重畳されたパルス信号のパルス幅を拡大してそれぞれ保持信号V3P,V3Nを出力する。そのため、後段の差動アンプは、微細CMOSによって構成されていなくても動作することができる。
 しかし、信号伝達システム100bでは、トランスフォーマ110を構成する二次側コイル112がセンタータップを有しないため、コモンモード電圧の影響により、信号の誤伝達が発生する問題があった。
 ここで、図44及び図45に示すような1つのピークホールド回路と1つのボトムホール回路とを備えた回路構成と、図42に示すようなセンタータップを有する二次側コイル12の構成と、を単純に組み合わせた場合について考察する。
 図46及び図47は、1つのピークホールド回路と1つのボトムホール回路とを備えた回路構成と、センタータップを有する二次側コイル12の構成と、を単純に組み合わせた回路構成の例である。なお、図46は、受信信号V2P,V2Nを半波整流する回路構成の例であり、図47は、受信信号V2P,V2Nを全波整流する回路構成の例である。
 図46に示す信号伝達システム100c及び図47に示す信号伝達システム100dにおいて、ピークホールド回路131aが出力する保持信号V3Pの電圧レベルは、常にバイアス電圧VBIAS以上を示す。一方、ボトムホールド回路131bの出力する保持信号V2Nの電圧レベルは、常にバイアス電圧VBIAS以下を示す。したがって、出力データVOUTは、送信データVINの値に関わらずハイレベルとなる可能性が高い。
 このように、図44及び図45に示すような1つのピークホールド回路と1つのボトムホール回路とを備えた回路構成と、図42に示すようなセンタータップを有する二次側コイル12の構成と、を単純に組み合わせただけでは、コモンモード電圧の影響を抑制するとともに、トランスフォーマの回路規模を増大させることなく後段の差動アンプを精度良く動作させることはできない。
 この出願は、2011年5月18日に出願された日本出願特願2011-111615を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1~1h 信号伝達システム
 2 送信回路
 3 受信回路
 4 第1の半導体チップ
 5 第2の半導体チップ
 6 半導体パッケージ
 7 リード線
 8 第3の半導体チップ
 9 半導体チップ
 10 トランスフォーマ
 11 一次側コイル
 12 二次側コイル
 21 送信バッファ
 31 パルス幅増幅回路
 32、43、44 差動アンプ
 33 受信バッファ
 34 積分器
 35~38保護ダイオード
 39、40、47、48、309、310、315、316、327、328 抵抗素子
 41、42、49、50、51、317、318、321 容量素子
 45 RSラッチ
 311、312 ピークホールド回路
 313、314 閾値回路
 319、320、323、324 ダイオード
 325、326 ボトムホールド回路

Claims (42)

  1.  送信信号を出力する送信回路とは異なる電源系において動作し、前記送信信号の流れる一次側コイルと、外部端子から所定電圧の供給されるセンタータップを有する二次側コイルと、が磁気的に結合された交流結合素子を介して、当該送信信号を受信する受信回路であって、
     前記二次側コイルの両端に発生するパルス信号を所定期間保持し、それぞれ第1及び第2保持信号として出力するパルス幅増幅回路と、
     前記第1保持信号の電圧と前記第2保持信号の電圧とを比較して比較結果を出力する比較回路と、を備えた受信回路。
  2.  前記パルス幅増幅回路は、前記二次側コイルの両端に発生するパルス信号を所定期間保持することにより当該パルス信号のパルス幅を拡大し、それぞれ第1及び第2保持信号として出力することを特徴とする請求項1に記載の受信回路。
  3.  前記二次側コイルのセンタータップには、前記送信回路を駆動する第1電源とは異なる電源系である第2電源の電圧が外部端子から供給されることを特徴とする請求項1又は2に記載の受信回路。
  4.  前記パルス幅増幅回路は、
     前記二次側コイルの一端に発生するパルス信号のうち正振幅のパルス信号を所定期間保持し、前記第1保持信号として出力する第1ピークホールド回路と、
     前記二次側コイルの他端に発生するパルス信号のうち正振幅のパルス信号を所定期間保持し、前記第2保持信号として出力する第2ピークホールド回路と、を備えた請求項1~3のいずれか一項に記載の受信回路。
  5.  前記第1ピークホールド回路は、
     入力端子が前記二次側コイルの一端に接続され、出力端子が前記比較回路の第1入力端子に接続された第1閾値素子と、
     前記第1閾値素子を介して前記二次側コイルの一端から供給される電荷を蓄積する第1容量素子と、
     一端が前記第1閾値素子の出力端子に接続され、他端に前記基準電圧が供給される第1抵抗素子と、を備え、
     前記第2ピークホールド回路は、
     入力端子が前記二次側コイルの他端に接続され、出力端子が前記比較回路の第2入力端子に接続された第2閾値素子と、
     前記第2閾値素子を介して前記二次側コイルの他端から供給される電荷を蓄積する第2容量素子と、
     一端が前記第2閾値素子の出力端子に接続され、他端に前記基準電圧が供給される第2抵抗素子と、を備えた請求項4に記載の受信回路。
  6.  前記第1ピークホールド回路は、
     前記第1閾値素子として、アノードが前記二次側コイルの一端に接続され、カソードが前記比較回路の第1入力端子に接続された第1ダイオードを備え、
     前記第2ピークホールド回路は、
     前記第2閾値素子として、アノードが前記二次側コイルの他端に接続され、カソードが前記比較回路の第2入力端子に接続された第2ダイオードを備えた請求項5に記載の受信回路。
  7.  前記第1抵抗素子は、一端が前記第1閾値素子の出力端子に接続され、他端が前記第1閾値素子の入力端子に接続され、当該第1抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給され、
     前記第2抵抗素子は、一端が前記第2閾値素子の出力端子に接続され、他端が前記第2閾値素子の入力端子に接続され、当該第2抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給されることを特徴とする請求項5又は6に記載の受信回路。
  8.  前記パルス幅増幅回路は、
     前記第1容量素子及び前記第2容量素子に代えて、前記第1閾値素子の出力端子と前記第2閾値素子の出力端子との間に第3容量素子を備えた請求項5~7のいずれか一項に記載の受信回路。
  9.  前記パルス幅増幅回路は、
     前記二次側コイルの一端に発生するパルス信号のうち負振幅のパルス信号を所定期間保持し、前記第1保持信号として出力する第1ボトムホールド回路と、
     前記二次側コイルの他端に発生するパルス信号のうち負振幅のパルス信号の所定期間保持し、前記第2保持信号として出力する第2ボトムホールド回路と、を備えた請求項1~3のいずれか一項に記載の受信回路。
  10.  前記第1ボトムホールド回路は、
     出力端子が前記二次側コイルの一端に接続され、入力端子が前記比較回路の第1入力端子に接続された第1閾値素子と、
     前記第1閾値素子を介して前記二次側コイルの一端に向けて、蓄積している電荷を放出する第1容量素子と、
     一端が前記第1閾値素子の入力端子に接続され、他端に前記基準電圧が供給される第1抵抗素子と、を備え、
     前記第2ボトムホールド回路は、
     出力端子が前記二次側コイルの他端に接続され、入力端子が前記比較回路の第2入力端子に接続された第2閾値素子と、
     前記第2閾値素子を介して前記二次側コイルの他端に向けて、蓄積している電荷を放出する第2容量素子と、
     一端が前記第2閾値素子の入力端子に接続され、他端に前記基準電圧が供給される第2抵抗素子と、を備えた請求項9に記載の受信回路。
  11.  前記第1ボトムホールド回路は、
     前記第1閾値素子として、カソードが前記二次側コイルの一端に接続され、アノードが前記比較回路の第1入力端子に接続された第1ダイオードを備え、
     前記第2ボトムホールド回路は、
     前記第2閾値素子として、カソードが前記二次側コイルの他端に接続され、アノードが前記比較回路の第2入力端子に接続された第2ダイオードを備えた請求項10に記載の受信回路。
  12.  前記第1抵抗素子は、一端が前記第1閾値素子の入力端子に接続され、他端が前記第1閾値素子の出力端子に接続され、当該第1抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給され、
     前記第2抵抗素子は、一端が前記第2閾値素子の入力端子に接続され、他端が前記第2閾値素子の出力端子に接続され、当該第2抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給されることを特徴とする請求項10又は11に記載の受信回路。
  13.  前記パルス幅増幅回路は、
     前記第1容量素子及び前記第2容量素子に代えて、前記第1閾値素子の入力端子と前記第2閾値素子の入力端子との間に第3容量素子を備えた請求項10~12のいずれか一項に記載の受信回路。
  14.  前記パルス幅増幅回路は、
     入力端子が前記二次側コイルの一端に接続され、出力端子が前記比較回路の一方の入力端子に接続され、前記入力端子と前記出力端子との間の電位差が所定値以上となった場合に電流が流れる第1閾値回路と、
     一端が前記第1閾値回路の出力端子に接続され、他端に前記基準電圧が供給される第1抵抗素子と、
     一端が前記第1閾値回路の出力端子に接続され、他端に前記基準電圧が供給される第1容量素子と、
     入力端子が前記二次側コイルの他端に接続され、出力端子が前記比較回路の他方の入力端子に接続され、前記入力端子と前記出力端子との間の電位差が所定値以上となった場合に電流が流れる第2閾値回路と、
     一端が前記第2閾値回路の出力端子に接続され、他端に前記基準電圧が供給される第2抵抗素子と、
     一端が前記第2閾値回路の出力端子に接続され、他端に前記基準電圧が供給される第2容量素子と、を備えた請求項1~3のいずれか一項に記載の受信回路。
  15.  前記第1閾値回路は、入力端子と出力端子との間の電位差が所定値以上となった場合に電流が流れる第1及び第3閾値素子を備え、
     前記第1閾値素子の入力端子及び前記第3閾値素子の出力端子は、前記二次側コイルの一端に接続され、前記第1閾値素子の出力端子及び前記第3閾値素子の入力端子は、前記比較回路の一方の入力端子に接続され、
     前記第2閾値回路は、入力端子と出力端子との間の電位差が所定値以上となった場合に電流が流れる第2及び第4閾値素子を備え、
     前記第2閾値素子の入力端子及び前記第4閾値素子の出力端子は、前記二次側コイルの他端に接続され、前記第2閾値素子の出力端子及び前記第4閾値素子の入力端子は、前記比較回路の他方の入力端子に接続されることを特徴とする請求項14に記載の受信回路。
  16.  前記第1閾値回路は、
     前記第1閾値素子として、アノードが前記二次側コイルの一端に接続され、カソードが前記比較回路の一方の入力端子に接続された第1ダイオードと、
     前記第3閾値素子として、カソードが前記二次側コイルの一端に接続され、アノードが前記比較回路の一方の入力端子に接続された第3ダイオードと、を備え、
     前記第2閾値回路は、
     前記第2値素子として、アノードが前記二次側コイルの他端に接続され、カソードが前記比較回路の他方の入力端子に接続された第2ダイオードと、
     前記第4閾値素子として、カソードが前記二次側コイルの他端に接続され、アノードが前記比較回路の他方の入力端子に接続された第4ダイオードと、を備えた請求項15に記載の受信回路。
  17.  前記第1抵抗素子は、一端が前記第1閾値素子の出力端子に接続され、他端が前記第1閾値素子の入力端子に接続され、当該第1抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給され、
     前記第2抵抗素子は、一端が前記第2閾値素子の出力端子に接続され、他端が前記第2閾値素子の入力端子に接続され、当該第2抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給されることを特徴とする請求項15又は16に記載の受信回路。
  18.  前記パルス幅増幅回路は、
     前記第1及び前記第2容量素子に代えて、前記第1閾値素子の出力端子と前記2閾値素子の出力端子との間に第3容量素子を備えた請求項15~17のいずれか一項に記載の受信回路。
  19.  前記二次側コイルの一端と前記第1閾値素子の入力端子との間に設けられた第1入力側容量素子と、
     前記二次側コイルの他端と前記第2閾値素子の入力端子との間に設けられた第2入力側容量素子と、
     前記二次側コイルの一端と前記第3閾値素子の出力端子との間に設けられた第3入力側容量素子と、
     前記二次側コイルの他端と前記第4閾値素子の出力端子との間に設けられた第4入力側容量素子と、を備え、
     前記第1閾値素子の入力端子、前記第2閾値素子の入力端子、前記第3閾値素子の出力端子及び前記第4閾値素子の出力端子には、前記二次側コイルのセンタータップに供給される所定電圧に代わる基準電圧として、バイアス電圧が抵抗素子を介して供給されることを特徴とする請求項15~18のいずれか一項に記載の受信回路。
  20.  前記第1及び前記第2閾値素子の入力端子には、略同一の電圧レベルの基準電圧が供給され、前記3及び第4閾値素子の出力端子には、略同一の電圧レベルの基準電圧が供給されることを特徴とする請求項19に記載の受信回路。
  21.  前記第1及び前記第2閾値素子の入力端子と、前記3及び第4閾値素子の出力端子と、には、異なる電圧レベルの基準電圧が供給されることを特徴とする請求項19に記載の受信回路。
  22.  前記比較回路は、差動アンプであることを特徴とする請求項1~21のいずれか一項に記載の受信回路。
  23.  前記パルス幅増幅回路は、
     前記二次側コイルの一端に発生するパルス信号のうち正振幅のパルス信号を所定期間保持し、前記第1保持信号として出力する第1ピークホールド回路と、
     前記二次側コイルの他端に発生するパルス信号のうち正振幅のパルス信号を所定期間保持し、前記第2保持信号として出力する第2ピークホールド回路と、
     前記二次側コイルの一端に発生するパルス信号のうち負振幅のパルス信号を所定期間保持し、第3保持信号として出力する第1ボトムホールド回路と、
     前記二次側コイルの他端に発生するパルス信号のうち負振幅のパルス信号を所定期間保持し、第4保持信号として出力する第2ボトムホールド回路と、を備え、
     前記比較回路は、前記第1及び前記第2保持信号の電圧に加え、さらに前記第3及び前記第4保持信号の電圧に基づいて前記比較結果を出力することを特徴とする請求項1~3のいずれか一項に記載の受信回路。
  24.  前記第1ピークホールド回路は、
     入力端子が前記二次側コイルの一端に接続され、出力端子が前記比較回路の第1入力端子に接続された第1閾値素子と、
     前記第1閾値素子を介して前記二次側コイルの一端から供給される電荷を蓄積する第1容量素子と、
     一端が前記第1閾値素子の出力端子に接続され、他端に前記基準電圧が供給される第1抵抗素子と、を備え、
     前記第2ピークホールド回路は、
     入力端子が前記二次側コイルの他端に接続され、出力端子が前記比較回路の第2入力端子に接続された第2閾値素子と、
     前記第2閾値素子を介して前記二次側コイルの他端から供給される電荷を蓄積する第2容量素子と、
     一端が前記第2閾値素子の出力端子に接続され、他端に前記基準電圧が供給される第2抵抗素子と、を備え、
     前記第1ボトムホールド回路は、
     出力端子が前記二次側コイルの一端に接続され、入力端子が前記比較回路の第3入力端子に接続された第3閾値素子と、
     前記第3閾値素子を介して前記二次側コイルの一端に向けて、蓄積している電荷を放出する第3容量素子と、
     一端が前記第3閾値素子の入力端子に接続され、他端に前記基準電圧が供給される第3抵抗素子と、を備え、
     前記第2ボトムホールド回路は、
     出力端子が前記二次側コイルの他端に接続され、入力端子が前記比較回路の第4入力端子に接続された第4閾値素子と、
     前記第4閾値素子を介して前記二次側コイルの他端に向けて、蓄積している電荷を放出する第4容量素子と、
     一端が前記第4閾値素子の入力端子に接続され、他端に前記基準電圧が供給される第4抵抗素子と、を備えた請求項23に記載の受信回路。
  25.  前記第1ピークホールド回路は、
     前記第1閾値素子として、アノードが前記二次側コイルの一端に接続され、カソードが前記比較回路の第1入力端子に接続された第1ダイオードを備え、
     前記第2ピークホールド回路は、
     前記第2閾値素子として、アノードが前記二次側コイルの他端に接続され、カソードが前記比較回路の第2入力端子に接続された第2ダイオードを備え、
     前記第1ボトムホールド回路は、
     前記第3閾値素子として、カソードが前記二次側コイルの一端に接続され、アノードが前記比較回路の第3入力端子に接続された第3ダイオードを備え、
     前記第2ボトムホールド回路は、
     前記第4閾値素子として、カソードが前記二次側コイルの他端に接続され、アノードが前記比較回路の第4入力端子に接続された第4ダイオードを備えた請求項24に記載の受信回路。
  26.  前記第1抵抗素子は、一端が前記第1閾値素子の出力端子に接続され、他端が前記第1閾値素子の入力端子に接続され、当該第1抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給され、
     前記第2抵抗素子は、一端が前記第2閾値素子の出力端子に接続され、他端が前記第2閾値素子の入力端子に接続され、当該第2抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給され、
     前記第3抵抗素子は、一端が前記第3閾値素子の入力端子に接続され、他端が前記第3閾値素子の出力端子に接続され、当該第3抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給され、
     前記第4抵抗素子は、一端が前記第4閾値素子の入力端子に接続され、他端が前記第4閾値素子の出力端子に接続され、当該第4抵抗素子の他端には、前記二次側コイルのセンタータップから基準電圧としての所定電圧が供給されることを特徴とする請求項24又は25に記載の受信回路。
  27.  前記パルス幅増幅回路は、前記第1~第4容量素子に代えて、
     前記第1閾値素子の出力端子と、前記第4閾値素子の入力端子と、の間に設けられた第3容量素子と、
     前記第2閾値素子の出力端子と、前記第3閾値素子の入力端子と、の間に設けられた第4容量素子と、を備えた請求項24~26のいずれか一項に記載の受信回路。
  28.  前記二次側コイルの一端と前記第1閾値素子の入力端子との間に設けられた第1入力側容量素子と、
     前記二次側コイルの他端と前記第2閾値素子の入力端子との間に設けられた第2入力側容量素子と、
     前記二次側コイルの一端と前記第3閾値素子の出力端子との間に設けられた第3入力側容量素子と、
     前記二次側コイルの他端と前記第4閾値素子の出力端子との間に設けられた第4入力側容量素子と、を備え、
     前記第1閾値素子の入力端子、前記第2閾値素子の入力端子、前記第3閾値素子の出力端子及び前記第4閾値素子の出力端子には、前記二次側コイルのセンタータップに供給される所定電圧に代わる基準電圧として、バイアス電圧が抵抗素子を介して供給されることを特徴とする請求項24~27のいずれか一項に記載の受信回路。
  29.  前記第1及び前記第2閾値素子の入力端子には、略同一の電圧レベルの基準電圧が供給され、前記3及び第4閾値素子の出力端子には、略同一の電圧レベルの基準電圧が供給されることを特徴とする請求項28に記載の受信回路。
  30.  前記第1及び前記第2閾値素子の入力端子と、前記3及び第4閾値素子の出力端子と、には、異なる電圧レベルの基準電圧が供給されることを特徴とする請求項28に記載の受信回路。
  31.  前記比較回路は、
     前記第1保持信号の電圧と前記第2保持信号の電圧とを比較して第1増幅信号を出力する第1差動アンプと、
     前記第3保持信号の電圧と前記第4保持信号の電圧とを比較して第2増幅信号を出力する第2差動アンプと、
     前記第1増幅信号の電圧と前記第2増幅信号の電圧とを比較して前記比較結果を出力する第3差動アンプと、を備えた請求項23~30のいずれか一項に記載の受信回路。
  32.  前記比較回路は、
     前記第1保持信号の電圧と前記第4保持信号の電圧とを比較して第1増幅信号を出力する第1差動アンプと、
     前記第2保持信号の電圧と前記第3保持信号の電圧とを比較して第2増幅信号を出力する第2差動アンプと、
     前記第1増幅信号と前記第2増幅信号とに基づいて前記比較結果を出力する第3差動アンプと、を備えた請求項23~30のいずれか一項に記載の受信回路。
  33.  前記二次側コイルの一端と前記パルス幅増幅回路との間に設けられた第1入力側容量素子と、
     前記二次側コイルの他端と前記パルス幅増幅回路との間に設けられた第2入力側容量素子と、を備え、
     前記第1入力側容量素子と前記パルス幅増幅回路との間のノード及び前記第2入力側容量素子と前記パルス幅増幅回路との間のノードには、前記二次側コイルのセンタータップに供給される所定電圧に代わる基準電圧として、バイアス電圧が抵抗素子を介して供給されることを特徴とする請求項1~27のいずれか一項に記載の受信回路。
  34.  前記第1入力側容量素子と前記パルス幅増幅回路との間のノード及び前記第2入力側容量素子と前記パルス幅増幅回路との間のノードには、略同一の電圧レベルの基準電圧が供給されることを特徴とする請求項33に記載の受信回路。
  35.  前記パルス幅増幅回路は、
     前記第1及び前記第2閾値回路と前記比較回路との間にそれぞれ設けられ、前記第1及び前記第2容量素子とともに積分器を構成する第1及び第2積分用抵抗素子をさらに備えた請求項14~22のいずれか一項に記載の受信回路。
  36.  前記パルス幅増幅回路と前記比較回路との間に積分器をさらに備えた請求項1~34のいずれか一項に記載の受信回路。
  37.  前記比較回路の後段に積分器をさらに備えた請求項1~34のいずれか一項に記載の受信回路。
  38.  前記比較回路から出力された前記比較結果に基づいて前記送信信号に含まれる送信データを再生する受信バッファをさらに備えた請求項1~37のいずれか一項に記載の受信回路。
  39.  前記受信バッファは、ヒステリシスコンパレータであることを特徴とする請求項38に記載の受信回路。
  40.  前記比較回路は、
     前記第1保持信号の電圧と前記第4保持信号の電圧とを比較して第1増幅信号を出力する第1差動アンプと、
     前記第2保持信号の電圧と前記第3保持信号の電圧とを比較して第2増幅信号を出力する第2差動アンプと、
     前記第1増幅信号と前記第2増幅信号とに基づいて前記送信信号に含まれる送信データを再生し出力するRSラッチ回路と、を備えた請求項23~30のいずれか一項に記載の受信回路。
  41.  前記二次側コイルの両端にそれぞれ設けられた第1及び第2保護ダイオードをさらに備えた請求項1~40のいずれか一項に記載の受信回路。
  42.  送信信号を出力する送信回路とは異なる電源系において動作し、前記送信信号の流れる一次側コイルと、外部端子から所定電圧の供給されるセンタータップを有する二次側コイルと、が磁気的に結合された交流結合素子を介して、当該送信信号を受信する受信回路の信号受信方法であって、
     前記二次側コイルの両端に発生するパルス信号を所定期間保持し、それぞれ第1及び第2保持信号として出力し、
     前記第1保持信号の電圧と前記第2保持信号の電圧とを比較して比較結果を出力する受信回路の信号受信方法。
PCT/JP2012/002403 2011-05-18 2012-04-05 受信回路及び信号受信方法 WO2012157180A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280023531.1A CN103563316B (zh) 2011-05-18 2012-04-05 接收电路及信号接收方法
US14/117,760 US9716440B2 (en) 2011-05-18 2012-04-05 Receiving circuit and signal receiving method
JP2013514966A JP5613833B2 (ja) 2011-05-18 2012-04-05 受信回路及び信号受信方法
US15/646,582 US10187117B2 (en) 2011-05-18 2017-07-11 Receiving circuit and signal receiving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-111615 2011-05-18
JP2011111615 2011-05-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/117,760 A-371-Of-International US9716440B2 (en) 2011-05-18 2012-04-05 Receiving circuit and signal receiving method
US15/646,582 Continuation US10187117B2 (en) 2011-05-18 2017-07-11 Receiving circuit and signal receiving method

Publications (1)

Publication Number Publication Date
WO2012157180A1 true WO2012157180A1 (ja) 2012-11-22

Family

ID=47176535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002403 WO2012157180A1 (ja) 2011-05-18 2012-04-05 受信回路及び信号受信方法

Country Status (4)

Country Link
US (2) US9716440B2 (ja)
JP (1) JP5613833B2 (ja)
CN (1) CN103563316B (ja)
WO (1) WO2012157180A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136769A1 (ja) * 2014-03-13 2015-09-17 三菱電機株式会社 信号伝達回路およびそれを備えた電力変換装置
JP2015171007A (ja) * 2014-03-07 2015-09-28 三菱電機株式会社 信号伝達回路
JP2016046723A (ja) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 受信装置、通信装置、及び通信方法
JP2016134868A (ja) * 2015-01-22 2016-07-25 サンケン電気株式会社 パルス信号の伝達回路
US20180115346A1 (en) * 2013-07-01 2018-04-26 Texas Instruments Incorporated Inductive structures with improved common mode transient immunity
JP2020178512A (ja) * 2019-04-22 2020-10-29 三菱電機株式会社 モータ駆動回路、モータ制御回路、モータユニット、モータ駆動装置、送風機器及びモータ制御方法
WO2023162537A1 (ja) * 2022-02-28 2023-08-31 ローム株式会社 パルス受信回路、信号伝達装置、電子機器、車両

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083441B2 (en) 2011-10-26 2015-07-14 Qualcomm Incorporated Impedance balancing for transmitter to receiver rejection
US8971219B2 (en) * 2012-03-30 2015-03-03 Qualcomm Incorporated Hybrid transformer based integrated duplexer for multi-band/multi-mode radio frequency (RF) front end
US20130259099A1 (en) 2012-03-30 2013-10-03 Qualcomm Incorporated Tunable notch filter using feedback through an existing feedback receiver
JP6468758B2 (ja) * 2014-08-27 2019-02-13 ルネサスエレクトロニクス株式会社 半導体装置
JP6445883B2 (ja) 2015-01-30 2018-12-26 東芝メモリ株式会社 受信回路及び通信システム
JP6688986B2 (ja) * 2015-08-18 2020-04-28 パナソニックIpマネジメント株式会社 信号伝送回路
ITUB20153500A1 (it) 2015-09-09 2017-03-09 St Microelectronics Srl Procedimento per trasmettere potenza e dati attraverso una barriera di isolamento galvanico, sistema ed apparecchiatura corrispondenti
JP2017098334A (ja) * 2015-11-19 2017-06-01 ルネサスエレクトロニクス株式会社 半導体装置
US10491027B2 (en) * 2016-04-01 2019-11-26 Intel Corporation Wireless power transmission
CN106100682B (zh) * 2016-08-11 2018-07-10 广州金升阳科技有限公司 单路、多路信号隔离传输系统及全双工通信系统
IT201600088207A1 (it) * 2016-08-30 2018-03-02 St Microelectronics Srl Circuito di isolamento galvanico, sistema e procedimento corrispondenti
US10530177B2 (en) * 2017-03-09 2020-01-07 Cochlear Limited Multi-loop implant charger
JP7051649B2 (ja) * 2018-09-07 2022-04-11 株式会社東芝 磁気結合装置及び通信システム
DE102018133519B3 (de) * 2018-12-21 2020-03-05 Automotive Lighting Reutlingen Gmbh Schutzschaltung, Schutzeinrichtung, Elektronische Vorrichtung und Verfahren zum Betreiben einer elektronischen Vorrichtung
WO2020142792A1 (en) * 2019-01-04 2020-07-09 The Trustees Of Columbia University In The City Of New York Circuits and methods for wake-up receivers
CN110162498B (zh) * 2019-05-21 2020-10-09 京微齐力(北京)科技有限公司 可工作在不同电源电压下的lvds接收电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118605A (ja) * 2000-06-28 2002-04-19 Agere Systems Guardian Corp シリコンデータアクセス構成のための誘導結合
JP2003523147A (ja) * 2000-02-14 2003-07-29 アナログ デバイセス インコーポレーテッド 分離バリアを通過して論理信号を送信するアイソレータ
WO2010089974A1 (ja) * 2009-02-09 2010-08-12 日本電気株式会社 信号伝達システム及び信号伝達方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218210A (ja) 1985-03-25 1986-09-27 Stanley Electric Co Ltd アイソレ−トアンプ
US4823364A (en) * 1987-03-12 1989-04-18 The Boeing Company Receive coupler for binary data communication systems
US5838722A (en) * 1996-04-24 1998-11-17 Aeroflex, Inc. Monolithic transceiver including feedback control
US6873065B2 (en) 1997-10-23 2005-03-29 Analog Devices, Inc. Non-optical signal isolator
US20030042571A1 (en) * 1997-10-23 2003-03-06 Baoxing Chen Chip-scale coils and isolators based thereon
US7113587B1 (en) 2000-06-28 2006-09-26 Agere Systems Inc. Method and apparatus for non-disruptive telecommunication loop condition determination
EP1618712A2 (en) 2003-04-30 2006-01-25 Analog Devices, Inc. Signal isolators using micro-transformers
US7064442B1 (en) * 2003-07-02 2006-06-20 Analog Devices, Inc. Integrated circuit package device
US8049573B2 (en) * 2004-06-03 2011-11-01 Silicon Laboratories Inc. Bidirectional multiplexed RF isolator
US7302247B2 (en) 2004-06-03 2007-11-27 Silicon Laboratories Inc. Spread spectrum isolator
US7489526B2 (en) 2004-08-20 2009-02-10 Analog Devices, Inc. Power and information signal transfer using micro-transformers
US7424060B2 (en) * 2004-11-19 2008-09-09 Potentia Semiconductor Inc. Transformer data coupler with high common mode immunity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523147A (ja) * 2000-02-14 2003-07-29 アナログ デバイセス インコーポレーテッド 分離バリアを通過して論理信号を送信するアイソレータ
JP2002118605A (ja) * 2000-06-28 2002-04-19 Agere Systems Guardian Corp シリコンデータアクセス構成のための誘導結合
WO2010089974A1 (ja) * 2009-02-09 2010-08-12 日本電気株式会社 信号伝達システム及び信号伝達方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180115346A1 (en) * 2013-07-01 2018-04-26 Texas Instruments Incorporated Inductive structures with improved common mode transient immunity
US10320448B2 (en) * 2013-07-01 2019-06-11 Texas Instruments Incorporated Inductive structures with improved common mode transient immunity
JP2015171007A (ja) * 2014-03-07 2015-09-28 三菱電機株式会社 信号伝達回路
WO2015136769A1 (ja) * 2014-03-13 2015-09-17 三菱電機株式会社 信号伝達回路およびそれを備えた電力変換装置
JP2016046723A (ja) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 受信装置、通信装置、及び通信方法
JP2016134868A (ja) * 2015-01-22 2016-07-25 サンケン電気株式会社 パルス信号の伝達回路
JP2020178512A (ja) * 2019-04-22 2020-10-29 三菱電機株式会社 モータ駆動回路、モータ制御回路、モータユニット、モータ駆動装置、送風機器及びモータ制御方法
JP7257864B2 (ja) 2019-04-22 2023-04-14 三菱電機株式会社 モータ駆動装置及び送風機器
WO2023162537A1 (ja) * 2022-02-28 2023-08-31 ローム株式会社 パルス受信回路、信号伝達装置、電子機器、車両

Also Published As

Publication number Publication date
JPWO2012157180A1 (ja) 2014-07-31
CN103563316A (zh) 2014-02-05
US20140085951A1 (en) 2014-03-27
US20170310236A1 (en) 2017-10-26
JP5613833B2 (ja) 2014-10-29
US9716440B2 (en) 2017-07-25
US10187117B2 (en) 2019-01-22
CN103563316B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP5613833B2 (ja) 受信回路及び信号受信方法
JP5582134B2 (ja) 受信回路及び信号受信方法
JP5766299B2 (ja) 信号伝達回路
US8861229B2 (en) Isolator circuit including a voltage regulator
CN107612532B (zh) 信号传递装置及电力开关元件驱动装置
JP5504903B2 (ja) 受信回路、受信方法及び信号伝達システム
US9537581B2 (en) Isolator including bi-directional regulator
US10637468B2 (en) Galvanically-isolated signaling between modules with step-up transformer
JP2011146904A (ja) 受信回路
US8902005B2 (en) Apparatus and method for wide common mode difference
JP5499716B2 (ja) 半導体装置
US9531372B1 (en) Driver with transformer feedback
US20160126725A1 (en) Electrostatic discharge protection for a transformer balun
EP3435551B1 (en) Current pulse transformer for isolating electrical signals
US8547185B2 (en) Center-tapped inductor balun
JP4765034B2 (ja) 受信器及び半導体装置
US20220311344A1 (en) Oscillator Circuit for Controlling a Transformer
JP2018011173A (ja) デジタルアイソレータ
JP2024065704A (ja) 通信装置
US20140145783A1 (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280023531.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514966

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14117760

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785720

Country of ref document: EP

Kind code of ref document: A1