WO2012157059A1 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
WO2012157059A1
WO2012157059A1 PCT/JP2011/061176 JP2011061176W WO2012157059A1 WO 2012157059 A1 WO2012157059 A1 WO 2012157059A1 JP 2011061176 W JP2011061176 W JP 2011061176W WO 2012157059 A1 WO2012157059 A1 WO 2012157059A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
target
catalyst
rich
Prior art date
Application number
PCT/JP2011/061176
Other languages
English (en)
French (fr)
Inventor
藤原 孝彦
木村 光壱
亮 冨松
鈴木 純一
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to BR112013029356-0A priority Critical patent/BR112013029356B1/pt
Priority to US14/117,440 priority patent/US9212583B2/en
Priority to PCT/JP2011/061176 priority patent/WO2012157059A1/ja
Priority to RU2013150622/06A priority patent/RU2566093C2/ru
Priority to KR1020137030290A priority patent/KR20130140884A/ko
Priority to AU2011368598A priority patent/AU2011368598B2/en
Priority to CN201180070871.5A priority patent/CN103534452B/zh
Priority to EP11865891.3A priority patent/EP2711519A4/en
Priority to JP2013514898A priority patent/JP5664884B2/ja
Publication of WO2012157059A1 publication Critical patent/WO2012157059A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an air-fuel ratio control apparatus for an internal combustion engine that can reduce the amount of NOx (nitrogen oxide) emission by effectively utilizing a three-way catalyst disposed in an exhaust passage.
  • a three-way catalyst is disposed in the exhaust passage of the engine.
  • the three-way catalyst has an oxygen storage function. That is, when the gas flowing into the three-way catalyst (catalyst inflow gas) contains excess oxygen, the three-way catalyst stores the oxygen and purifies NOx. When the catalyst inflow gas contains excessive unburned substances, the three-way catalyst releases the stored oxygen and purifies the unburned substances.
  • the three-way catalyst is also simply referred to as “catalyst”.
  • a conventional air-fuel ratio control device includes an upstream air-fuel ratio sensor and a downstream air-fuel ratio sensor, which are disposed in the exhaust passage of the engine and upstream and downstream of the catalyst, respectively.
  • the air / fuel ratio (detected upstream air / fuel ratio) represented by the output value of the upstream air / fuel ratio sensor is matched with the target air / fuel ratio (upstream target air / fuel ratio, target air / fuel ratio of catalyst inflow gas).
  • the air-fuel ratio of the air-fuel mixture supplied to the engine is controlled. This control is also referred to as “main feedback control”.
  • the conventional apparatus calculates the sub feedback amount so that the output value of the downstream air fuel ratio sensor matches the “target value corresponding to the theoretical air fuel ratio”, and the upstream target air fuel ratio is substantially determined by the sub feedback amount.
  • the air-fuel ratio of the engine is controlled by changing to (for example, refer to Patent Document 1).
  • the air-fuel ratio control using the sub feedback amount is also referred to as “sub feedback control”.
  • An internal combustion engine control apparatus (invention apparatus) according to the present invention comprises: A catalyst disposed in an exhaust passage of the internal combustion engine; A downstream air-fuel ratio sensor disposed downstream of the catalyst in the exhaust passage; Air-fuel ratio control means for controlling the air-fuel ratio of the engine that is the air-fuel ratio of the air-fuel mixture supplied to the engine based on the output value of the downstream air-fuel ratio sensor; Is provided.
  • the air-fuel ratio control means includes: Including a condition determination means for determining whether or not a predetermined condition (specific condition) for predicting that an operating state in which a large amount of nitrogen oxide flows into the catalyst has arrived, When the predetermined condition is satisfied, at least one of the concentration of the reducing agent (unburned material) in the catalyst and the temperature of the catalyst is increased as compared with the case where the predetermined condition is not satisfied.
  • the air / fuel ratio of the engine is controlled. Note that increasing the concentration of the reducing agent in the catalyst is synonymous with decreasing the oxygen storage amount of the catalyst.
  • the predetermined condition is, for example, The intake air amount correlation value, which increases as the intake air amount of the engine increases, is larger than a low air amount threshold value and smaller than a high air amount threshold value greater than the low air amount threshold value; and This is a condition that is satisfied when at least one of the speed of the mounted vehicle is larger than the low-side speed threshold and smaller than the high-side speed threshold larger than the low-side speed threshold. Further, it is desirable that the predetermined condition is a condition that is satisfied when the change amount per unit time of the intake air amount correlation value is smaller than a predetermined change amount threshold value.
  • the concentration of the reducing agent in the catalyst is increased and / or the temperature of the catalyst is increased by the time when a large amount of nitrogen oxide flows into the catalyst. Therefore, when a large amount of nitrogen oxide flows into the catalyst, the NOx reduction rate of the catalyst is already high. Therefore, even when a large amount of NOx flows into the catalyst, most of the NOx can be purified (reduced) by the catalyst, so that the amount of NOx discharged can be reduced.
  • the concentration of the reducing agent in the catalyst is not preferable to keep the concentration of the reducing agent in the catalyst at a high value at all times because the possibility of unburned matter being discharged from the catalyst increases.
  • maintaining the concentration of the reducing agent in the catalyst at a high value is limited to the case where the predetermined condition is satisfied, and when the predetermined condition is satisfied, the engine Since the exhaust temperature of the catalyst is also high to some extent, the temperature of the catalyst is somewhat high. Therefore, the possibility of unburned material being discharged is small.
  • the temperature of the catalyst is set to a high temperature only when the predetermined condition is satisfied, the deterioration of the catalyst does not proceed greatly.
  • the air-fuel ratio control means is The average value of the air-fuel ratio of the engine when the predetermined condition is satisfied is smaller than the average value of the air-fuel ratio of the engine when the predetermined condition is not satisfied.
  • the concentration of the reducing agent in the catalyst is increased when the predetermined condition is satisfied.
  • the air-fuel ratio control means includes target air-fuel ratio setting means and fuel supply amount control means.
  • the target air-fuel ratio setting means tends to cause the oxygen storage amount of the catalyst to be excessive based on the output value of the downstream air-fuel ratio sensor, and to provide the catalyst with a rich air-fuel ratio gas smaller than the stoichiometric air-fuel ratio.
  • the target of the air-fuel ratio of the engine is set to a target rich air-fuel ratio that is smaller than the theoretical air-fuel ratio.
  • the target air-fuel ratio setting means has a lean air-fuel ratio gas larger than the stoichiometric air-fuel ratio in the catalyst, because the oxygen storage amount of the catalyst tends to be insufficient based on the output value of the downstream air-fuel ratio sensor.
  • the target of the air / fuel ratio of the engine is set to a target lean air / fuel ratio that is larger than the stoichiometric air / fuel ratio.
  • the fuel supply amount control means controls the amount of fuel supplied to the engine based on the set target air-fuel ratio.
  • the target air-fuel ratio setting means further includes The target rich air-fuel ratio when the predetermined condition is satisfied is set to an air-fuel ratio smaller than the target rich air-fuel ratio when the predetermined condition is not satisfied.
  • the target air-fuel ratio setting means includes: When the change amount ⁇ Voxs per unit time of the output value of the downstream side air-fuel ratio sensor is a negative value and the magnitude
  • the target rich air-fuel ratio when the predetermined condition is satisfied is smaller than the target rich air-fuel ratio when the predetermined condition is not satisfied. Therefore, when the predetermined condition is satisfied, the average value of the air-fuel ratio of the engine (therefore, the average value of the air-fuel ratio of the catalyst inflow gas that is the gas flowing into the catalyst) becomes small (becomes rich).
  • the concentration of the reducing agent in the catalyst increases. Therefore, the state of the catalyst can be set to “a state in which the NOx reduction rate is increased”.
  • the air-fuel ratio control means includes When the change amount ⁇ Voxs per unit time of the output value of the downstream air-fuel ratio sensor is a negative value and the magnitude
  • Catalyst state determination means for determining that When the catalyst state determining means determines that the state of the catalyst has changed from the oxygen-deficient state to the oxygen-excess state, when the lean delay time that is a predetermined delay time including 0 has elapsed, the engine From the time when the target of the air-fuel ratio is set to a target rich air-fuel ratio smaller than the stoichiometric air-fuel ratio, and the catalyst state determining means determines that the state of the catalyst has changed from the oxygen excess state to the oxygen insufficient state
  • Target air-fuel ratio setting means for setting a target air-fuel ratio of the engine to a target lean air-fuel ratio larger than the stoichiometric air-fuel ratio when a rich delay time that is a predetermined delay time including 0 has elapsed; Fuel supply amount control means for controlling the amount of fuel supplied to the engine based on the set target air-fuel ratio; Including The target air-fuel ratio setting means further includes: The rich delay time when the predetermined condition is satisfied
  • the time during which the target air-fuel ratio is set to the rich air-fuel ratio is “rich delay time compared to when the predetermined condition is not satisfied. It becomes longer by “the longer time”. Therefore, the average value of the air-fuel ratio of the engine (and hence the average value of the air-fuel ratio of the catalyst inflow gas that is the gas flowing into the catalyst) becomes smaller (rich) than the stoichiometric air-fuel ratio. Therefore, when the predetermined condition is satisfied, the state of the catalyst can be set to “a state in which the NOx reduction rate is increased”.
  • the air-fuel ratio control means includes When the catalyst state determining means determines that the state of the catalyst has changed from the oxygen-deficient state to the oxygen-excess state, a lean delay time, which is a predetermined delay time, has elapsed.
  • the target air-fuel ratio is set to a target rich air-fuel ratio that is smaller than the stoichiometric air-fuel ratio, and predetermined when the catalyst state determining means determines that the state of the catalyst has changed from the oxygen excess state to the oxygen insufficient state.
  • Target air-fuel ratio setting means for setting the target air-fuel ratio of the engine to a target lean air-fuel ratio larger than the stoichiometric air-fuel ratio when a rich delay time including 0, which is the delay time of the engine, has elapsed,
  • Fuel supply amount control means for controlling the amount of fuel supplied to the engine based on the set target air-fuel ratio; Including The target air-fuel ratio setting means further includes: The lean delay time when the predetermined condition is satisfied is set to be shorter than the lean delay time when the predetermined condition is not satisfied.
  • the time during which the target air-fuel ratio is set to the rich air-fuel ratio is compared with the case where the predetermined condition is not satisfied. It becomes longer by “the shorter time”. Therefore, the average value of the air-fuel ratio of the engine (and hence the average value of the air-fuel ratio of the catalyst inflow gas that is the gas flowing into the catalyst) becomes smaller (rich) than the stoichiometric air-fuel ratio. Therefore, when the predetermined condition is satisfied, the state of the catalyst can be set to “a state in which the NOx reduction rate is increased”.
  • the air-fuel ratio control means includes When the change amount ⁇ Voxs per unit time of the output value of the downstream side air-fuel ratio sensor is a negative value and the magnitude
  • Target air-fuel ratio setting means for setting the fuel ratio; Fuel supply amount control means for controlling the amount of fuel supplied to the engine based on the set target air-fuel ratio; including.
  • the target air-fuel ratio setting means is The rich determination threshold value dRichth when the predetermined condition is satisfied is configured to be set to a value larger than the rich determination threshold value dRichth when the predetermined condition is not satisfied.
  • the target air-fuel ratio setting means includes The lean determination threshold value dLeanth when the predetermined condition is satisfied is configured to be set to a value smaller than the lean determination threshold value dLeanth when the predetermined condition is not satisfied.
  • the period during which it is determined that the state of the catalyst is in an oxygen-deficient state is shorter than when the predetermined condition is not satisfied,
  • the period during which the catalyst state is determined to be an oxygen-excess state is lengthened. Therefore, when the predetermined condition is satisfied, the time during which the target air-fuel ratio is set to the target rich air-fuel ratio becomes relatively long. Therefore, the average value of the air-fuel ratio of the engine (and hence the average value of the air-fuel ratio of the catalyst inflow gas that is the gas flowing into the catalyst) becomes smaller (rich) than the stoichiometric air-fuel ratio. Therefore, when the predetermined condition is satisfied, the state of the catalyst can be set to “a state in which the NOx reduction rate is increased”.
  • the air-fuel ratio control means includes Based on the output value of the downstream air-fuel ratio sensor, it is determined that the oxygen storage amount of the catalyst tends to be excessive, and that a rich air-fuel ratio gas smaller than the stoichiometric air-fuel ratio should flow into the catalyst.
  • the target air-fuel ratio of the engine is set to a target rich air-fuel ratio that is smaller than the stoichiometric air-fuel ratio, the oxygen storage amount of the catalyst tends to be insufficient, and the catalyst has a lean air-fuel ratio greater than the stoichiometric air-fuel ratio.
  • a target air-fuel ratio setting means for setting a target lean air-fuel ratio larger than the stoichiometric air-fuel ratio when determining that the gas should be introduced;
  • Fuel supply amount control means for controlling the amount of fuel supplied to the engine based on the set target air-fuel ratio; including.
  • the target air-fuel ratio setting means further includes The target rich air-fuel ratio when the predetermined condition is satisfied is set to an air-fuel ratio smaller than the target rich air-fuel ratio when the predetermined condition is not satisfied, and the predetermined condition is satisfied
  • the target lean air-fuel ratio when the predetermined condition is not satisfied By setting the target lean air-fuel ratio when the predetermined condition is not satisfied to an air-fuel ratio larger than the target lean air-fuel ratio when the predetermined condition is not satisfied, the amount of heat generated in the catalyst is increased. Increase the temperature of the catalyst.
  • the average of the target rich air-fuel ratio when the predetermined condition is satisfied and the target lean air-fuel ratio when the predetermined condition is satisfied is greater than the theoretical air-fuel ratio or the theoretical air-fuel ratio.
  • FIG. 1 is a schematic plan view of an internal combustion engine to which an air-fuel ratio control apparatus according to each embodiment of the present invention is applied.
  • FIG. 2 is a graph showing the relationship between the air-fuel ratio (upstream air-fuel ratio) of the gas flowing into the catalyst shown in FIG. 1 and the output value of the upstream air-fuel ratio sensor shown in FIG.
  • FIG. 3 is a graph showing the relationship between the air-fuel ratio (downstream air-fuel ratio) of the gas flowing out from the catalyst shown in FIG. 1 and the output value of the downstream air-fuel ratio sensor shown in FIG.
  • FIG. 4 is a time chart showing the target air-fuel ratio changed by the control device (first control device) according to the first embodiment of the present invention.
  • FIG. 1 is a schematic plan view of an internal combustion engine to which an air-fuel ratio control apparatus according to each embodiment of the present invention is applied.
  • FIG. 2 is a graph showing the relationship between the air-fuel ratio (upstream air-fuel ratio) of the gas flowing into the catalyst shown in FIG.
  • FIG. 5 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 6 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 7 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 8 is a flowchart showing a routine executed by the CPU of the first control device.
  • FIG. 9 is a time chart showing a catalyst lean state display flag and a rich request flag used by the control device (second control device) according to the second embodiment of the present invention.
  • FIG. 10 is a flowchart showing a routine executed by the CPU of the second control device.
  • FIG. 11 is a flowchart showing a routine executed by the CPU of the second control device.
  • FIG. 12 shows the output value of the downstream air-fuel ratio sensor shown in FIG. 1, the catalyst lean state display flag and the rich request flag used by the control device (third control device) according to the third embodiment of the present invention, It is the time chart which showed.
  • FIG. 13 is a flowchart showing a routine executed by the CPU of the third control device.
  • FIG. 14 is a flowchart showing a routine executed by the CPU of the control device (fourth control device) according to the fourth embodiment of the present invention.
  • control apparatus for an internal combustion engine
  • This control device is also a part of the fuel injection amount control device that controls the fuel injection amount (fuel supply amount) contained in the air-fuel mixture supplied to the internal combustion engine.
  • FIG. 1 shows a system in which a control device according to the first embodiment (hereinafter also referred to as “first control device”) is applied to a 4-cycle, spark ignition type, multi-cylinder (in-line 4-cylinder) internal combustion engine 10.
  • first control device a control device according to the first embodiment
  • Internal combustion engine 10 includes an engine body 20, an intake system 30, and an exhaust system 40.
  • the engine body 20 includes a cylinder block and a cylinder head.
  • the engine body 20 includes a plurality of cylinders (combustion chambers) 21.
  • Each cylinder communicates with an “intake port and exhaust port” (not shown).
  • a communicating portion between the intake port and the combustion chamber 21 is opened and closed by an intake valve (not shown).
  • a communicating portion between the exhaust port and the combustion chamber 21 is opened and closed by an exhaust valve (not shown).
  • Each combustion chamber 21 is provided with a spark plug (not shown).
  • the intake system 30 includes an intake manifold 31, an intake pipe 32, a plurality of fuel injection valves 33, and a throttle valve 34.
  • the intake manifold 31 includes a plurality of branch portions 31a and a surge tank 31b. One end of each of the plurality of branch portions 31a is connected to each of the plurality of intake ports. The other ends of the plurality of branch portions 31a are connected to the surge tank 31b.
  • One end of the intake pipe 32 is connected to the surge tank 31b.
  • An air filter (not shown) is disposed at the other end of the intake pipe 32.
  • One fuel injection valve 33 is provided for each cylinder (combustion chamber) 21.
  • the fuel injection valve 33 is provided at the intake port. Fuel is supplied to the fuel injection valve 33 from a fuel tank (not shown) through the fuel pipe 50.
  • the fuel injection valve 33 opens in response to the injection instruction signal, and puts “the fuel of the indicated fuel injection amount included in the injection instruction signal” into the intake port (therefore, the cylinder 21 corresponding to the fuel injection valve 33). It comes to inject.
  • the throttle valve 34 is rotatably disposed in the intake pipe 32.
  • the throttle valve 34 has a variable opening cross-sectional area of the intake passage.
  • the throttle valve 34 is rotationally driven in the intake pipe 32 by a throttle valve actuator (not shown).
  • the exhaust system 40 includes an exhaust manifold 41, an exhaust pipe 42, an upstream catalyst 43 disposed in the exhaust pipe 42, and a “downstream catalyst (not shown) disposed in the exhaust pipe 42 downstream of the upstream catalyst 43. Is provided.
  • the exhaust manifold 41 includes a plurality of branch portions 41a and a collecting portion 41b. One end of each of the plurality of branch portions 41a is connected to each of the plurality of exhaust ports. The other ends of the plurality of branch portions 41a are gathered in the gathering portion 41b.
  • the collecting portion 41b is also referred to as an exhaust collecting portion HK because exhaust gas discharged from a plurality of (two or more, four in this example) cylinders gathers.
  • the exhaust pipe 42 is connected to the collecting portion 41b.
  • the exhaust port, the exhaust manifold 41 and the exhaust pipe 42 constitute an exhaust passage.
  • Each of the upstream side catalyst 43 and the downstream side catalyst is a so-called three-way catalyst device (exhaust purification catalyst) carrying an active component made of a noble metal (catalyst substance) such as platinum, rhodium and palladium.
  • a noble metal catalyst substance
  • Each catalyst oxidizes unburned components such as HC, CO, and H 2 when the air-fuel ratio of the gas flowing into each catalyst is “the air-fuel ratio within the window of the three-way catalyst (for example, the theoretical air-fuel ratio)”.
  • it has a function of reducing nitrogen oxides (NOx). This function is also called a catalyst function.
  • each catalyst has an oxygen storage function for storing (storing) oxygen. That is, each catalyst occludes oxygen and purifies NOx when excessive oxygen is contained in the gas flowing into the catalyst (catalyst inflow gas). When the catalyst inflow gas contains excessive unburned substances, each catalyst releases the stored oxygen and purifies the unburned substances. Each catalyst releases more oxygen as the air-fuel ratio of the catalyst inflow gas decreases. In a state in which more oxygen is released (in other words, a state in which the concentration of the reducing agent in the catalyst is high), the catalyst can reduce NOx at a higher reaction rate.
  • the oxygen storage function of the catalyst is provided by an oxygen storage material such as ceria (CeO 2 ) supported on the catalyst.
  • an oxygen storage material such as ceria (CeO 2 ) supported on the catalyst.
  • CeO 2 ceria
  • Each catalyst can purify unburned components and nitrogen oxides even if the air-fuel ratio shifts from the stoichiometric air-fuel ratio due to the oxygen storage function. That is, the window width is expanded by the oxygen storage function.
  • This system includes a hot-wire air flow meter 61, a throttle position sensor 62, a water temperature sensor 63, a crank position sensor 64, an intake cam position sensor 65, an upstream air-fuel ratio sensor 66, a downstream air-fuel ratio sensor 67, and an accelerator opening sensor. 68.
  • the air flow meter 61 outputs a signal corresponding to the mass flow rate (intake air flow rate) Ga of intake air flowing through the intake pipe 32. That is, the intake air amount Ga represents the intake air amount taken into the engine 10 per unit time.
  • the throttle position sensor 62 detects the opening (throttle valve opening) of the throttle valve 34 and outputs a signal representing the throttle valve opening TA.
  • the water temperature sensor 63 detects the temperature of the cooling water of the engine 10 and outputs a signal indicating the cooling water temperature THW.
  • the coolant temperature THW is an operating state index amount that represents the warm-up state of the engine 10 (temperature of the engine 10).
  • the crank position sensor 64 outputs a signal having a narrow pulse every time the crankshaft rotates 10 ° and a wide pulse every time the crankshaft rotates 360 °. This signal is converted into an engine speed NE by an electric control device 70 described later.
  • the intake cam position sensor 65 outputs one pulse every time the intake cam shaft rotates 90 degrees from a predetermined angle, then 90 degrees, and then 180 degrees.
  • the electric control device 70 described later acquires an absolute crank angle CA based on the compression top dead center of the reference cylinder (for example, the first cylinder) based on signals from the crank position sensor 64 and the intake cam position sensor 65. It has become.
  • This absolute crank angle CA is set to “0 ° crank angle” at the compression top dead center of the reference cylinder, and increases to a 720 ° crank angle according to the rotation angle of the crankshaft.
  • the upstream air-fuel ratio sensor 66 is disposed in “one of the exhaust manifold 41 and the exhaust pipe 42” at a position between the collecting portion 41 b (exhaust collecting portion HK) of the exhaust manifold 41 and the upstream catalyst 43. .
  • the upstream air-fuel ratio sensor 66 is disclosed in, for example, “Limit current type wide area air-fuel ratio including diffusion resistance layer” disclosed in JP-A-11-72473, JP-A-2000-65782, JP-A-2004-69547, and the like. Sensor ".
  • the upstream air-fuel ratio sensor 66 corresponds to the air-fuel ratio of the exhaust gas flowing through the position where the upstream air-fuel ratio sensor 66 is disposed (the air-fuel ratio of the “catalyst inflow gas” that is the gas flowing into the catalyst 43, the upstream air-fuel ratio abyfs). Output the output value Vabyfs. As shown in FIG. 2, the output value Vabyfs increases as the air-fuel ratio (upstream air-fuel ratio abyfs) of the catalyst inflow gas increases (as the air-fuel ratio becomes leaner).
  • the electric control device 70 stores an air-fuel ratio conversion table (map) Mapabyfs that defines the relationship shown in FIG. 2 between the output value Vabyfs and the upstream air-fuel ratio abyfs.
  • Map air-fuel ratio conversion table
  • the electric control device 70 detects the actual upstream air-fuel ratio abyfs (obtains the detected upstream air-fuel ratio abyfs) by applying the output value Vabyfs to the air-fuel ratio conversion table Mapabyfs.
  • the downstream air-fuel ratio sensor 67 is disposed in the exhaust pipe 42.
  • the downstream air-fuel ratio sensor 67 is disposed downstream of the upstream catalyst 43 and upstream of the downstream catalyst (that is, the exhaust passage between the upstream catalyst 43 and the downstream catalyst). It is.
  • the downstream air-fuel ratio sensor 67 is a known electromotive force type oxygen concentration sensor (a known concentration cell type oxygen concentration sensor using a solid electrolyte such as stabilized zirconia).
  • the downstream air-fuel ratio sensor 67 generates an output value Voxs corresponding to the air-fuel ratio of the gas to be detected, which is a gas passing through a portion of the exhaust passage where the downstream air-fuel ratio sensor 67 is disposed. ing.
  • the output value Voxs is a value corresponding to the air-fuel ratio of the gas flowing out from the upstream catalyst 43 and flowing into the downstream catalyst.
  • this output value Voxs becomes the maximum output value max (for example, about 0.9 V to 1.0 V) when the air-fuel ratio of the detected gas is richer than the stoichiometric air-fuel ratio.
  • the output value Voxs becomes the minimum output value min (for example, about 0.1 V to 0 V) when the air-fuel ratio of the detected gas is leaner than the stoichiometric air-fuel ratio.
  • the output value Voxs is a voltage Vst (median value Vmid, intermediate voltage Vst, for example, about 0.5 V) between the maximum output value max and the minimum output value min when the air-fuel ratio of the detected gas is the stoichiometric air-fuel ratio.
  • the output value Voxs suddenly changes from the maximum output value max to the minimum output value min when the air-fuel ratio of the gas to be detected changes from an air-fuel ratio richer than the stoichiometric air-fuel ratio to a lean air-fuel ratio.
  • the output value Voxs suddenly changes from the minimum output value min to the maximum output value max when the air-fuel ratio of the detected gas changes from an air-fuel ratio leaner than the stoichiometric air-fuel ratio to a rich air-fuel ratio.
  • the accelerator opening sensor 68 shown in FIG. 1 outputs a signal representing the operation amount Accp (accelerator pedal operation amount, accelerator pedal AP opening) of the accelerator pedal AP operated by the driver.
  • the accelerator pedal operation amount Accp increases as the operation amount of the accelerator pedal AP increases.
  • the electric control device 70 includes: “a CPU, a program executed by the CPU, a ROM in which tables (maps, functions), constants, and the like are stored in advance, a RAM in which the CPU temporarily stores data as necessary, and a backup RAM (B ⁇ RAM), an interface including an AD converter, and the like ".
  • the backup RAM is supplied with electric power from a battery mounted on the vehicle regardless of the position of an ignition key switch (not shown) of the vehicle on which the engine 10 is mounted (any one of an off position, a start position, an on position, etc.). It is like that.
  • the backup RAM stores data according to an instruction from the CPU (data is written) and holds (stores) the data so that the data can be read. Therefore, the backup RAM can hold data even when the operation of the engine 10 is stopped.
  • the backup RAM cannot retain data when the power supply from the battery is interrupted, for example, when the battery is removed from the vehicle. Therefore, when the power supply to the backup RAM is resumed, the CPU initializes (sets to the default value) data to be held in the backup RAM.
  • the backup RAM may be a readable / writable nonvolatile memory such as an EEPROM.
  • the electric control device 70 is connected to the above-described sensors and the like, and supplies signals from these sensors to the CPU. Further, the electric control device 70 is responsive to an instruction from the CPU to provide a spark plug (actually an igniter) provided for each cylinder, a fuel injection valve 33 provided for each cylinder, and a throttle. A drive signal (instruction signal) is sent to a valve actuator or the like.
  • the electric control device 70 sends an instruction signal to the throttle valve actuator so that the throttle valve opening TA increases as the acquired accelerator pedal operation amount Accp increases. That is, the electric control device 70 changes the opening degree of the “throttle valve 34 disposed in the intake passage of the engine 10” according to the acceleration operation amount (accelerator pedal operation amount Accp) of the engine 10 changed by the driver. Throttle valve drive means is provided.
  • the first control device determines whether the state of the catalyst 43 (oxygen storage state) is an oxygen excess state or an oxygen deficiency state.
  • the oxygen excess state is also referred to as a lean state.
  • the oxygen excess state is a state in which the oxygen storage amount of the catalyst 43 tends to be excessive and is approaching a value close to the maximum oxygen storage amount Cmax.
  • the oxygen-deficient state is also called a rich state.
  • the oxygen-deficient state is a state where the oxygen storage amount of the catalyst 43 tends to be insufficient and is becoming a value close to “0”.
  • the first control device is a case where it is determined that the state of the catalyst 43 is an oxygen excess state, and the change amount ⁇ Voxs per predetermined time of the output value Voxs is a positive value.
  • becomes larger than the rich determination threshold dRichth, it is determined that the state of the catalyst 43 has become an oxygen-deficient state.
  • the first control device sets the value of the catalyst lean state display flag XCCROLean to “0”.
  • the first control device when it is determined that the state of the catalyst 43 is in an oxygen-deficient state, the first control device has a negative change amount ⁇ Voxs and the magnitude
  • the first control device when it is determined that the state of the catalyst 43 is an excess oxygen state, and the output value Voxs is greater than the rich determination threshold VRichth, the state of the catalyst 43 is insufficient for oxygen. It may be determined that the state has been reached. Further, the first control device determines that the state of the catalyst 43 is an oxygen-excess state when the output value Voxs becomes smaller than the lean determination threshold value VLeanth when the state of the catalyst 43 is determined to be an oxygen-deficient state. It may be determined that it has become.
  • the first control device determines that the state of the catalyst 43 is an excess oxygen state (when the value of the catalyst lean state display flag XCCROLean is set to “1”), the value of the rich request flag XRichreq is set to “1”.
  • the target air-fuel ratio abyfr which is the target of the air-fuel ratio of the air-fuel mixture supplied to the engine
  • the target air-fuel ratio abyfr is also a target for the air-fuel ratio of the exhaust gas flowing into the catalyst 43.
  • the first controller determines that the state of the catalyst 43 is an oxygen-deficient state (when the value of the catalyst lean state display flag XCCROLean is set to “0”), the value of the rich request flag XRichreq is set to “0”. Is set (determined that a lean request has occurred), and the target air-fuel ratio abyfr is set to “a target lean air-fuel ratio afLean larger than the theoretical air-fuel ratio”.
  • the first control device determines whether or not an operation state in which a large amount of nitrogen oxide flows into the catalyst 43 is predicted to arrive. Specifically, the first control device has a large amount of nitrogen oxides in the catalyst 43 when all the conditions described below (hereinafter simply referred to as “predetermined conditions” or “specific conditions”) are satisfied. Predict that the inflowing operating state will arrive.
  • predetermined conditions or “specific conditions”.
  • the intake air amount Ga is larger than the low-side air amount threshold GaLoth and smaller than the high-side air amount threshold GaHith.
  • the high side air amount threshold GaHith is larger than the low side air amount threshold GaLoth.
  • ) per unit time of the intake air amount Ga is smaller than the predetermined change amount threshold ⁇ Gath.
  • the intake air amount Ga in the conditions 1 and 2 can be replaced with the load KL, the throttle valve opening degree TA, the accelerator pedal operation amount Accp, and the like. These are all parameters that increase as the intake air amount Ga increases, and are also referred to as intake air amount correlation values.
  • the load KL is a load factor (filling rate) KL in this example, and is calculated based on the following equation (1).
  • Mc (k) is the amount of air that a cylinder inhales in one intake stroke (unit: (g))
  • air density (unit: (g / l)
  • L engine 10 is the displacement (unit is (l))
  • 4 is the number of cylinders of the engine 10.
  • KL ⁇ Mc (k) / ( ⁇ ⁇ L / 4) ⁇ ⁇ 100 (%) (1)
  • condition 1 is that “the speed of the vehicle on which the engine 10 is mounted is larger than the“ low speed threshold ”and smaller than the“ high speed threshold larger than the low speed threshold ”. May be replaced by the condition “
  • the first control apparatus performs the target lean air-fuel ratio as shown before time t1 in FIG. afLean is set to the reference target lean air-fuel ratio afLean0, and the target rich air-fuel ratio afRich is set to the reference target rich air-fuel ratio afRich0.
  • the reference target lean air-fuel ratio afLean0 is an air-fuel ratio that is larger by a predetermined positive value A than the theoretical air-fuel ratio.
  • the reference target rich air-fuel ratio afRich0 is an air-fuel ratio that is smaller by a predetermined positive value A than the theoretical air-fuel ratio. Therefore, the average value of the reference target lean air-fuel ratio afLean0 and the reference target rich air-fuel ratio afRich0 is the stoichiometric air-fuel ratio stoich.
  • the lean air-fuel ratio afLean is set to “a value that is smaller than the reference target lean air-fuel ratio afLean0 by a predetermined positive value ⁇ L (afLean0 ⁇ L)”, and the target rich air-fuel ratio afRich is set to a value that is more positive than the reference target rich air-fuel ratio afRich0.
  • the value is set to a value (afRich0 ⁇ R) that is smaller by the value ⁇ R.
  • the value (afLean0 ⁇ L) is larger than the stoichiometric air-fuel ratio stoich.
  • the concentration of the reducing agent in the catalyst 43 increases after time t1 as compared to before time t1. Therefore, when the engine 10 is subsequently accelerated and a large amount of NOx flows into the catalyst 43, the reduction rate of NOx in the catalyst 43 is sufficiently high, so the amount of unpurified NOx flowing out from the catalyst 43 is reduced. can do.
  • the CPU of the first control device repeatedly executes the fuel injection control routine shown in FIG. 5 for each cylinder every time the crank angle of any cylinder reaches a predetermined crank angle before the intake top dead center. It has become.
  • the predetermined crank angle is, for example, BTDC 90 ° CA (90 ° crank angle before intake top dead center).
  • a cylinder whose crank angle coincides with the predetermined crank angle is also referred to as a “fuel injection cylinder”.
  • the CPU calculates the commanded fuel injection amount (final fuel injection amount) Fi and instructs fuel injection by this fuel injection control routine.
  • the CPU starts the process from step 500 and proceeds to step 505 to “intake air amount Ga, engine rotational speed NE, and lookup.
  • “MapMc (Ga, NE)” “the amount of air taken into the fuel injection cylinder (ie, the cylinder intake air amount) Mc)” is acquired.
  • the in-cylinder intake air amount Mc may be calculated by a well-known air model (a model constructed according to a physical law simulating the behavior of air in the intake passage).
  • the CPU proceeds to step 510 to determine whether or not the value of the feedback control flag XFB is “1”.
  • the value of the feedback control flag XFB is set to “1” when the air-fuel ratio feedback control condition is satisfied, and is set to “0” when the feedback control condition is not satisfied. Further, the value of the feedback control flag XFB is set to “0” in the initial routine.
  • the initial routine is a routine that is executed by the CPU when the ignition key switch of the vehicle on which the engine 10 is mounted is changed from the off position to the on position.
  • the air-fuel ratio feedback control condition is satisfied, for example, when all of the following conditions are satisfied.
  • (A1) The upstream air-fuel ratio sensor 66 is activated.
  • (A2) The downstream air-fuel ratio sensor 67 is activated.
  • (A3) The engine load KL is equal to or less than the threshold load KLfbth.
  • step 510 the CPU makes a “No” determination at step 510 to proceed to step 515 to set the target air-fuel ratio abyfr to the stoichiometric air-fuel ratio stoich (eg, 14.6). To do.
  • step 520 sequentially performs the processing from step 520 to step 535 described below, proceeds to step 595, and once ends this routine.
  • Step 520 The CPU calculates the basic fuel injection amount Fbase by dividing the in-cylinder intake air amount Mc by the target air-fuel ratio abyfr.
  • the basic fuel injection amount Fbase is a feed-forward amount of the fuel injection amount necessary for making the air-fuel ratio of the engine coincide with the target air-fuel ratio abyfr.
  • Step 525 The CPU reads the main feedback amount KFmain separately calculated by a routine not shown.
  • the main feedback amount KFmain is calculated based on known PID control so that the detected upstream air-fuel ratio abyfs matches the target air-fuel ratio abyfr. Therefore, the main feedback amount KFmain is increased when the detected upstream air-fuel ratio abyfs is larger than the target air-fuel ratio abyfr, and is decreased when the detected upstream air-fuel ratio abyfs is smaller than the target air-fuel ratio abyfr.
  • the main feedback amount KFmain is set to “1” when the value of the feedback control flag XFB is “0”. Further, the main feedback amount KFmain may always be set to “1”. That is, feedback control using the main feedback amount KFmain is not essential in this embodiment.
  • Step 530 The CPU calculates the indicated fuel injection amount Fi by correcting the basic fuel injection amount Fbase with the main feedback amount KFmain. More specifically, the CPU calculates the command fuel injection amount Fi by multiplying the basic fuel injection amount Fbase by the main feedback amount KFmain.
  • Step 535 The CPU sends to the fuel injection valve 33 an injection instruction signal for injecting “the fuel of the indicated fuel injection amount Fi” from the “fuel injection valve 33 provided corresponding to the fuel injection cylinder”. To do.
  • Step 520 to Step 535 are the command fuel injection amount control means for “controlling the command fuel injection amount Fi so that the air / fuel ratio of the engine matches the target air / fuel ratio abyfr” or “the fuel supplied to the engine 10”.
  • a fuel supply amount control means for controlling the amount based on the set target air-fuel ratio abyfr.
  • step 510 determines “Yes” in step 510 and proceeds to step 540, where the rich request flag XRichreq It is determined whether or not the value of “1” is “1”.
  • the value of the rich request flag XRichreq is set by a routine shown in FIG.
  • the CPU makes a “Yes” determination at step 540 to proceed to step 545 to read out the target rich air-fuel ratio afRich.
  • the target rich air-fuel ratio afRich is separately calculated by a routine shown in FIG.
  • the CPU proceeds to step 550 and sets the target air-fuel ratio abyfr to the target rich air-fuel ratio afRich. Thereafter, the CPU proceeds to step 520 and subsequent steps. Accordingly, the air-fuel ratio of the engine is made to coincide with the target rich air-fuel ratio afRich.
  • step 540 the CPU makes a “No” determination at step 540 to proceed to step 555, where the target lean Read the air-fuel ratio afLean.
  • the target lean air-fuel ratio afLean is also separately calculated by a routine shown in FIG.
  • the CPU proceeds to step 560 to set the target air / fuel ratio abyfr to the target lean air / fuel ratio afLean. Thereafter, the CPU proceeds to step 520 and subsequent steps. Accordingly, the air-fuel ratio of the engine is made to coincide with the target lean air-fuel ratio afLean.
  • ⁇ Catalyst state determination> The CPU repeatedly executes the “catalyst state determination routine” shown in the flowchart of FIG. 6 every elapse of a predetermined time ts. Accordingly, when the predetermined timing comes, the CPU starts the process from step 600 and proceeds to step 605, from “current output value Voxs of downstream air-fuel ratio sensor 67” to “previous output value of downstream air-fuel ratio sensor 67. By subtracting “Voxsold”, the change amount ⁇ Voxs of the output value Voxs per predetermined time ts (unit time) is calculated.
  • the CPU proceeds to step 610 and stores the current output value Voxs as “previous output value Voxsold”. That is, the previous output value Voxsold is the output value Voxs at the time point before the current time by the predetermined time ts (the output value Voxs when this routine was executed last time).
  • the change amount ⁇ Voxs is also referred to as a change rate ⁇ Voxs.
  • step 615 the rich determination threshold value dRichth.
  • the rich determination threshold value dRichth is set to a constant value in this example.
  • step 620 the lean determination threshold value dLeanth.
  • the lean determination threshold value dLeanth is set to a constant value in this example.
  • step 630 determines whether or not the value of the catalyst lean state display flag XCCROLean is “1”.
  • the value of the catalyst lean state display flag XCCROLean is set to “1” in the above-described initial routine. Further, the value of the catalyst lean state display flag XCCROLean is set to “0” when it is determined that the state of the catalyst 43 is an oxygen deficient state (rich state) based on the output value Voxs of the downstream air-fuel ratio sensor 67. Then, it is set to “1” when it is determined that the state of the catalyst 43 is the oxygen excess state (lean state) based on the output value Voxs of the downstream side air-fuel ratio sensor 67.
  • the CPU makes a “Yes” determination at step 630 to proceed to step 640 to determine whether or not the change speed ⁇ Voxs is positive. That is, the CPU determines whether or not the output value Voxs is increasing. At this time, if the change speed ⁇ Voxs is not positive, the CPU makes a “No” determination at step 640 to directly proceed to step 695 to end the present routine tentatively.
  • the value of the catalyst lean state display flag XCCROLean is “1”
  • the value of the rich request flag XRichreq is set to “1” by the routine shown in FIG. 7 to be described later, whereby the target air-fuel ratio abyfr is set to the target rich.
  • the air-fuel ratio is set to afRich (see step 540 to step 550 in FIG. 5). Therefore, the oxygen storage amount of the catalyst 43 gradually decreases, and unburned substances begin to flow out of the catalyst 43 from a certain point.
  • the change speed ⁇ Voxs becomes a positive value.
  • the CPU makes a “Yes” determination at step 640 to proceed to step 650 to determine whether or not the magnitude
  • step 650 If the magnitude
  • the value of the catalyst lean state display flag XCCROLean is set to “0”. That is, when the output value Voxs increases and the magnitude
  • the value of the catalyst lean state display flag XCCROLean is set to “0”.
  • step 630 In this state (that is, in a state where the value of the catalyst lean state display flag XCCROLean is set to “0”), when the CPU starts again from step 600, the CPU proceeds to step 630 via step 605 to step 620. In step 630, the determination is “No”, and the process proceeds to step 670.
  • the CPU determines whether or not the change speed ⁇ Voxs is negative in step 670. That is, the CPU determines whether or not the output value Voxs is decreasing. At this time, if the change speed ⁇ Voxs is not negative, the CPU makes a “No” determination at step 670 to directly proceed to step 695 to end the present routine tentatively.
  • the value of the catalyst lean state display flag XCCROLean is “0”
  • the value of the rich request flag XRichreq is set to “0” by the routine shown in FIG. 7 described later, whereby the target air-fuel ratio abyfr becomes the target lean.
  • the air-fuel ratio is set to afLean (see Step 540, Step 555, and Step 560 in FIG. 5). Accordingly, the oxygen storage amount of the catalyst 43 gradually increases, and oxygen begins to flow out of the catalyst 43 from a certain point.
  • the change speed ⁇ Voxs becomes a negative value.
  • the CPU makes a “Yes” determination at step 670 to proceed to step 680 to determine whether or not the magnitude
  • the CPU makes a “Yes” determination at step 680 to proceed to step 690 to set the value of the catalyst lean state display flag XCCROLean. Set to “1”. That is, when the output value Voxs is decreasing and the magnitude
  • the CPU sets the value of the catalyst lean state display flag XCCROLean to “0” when the value of the catalyst lean state display flag XCCROLean is “1” and the output value Voxs becomes larger than the rich determination threshold VRichth. May be.
  • the value of the catalyst lean state display flag XCCROLean is “0” and the output value Voxs becomes smaller than the lean determination threshold value VLeanth
  • the value of the catalyst lean state display flag XCCROLean is set to “1”.
  • the rich determination threshold value VRichth may be a value equal to or less than the median value Vmid.
  • the lean determination threshold value VLeanth may be a value equal to or greater than the median value Vmid.
  • the value of the catalyst lean state display flag XCCROLean is alternately set to one of “1” and “0” based on the output value Voxs of the downstream air-fuel ratio sensor 67. Then, the rich request flag XRichreq is set according to the catalyst lean state display flag XCCROLean, and the target air-fuel ratio abyfr is determined according to the rich request flag XRichreq.
  • ⁇ Rich request flag setting determination of required air-fuel ratio
  • the CPU executes the required air-fuel ratio determination routine shown in FIG. 7 every elapse of a predetermined time. Accordingly, when the predetermined timing comes, the CPU starts the process from step 700 and proceeds to step 710 to determine whether or not the value of the catalyst lean state display flag XCCROLean is “1”. At this time, if the value of the catalyst lean state display flag XCCROLean is “1”, the CPU proceeds to step 720 and sets the value of the rich request flag XRichreq to “1”. That is, the CPU determines that the “required air-fuel ratio” is a rich air-fuel ratio and that a rich request has occurred. Thereafter, the CPU proceeds to step 795 to end the present routine tentatively.
  • step 710 if the value of the catalyst lean state display flag XCCROLean is “0” at the time when the CPU executes the process of step 710, the CPU proceeds to step 730 and sets the value of the rich request flag XRichreq to “0”. Set. That is, the CPU determines that the “required air-fuel ratio” is a lean air-fuel ratio and a lean request has occurred. Thereafter, the CPU proceeds to step 795 to end the present routine tentatively.
  • the CPU executes the target air-fuel ratio calculation routine shown in FIG. 8 every elapse of a predetermined time. Accordingly, when the predetermined timing is reached, the CPU starts the process from step 800 and proceeds to step 805 to determine whether or not the above-described condition 1 is satisfied. That is, the CPU determines whether or not the intake air amount Ga is larger than the low-side air amount threshold GaLoth and smaller than the high-side air amount threshold GaHith.
  • step 805 determines whether the determination condition of step 805 is not satisfied.
  • the CPU makes a “No” determination at step 805 to sequentially perform the processes of step 810 and step 815 described below, and then proceeds to step 895 to end the present routine tentatively.
  • Step 810 The CPU sets the value of the target rich air-fuel ratio afRich to the reference target rich air-fuel ratio afRich0.
  • the reference target rich air-fuel ratio afRich0 is a value (for example, 14.2) smaller than the theoretical air-fuel ratio stoich by a positive predetermined value A.
  • Step 815 The CPU sets the value of the target lean air-fuel ratio afLean to the reference target lean air-fuel ratio afLean0.
  • the reference target lean air-fuel ratio afLean0 is a value (for example, 15.0) larger by a predetermined positive value A than the stoichiometric air-fuel ratio stoich.
  • the CPU executes the process of step 805
  • the CPU proceeds to step 820, and the intake air amount change amount ⁇ Ga per predetermined time ts (unit time) is calculated by subtracting the “previous intake air amount Gaold” from the “current intake air amount Ga”. To do.
  • the CPU proceeds to step 825 to store the current intake air amount Ga as “previous intake air amount Gaold”. That is, the previous intake air amount Gaold is the intake air amount Ga at a time point a predetermined time ts before the current time (the intake air amount Ga when this routine was executed last time).
  • step 830 determines whether or not the magnitude
  • the target rich air-fuel ratio afRich is set to the reference target rich air-fuel ratio afRich0
  • the target lean air-fuel ratio afLean is set to the reference target lean air-fuel ratio afLean0.
  • step 830 when the CPU executes the process of step 830, if the magnitude
  • Step 835 The CPU determines a target rich air-fuel ratio correction amount ⁇ R based on the intake air amount Ga.
  • the target rich air-fuel ratio correction amount ⁇ R is determined so as to increase as the intake air amount Ga increases.
  • the target rich air-fuel ratio afRich is calculated as an air-fuel ratio that decreases as the intake air amount Ga increases, away from the stoichiometric air-fuel ratio stoich.
  • Step 845 The CPU determines a target lean air-fuel ratio correction amount ⁇ L based on the intake air amount Ga.
  • the target lean air-fuel ratio correction amount ⁇ L is determined so as to increase as the intake air amount Ga increases.
  • the target lean air-fuel ratio afLean is calculated as an air-fuel ratio that decreases as the intake air amount Ga increases so as to approach the stoichiometric air-fuel ratio stoich.
  • the target lean air-fuel ratio correction amount ⁇ L is determined such that the value (afLean0 ⁇ L) is larger than the stoichiometric air-fuel ratio stoich.
  • condition 1 and condition 2 when the predetermined condition (condition 1 and condition 2) is satisfied (that is, it is determined as “Yes” in both step 805 and step 830). A large amount of NOx is predicted to flow into the catalyst 43.
  • the target lean air-fuel ratio afLean is decreased by the target lean air-fuel ratio correction amount ⁇ L as compared with “when the predetermined condition is not satisfied” (step 845 and FIG. 8).
  • the target rich air-fuel ratio afRich is decreased by the target rich air-fuel ratio correction amount ⁇ R as compared to “when the predetermined condition is not satisfied” (steps 835 and 840 in FIG. 8).
  • control device for an internal combustion engine according to a second embodiment of the present invention (hereinafter also referred to as “second control device”) will be described.
  • the second control device sets a relative time for maintaining the target air-fuel ratio abyfr at the target rich air-fuel ratio afRich instead of changing the target rich air-fuel ratio afRich and the target lean air-fuel ratio afLean. This is different from the first control device only in that it is made longer.
  • the second control device sets the target air-fuel ratio abyfr to the target rich air-fuel ratio afRich when the value of the rich request flag XRichreq is “1”, and the rich request flag When the value of XRichreq is “0”, the target air-fuel ratio abyfr is set to the target lean air-fuel ratio afLean.
  • the second control device determines that the lean delay time TDL is from the time (time t1, t5) when the value of the catalyst lean state display flag XCCROLean changes from “0” to “1”.
  • the rich request flag XRichreq is changed from “0” to “1”.
  • the second control device performs the rich request flag XRichreq when the rich delay time TDR elapses from the time (time t3) when the value of the catalyst lean state display flag XCCROLean changes from “1” to “0”. Is changed from “1” to “0”.
  • the second control device increases the rich delay time TDR or shortens the lean delay time TDL when the predetermined condition is satisfied. Thereby, the second control device increases the concentration of the reducing agent in the catalyst 43 when the predetermined condition is satisfied.
  • the CPU of the second control device executes the routines shown in FIGS. 5 and 6 in the same manner as the CPU of the first control device.
  • the target rich air-fuel ratio afRich read in step 545 in FIG. 5 is a constant value (for example, 14.2)
  • the target lean air-fuel ratio afLean read in step 555 in FIG. 5 is a constant value (15.0 ).
  • the CPU of the second control device executes the required air-fuel ratio determination routine shown in FIG. 10 every elapse of a predetermined time. Accordingly, when the predetermined timing comes, the CPU starts processing from step 1000 and proceeds to step 1010 to read the lean delay time TDL. The lean delay time TDL is calculated by a routine shown in FIG. Next, the CPU proceeds to step 1020 to read the rich delay time TDR. The rich delay time TDR is calculated by a routine shown in FIG.
  • step 1030 determines whether or not the value of the catalyst lean state display flag XCCROLean is “1”. At this time, if the value of the catalyst lean state display flag XCCROLean is “1”, the CPU makes a “Yes” determination at step 1030 to proceed to step 1040, where the value of the catalyst lean state display flag XCCROLean is “0”. It is determined whether or not the lean delay time TDL has elapsed since the time when the value changed to “1”.
  • the CPU makes a “No” determination at step 1040 to directly proceed to step 1095 to end the present routine tentatively. In this case, the value of the rich request flag XRichreq is not changed.
  • step 1040 the CPU makes a “Yes” determination at step 1040 to proceed to step 1050, where the rich request flag XRichreq Is set to “1”.
  • the target air-fuel ratio abyfr is changed from the target lean air-fuel ratio afLean to the target rich air after the lean delay time TDL has elapsed since the value of the catalyst lean state display flag XCCROLean has changed from “0” to “1”.
  • the fuel ratio is changed to afRich.
  • the CPU proceeds to step 1095 to end the present routine tentatively.
  • step 1030 the CPU makes a “No” determination at step 1030 to proceed to step 1060. It is determined whether or not the rich delay time TDR has elapsed since the value of the lean state display flag XCCROLean has changed from “1” to “0”.
  • the CPU makes a “No” determination at step 1060 to directly proceed to step 1095 to end the present routine tentatively. In this case, the value of the rich request flag XRichreq is not changed.
  • step 1060 the CPU makes a “Yes” determination at step 1060 to proceed to step 1070, where the rich request flag XRichreq Is set to “0”.
  • the target air-fuel ratio abyfr is changed from the target rich air-fuel ratio afRich to the target lean air-space after the rich delay time TDR has elapsed since the value of the catalyst lean state display flag XCCROLean has changed from “1” to “0”.
  • the fuel ratio is changed to afLean.
  • the CPU proceeds to step 1095 to end the present routine tentatively.
  • the CPU executes the delay time calculation routine shown in FIG. 11 every elapse of a predetermined time.
  • the steps shown in FIG. 11 and also shown in FIG. 8 are denoted by the same reference numerals as the steps shown in FIG. Detailed description of these steps will be omitted as appropriate.
  • step 1110 the CPU proceeds to step 1110 to set the rich delay time TDR to a constant reference rich delay time TDR0.
  • step 1120 sets the lean delay time TDL to a constant reference lean delay time TDL0, proceeds to step 1195, and once ends this routine.
  • the CPU proceeds to step 1130 to determine the rich delay time TDR based on the intake air amount Ga. More specifically, the rich delay time TDR is determined so as to increase in the range of the reference rich delay time TDR0 or more as the intake air amount Ga increases.
  • the CPU proceeds to step 1140 to determine the lean delay time TDL based on the intake air amount Ga. More specifically, the lean delay time TDL is determined so as to decrease in the range of the reference lean delay time TDL0 or less as the intake air amount Ga increases.
  • the second control device When the change amount ⁇ Voxs per unit time of the output value Voxs of the downstream side air-fuel ratio sensor 67 is a negative value and the magnitude
  • the second control device includes target air-fuel ratio setting means, fuel supply amount control means for controlling the amount of fuel supplied to the engine based on the target air-fuel ratio set by the target air-fuel ratio setting means, including.
  • the target air-fuel ratio setting means includes When the catalyst state determination means determines that the state of the catalyst 43 has changed from the oxygen-deficient state to the oxygen-excess state, when “lean delay time TDL that is a predetermined delay time including 0” has elapsed.
  • the target air-fuel ratio abyfr is set to “target rich air-fuel ratio afRich smaller than the stoichiometric air-fuel ratio” (steps 1040 and 1050 in FIG. 10 and steps 540 to 550 in FIG.
  • the target air-fuel ratio abyfr is set to “theoretical sky” when the “rich delay time TDR that is a predetermined delay time including 0” has elapsed since it was determined that the state changed from the oxygen excess state to the oxygen deficiency state.
  • the target lean air-fuel ratio afLean larger than the fuel ratio ” is set (steps 1060 and 1070 in FIG. 10 and step 54 in FIG. 5). 0, step 555 and step 560).
  • the fuel supply amount control means includes: A fuel amount (fuel injection amount) supplied to the engine 10 is controlled based on the set target air-fuel ratio abyfr (steps 520 to 535, fuel injection valve 33 in FIG. 5).
  • the target air-fuel ratio setting means determines the rich delay time TDR when the predetermined condition is satisfied (see the determination of “Yes” in both steps 805 and 830 in FIG. 11).
  • the rich delay time TDR is set in this way, the lean delay time TDL may always be “0” or a constant value.
  • the target air-fuel ratio setting means determines the lean delay time TDL when the predetermined condition is satisfied (see the determination of “Yes” in both steps 805 and 830 in FIG. 11).
  • the rich delay time TDR may be “0” or a constant value.
  • the time during which the target air-fuel ratio is set to the rich air-fuel ratio is only “the time when the rich delay time TDR is increased” and / or “the time when the lean delay time TDL is shortened”. become longer. Therefore, the average value of the air-fuel ratio of the engine 10 (and hence the average value of the air-fuel ratio of the catalyst inflow gas that is the gas flowing into the catalyst) becomes smaller (rich) than the stoichiometric air-fuel ratio. Therefore, when the predetermined condition is satisfied, the state of the catalyst 43 can be set to “a state in which the NOx reduction rate is increased”.
  • control device for an internal combustion engine according to a third embodiment of the present invention (hereinafter also referred to as “third control device”) will be described.
  • the third control device increases the rich determination threshold dRichth instead of changing the target rich air-fuel ratio afRich and the target lean air-fuel ratio afLean, so that the state of the catalyst 43 is in an oxygen excess state. This is different from the first control device only in that the period during which it is determined to be relatively long.
  • the third control device sets the target air-fuel ratio abyfr to the target rich air-fuel ratio afRich when the value of the rich request flag XRichreq is “1”, and the rich request flag When the value of XRichreq is “0”, the target air-fuel ratio abyfr is set to the target lean air-fuel ratio afLean.
  • the third control device sets the rich determination threshold dRichth to the reference rich determination threshold dRichth0 when the above-described predetermined condition is not satisfied. Therefore, in the example shown in FIG. 12, the values of the catalyst lean state display flag XCCROLean and the rich request flag XRichreq are changed from “1” to “0” at time t2. That is, when it is determined that the state of the catalyst 43 is an excess oxygen state, it is determined that the state of the catalyst 43 has changed to an oxygen-deficient state when the output value Voxs of the downstream air-fuel ratio sensor 67 slightly increases. At that time, the target air-fuel ratio abyfr is switched to the target lean air-fuel ratio afLean.
  • the third control device sets the rich determination threshold value dRichth to “a value obtained by adding a positive correction amount ⁇ dRi to the reference rich determination threshold value dRichth0 (dRichth0 + ⁇ dRi)”. According to this, even when the output value Voxs of the downstream air-fuel ratio sensor 67 changes in the same manner, the values of the catalyst lean state display flag XCCROLean and the rich request flag XRichreq change from “1” to “0”. The time of change is time t3 later than time t2.
  • the time t3 when the output value Voxs of the downstream air-fuel ratio sensor 67 increases by “an amount larger than the reference rich determination threshold dRichth0” per unit time.
  • the target air-fuel ratio abyfr is switched to the target lean air-fuel ratio afLean.
  • the target air-fuel ratio abyfr is set longer than the time corresponding to the period from time t2 to time t3, and is set to the target rich air-fuel ratio afRich. Accordingly, the third control device increases the concentration of the reducing agent in the catalyst 43 when the above-described predetermined condition is satisfied.
  • the CPU of the third control device executes the routines shown in FIGS. 5 to 7 in the same manner as the CPU of the first control device.
  • the target rich air-fuel ratio afRich read in step 545 in FIG. 5 is a constant value (for example, 14.2)
  • the target lean air-fuel ratio afLean read in step 555 in FIG. 5 is a constant value (15.0 ).
  • the CPU of the third control device executes the determination threshold value calculation routine shown in FIG. 13 every elapse of a predetermined time.
  • the rich determination threshold value dRichth and the lean determination threshold value dLeanth that are read out in steps 615 and 620 in FIG. 6 are calculated.
  • the steps shown in FIG. 13 and also shown in FIG. 8 are denoted by the same reference numerals as the steps shown in FIG. Detailed description of these steps will be omitted as appropriate.
  • step 1310 in FIG. 13 the CPU proceeds to step 1310 in FIG. 13 to set the rich determination threshold dRichth to a constant reference rich determination threshold dRichth0.
  • step 1320 the CPU proceeds to step 1320 to set the lean determination threshold value dLeanth to a certain reference lean determination threshold value dLeanth0, and proceeds to step 1395 to end the present routine tentatively.
  • the CPU proceeds to step 1330 to determine the rich determination threshold dRichth based on the intake air amount Ga. More specifically, the rich determination threshold dRichth is determined so as to increase in a range equal to or greater than the reference rich determination threshold dRichth0 as the intake air amount Ga increases. In other words, the CPU obtains a positive correction amount ⁇ dRi that increases as the intake air amount Ga increases, and sets “a value obtained by adding the positive correction amount ⁇ dRi to the reference rich determination threshold dRichth0 (dRichth0 + ⁇ dRi)” as the rich determination threshold dRichth. To do.
  • the CPU proceeds to step 1340 to determine a lean determination threshold value dLeanth based on the intake air amount Ga. More specifically, the lean determination threshold value dLeanth is determined so as to decrease in a range equal to or less than the reference lean determination threshold value dLeanth0 as the intake air amount Ga increases. In other words, the CPU obtains a positive correction amount ⁇ dLi that increases as the intake air amount Ga increases, and calculates “a value obtained by subtracting the positive correction amount ⁇ dLi from the reference lean determination threshold dLeanth0 (dLeanth0 ⁇ dLi)” as the lean determination threshold dLeanth. Set as.
  • the lean determination threshold value dLeanth may be a constant value (reference lean determination threshold value dLeanth0). Further, when the lean determination threshold value dLeanth is variable so as to be based on the processing in step 1340, the rich determination threshold value dRichth may be a constant value (reference rich determination threshold value dRichth0). Thereafter, the CPU proceeds to step 1395 to end the present routine tentatively.
  • the target air-fuel ratio setting means of the third control device further includes:
  • the third control device when the predetermined condition is satisfied, the period during which the state of the catalyst 43 is determined to be the oxygen-deficient state is shortened, and the state of the catalyst 43 is the oxygen-excess state. The period during which it is determined to be longer. Therefore, when the predetermined condition is satisfied, the time during which the target air-fuel ratio is set to the target rich air-fuel ratio afRich becomes relatively long. Therefore, the average value of the air-fuel ratio of the engine 10 (and hence the average value of the air-fuel ratio of the catalyst inflow gas that is the gas flowing into the catalyst) becomes smaller (rich) than the stoichiometric air-fuel ratio. Therefore, when the predetermined condition is satisfied, the state of the catalyst 43 can be set to “a state in which the NOx reduction rate is increased”.
  • the fourth control device controls the air-fuel ratio of the engine so that the temperature of the catalyst 43 rises when the predetermined condition is satisfied. More specifically, the fourth control device sets the target rich air-fuel ratio afRich when the predetermined condition is satisfied to a value smaller than the target rich air-fuel ratio afRich when the predetermined condition is not satisfied. In addition, the target lean air-fuel ratio afLean when the predetermined condition is satisfied is set to a value larger than the target lean air-fuel ratio afLean when the predetermined condition is not satisfied.
  • the CPU of the fourth control device executes the routines shown in FIGS. 5 to 7 in the same manner as the CPU of the first control device. Further, the CPU of the fourth control device executes the target air-fuel ratio calculation routine shown in FIG. 14 every elapse of a predetermined time. Note that the steps shown in FIG. 14 and the steps shown in FIG. 8 are also given the same reference numerals as the steps shown in FIG. Detailed description of these steps will be omitted as appropriate.
  • step 810 in FIG. 14 the CPU proceeds to step 810 in FIG. 14 to set the target rich air-fuel ratio afRich to a constant reference target rich air-fuel ratio afRich0.
  • step 815 the CPU proceeds to step 815 to set the target lean air-fuel ratio afLean to a constant reference target lean air-fuel ratio afLean0.
  • the CPU sequentially performs the processes of steps 835 to 845 and step 1410 described below, and then proceeds to step 1495 to end the present routine tentatively.
  • Step 835 The CPU determines a target rich air-fuel ratio correction amount ⁇ R based on the intake air amount Ga.
  • the target rich air-fuel ratio correction amount ⁇ R is determined so as to increase as the intake air amount Ga increases.
  • Step 840 The CPU sets the target rich air-fuel ratio afRich to a value (afRich0 ⁇ R) obtained by subtracting the target rich air-fuel ratio correction amount ⁇ R from the reference target rich air-fuel ratio afRich0.
  • the target rich air-fuel ratio afRich is calculated as an air-fuel ratio that decreases as the intake air amount Ga increases, away from the stoichiometric air-fuel ratio stoich.
  • Step 845 The CPU determines a target lean air-fuel ratio correction amount ⁇ L based on the intake air amount Ga.
  • the target lean air-fuel ratio correction amount ⁇ L is determined so as to increase as the intake air amount Ga increases.
  • the target lean air-fuel ratio correction amount ⁇ L for an arbitrary intake air amount Ga is determined as the same value as the target rich air-fuel ratio correction amount ⁇ R for the intake air amount Ga.
  • the target lean air-fuel ratio correction amount ⁇ L for an arbitrary intake air amount Ga may be determined as a value different from the target rich air-fuel ratio correction amount ⁇ R for the intake air amount Ga.
  • Step 1410 The CPU sets the target lean air-fuel ratio afLean to a value obtained by adding the target lean air-fuel ratio correction amount ⁇ L to the reference target lean air-fuel ratio afLean0 (afLean0 + ⁇ L).
  • the target lean air-fuel ratio afLean is calculated as an air-fuel ratio that increases as the intake air amount Ga increases so as to move away from the stoichiometric air-fuel ratio stoich.
  • the fourth control apparatus when the predetermined condition (condition 1 and condition 2) is satisfied, in other words, when a large amount of NOx is predicted to flow into the catalyst 43,
  • the target lean air-fuel ratio afLean is increased by the target lean air-fuel ratio correction amount ⁇ L as compared with the case where the predetermined condition is not satisfied, and the target rich air-fuel ratio afRich is compared with the case where the predetermined condition is not satisfied.
  • the target rich air-fuel ratio correction amount ⁇ R is decreased.
  • the exhaust gas having a larger air-fuel ratio and the exhaust gas having a smaller air-fuel ratio alternately flow into the catalyst 43 as compared with the normal time (when the predetermined condition is not satisfied).
  • the target rich air-fuel ratio correction amount ⁇ R and the target lean air-fuel ratio correction amount ⁇ L are the same value, the “target rich air-fuel ratio afRich and the target when the predetermined condition (condition 1 and condition 2) is satisfied” are satisfied.
  • the “average value of the lean air-fuel ratio afLean” becomes the stoichiometric air-fuel ratio stoich.
  • the fluctuation range of the air-fuel ratio of the gas flowing into the catalyst 43 becomes large, and therefore the oxidation-reduction reaction in the catalyst 43 becomes active, so that the amount of heat generated by the reaction becomes large.
  • the temperature of the catalyst 43 can be raised. Therefore, even after the engine 10 is accelerated and a large amount of NOx flows into the catalyst 43, the NOx reduction rate of the catalyst 43 is increased, so the catalyst 43 can purify much NOx. it can. As a result, the amount of unpurified NOx flowing out from the catalyst 43 can be reduced.
  • the air-fuel ratio control apparatus includes an internal combustion engine including an air-fuel ratio control unit that controls the air-fuel ratio of the engine based on the output value Voxs of the downstream air-fuel ratio sensor 67. This is an air-fuel ratio control apparatus.
  • the air-fuel ratio control means includes: Condition determining means for determining whether or not a predetermined condition for predicting that an operation state in which a large amount of nitrogen oxide flows into the catalyst has arrived (steps 805 to 805 in FIG. 8, FIG. 11, FIG. 13, etc.) See step 830).
  • Condition determining means for determining whether or not a predetermined condition for predicting that an operation state in which a large amount of nitrogen oxide flows into the catalyst has arrived (steps 805 to 805 in FIG. 8, FIG. 11, FIG. 13, etc.) See step 830).
  • the air-fuel ratio of the engine 10 is controlled so that the concentration of the reducing agent in the catalyst 43 increases as compared with the case where the predetermined condition is not satisfied (first to Third control device).
  • the first to third control devices are configured such that the average value of the air-fuel ratio of the engine 10 when the predetermined condition is satisfied is the average value of the air-fuel ratio of the engine 10 when the predetermined condition is not satisfied.
  • the concentration of the reducing agent in the catalyst 43 is increased when the predetermined condition is satisfied.
  • the air-fuel ratio control means includes Condition determining means for determining whether or not a predetermined condition for predicting that an operating state in which a large amount of nitrogen oxide flows into the catalyst has arrived (see step 805 to step 830 in FIG. 14). Including When the predetermined condition is satisfied, the air-fuel ratio of the engine 10 is controlled so that the temperature of the catalyst 43 rises compared to the case where the predetermined condition is not satisfied (fourth control device).
  • the air-fuel ratio control means includes means for determining whether or not an operating state in which a large amount of nitrogen oxide flows into the catalyst 43 comes based on “whether the predetermined condition is satisfied”.
  • each control device can set the NOx reduction rate of the catalyst 43 to a large value up to that point. More NOx can be purified. As a result, the amount of unpurified NOx flowing out from the catalyst 43 can be reduced.
  • the present invention is not limited to the above embodiment, and various modifications can be employed within the scope of the present invention.
  • the first to fourth control devices can be combined with each other as long as no contradiction occurs.
  • the intake air amount Ga used in step 835, step 845, step 1130, step 1140, step 1330, step 1340, etc. may be the intake air amount correlation value described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本発明の一態様に係る内燃機関の空燃比制御装置(本制御装置)は、下流側空燃比センサ67の出力値Voxsに基いて触媒43の酸素吸蔵量が過剰となる傾向にあると判定したとき目標空燃比を目標リッチ空燃比に設定するとともに、出力値Voxsに基いて触媒43の酸素吸蔵量が不足する傾向にあると判定したとき目標空燃比を目標リーン空燃比に設定する。更に、本制御装置は、触媒43に多量の窒素酸化物が流入する運転状態が到来するか否かを「所定の条件が成立しているか」に基づいて判定し、所定の条件が成立しているときの目標リッチ空燃比を前記所定の条件が成立していない場合の目標リッチ空燃比よりも小さくする。これにより、多量のNOxが触媒43に流入する時点までに触媒43内の還元剤の濃度を高めておくことができるので、多量のNOxが触媒43に流入したときにそのNOxの多くを浄化することができる。

Description

内燃機関の空燃比制御装置
 本発明は、排気通路に配設された三元触媒を有効に活用することによりNOx(窒素酸化物)の排出量を低減することが可能な内燃機関の空燃比制御装置に関する。
 従来より、内燃機関から排出される排ガスを浄化するために同機関の排気通路に三元触媒が配設されている。三元触媒は、周知のように、酸素吸蔵機能を有する。即ち、三元触媒は、その三元触媒に流入するガス(触媒流入ガス)に過剰の酸素が含まれているとき、その酸素を吸蔵するとともにNOxを浄化する。三元触媒は、触媒流入ガスに過剰な未燃物が含まれているとき、吸蔵している酸素を放出してその未燃物を浄化する。以下、三元触媒は単に「触媒」とも称呼される。
 従来の空燃比制御装置(従来装置)は、機関の排気通路であって触媒の上流及び下流にそれぞれ配設された上流側空燃比センサ及び下流側空燃比センサを備える。従来装置は、上流側空燃比センサの出力値により表される空燃比(検出上流側空燃比)を目標空燃比(上流側目標空燃比、触媒流入ガスの目標空燃比)に一致させるように「機関に供給される混合気の空燃比(機関の空燃比)」を制御する。この制御は「メインフィードバック制御」とも称呼される。
 更に、従来装置は、下流側空燃比センサの出力値が「理論空燃比に対応する目標値」に一致するようにサブフィードバック量を算出し、そのサブフィードバック量により上流側目標空燃比を実質的に変更することにより、機関の空燃比を制御する(例えば、特許文献1を参照。)。サブフィードバック量を用いた空燃比制御は「サブフィードバック制御」とも称呼される。
特開2009-162139号公報
 ところで、機関が「その吸入空気量がある程度大きい状態にて定常運転されている場合」に、その機関に対して加速操作がなされると、特に、その加速操作の時点における機関の空燃比(機関に供給される混合気の空燃比)が理論空燃比よりもリーンであるときには機関から多量のNOx(窒素酸化物)が排出される。この場合、触媒のNOxの還元速度(NOxを浄化するための反応速度)が十分に高くないと、触媒に流入する多量のNOxが触媒にて十分に浄化されず、触媒下流に流出する。このような状況は、例えば、機関が搭載された車両が比較的高速にて定常走行されている場合において、前方車両の追い越し等のために加速された場合に生じる。
 本発明は、上述した課題に対処するために為されたものである。即ち、本発明の目的の一つは、多量のNOxが触媒に流入することが予測される場合、触媒の状態を予め「NOxの還元速度」が高い状態へと変更しておくことにより、NOxの排出量を低減することができる内燃機関の空燃比制御装置を提供することにある。
 本発明による内燃機関の制御装置(本発明装置)は、
 内燃機関の排気通路に配設された触媒と、
 前記排気通路の前記触媒の下流側に配設された下流側空燃比センサと、
 前記下流側空燃比センサの出力値に基いて前記機関に供給される混合気の空燃比である機関の空燃比を制御する空燃比制御手段と、
 を備える。
 更に、前記空燃比制御手段は、
 前記触媒に多量の窒素酸化物が流入する運転状態が到来することを予測する所定の条件(特定条件)が成立しているか否かを判定する条件判定手段を含み、
 前記所定の条件が成立した場合、前記所定の条件が成立していない場合に比較して、前記触媒内の還元剤(未燃物)の濃度及び前記触媒の温度の少なくとも一方が上昇するように、前記機関の空燃比を制御する。なお、触媒内の還元剤の濃度を上昇させることと、触媒の酸素吸蔵量を低下させることは同義である。
 前記所定の条件は、例えば、
 前記機関の吸入空気量が大きいほど大きくなる吸入空気量相関値が低側空気量閾値よりも大きく且つ前記低側空気量閾値よりも大きい高側空気量閾値よりも小さいこと、及び、前記機関を搭載した車両の速度が低側速度閾値よりも大きく且つ前記低側速度閾値よりも大きい高側速度閾値よりも小さいこと、の少なくとも何れか一方が成立する場合に成立する条件である。
 更に、前記所定の条件は、前記吸入空気量相関値の単位時間当たりの変化量が所定変化量閾値よりも小さいことが成立する場合に成立する条件であることが望ましい。
 これによれば、触媒に多量の窒素酸化物が流入する時点までに、触媒内の還元剤の濃度が上昇させられているか、及び/又は、触媒の温度が上昇させられている。従って、触媒に多量の窒素酸化物が流入する時点にて、触媒のNOxの還元速度は既に高くなっている。よって、多量のNOxが触媒に流入した場合であっても、その多くを触媒により浄化(還元)することができるから、NOxの排出量を低減することができる。
 なお、触媒の還元剤の濃度を常に高い値に維持しておくことは、未燃物が触媒から排出される可能性が高くなるので好ましくない。しかし、本発明装置の一態様においては、触媒内の還元剤の濃度を高い値に維持することは前記所定の条件が成立する場合に限られ、しかも前記所定の条件が成立する場合には機関の排気温度もある程度高いので、触媒の温度はある程度高い温度となっている。よって、未燃物が排出される可能性は小さい。
 更に、触媒の温度を常に高い温度に維持しておくことは触媒の劣化(シンタリング等)を招くので好ましくない。しかし、本発明装置の一態様においては、前記所定の条件が成立する場合にのみ触媒の温度が高い温度に設定されるので、それによって触媒の劣化が大きく進行することはない。
 この場合、前記空燃比制御手段は、
 前記所定の条件が成立している場合の前記機関の空燃比の平均値が、前記所定の条件が成立していない場合の前記機関の空燃比の平均値よりも小さくなるように、前記機関の空燃比を制御することにより、前記所定の条件が成立している場合に前記触媒内の還元剤の濃度を上昇させるように構成される。
 より具体的に述べると、本発明装置の一態様において、
 前記空燃比制御手段は、目標空燃比設定手段と、燃料供給量制御手段と、を備える。
 前記目標空燃比設定手段は、前記下流側空燃比センサの出力値に基いて、前記触媒の酸素吸蔵量が過剰となる傾向にあって前記触媒に理論空燃比よりも小さいリッチ空燃比のガスを流入させるリッチ要求が発生したと判定したとき、前記機関の空燃比の目標を理論空燃比よりも小さい目標リッチ空燃比に設定する。
 更に、前記目標空燃比設定手段は、前記下流側空燃比センサの出力値に基いて、前記触媒の酸素吸蔵量が不足する傾向にあって前記触媒に理論空燃比よりも大きいリーン空燃比のガスを流入させるリーン要求が発生したと判定したとき、前記機関の空燃比の目標を理論空燃比よりも大きい目標リーン空燃比に設定する。
 燃料供給量制御手段は、前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する。
 この場合、前記目標空燃比設定手段は、更に、
 前記所定の条件が成立している場合の前記目標リッチ空燃比を、前記所定の条件が成立していない場合の前記目標リッチ空燃比よりも小さい空燃比に設定するように構成される。
 更に、前記目標空燃比設定手段は、
 前記下流側空燃比センサの出力値の単位時間あたりの変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、前記リッチ要求が発生したと判定し、
 前記変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、前記リーン要求が発生したと判定する、ように構成される。
 これによれば、前記所定の条件が成立している場合の目標リッチ空燃比が所定の条件が成立していない場合の目標リッチ空燃比よりも小さくなる。よって、前記所定の条件が成立している場合、機関の空燃比の平均値(従って、触媒に流入するガスである触媒流入ガスの空燃比の平均値)が小さくなる(リッチになる)ので、触媒内の還元剤の濃度が上昇する。従って、触媒の状態を「NOxの還元速度が高められた状態」に設定しておくことができる。
 本発明装置の他の態様において、前記空燃比制御手段は、
 前記下流側空燃比センサの出力値の単位時間あたりの変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、前記触媒の状態が前記酸素過剰状態となったと判定するとともに、前記変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、前記触媒の状態が酸素不足状態となったと判定する触媒状態判定手段と、
 前記触媒状態判定手段により前記触媒の状態が前記酸素不足状態から前記酸素過剰状態へと変化したと判定された時点から0を含む所定の遅延時間であるリーン遅延時間だけ経過したときに前記機関の空燃比の目標を理論空燃比よりも小さい目標リッチ空燃比に設定するとともに、前記触媒状態判定手段により前記触媒の状態が前記酸素過剰状態から前記酸素不足状態へと変化したと判定された時点から0を含む所定の遅延時間であるリッチ遅延時間だけ経過したときに前記機関の空燃比の目標を理論空燃比よりも大きい目標リーン空燃比に設定する目標空燃比設定手段と、
 前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
 を含み、
 前記目標空燃比設定手段は、更に、
 前記所定の条件が成立している場合の前記リッチ遅延時間を、前記所定の条件が成立していない場合の前記リッチ遅延時間よりも長い時間に設定するように構成される。
 これによれば、前記所定の条件が成立している場合、前記所定の条件が成立していない場合に比較して、目標空燃比がリッチ空燃比に設定されている時間が「リッチ遅延時間が長くなった時間」だけ長くなる。従って、機関の空燃比の平均値(従って、触媒に流入するガスである触媒流入ガスの空燃比の平均値)が理論空燃比よりも小さくなる(リッチになる)。よって、前記所定の条件が成立したとき、触媒の状態を「NOxの還元速度が高められた状態」に設定しておくことができる。
 同様に、前記空燃比制御手段は、
 前記触媒状態判定手段により前記触媒の状態が前記酸素不足状態から前記酸素過剰状態へと変化したと判定された時点から所定の遅延時間であるリーン遅延時間だけ経過したときに前記機関の空燃比の目標空燃比を理論空燃比よりも小さい目標リッチ空燃比に設定するとともに、前記触媒状態判定手段により前記触媒の状態が前記酸素過剰状態から前記酸素不足状態へと変化したと判定された時点から所定の遅延時間である0を含むリッチ遅延時間だけ経過したときに前記機関の空燃比の目標空燃比を理論空燃比よりも大きい目標リーン空燃比に設定する目標空燃比設定手段と、
 前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
 を含み、
 前記目標空燃比設定手段は、更に、
 前記所定の条件が成立している場合の前記リーン遅延時間を、前記所定の条件が成立していない場合の前記リーン遅延時間よりも短い時間に設定するように構成される。
 これによれば、前記所定の条件が成立している場合、前記所定の条件が成立していない場合に比較して、目標空燃比がリッチ空燃比に設定されている時間が「リーン遅延時間が短くなった時間」だけ長くなる。従って、機関の空燃比の平均値(従って、触媒に流入するガスである触媒流入ガスの空燃比の平均値)が理論空燃比よりも小さくなる(リッチになる)。よって、前記所定の条件が成立したとき、触媒の状態を「NOxの還元速度が高められた状態」に設定しておくことができる。
 本発明装置の他の態様において、
 前記空燃比制御手段は、
 前記下流側空燃比センサの出力値の単位時間あたりの変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、前記機関の空燃比の目標空燃比を理論空燃比よりも小さい目標リッチ空燃比に設定し、
 前記変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、前記機関の空燃比の目標空燃比を理論空燃比よりも大きい目標リーン空燃比に設定する、目標空燃比設定手段と、
 前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
 を含む。
 この場合、前記目標空燃比設定手段は、
 前記所定の条件が成立している場合の前記リッチ判定閾値dRichthを、前記所定の条件が成立していない場合の前記リッチ判定閾値dRichthよりも大きい値に設定するように構成される。
 或いは、前記目標空燃比設定手段は、
 前記所定の条件が成立している場合の前記リーン判定閾値dLeanthを、前記リーン遅延時間が前記所定の条件が成立していない場合の前記リーン判定閾値dLeanthよりも小さい値に設定するように構成される。
 これらによれば、前記所定の条件が成立している場合、前記所定の条件が成立していない場合に比較して、触媒の状態が酸素不足状態であると判定されている期間が短くなり、触媒の状態が酸素過剰状態であると判定されている期間が長くなる。よって、前記所定の条件が成立している場合、目標空燃比が目標リッチ空燃比に設定されている時間が相対的に長くなる。従って、機関の空燃比の平均値(従って、触媒に流入するガスである触媒流入ガスの空燃比の平均値)が理論空燃比よりも小さくなる(リッチになる)。よって、前記所定の条件が成立したとき、触媒の状態を「NOxの還元速度が高められた状態」に設定しておくことができる。
 本発明装置の他の態様において、
 前記空燃比制御手段は、
 前記下流側空燃比センサの出力値に基いて、前記触媒の酸素吸蔵量が過剰となる傾向にあって前記触媒に理論空燃比よりも小さいリッチ空燃比のガスを流入させるべきであると判定したとき前記機関の空燃比の目標を理論空燃比よりも小さい目標リッチ空燃比に設定するとともに、前記触媒の酸素吸蔵量が不足する傾向にあって前記触媒に理論空燃比よりも大きいリーン空燃比のガスを流入させるべきであると判定したとき前記機関の空燃比の目標を理論空燃比よりも大きい目標リーン空燃比に設定する目標空燃比設定手段と、
 前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
 を含む。
 この場合、前記目標空燃比設定手段は、更に、
 前記所定の条件が成立している場合の前記目標リッチ空燃比を前記所定の条件が成立していない場合の前記目標リッチ空燃比よりも小さい空燃比に設定するとともに、前記所定の条件が成立している場合の前記目標リーン空燃比を前記所定の条件が成立していない場合の前記目標リーン空燃比よりも大きい空燃比に設定することにより、前記触媒内において発生する熱の量を増大させて前記触媒の温度を上昇させる。この場合、前記所定の条件が成立している場合の前記目標リッチ空燃比と、前記所定の条件が成立している場合の前記目標リーン空燃比と、の平均が理論空燃比又は理論空燃比よりも小さい値となるように、これらの目標空燃比が設定されていることが好ましい。
 これによれば、所定の条件が成立している場合、触媒に流入するガスの空燃比の振幅が大きくなる。従って、触媒における反応が活発になるので、反応熱が大きくなる。その結果、前記所定の条件が成立した場合、前記所定の条件が成立していない場合に比較して、触媒の温度を上昇させることができるので、触媒の状態を「NOxの還元速度が高められた状態」に設定しておくことができる。
 本発明装置の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
図1は、本発明の各実施形態に係る空燃比制御装置が適用される内燃機関の概略平面図である。 図2は、図1に示した触媒に流入するガスの空燃比(上流側空燃比)と図1に示した上流側空燃比センサの出力値との関係を示したグラフである。 図3は、図1に示した触媒から流出するガスの空燃比(下流側空燃比)と図1に示した下流側空燃比センサの出力値との関係を示したグラフである。 図4は、本発明の第1実施形態に係る制御装置(第1制御装置)により変更される目標空燃比を示したタイムチャートである。 図5は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図6は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図7は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図8は、第1制御装置のCPUが実行するルーチンを示したフローチャートである。 図9は、本発明の第2実施形態に係る制御装置(第2制御装置)が使用する触媒リーン状態表示フラグ及びリッチ要求フラグを示したタイムチャートである。 図10は、第2制御装置のCPUが実行するルーチンを示したフローチャートである。 図11は、第2制御装置のCPUが実行するルーチンを示したフローチャートである。 図12は、図1に示した下流側空燃比センサの出力値と、本発明の第3実施形態に係る制御装置(第3制御装置)が使用する触媒リーン状態表示フラグ及びリッチ要求フラグと、を示したタイムチャートである。 図13は、第3制御装置のCPUが実行するルーチンを示したフローチャートである。 図14は、本発明の第4実施形態に係る制御装置(第4制御装置)のCPUが実行するルーチンを示したフローチャートである。
 以下、本発明の各実施形態に係る内燃機関の空燃比制御装置(以下、単に「制御装置」とも称呼する。)について図面を参照しながら説明する。この制御装置は、内燃機関に供給される混合気に含まれる燃料噴射量(燃料供給量)を制御する燃料噴射量制御装置の一部でもある。
<第1実施形態>
(構成)
 図1は、第1実施形態に係る制御装置(以下、「第1制御装置」とも称呼する。)を、4サイクル・火花点火式・多気筒(直列4気筒)・内燃機関10に適用したシステムの概略構成を示している。内燃機関10は、機関本体部20と、吸気系統30と、排気系統40と、を含む。
 機関本体部20は、シリンダブロック部及びシリンダヘッド部を含む。機関本体部20は、複数の気筒(燃焼室)21を備えている。各気筒は、図示しない「吸気ポート及び排気ポート」と連通している。吸気ポートと燃焼室21との連通部は図示しない吸気弁により開閉される。排気ポートと燃焼室21との連通部は図示しない排気弁により開閉される。各燃焼室21には図示しない点火プラグが配設されている。
 吸気系統30は、インテークマニホールド31、吸気管32、複数の燃料噴射弁33、及び、スロットル弁34を備えている。
 インテークマニホールド31は、複数の枝部31aとサージタンク31bとを備えている。複数の枝部31aのそれぞれの一端は、複数の吸気ポートのそれぞれに接続されている。複数の枝部31aの他端はサージタンク31bに接続されている。
 吸気管32の一端はサージタンク31bに接続されている。吸気管32の他端には図示しないエアフィルタが配設されている。
 燃料噴射弁33は、一つの気筒(燃焼室)21に対して一つずつ配設されている。燃料噴射弁33は吸気ポートに設けられている。燃料噴射弁33には燃料配管50を通して図示しない燃料タンクから燃料が供給されている。燃料噴射弁33は、噴射指示信号に応答して開弁し、「その噴射指示信号に含まれる指示燃料噴射量の燃料」を吸気ポート(従って、燃料噴射弁33に対応する気筒21)内に噴射するようになっている。
 スロットル弁34は、吸気管32内に回動可能に配設されている。スロットル弁34は、吸気通路の開口断面積を可変とするようになっている。スロットル弁34は、図示しないスロットル弁アクチュエータにより吸気管32内で回転駆動されるようになっている。
 排気系統40は、エキゾーストマニホールド41、エキゾーストパイプ42、エキゾーストパイプ42に配設された上流側触媒43、及び、上流側触媒43よりも下流においてエキゾーストパイプ42に配設された「図示しない下流側触媒」を備えている。
 エキゾーストマニホールド41は、複数の枝部41aと集合部41bとを備えている。複数の枝部41aのそれぞれの一端は、複数の排気ポートのそれぞれに接続されている。複数の枝部41aのそれぞれの他端は集合部41bに集合している。この集合部41bは、複数(2以上であり、本例では4つ)の気筒から排出された排ガスが集合する部分であるから、排気集合部HKとも称呼される。
 エキゾーストパイプ42は集合部41bに接続されている。排気ポート、エキゾーストマニホールド41及びエキゾーストパイプ42は、排気通路を構成している。
 上流側触媒43及び下流側触媒のそれぞれは、所謂、白金、ロジウム及びパラジウム等の貴金属(触媒物質)からなる活性成分を担持する三元触媒装置(排気浄化用の触媒)である。各触媒は、各触媒に流入するガスの空燃比が「三元触媒のウインドウ内の空燃比(例えば、理論空燃比)」であるとき、HC,CO,Hなどの未燃成分を酸化するとともに窒素酸化物(NOx)を還元する機能を有する。この機能は触媒機能とも称呼される。
 更に、各触媒は、酸素を吸蔵(貯蔵)する酸素吸蔵機能を有する。即ち、各触媒は、その触媒に流入するガス(触媒流入ガス)に過剰の酸素が含まれているとき、その酸素を吸蔵するとともにNOxを浄化する。各触媒は、触媒流入ガスに過剰な未燃物が含まれているとき、吸蔵している酸素を放出してその未燃物を浄化する。各触媒は、触媒流入ガスの空燃比が小さくなるほど、より多くの酸素を放出する。より多くの酸素を放出した状態(換言すると触媒内の還元剤の濃度が大きい状態)において、触媒はより高い反応速度にてNOxを還元することができる。
 触媒の酸素吸蔵機能は、触媒に担持されているセリア(CeO)等の酸素吸蔵材によってもたらされる。各触媒は、酸素吸蔵機能により空燃比が理論空燃比から偏移したとしても未燃成分及び窒素酸化物を浄化することができる。つまり、酸素吸蔵機能により、ウインドウの幅が拡大する。
 このシステムは、熱線式エアフローメータ61、スロットルポジションセンサ62、水温センサ63、クランクポジションセンサ64、インテークカムポジションセンサ65、上流側空燃比センサ66、下流側空燃比センサ67、及び、アクセル開度センサ68を備えている。
 エアフローメータ61は、吸気管32内を流れる吸入空気の質量流量(吸入空気流量)Gaに応じた信号を出力するようになっている。即ち、吸入空気量Gaは、単位時間あたりに機関10に吸入される吸入空気量を表す。
 スロットルポジションセンサ62は、スロットル弁34の開度(スロットル弁開度)を検出し、スロットル弁開度TAを表す信号を出力するようになっている。
 水温センサ63は、機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。冷却水温THWは、機関10の暖機状態(機関10の温度)を表す運転状態指標量である。
 クランクポジションセンサ64は、クランク軸が10°回転する毎に幅狭のパルスを有するとともに同クランク軸が360°回転する毎に幅広のパルスを有する信号を出力するようになっている。この信号は、後述する電気制御装置70によって機関回転速度NEに変換される。
 インテークカムポジションセンサ65は、インテークカムシャフトが所定角度から90度、次いで90度、更に180度回転する毎に一つのパルスを出力するようになっている。後述する電気制御装置70は、クランクポジションセンサ64及びインテークカムポジションセンサ65からの信号に基いて、基準気筒(例えば第1気筒)の圧縮上死点を基準とした絶対クランク角度CAを取得するようになっている。この絶対クランク角度CAは、基準気筒の圧縮上死点において「0°クランク角度」に設定され、クランク軸の回転角度に応じて720°クランク角度まで増大し、その時点にて再び0°クランク角度に設定される。
 上流側空燃比センサ66は、エキゾーストマニホールド41の集合部41b(排気集合部HK)と上流側触媒43との間の位置において「エキゾーストマニホールド41及びエキゾーストパイプ42の何れか」に配設されている。
 上流側空燃比センサ66は、例えば、特開平11-72473号公報、特開2000-65782号公報及び特開2004-69547号公報等に開示された「拡散抵抗層を備える限界電流式広域空燃比センサ」である。
 上流側空燃比センサ66は、上流側空燃比センサ66の配設位置を流れる排ガスの空燃比(触媒43に流入するガスである「触媒流入ガス」の空燃比、上流側空燃比abyfs)に応じた出力値Vabyfsを出力する。出力値Vabyfsは、図2に示したように、触媒流入ガスの空燃比(上流側空燃比abyfs)が大きくなるほど(リーン側の空燃比になるほど)増大する。
 電気制御装置70は、出力値Vabyfsと上流側空燃比abyfsとの図2に示した関係を規定した空燃比変換テーブル(マップ)Mapabyfsを記憶している。電気制御装置70は、出力値Vabyfsを空燃比変換テーブルMapabyfsに適用することにより、実際の上流側空燃比abyfsを検出する(検出上流側空燃比abyfsを取得する)ようになっている。
 再び、図1を参照すると、下流側空燃比センサ67は、エキゾーストパイプ42内に配設されている。下流側空燃比センサ67の配設位置は、上流側触媒43よりも下流側であり、且つ、下流側触媒よりも上流側(即ち、上流側触媒43と下流側触媒との間の排気通路)である。下流側空燃比センサ67は、周知の起電力式の酸素濃度センサ(安定化ジルコニア等の固体電解質を用いた周知の濃淡電池型の酸素濃度センサ)である。下流側空燃比センサ67は、排気通路であって下流側空燃比センサ67が配設されている部位を通過するガスである被検出ガスの空燃比に応じた出力値Voxsを発生するようになっている。換言すると、出力値Voxsは、上流側触媒43から流出し且つ下流側触媒に流入するガスの空燃比に応じた値である。
 この出力値Voxsは、図3に示したように、被検出ガスの空燃比が理論空燃比よりもリッチのとき最大出力値max(例えば、約0.9V~1.0V)となる。出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリーンのとき最小出力値min(例えば、約0.1V~0V)となる。更に、出力値Voxsは、被検出ガスの空燃比が理論空燃比であるとき最大出力値maxと最小出力値minの略中間の電圧Vst(中央値Vmid、中間電圧Vst、例えば、約0.5V)となる。出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリッチな空燃比からリーンな空燃比へと変化する際に最大出力値maxから最小出力値minへと急変する。同様に、出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリーンな空燃比からリッチな空燃比へと変化する際に最小出力値minから最大出力値maxへと急変する。
 図1に示したアクセル開度センサ68は、運転者によって操作されるアクセルペダルAPの操作量Accp(アクセルペダル操作量、アクセルペダルAPの開度)を表す信号を出力するようになっている。アクセルペダル操作量Accpは、アクセルペダルAPの操作量が大きくなるとともに大きくなる。
 電気制御装置70は、「CPU、CPUが実行するプログラム、テーブル(マップ、関数)及び定数等を予め記憶したROM、CPUが必要に応じてデータを一時的に格納するRAM、バックアップRAM(B-RAM)、並びに、ADコンバータを含むインターフェース等」からなる周知のマイクロコンピュータである。
 バックアップRAMは、機関10を搭載した車両の図示しないイグニッション・キー・スイッチの位置(オフ位置、始動位置及びオン位置等の何れか)に関わらず、車両に搭載されたバッテリから電力の供給を受けるようになっている。バックアップRAMは、バッテリから電力の供給を受けている場合、CPUの指示に応じてデータを格納する(データが書き込まれる)とともに、そのデータを読み出し可能となるように保持(記憶)する。従って、バックアップRAMは、機関10の運転停止中においてもデータを保持することができる。
 バックアップRAMは、バッテリが車両から取り外される等によりバッテリからの電力供給が遮断されると、データを保持することができない。そこで、CPUは、バックアップRAMへの電力供給が再開されたとき、バックアップRAMに保持されるべきデータを初期化(デフォルト値に設定)するようになっている。なお、バックアップRAMは、EEPROM等の読み書き可能な不揮発性メモリであってもよい。
 電気制御装置70は、上述したセンサ等と接続され、CPUにそれらのセンサからの信号を供給するようになっている。更に、電気制御装置70は、CPUの指示に応じて、各気筒に対応して設けられた点火プラグ(実際にはイグナイタ)、各気筒に対応して設けられた燃料噴射弁33、及び、スロットル弁アクチュエータ等に駆動信号(指示信号)を送出するようになっている。
 なお、電気制御装置70は、取得されたアクセルペダルの操作量Accpが大きくなるほどスロットル弁開度TAが大きくなるように、スロットル弁アクチュエータに指示信号を送出するようになっている。即ち、電気制御装置70は、運転者により変更される機関10の加速操作量(アクセルペダル操作量Accp)に応じて「機関10の吸気通路に配設されたスロットル弁34」の開度を変更するスロットル弁駆動手段を備えている。
(第1制御装置の作動の概要)
 第1制御装置は、下流側空燃比センサ67の出力値Voxsに基いて、触媒43の状態(酸素吸蔵状態)が、酸素過剰状態及び酸素不足状態のうちの何れであるかを判定する。
 酸素過剰状態は、リーン状態とも称呼される。酸素過剰状態は、触媒43の酸素吸蔵量が過剰となる傾向にあって最大酸素吸蔵量Cmaxに近い値になりつつある状態である。
 酸素不足状態は、リッチ状態とも称呼される。酸素不足状態は、触媒43の酸素吸蔵量が不足する傾向にあって「0」に近い値になりつつある状態である。
 より具体的に述べると、第1制御装置は、触媒43の状態が酸素過剰状態であると判定されている場合であって、出力値Voxsの所定時間あたりの変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、触媒43の状態が酸素不足状態となったと判定する。このとき、第1制御装置は、触媒リーン状態表示フラグXCCROLeanの値を「0」に設定する。
 更に、第1制御装置は、触媒43の状態が酸素不足状態であると判定されているときに、変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、触媒43の状態が酸素過剰状態となったと判定する。このとき、第1制御装置は、触媒リーン状態表示フラグXCCROLeanの値を「1」に設定する。
 なお、第1制御装置は、触媒43の状態が酸素過剰状態であると判定されている場合であって、出力値Voxsがリッチ判定閾値VRichthよりも大きくなったとき、触媒43の状態が酸素不足状態となったと判定してもよい。更に、第1制御装置は、触媒43の状態が酸素不足状態であると判定されているときに、出力値Voxsがリーン判定閾値VLeanthよりも小さくなったとき、触媒43の状態が酸素過剰状態となったと判定してもよい。
 触媒43の状態が酸素過剰状態であるとき、触媒43には過剰な未燃物を流入させるべきである。そこで、第1制御装置は、触媒43の状態が酸素過剰状態であると判定したとき(触媒リーン状態表示フラグXCCROLeanの値を「1」に設定したとき)、リッチ要求フラグXRichreqの値を「1」に設定し(リッチ要求が発生したと判定し)、「機関に供給される混合気の空燃比の目標である目標空燃比abyfr」を「理論空燃比よりも小さい目標リッチ空燃比afRich」に設定する。なお、目標空燃比abyfrは、触媒43に流入する排ガスの空燃比の目標でもある。
 これに対し、触媒43の状態が酸素不足状態であるとき、触媒43には過剰な酸素を流入させるべきである。そこで、第1制御装置は、触媒43の状態が酸素不足状態であると判定したとき(触媒リーン状態表示フラグXCCROLeanの値を「0」に設定したとき)、リッチ要求フラグXRichreqの値を「0」に設定し(リーン要求が発生したと判定し)、目標空燃比abyfrを「理論空燃比よりも大きい目標リーン空燃比afLean」に設定する。
 更に、第1制御装置は、触媒43に多量の窒素酸化物が流入する運転状態が到来することが予測される状態となったか否かを判定する。具体的には、第1制御装置は、以下に述べる総ての条件(以下、単に「所定の条件」又は「特定条件」と言う。)が成立したとき、触媒43に多量の窒素酸化物が流入する運転状態が到来すると予測する。
(条件1)吸入空気量Gaが、低側空気量閾値GaLothよりも大きく、且つ、高側空気量閾値GaHithよりも小さい。なお、高側空気量閾値GaHithは低側空気量閾値GaLothよりも大きい。
(条件2)吸入空気量Gaの単位時間当たりの変化量の大きさ(|ΔGa|)が所定変化量閾値ΔGathよりも小さい。
 なお、条件1及び条件2の吸入空気量Gaは負荷KL、スロットル弁開度TA及びアクセルペダル操作量Accp等に置換され得る。これらは、何れも、吸入空気量Gaが大きいほど大きくなるパラメータであり、吸入空気量相関値とも称呼される。負荷KLは、本例において負荷率(充填率)KLであり、下記の(1)式に基いて算出される。この(1)式において、Mc(k)はある気筒が一回の吸気行程において吸入する空気量(単位は(g))、ρは空気密度(単位は(g/l))、Lは機関10の排気量(単位は(l))、4は機関10の気筒数である。
 
 KL={Mc(k)/(ρ・L/4)}・100(%)…(1)
 
 更に、上記条件1は、「機関10を搭載した車両の速度が、「低側速度閾値」よりも大きく、且つ、「前記低側速度閾値よりも大きい高側速度閾値」よりも小さい。」という条件に置換されてもよい。
 前記所定の条件が成立していないとき(即ち、条件1及び条件2の少なくとも一方が成立していないとき)、第1制御装置は図4の時刻t1以前に示したように、目標リーン空燃比afLeanを基準目標リーン空燃比afLean0に設定し、目標リッチ空燃比afRichを基準目標リッチ空燃比afRich0に設定する。基準目標リーン空燃比afLean0は理論空燃比よりも正の所定値Aだけ大きい空燃比である。基準目標リッチ空燃比afRich0は理論空燃比よりも正の所定値Aだけ小さい空燃比である。よって、基準目標リーン空燃比afLean0及び基準目標リッチ空燃比afRich0の平均値は理論空燃比stoichである。
 これに対し、第1制御装置は、前記所定の条件が成立したとき(即ち、前記条件1及び前記条件2の両条件が成立したとき)、図4の時刻t1以降に示したように、目標リーン空燃比afLeanを「基準目標リーン空燃比afLean0よりも正の所定値ΔLだけ小さい値(afLean0-ΔL)」に設定し、目標リッチ空燃比afRichを「基準目標リッチ空燃比afRich0よりも正の所定値ΔRだけ小さい値(afRich0-ΔR)」に設定する。但し、値(afLean0-ΔL)は理論空燃比stoichよりも大きい。
 これにより、触媒43に流入する排ガスの空燃比の平均が「理論空燃比stoichよりも小さくなる」ので、触媒43内の還元剤の濃度は時刻t1以前に比べて時刻t1以降において上昇する。よって、その後に機関10が加速されて多量のNOxが触媒43に流入した場合、触媒43におけるNOxの還元速度が十分に高くなっているから、触媒43から流出する未浄化のNOxの量を低減することができる。
(実際の作動)
 次に、第1制御装置の実際の作動について説明する。
<燃料噴射制御>
 第1制御装置のCPUは、図5に示した燃料噴射制御ルーチンを、任意の気筒のクランク角度が吸気上死点前の所定クランク角度となる毎に、その気筒に対して繰り返し実行するようになっている。前記所定クランク角度は、例えば、BTDC90°CA(吸気上死点前90°クランク角度)である。クランク角度が前記所定クランク角度に一致した気筒は「燃料噴射気筒」とも称呼される。CPUは、この燃料噴射制御ルーチンにより、指示燃料噴射量(最終燃料噴射量)Fiの計算及び燃料噴射の指示を行う。
 任意の気筒のクランク角度が吸気上死点前の所定クランク角度と一致すると、CPUはステップ500から処理を開始し、ステップ505に進んで「吸入空気量Ga、機関回転速度NE、及び、ルックアップテーブルMapMc(Ga,NE)」に基いて「燃料噴射気筒に吸入される空気量(即ち、筒内吸入空気量)Mc)」を取得する。筒内吸入空気量Mcは、周知の空気モデル(吸気通路における空気の挙動を模した物理法則に従って構築されたモデル)により算出されてもよい。
 次に、CPUはステップ510に進み、フィードバック制御フラグXFBの値が「1」であるか否かを判定する。このフィードバック制御フラグXFBの値は、空燃比のフィードバック制御条件が成立しているときに「1」に設定され、フィードバック制御条件が成立していないときに「0」に設定される。更に、フィードバック制御フラグXFBの値はイニシャルルーチンにおいて「0」に設定されるようになっている。イニシャルルーチンは、機関10が搭載された車両のイグニッション・キー・スイッチがオフ位置からオン位置に変更されたときにCPUにより実行されるルーチンである。
 空燃比のフィードバック制御条件は、例えば、以下の総ての条件が成立したときに成立する。
(A1)上流側空燃比センサ66が活性化している。
(A2)下流側空燃比センサ67が活性化している。
(A3)機関の負荷KLが閾値負荷KLfbth以下である。
 フィードバック制御フラグXFBの値が「1」でなければ、CPUはステップ510にて「No」と判定してステップ515に進み、目標空燃比abyfrを理論空燃比stoich(例えば、14.6)に設定する。
 次に、CPUは以下に述べるステップ520乃至ステップ535の処理を順に行い、ステップ595に進んで本ルーチンを一旦終了する。
 ステップ520:CPUは、筒内吸入空気量Mcを目標空燃比abyfrで除することによって基本燃料噴射量Fbaseを算出する。基本燃料噴射量Fbaseは、機関の空燃比を目標空燃比abyfrに一致させるために必要な燃料噴射量のフィードフォワード量である。
 ステップ525:CPUは、図示しないルーチンにより別途計算されているメインフィードバック量KFmainを読み込む。メインフィードバック量KFmainは、検出上流側空燃比abyfsが目標空燃比abyfrに一致するように周知のPID制御に基いて算出される。従って、メインフィードバック量KFmainは、検出上流側空燃比abyfsが目標空燃比abyfrよりも大きいとき増大させられ、検出上流側空燃比abyfsが目標空燃比abyfrよりも小さいとき減少させられる。なお、メインフィードバック量KFmainは、フィードバック制御フラグXFBの値が「0」であるとき「1」に設定される。更に、メインフィードバック量KFmainは常に「1」に設定されてもよい。即ち、メインフィードバック量KFmainを用いたフィードバック制御は本実施形態において必須ではない。
 ステップ530:CPUは、基本燃料噴射量Fbaseをメインフィードバック量KFmainにより補正することによって指示燃料噴射量Fiを算出する。より具体的に述べると、CPUは、基本燃料噴射量Fbaseにメインフィードバック量KFmainを乗じることによって指示燃料噴射量Fiを算出する。
 ステップ535:CPUは、「指示燃料噴射量Fiの燃料」を「燃料噴射気筒に対応して設けられている燃料噴射弁33」から噴射させるための噴射指示信号を、その燃料噴射弁33に送出する。
 この結果、機関の空燃比を目標空燃比abyfrに一致させるために必要な量の燃料が燃料噴射気筒の燃料噴射弁33から噴射させられる。即ち、ステップ520乃至ステップ535は、「機関の空燃比が目標空燃比abyfrに一致するように指示燃料噴射量Fiを制御する」指示燃料噴射量制御手段、或いは、「機関10に供給される燃料量を前記設定された目標空燃比abyfrに基いて制御する燃料供給量制御手段」を構成している。
 一方、CPUがステップ510の処理を行う時点において、フィードバック制御フラグXFBの値が「1」であると、CPUはそのステップ510にて「Yes」と判定してステップ540に進み、リッチ要求フラグXRichreqの値が「1」であるか否かを判定する。リッチ要求フラグXRichreqの値は後述する図7に示したルーチンにより設定される。
 リッチ要求フラグXRichreqの値が「1」であると、CPUはステップ540にて「Yes」と判定してステップ545に進み、目標リッチ空燃比afRichを読み出す。目標リッチ空燃比afRichは後述する図8に示したルーチンにより別途算出されている。次いで、CPUはステップ550に進み、目標空燃比abyfrを目標リッチ空燃比afRichに設定する。その後、CPUはステップ520以降に進む。従って、機関の空燃比は目標リッチ空燃比afRichに一致させられる。
 これに対し、CPUがステップ540の処理を実行する時点において、リッチ要求フラグXRichreqの値が「0」であると、CPUはステップ540にて「No」と判定してステップ555に進み、目標リーン空燃比afLeanを読み出す。目標リーン空燃比afLeanも後述する図8に示したルーチンにより別途算出されている。次いで、CPUはステップ560に進み、目標空燃比abyfrを目標リーン空燃比afLeanに設定する。その後、CPUはステップ520以降に進む。従って、機関の空燃比は目標リーン空燃比afLeanに一致させられる。
<触媒状態判定>
 CPUは図6にフローチャートにより示した「触媒状態判定ルーチン」を所定時間tsの経過毎に繰り返し実行している。従って、所定のタイミングになると、CPUはステップ600から処理を開始してステップ605に進み、「現時点の下流側空燃比センサ67の出力値Voxs」から「前回の下流側空燃比センサ67の出力値Voxsold」を減じることにより、所定時間ts(単位時間)あたりの出力値Voxsの変化量ΔVoxsを算出する。
 次に、CPUはステップ610に進み、現時点の出力値Voxsを「前回の出力値Voxsold」として記憶する。即ち、前回の出力値Voxsoldは、現時点から所定時間tsだけ前の時点の出力値Voxs(本ルーチンが前回実行されたときの出力値Voxs)である。変化量ΔVoxsは変化速度ΔVoxsとも称呼される。
 次に、CPUはステップ615に進み、リッチ判定閾値dRichthを読み出す。リッチ判定閾値dRichthは本例において一定値に定められている。次に、CPUはステップ620に進み、リーン判定閾値dLeanthを読み出す。リーン判定閾値dLeanthは本例において一定値に定められている。
 次に、CPUはステップ630に進み、触媒リーン状態表示フラグXCCROLeanの値が「1」であるか否かを判定する。触媒リーン状態表示フラグXCCROLeanの値は、上述したイニシャルルーチンにおいて「1」に設定されるようになっている。更に、触媒リーン状態表示フラグXCCROLeanの値は、下流側空燃比センサ67の出力値Voxsに基いて触媒43の状態が酸素不足状態(リッチ状態)であると判定されたときに「0」に設定され、下流側空燃比センサ67の出力値Voxsに基いて触媒43の状態が酸素過剰状態(リーン状態)であると判定されたときに「1」に設定される。
 いま、触媒リーン状態表示フラグXCCROLeanの値が「1」であると仮定する。この場合、CPUはステップ630にて「Yes」と判定してステップ640に進み、変化速度ΔVoxsが正であるか否かを判定する。即ち、CPUは、出力値Voxsが増大しているか否かを判定する。このとき、変化速度ΔVoxsが正でなければ、CPUはステップ640にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。
 ところで、触媒リーン状態表示フラグXCCROLeanの値が「1」であるとき、後述する図7に示したルーチンによりリッチ要求フラグXRichreqの値が「1」に設定され、それにより目標空燃比abyfrは目標リッチ空燃比afRichに設定される(図5のステップ540乃至ステップ550を参照。)。従って、触媒43の酸素吸蔵量は次第に減少し、ある時点から未燃物が触媒43から流出し始める。
 その結果、変化速度ΔVoxsは正の値となる。変化速度ΔVoxsが正の値になると、CPUはステップ640にて「Yes」と判定してステップ650に進み、変化速度ΔVoxsの大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きいか否かを判定する。このとき、大きさ|ΔVoxs|がリッチ判定閾値dRichth以下であると、CPUはステップ650にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。
 CPUがステップ650の処理を実行する時点において、変化速度ΔVoxsの大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きいと、CPUはそのステップ650にて「Yes」と判定してステップ660に進み、触媒リーン状態表示フラグXCCROLeanの値を「0」に設定する。即ち、出力値Voxsが増大していて且つその変化速度ΔVoxsの大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きい場合、CPUは「触媒43の状態は酸素不足状態である。」と判定し、触媒リーン状態表示フラグXCCROLeanの値を「0」に設定する。
 この状態(即ち、触媒リーン状態表示フラグXCCROLeanの値が「0」に設定された状態)において、CPUがステップ600から処理を再び開始すると、CPUはステップ605乃至ステップ620を経由してステップ630に進み、そのステップ630にて「No」と判定してステップ670に進む。
 CPUは、ステップ670にて変化速度ΔVoxsが負であるか否かを判定する。即ち、CPUは、出力値Voxsが減少しているか否かを判定する。このとき、変化速度ΔVoxsが負でなければ、CPUはステップ670にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。
 ところで、触媒リーン状態表示フラグXCCROLeanの値が「0」であるとき、後述する図7に示したルーチンによりリッチ要求フラグXRichreqの値が「0」に設定され、それにより目標空燃比abyfrは目標リーン空燃比afLeanに設定される(図5のステップ540、ステップ555及びステップ560を参照。)。従って、触媒43の酸素吸蔵量は次第に増大し、ある時点から酸素が触媒43から流出し始める。
 その結果、変化速度ΔVoxsは負の値となる。変化速度ΔVoxsが負の値になると、CPUはステップ670にて「Yes」と判定してステップ680に進み、変化速度ΔVoxsの大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きいか否かを判定する。このとき、大きさ|ΔVoxs|がリーン判定閾値dLeanth以下であると、CPUはステップ680にて「No」と判定し、ステップ695に直接進んで本ルーチンを一旦終了する。
 これに対し、変化速度ΔVoxsの大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きいと、CPUはステップ680にて「Yes」と判定してステップ690に進み、触媒リーン状態表示フラグXCCROLeanの値を「1」に設定する。即ち、出力値Voxsが減少していて且つその変化速度ΔVoxsの大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きい場合、CPUは「触媒43の状態が酸素過剰状態である。」と判定し、触媒リーン状態表示フラグXCCROLeanを「1」に設定する。
 なお、CPUは、触媒リーン状態表示フラグXCCROLeanの値が「1」であるとき、出力値Voxsがリッチ判定閾値VRichthよりも大きくなったとき、触媒リーン状態表示フラグXCCROLeanの値を「0」に設定してもよい。同様に、触媒リーン状態表示フラグXCCROLeanの値が「0」であるとき、出力値Voxsがリーン判定閾値VLeanthよりも小さくなったとき、触媒リーン状態表示フラグXCCROLeanの値を「1」に設定してもよい。この場合、リッチ判定閾値VRichthは中央値Vmid以下の値であってもよい。リーン判定閾値VLeanthは中央値Vmid以上の値であってもよい。
 このように触媒リーン状態表示フラグXCCROLeanの値は、下流側空燃比センサ67の出力値Voxsに基いて、「1」及び「0」の何れかの値に交互に設定される。そして、触媒リーン状態表示フラグXCCROLeanに応じてリッチ要求フラグXRichreqが設定され、そのリッチ要求フラグXRichreqに応じて目標空燃比abyfrが決定される。
<リッチ要求フラグ設定(要求空燃比の決定)>
 CPUは図7に示した要求空燃比決定ルーチンを所定時間の経過毎に実行するようになっている。従って、所定のタイミングになるとCPUはステップ700から処理を開始してステップ710に進み、触媒リーン状態表示フラグXCCROLeanの値が「1」であるか否かを判定する。このとき、触媒リーン状態表示フラグXCCROLeanの値が「1」であれば、CPUはステップ720に進んでリッチ要求フラグXRichreqの値を「1」に設定する。即ち、CPUは「要求空燃比」がリッチ空燃比であり、リッチ要求が発生したと判定する。その後、CPUはステップ795に進んで本ルーチンを一旦終了する。
 これに対し、CPUがステップ710の処理を実行する時点において、触媒リーン状態表示フラグXCCROLeanの値が「0」であれば、CPUはステップ730に進んでリッチ要求フラグXRichreqの値を「0」に設定する。即ち、CPUは「要求空燃比」がリーン空燃比であり、リーン要求が発生したと判定する。その後、CPUはステップ795に進んで本ルーチンを一旦終了する。
<目標空燃比算出>
 CPUは図8に示した目標空燃比算出ルーチンを所定時間の経過毎に実行するようになっている。従って、所定のタイミングになるとCPUはステップ800から処理を開始してステップ805に進み、上述した条件1が成立しているか否かを判定する。即ち、CPUは、吸入空気量Gaが、低側空気量閾値GaLothよりも大きく、且つ、高側空気量閾値GaHithよりも小さいか否かを判定する。
 いま、ステップ805の判定条件が満足されていないと仮定する。この場合、CPUはステップ805にて「No」と判定し、以下に述べるステップ810及びステップ815の処理を順に行い、その後、ステップ895に進んで本ルーチンを一旦終了する。
 ステップ810:CPUは、目標リッチ空燃比afRichの値を基準目標リッチ空燃比afRich0に設定する。基準目標リッチ空燃比afRich0は理論空燃比stoichよりも正の所定値Aだけ小さい値(例えば、14.2)である。
 ステップ815:CPUは、目標リーン空燃比afLeanの値を基準目標リーン空燃比afLean0に設定する。基準目標リーン空燃比afLean0は理論空燃比stoichよりも正の所定値Aだけ大きい値(例えば、15.0)である。
 これに対し、CPUがステップ805の処理を実行する時点において、吸入空気量Gaが低側空気量閾値GaLothよりも大きく且つ高側空気量閾値GaHithよりも小さいと、CPUはそのステップ805にて「Yes」と判定してステップ820に進み、「現時点の吸入空気量Ga」から「前回の吸入空気量Gaold」を減じることにより、所定時間ts(単位時間)あたりの吸入空気量変化量ΔGaを算出する。
 次に、CPUはステップ825に進み、現時点の吸入空気量Gaを「前回の吸入空気量Gaold」として記憶する。即ち、前回の吸入空気量Gaoldは、現時点から所定時間tsだけ前の時点の吸入空気量Ga(本ルーチンが前回実行されたときの吸入空気量Ga)である。
 次に、CPUはステップ830に進み、吸入空気量変化量ΔGaの大きさ|ΔGa|が所定の変化量閾値ΔGathよりも小さいか否かを判定する。即ち、CPUは上記条件2が成立しているか否かを判定する。このとき、大きさ|ΔGa|が変化量閾値ΔGath以上であると、CPUはステップ830にて「No」と判定し、ステップ810及びステップ815の処理を実行して本ルーチンを一旦終了する。従って、この場合、目標リッチ空燃比afRichは基準目標リッチ空燃比afRich0に設定され、目標リーン空燃比afLeanは基準目標リーン空燃比afLean0に設定される。
 これに対し、CPUがステップ830の処理を実行する時点において、吸入空気量変化量ΔGaの大きさ|ΔGa|が所定の変化量閾値ΔGathよりも小さいと、CPUはそのステップ830にて「Yes」と判定し、以下に述べるステップ835乃至ステップ850の処理を順に行い、その後、ステップ895に進んで本ルーチンを一旦終了する。
 ステップ835:CPUは吸入空気量Gaに基いて目標リッチ空燃比補正量ΔRを決定する。目標リッチ空燃比補正量ΔRは、吸入空気量Gaが大きくなるほど大きくなるように決定される。
 ステップ840:CPUは、目標リッチ空燃比afRichを、基準目標リッチ空燃比afRich0から目標リッチ空燃比補正量ΔRを減じた値(afRich0-ΔR)に設定する。この結果、目標リッチ空燃比afRichは、吸入空気量Gaが大きいほど理論空燃比stoichから遠ざかるように小さくなる空燃比として算出される。
 ステップ845:CPUは吸入空気量Gaに基いて目標リーン空燃比補正量ΔLを決定する。目標リーン空燃比補正量ΔLは、吸入空気量Gaが大きくなるほど大きくなるように決定される。
 ステップ850:CPUは、目標リーン空燃比afLeanを、基準目標リーン空燃比afLean0から目標リーン空燃比補正量ΔLを減じた値(afLean0-ΔL)に設定する。この結果、目標リーン空燃比afLeanは、吸入空気量Gaが大きいほど理論空燃比stoichに近づくように小さくなる空燃比として算出される。但し、目標リーン空燃比補正量ΔLは、値(afLean0-ΔL)が理論空燃比stoichよりも大きくなるように定められている。
 以上、説明したように、第1制御装置によれば、上記所定の条件(条件1及び条件2)が成立した場合(即ち、ステップ805及びステップ830の両ステップにて共に「Yes」と判定された場合)、多量のNOxが触媒43に流入することが予測されると決定する。
 そして、第1制御装置によれば、目標リーン空燃比afLeanが「前記所定の条件が成立していない場合」に比較して目標リーン空燃比補正量ΔLだけ減少させられ(図8のステップ845及びステップ850)、目標リッチ空燃比afRichが「前記所定の条件が成立していない場合」に比較して目標リッチ空燃比補正量ΔRだけ減少させられる(図8のステップ835及びステップ840)。その結果、触媒43内の還元剤の濃度が上昇させられるので、NOxが流入した場合のNOxの還元速度が大きくなる。その結果、その後において機関10が加速され、多量のNOxが触媒43に流入した場合であっても、触媒43から流出する未浄化のNOxの量を低減することができる。
<第2実施形態>
 次に、本発明の第2実施形態に係る内燃機関の制御装置(以下、「第2制御装置」とも称呼する。)について説明する。
 第2制御装置は、前記所定の条件が成立したとき、目標リッチ空燃比afRich及び目標リーン空燃比afLeanを変更する代わりに、目標空燃比abyfrを目標リッチ空燃比afRichに維持している時間を相対的に長くする点のみにおいて、第1制御装置と相違している。
 より具体的に述べると、第2制御装置は、第1制御装置と同様、リッチ要求フラグXRichreqの値が「1」のときに目標空燃比abyfrを目標リッチ空燃比afRichに設定し、リッチ要求フラグXRichreqの値が「0」のときに目標空燃比abyfrを目標リーン空燃比afLeanに設定する。
 更に、第2制御装置は、図9に示したように、触媒リーン状態表示フラグXCCROLeanの値が「0」から「1」へと変化じた時点(時刻t1、t5)からリーン遅延時間TDLが経過した時点にてリッチ要求フラグXRichreqを「0」から「1」へと変更する。加えて、第2制御装置は、触媒リーン状態表示フラグXCCROLeanの値が「1」から「0」へと変化じた時点(時刻t3)からリッチ遅延時間TDRが経過した時点にてリッチ要求フラグXRichreqを「1」から「0」へと変更する。従って、リッチ遅延時間TDRを長くすることにより、及び/又は、リーン遅延時間TDLを短くすることにより、目標空燃比abyfrが目標リッチ空燃比afRichに設定されている時間が長くなるから、触媒43に流入する排ガスの空燃比の平均値をリッチ側へと移行することができる。そこで、第2制御装置は、前記所定の条件が成立した場合、リッチ遅延時間TDRを長くするか、又は、リーン遅延時間TDLを短くする。これにより、第2制御装置は、前記所定の条件が成立した場合、触媒43内の還元剤の濃度を上昇させる。
(実際の作動)
 第2制御装置のCPUは、図5及び図6に示したルーチンを第1制御装置のCPUと同様に実行する。但し、図5のステップ545にて読み出される目標リッチ空燃比afRichは一定値(例えば、14.2)であり、図5のステップ555にて読み出される目標リーン空燃比afLeanは一定値(15.0)である。
 更に、第2制御装置のCPUは図10に示した要求空燃比決定ルーチンを所定時間の経過毎に実行するようになっている。従って、所定のタイミングになるとCPUはステップ1000から処理を開始してステップ1010に進み、リーン遅延時間TDLを読み出す。リーン遅延時間TDLは後述する図11に示したルーチンにより算出されている。次いで、CPUはステップ1020に進み、リッチ遅延時間TDRを読み出す。リッチ遅延時間TDRは後述する図11に示したルーチンにより算出されている。
 次に、CPUはステップ1030に進み、触媒リーン状態表示フラグXCCROLeanの値が「1」であるか否かを判定する。このとき、触媒リーン状態表示フラグXCCROLeanの値が「1」であると、CPUはステップ1030にて「Yes」と判定してステップ1040に進み、触媒リーン状態表示フラグXCCROLeanの値が「0」から「1」へと変化した時点からリーン遅延時間TDLが経過したか否かを判定する。
 そして、リーン遅延時間TDLが経過していなければ、CPUはステップ1040にて「No」と判定し、ステップ1095に直接進んで本ルーチンを一旦終了する。この場合、リッチ要求フラグXRichreqの値は変更されない。
 これに対し、CPUがステップ1040の処理を実行する時点において、リーン遅延時間TDLが経過していると、CPUはそのステップ1040にて「Yes」と判定してステップ1050に進み、リッチ要求フラグXRichreqの値を「1」に設定する。この結果、触媒リーン状態表示フラグXCCROLeanの値が「0」から「1」へと変化した時点からリーン遅延時間TDLが経過した時点以降において、目標空燃比abyfrは目標リーン空燃比afLeanから目標リッチ空燃比afRichに変更される。その後、CPUはステップ1095に進み、本ルーチンを一旦終了する。
 一方、CPUがステップ1030の処理を実行する時点において、触媒リーン状態表示フラグXCCROLeanの値が「0」である場合、CPUはそのステップ1030にて「No」と判定してステップ1060に進み、触媒リーン状態表示フラグXCCROLeanの値が「1」から「0」へと変化した時点からリッチ遅延時間TDRが経過したか否かを判定する。
 そして、リッチ遅延時間TDRがが経過していなければ、CPUはステップ1060にて「No」と判定し、ステップ1095に直接進んで本ルーチンを一旦終了する。この場合、リッチ要求フラグXRichreqの値は変更されない。
 これに対し、CPUがステップ1060の処理を実行する時点において、リッチ遅延時間TDRが経過していると、CPUはそのステップ1060にて「Yes」と判定してステップ1070に進み、リッチ要求フラグXRichreqの値を「0」に設定する。この結果、触媒リーン状態表示フラグXCCROLeanの値が「1」から「0」へと変化した時点からリッチ遅延時間TDRが経過した時点以降において、目標空燃比abyfrは目標リッチ空燃比afRichから目標リーン空燃比afLeanへと変更される。その後、CPUはステップ1095に進み、本ルーチンを一旦終了する。
 更に、CPUは図11に示した遅延時間算出ルーチンを所定時間の経過毎に実行するようになっている。なお、図11に示されたステップであって図8にも示されたステップには、図8に示されたステップと同一の符号が付されている。これらのステップの詳細な説明は適宜省略される。
 上述した所定の条件が成立していない場合、CPUはステップ1110に進んでリッチ遅延時間TDRを一定の基準リッチ遅延時間TDR0に設定する。次いで、CPUはステップ1120に進み、リーン遅延時間TDLを一定の基準リーン遅延時間TDL0に設定し、ステップ1195に進んで本ルーチンを一旦終了する。
 これに対し、上述した所定の条件が成立していると、CPUはステップ1130に進み、リッチ遅延時間TDRを吸入空気量Gaに基いて決定する。より具体的に述べると、リッチ遅延時間TDRは吸入空気量Gaが大きくなるほど、基準リッチ遅延時間TDR0以上の範囲において大きくなるように決定される。
 次に、CPUはステップ1140に進み、リーン遅延時間TDLを吸入空気量Gaに基いて決定する。より具体的に述べると、リーン遅延時間TDLは吸入空気量Gaが大きくなるほど、基準リーン遅延時間TDL0以下の範囲において小さくなるように決定される。
 以上、説明したように、第2制御装置は、
 下流側空燃比センサ67の出力値Voxsの単位時間あたりの変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、触媒43の状態が前記酸素過剰状態となったと判定するとともに(図6のステップ670乃至ステップ690)、前記変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、触媒43の状態が酸素不足状態となったと判定する(図6のステップ640乃至ステップ650)触媒状態判定手段を備える。
 更に、第2制御装置は、目標空燃比設定手段と、前記機関に供給される燃料量を前記目標空燃比設定手段により設定された目標空燃比に基いて制御する燃料供給量制御手段と、
 を含む。
 前記目標空燃比設定手段は、
前記触媒状態判定手段により触媒43の状態が前記酸素不足状態から前記酸素過剰状態へと変化したと判定された時点から「0を含む所定の遅延時間であるリーン遅延時間TDL」だけ経過したときに目標空燃比abyfrを「理論空燃比よりも小さい目標リッチ空燃比afRich」に設定するとともに(図10のステップ1040及びステップ1050、図5のステップ540乃至ステップ550)、前記触媒状態判定手段により触媒43の状態が前記酸素過剰状態から前記酸素不足状態へと変化したと判定された時点から「0を含む所定の遅延時間であるリッチ遅延時間TDR」だけ経過したときに目標空燃比abyfrを「理論空燃比よりも大きい目標リーン空燃比afLean」に設定する(図10のステップ1060及びステップ1070、図5のステップ540、ステップ555及びステップ560)。
 前記燃料供給量制御手段は、
 機関10に供給される燃料量(燃料噴射量)を前記設定された目標空燃比abyfrに基いて制御する(図5のステップ520乃至ステップ535、燃料噴射弁33)。
 更に、前記目標空燃比設定手段は、前記所定の条件が成立している場合(図11のステップ805及びステップ830の両ステップにおける「Yes」との判定を参照。)、リッチ遅延時間TDRを、前記所定の条件が成立していない場合の前記リッチ遅延時間TDR(=基準リッチ遅延時間TDR0)よりも長い時間に設定するように構成されている(図11のステップ1130)。なお、このようにリッチ遅延時間TDRが設定される場合、前記リーン遅延時間TDLは常に「0」又は一定値であってもよい。
 加えて、前記目標空燃比設定手段は、前記所定の条件が成立している場合(図11のステップ805及びステップ830の両ステップにおける「Yes」との判定を参照。)、リーン遅延時間TDLを、前記所定の条件が成立していない場合の前記リーン遅延時間TDL(=基準リーン遅延時間TDL0)よりも短い時間に設定するように構成されている(図11のステップ1140)。なお、このようにリーン遅延時間TDLが設定される場合、前記リッチ遅延時間TDRは「0」又は一定値であってもよい。
 従って、第2制御装置によれば、目標空燃比がリッチ空燃比に設定されている時間が「リッチ遅延時間TDRが長くなった時間」及び/又は「リーン遅延時間TDLが短くなった時間」だけ長くなる。従って、機関10の空燃比の平均値(従って、触媒に流入するガスである触媒流入ガスの空燃比の平均値)が理論空燃比よりも小さくなる(リッチになる)。よって、前記所定の条件が成立したとき、触媒43の状態を「NOxの還元速度が高められた状態」に設定しておくことができる。
<第3実施形態>
 次に、本発明の第3実施形態に係る内燃機関の制御装置(以下、「第3制御装置」とも称呼する。)について説明する。
 第3制御装置は、前記所定の条件が成立したとき、目標リッチ空燃比afRich及び目標リーン空燃比afLeanを変更する代わりに、リッチ判定閾値dRichthを大きくすることにより、触媒43の状態が酸素過剰状態となっていると判定されている期間を相対的に長くする点のみにおいて、第1制御装置と相違している。
 より具体的に述べると、第3制御装置は、第1制御装置と同様、リッチ要求フラグXRichreqの値が「1」のときに目標空燃比abyfrを目標リッチ空燃比afRichに設定し、リッチ要求フラグXRichreqの値が「0」のときに目標空燃比abyfrを目標リーン空燃比afLeanに設定する。
 更に、第3制御装置は、図12に示したように、上述した所定の条件が成立していない場合、リッチ判定閾値dRichthを基準リッチ判定閾値dRichth0に設定する。このため、図12に示した例においては、時刻t2において触媒リーン状態表示フラグXCCROLean及びリッチ要求フラグXRichreqの値が「1」から「0」へと変更される。即ち、触媒43の状態が酸素過剰状態であると判定されている場合、下流側空燃比センサ67の出力値Voxsが僅かに増大した時点にて触媒43の状態が酸素不足状態に変化したと判定され、その時点にて目標空燃比abyfrが目標リーン空燃比afLeanに切り換えられる。
 これに対し、上述した所定の条件が成立した場合、第3制御装置はリッチ判定閾値dRichthを「基準リッチ判定閾値dRichth0に正の補正量ΔdRiを加えた値(dRichth0+ΔdRi)」に設定する。これによれば、下流側空燃比センサ67の出力値Voxsの変化の態様が同じであったとしても、触媒リーン状態表示フラグXCCROLean及びリッチ要求フラグXRichreqの値が「1」から「0」へと変更される時点が時刻t2よりも遅い時刻t3となる。即ち、触媒43の状態が酸素過剰状態であると判定されている場合、下流側空燃比センサ67の出力値Voxsが単位時間あたりに「基準リッチ判定閾値dRichth0よりも大きい量」だけ増大した時刻t3にて触媒43の状態が酸素不足状態に変化したと判定され、その時点にて目標空燃比abyfrが目標リーン空燃比afLeanに切り換えられる。この結果、目標空燃比abyfrは、時刻t2から時刻t3までの期間に対応する時間分だけ長く、目標リッチ空燃比afRichに設定される。これにより、第3制御装置は、上述した所定の条件が成立した場合、触媒43内の還元剤の濃度を上昇させる。
(実際の作動)
 第3制御装置のCPUは、図5乃至図7に示したルーチンを第1制御装置のCPUと同様に実行する。但し、図5のステップ545にて読み出される目標リッチ空燃比afRichは一定値(例えば、14.2)であり、図5のステップ555にて読み出される目標リーン空燃比afLeanは一定値(15.0)である。
 更に、第3制御装置のCPUは図13に示した判定閾値算出ルーチンを所定時間の経過毎に実行するようになっている。このルーチンにより、図6のステップ615及びステップ620にてそれぞれ読み出されるリッチ判定閾値dRichth及びリーン判定閾値dLeanthが算出される。図13に示されたステップであって図8にも示されたステップには、図8に示されたステップと同一の符号が付されている。これらのステップの詳細な説明は適宜省略される。
 上述した所定の条件が成立していない場合、CPUは図13のステップ1310に進んでリッチ判定閾値dRichthを一定の基準リッチ判定閾値dRichth0に設定する。次いで、CPUはステップ1320に進みリーン判定閾値dLeanthを一定の基準リーン判定閾値dLeanth0に設定し、ステップ1395に進んで本ルーチンを一旦終了する。
 これに対し、上述した所定の条件が成立すると、CPUはステップ1330に進み、リッチ判定閾値dRichthを吸入空気量Gaに基いて決定する。より具体的に述べると、リッチ判定閾値dRichthは吸入空気量Gaが大きくなるほど、基準リッチ判定閾値dRichth0以上の範囲において大きくなるように決定される。換言すると、CPUは、吸入空気量Gaが大きいほど大きくなる正の補正量ΔdRiを求め、「基準リッチ判定閾値dRichth0に正の補正量ΔdRiを加えた値(dRichth0+ΔdRi)」をリッチ判定閾値dRichthとして設定する。
 次に、CPUはステップ1340に進み、リーン判定閾値dLeanthを吸入空気量Gaに基いて決定する。より具体的に述べると、リーン判定閾値dLeanthは吸入空気量Gaが大きくなるほど、基準リーン判定閾値dLeanth0以下の範囲において小さくなるように決定される。換言すると、CPUは、吸入空気量Gaが大きいほど大きくなる正の補正量ΔdLiを求め、「基準リーン判定閾値dLeanth0から正の補正量ΔdLiを減じた値(dLeanth0-ΔdLi)」をリーン判定閾値dLeanthとして設定する。なお、リーン判定閾値dLeanthは一定値(基準リーン判定閾値dLeanth0)であってもよい。また、リーン判定閾値dLeanthがステップ1340の処理に基づくように可変である場合、リッチ判定閾値dRichthは一定値(基準リッチ判定閾値dRichth0)であってもよい。その後、CPUはステップ1395に進んで本ルーチンを一旦終了する。
 以上、説明したように、第3制御装置は、第2制御装置の「目標空燃比設定手段及び燃料供給量制御手段」を有する。更に、第3制御装置の目標空燃比設定手段は、前記所定の条件が成立している場合の前記リッチ判定閾値dRichthを、前記所定の条件が成立していない場合の前記リッチ判定閾値dRichth(=基準リッチ判定閾値dRichth0)よりも大きい値に設定するように構成されている(図13のステップ1330)。
 加えて、第3制御装置の目標空燃比設定手段は、更に、
 前記所定の条件が成立している場合の前記リーン判定閾値dLeanthを、前記リーン遅延時間が前記所定の条件が成立していない場合の前記リーン判定閾値dLeanth(=基準リーン判定閾値dLeanth0)よりも小さい値に設定するように構成されている(図13のステップ1340)。
 従って、第3制御装置によれば、前記所定の条件が成立している場合、触媒43の状態が酸素不足状態であると判定されている期間が短くなり、触媒43の状態が酸素過剰状態であると判定されている期間が長くなる。よって、前記所定の条件が成立している場合、目標空燃比が目標リッチ空燃比afRichに設定されている時間が相対的に長くなる。従って、機関10の空燃比の平均値(従って、触媒に流入するガスである触媒流入ガスの空燃比の平均値)が理論空燃比よりも小さくなる(リッチになる)。よって、前記所定の条件が成立したとき、触媒43の状態を「NOxの還元速度が高められた状態」に設定しておくことができる。
<第4実施形態>
 次に、本発明の第4実施形態に係る内燃機関の制御装置(以下、「第4制御装置」とも称呼する。)について説明する。
 第4制御装置は、第1乃至第3制御装置と異なり、前記所定の条件が成立したとき、触媒43の温度が上昇するように機関の空燃比を制御する。より具体的に述べると、第4制御装置は、前記所定の条件が成立したときの目標リッチ空燃比afRichを前記所定の条件が成立していないときの目標リッチ空燃比afRichよりも小さい値に設定し、且つ、前記所定の条件が成立したときの目標リーン空燃比afLeanを前記所定の条件が成立していないときの目標リーン空燃比afLeanよりも大きい値に設定する。
(実際の作動)
 第4制御装置のCPUは、図5乃至図7に示したルーチンを第1制御装置のCPUと同様に実行する。更に、第4制御装置のCPUは、図14に示した目標空燃比算出ルーチンを所定時間の経過毎に実行するようになっている。なお、図14に示されたステップであって図8にも示されたステップには、図8に示されたステップと同一の符号が付されている。これらのステップの詳細な説明は適宜省略される。
 上述した所定の条件が成立していない場合、CPUは図14のステップ810に進んで目標リッチ空燃比afRichを一定の基準目標リッチ空燃比afRich0に設定する。次いで、CPUはステップ815に進み目標リーン空燃比afLeanを一定の基準目標リーン空燃比afLean0に設定する。
 これに対し、上述した所定の条件が成立すると、CPUは、以下に述べるステップ835乃至ステップ845、並びに、ステップ1410の処理を順に行い、その後、ステップ1495に進んで本ルーチンを一旦終了する。
 ステップ835:CPUは吸入空気量Gaに基いて目標リッチ空燃比補正量ΔRを決定する。目標リッチ空燃比補正量ΔRは、吸入空気量Gaが大きくなるほど大きくなるように決定される。
 ステップ840:CPUは、目標リッチ空燃比afRichを、基準目標リッチ空燃比afRich0から目標リッチ空燃比補正量ΔRを減じた値(afRich0-ΔR)に設定する。この結果、目標リッチ空燃比afRichは、吸入空気量Gaが大きいほど理論空燃比stoichから遠ざかるように小さくなる空燃比として算出される。
 ステップ845:CPUは吸入空気量Gaに基いて目標リーン空燃比補正量ΔLを決定する。目標リーン空燃比補正量ΔLは、吸入空気量Gaが大きくなるほど大きくなるように決定される。この場合、任意の吸入空気量Gaに対する目標リーン空燃比補正量ΔLは、その吸入空気量Gaに対する目標リッチ空燃比補正量ΔRと同じ値として決定される。但し、任意の吸入空気量Gaに対する目標リーン空燃比補正量ΔLは、その吸入空気量Gaに対する目標リッチ空燃比補正量ΔRと異なる値として決定されてもよい。
 ステップ1410:CPUは、目標リーン空燃比afLeanを、基準目標リーン空燃比afLean0に目標リーン空燃比補正量ΔLを加えた値(afLean0+ΔL)に設定する。この結果、目標リーン空燃比afLeanは、吸入空気量Gaが大きいほど理論空燃比stoichから遠ざかるように大きくなる空燃比として算出される。
 以上、説明したように、第4制御装置によれば、上記所定の条件(条件1及び条件2)が成立した場合、換言すると、多量のNOxが触媒43に流入することが予測された場合、目標リーン空燃比afLeanが所定の条件が成立していない場合に比較して目標リーン空燃比補正量ΔLだけ増大させられ、目標リッチ空燃比afRichが所定の条件が成立していない場合に比較して目標リッチ空燃比補正量ΔRだけ減少させらる。その結果、触媒43には、通常時(上記所定の条件が成立していないとき)に比べて、より大きな空燃比の排ガスとより小さな空燃比の排ガスとが交互に流入する。但し、目標リッチ空燃比補正量ΔRと目標リーン空燃比補正量ΔLとは互いに同じ値であるので、上記所定の条件(条件1及び条件2)が成立した場合における「目標リッチ空燃比afRichと目標リーン空燃比afLeanとの平均値」は理論空燃比stoichとなる。
 この結果、触媒43に流入するガスの空燃比の変動幅が大きくなり、よって、触媒43内における酸化還元反応が活発になるので、その反応により発生する熱の量が大きくなる。これにより、上記所定の条件が成立した場合、触媒43の温度を上昇させることができる。従って、その後において機関10が加速され、多量のNOxが触媒43に流入した場合であっても、触媒43のNOxの還元速度が大きくなっているので、触媒43は多くのNOxを浄化することができる。その結果、触媒43から流出する未浄化のNOxの量を低減することができる。
 以上、説明したように、本発明の各実施形態に係る空燃比制御装置は、下流側空燃比センサ67の出力値Voxsに基いて機関の空燃比を制御する空燃比制御手段を備えた内燃機関の空燃比制御装置である。
 更に、前記空燃比制御手段は、
 前記触媒に多量の窒素酸化物が流入する運転状態が到来することを予測する所定の条件が成立しているか否かを判定する条件判定手段(図8、図11及び図13等のステップ805乃至ステップ830を参照。)を含み、
 前記所定の条件が成立した場合、前記所定の条件が成立していない場合に比較して、前記触媒43内の還元剤の濃度が上昇するように機関10の空燃比を制御する(第1~第3制御装置)。
 更に、第1~第3制御装置は、前記所定の条件が成立している場合の機関10の空燃比の平均値が、前記所定の条件が成立していない場合の機関10の空燃比の平均値よりも小さくなるように、機関10の空燃比を制御することにより、前記所定の条件が成立している場合に前記触媒43内の還元剤の濃度を上昇させるように構成されている。
 或いは、前記空燃比制御手段は、
 前記触媒に多量の窒素酸化物が流入する運転状態が到来することを予測する所定の条件が成立しているか否かを判定する条件判定手段(図14のステップ805乃至ステップ830を参照。)を含み、
 前記所定の条件が成立した場合、前記所定の条件が成立していない場合に比較して、前記触媒43の温度が上昇するように機関10の空燃比を制御する(第4制御装置)。
 このように、前記空燃比制御手段は、触媒43に多量の窒素酸化物が流入する運転状態が到来するか否かを「前記所定の条件が成立しているか」に基づいて判定する手段を含む。
 従って、各制御装置は、機関10が加速されて多量のNOxが触媒43に流入する場合、その時点までに触媒43のNOxの還元速度を大きい値に設定しておくことができるので、触媒43により多くのNOxを浄化することができる。その結果、触媒43から流出する未浄化のNOxの量を低減することができる。
 本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、第1乃至第4制御装置は、矛盾の発生しない範囲において互いに組み合わせることができる。また、ステップ835、ステップ845、ステップ1130、ステップ1140、ステップ1330及びステップ1340等にて用いられる吸入空気量Gaは、前述した吸入空気量相関値であればよい。

Claims (11)

  1.  内燃機関の排気通路に配設された触媒と、
     前記排気通路の前記触媒の下流側に配設された下流側空燃比センサと、
     前記下流側空燃比センサの出力値に基いて前記機関に供給される混合気の空燃比である機関の空燃比を制御する空燃比制御手段と、
     を備えた内燃機関の空燃比制御装置において、
     前記空燃比制御手段は、
     前記触媒に多量の窒素酸化物が流入する運転状態が到来することを予測する所定の条件が成立しているか否かを判定する条件判定手段を含み、
     前記所定の条件が成立した場合、前記所定の条件が成立していない場合に比較して、前記触媒内の還元剤の濃度及び前記触媒の温度の少なくとも一方が上昇するように、前記機関の空燃比を制御する内燃機関の空燃比制御装置。
  2.  請求項1に記載の空燃比制御装置において、
     前記所定の条件は、
     前記機関の吸入空気量が大きいほど大きくなる吸入空気量相関値が低側空気量閾値よりも大きく且つ前記低側空気量閾値よりも大きい高側空気量閾値よりも小さいこと、及び、前記機関を搭載した車両の速度が低側速度閾値よりも大きく且つ前記低側速度閾値よりも大きい高側速度閾値よりも小さいこと、の少なくとも何れか一方が成立する場合に成立する条件である空燃比制御装置。
  3.  請求項2に記載の空燃比制御装置において、
     前記所定の条件は、更に、
     前記吸入空気量相関値の単位時間当たりの変化量が所定変化量閾値よりも小さいことが成立する場合に成立する条件である空燃比制御装置。
  4.  請求項1乃至請求項3の何れか一項に記載の空燃比制御装置において、
     前記空燃比制御手段は、
     前記所定の条件が成立している場合の前記機関の空燃比の平均値が、前記所定の条件が成立していない場合の前記機関の空燃比の平均値よりも小さくなるように、前記機関の空燃比を制御することにより、前記所定の条件が成立している場合に前記触媒内の還元剤の濃度を上昇させるように構成された空燃比制御装置。
  5.  請求項4に記載の空燃比制御装置において、
     前記空燃比制御手段は、
     前記下流側空燃比センサの出力値に基いて、前記触媒の酸素吸蔵量が過剰となる傾向にあって前記触媒に理論空燃比よりも小さいリッチ空燃比のガスを流入させるリッチ要求が発生したと判定したとき前記機関の空燃比の目標を理論空燃比よりも小さい目標リッチ空燃比に設定するとともに、前記触媒の酸素吸蔵量が不足する傾向にあって前記触媒に理論空燃比よりも大きいリーン空燃比のガスを流入させるリーン要求が発生したと判定したとき前記機関の空燃比の目標を理論空燃比よりも大きい目標リーン空燃比に設定する目標空燃比設定手段と、
     前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
     を含み、
     前記目標空燃比設定手段は、更に、
     前記所定の条件が成立している場合の前記目標リッチ空燃比を、前記所定の条件が成立していない場合の前記目標リッチ空燃比よりも小さい空燃比に設定するように構成された空燃比制御装置。
  6.  請求項5に記載の空燃比制御装置において、
     前記目標空燃比設定手段は、
     前記下流側空燃比センサの出力値の単位時間あたりの変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、前記リッチ要求が発生したと判定し、
     前記変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、前記リーン要求が発生したと判定する、
     ように構成された空燃比制御装置。
  7.  請求項4に記載の空燃比制御装置において、
     前記空燃比制御手段は、
     前記下流側空燃比センサの出力値の単位時間あたりの変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、前記触媒の状態が前記酸素過剰状態となったと判定するとともに、前記変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、前記触媒の状態が酸素不足状態となったと判定する触媒状態判定手段と、
     前記触媒状態判定手段により前記触媒の状態が前記酸素不足状態から前記酸素過剰状態へと変化したと判定された時点から0を含む所定の遅延時間であるリーン遅延時間だけ経過したときに前記機関の空燃比の目標を理論空燃比よりも小さい目標リッチ空燃比に設定するとともに、前記触媒状態判定手段により前記触媒の状態が前記酸素過剰状態から前記酸素不足状態へと変化したと判定された時点から0を含む所定の遅延時間であるリッチ遅延時間だけ経過したときに前記機関の空燃比の目標を理論空燃比よりも大きい目標リーン空燃比に設定する目標空燃比設定手段と、
     前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
     を含み、
     前記目標空燃比設定手段は、更に、
     前記所定の条件が成立している場合の前記リッチ遅延時間を、前記所定の条件が成立していない場合の前記リッチ遅延時間よりも長い時間に設定するように構成された空燃比制御装置。
  8.  請求項4に記載の空燃比制御装置において、
     前記空燃比制御手段は、
     前記下流側空燃比センサの出力値の単位時間あたりの変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、前記触媒の状態が前記酸素過剰状態となったと判定するとともに、前記変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、前記触媒の状態が酸素不足状態となったと判定する触媒状態判定手段と、
     前記触媒状態判定手段により前記触媒の状態が前記酸素不足状態から前記酸素過剰状態へと変化したと判定された時点から所定の遅延時間であるリーン遅延時間だけ経過したときに前記機関の空燃比の目標空燃比を理論空燃比よりも小さい目標リッチ空燃比に設定するとともに、前記触媒状態判定手段により前記触媒の状態が前記酸素過剰状態から前記酸素不足状態へと変化したと判定された時点から所定の遅延時間である0を含むリッチ遅延時間だけ経過したときに前記機関の空燃比の目標空燃比を理論空燃比よりも大きい目標リーン空燃比に設定する目標空燃比設定手段と、
     前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
     を含み、
     前記目標空燃比設定手段は、更に、
     前記所定の条件が成立している場合の前記リーン遅延時間を、前記所定の条件が成立していない場合の前記リーン遅延時間よりも短い時間に設定するように構成された空燃比制御装置。
  9.  請求項4に記載の空燃比制御装置において、
     前記空燃比制御手段は、
     前記下流側空燃比センサの出力値の単位時間あたりの変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、前記機関の空燃比の目標空燃比を理論空燃比よりも小さい目標リッチ空燃比に設定し、
     前記変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、前記機関の空燃比の目標空燃比を理論空燃比よりも大きい目標リーン空燃比に設定する、目標空燃比設定手段と、
     前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
     を含み、
     前記目標空燃比設定手段は、更に、
     前記所定の条件が成立している場合の前記リッチ判定閾値dRichthを、前記所定の条件が成立していない場合の前記リッチ判定閾値dRichthよりも大きい値に設定するように構成された空燃比制御装置。
  10.  請求項4に記載の空燃比制御装置において、
     前記空燃比制御手段は、
     前記下流側空燃比センサの出力値の単位時間あたりの変化量ΔVoxsが負の値であり、且つ、その大きさ|ΔVoxs|がリーン判定閾値dLeanthよりも大きくなったとき、前記機関の空燃比の目標空燃比を理論空燃比よりも小さい目標リッチ空燃比に設定し、
     前記変化量ΔVoxsが正の値であり、且つ、その大きさ|ΔVoxs|がリッチ判定閾値dRichthよりも大きくなったとき、前記機関の空燃比の目標空燃比を理論空燃比よりも大きい目標リーン空燃比に設定する、目標空燃比設定手段と、
     前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
     を含み、
     前記目標空燃比設定手段は、更に、
     前記所定の条件が成立している場合の前記リーン判定閾値dLeanthを、前記リーン遅延時間が前記所定の条件が成立していない場合の前記リーン判定閾値dLeanthよりも小さい値に設定するように構成された空燃比制御装置。
  11.  請求項1乃至請求項3の何れか一項に記載の空燃比制御装置において、
     前記空燃比制御手段は、
     前記下流側空燃比センサの出力値に基いて、前記触媒の酸素吸蔵量が過剰となる傾向にあって前記触媒に理論空燃比よりも小さいリッチ空燃比のガスを流入させるリッチ要求が発生したと判定したとき前記機関の空燃比の目標を理論空燃比よりも小さい目標リッチ空燃比に設定するとともに、前記触媒の酸素吸蔵量が不足する傾向にあって前記触媒に理論空燃比よりも大きいリーン空燃比のガスを流入させるリーン要求が発生したと判定したとき前記機関の空燃比の目標を理論空燃比よりも大きい目標リーン空燃比に設定する目標空燃比設定手段と、
     前記機関に供給される燃料量を前記設定された目標空燃比に基いて制御する燃料供給量制御手段と、
     を含み、
     前記目標空燃比設定手段は、更に、
     前記所定の条件が成立している場合の前記目標リッチ空燃比を前記所定の条件が成立していない場合の前記目標リッチ空燃比よりも小さい空燃比に設定するとともに、前記所定の条件が成立している場合の前記目標リーン空燃比を前記所定の条件が成立していない場合の前記目標リーン空燃比よりも大きい空燃比に設定することにより、前記触媒内において発生する熱の量を増大させて前記触媒の温度を上昇させる空燃比制御装置。
PCT/JP2011/061176 2011-05-16 2011-05-16 内燃機関の空燃比制御装置 WO2012157059A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112013029356-0A BR112013029356B1 (pt) 2011-05-16 2011-05-16 aparelho de controle de razão ar-combustível para um motor de combustão interna
US14/117,440 US9212583B2 (en) 2011-05-16 2011-05-16 Air-fuel ratio control device for internal combustion engine
PCT/JP2011/061176 WO2012157059A1 (ja) 2011-05-16 2011-05-16 内燃機関の空燃比制御装置
RU2013150622/06A RU2566093C2 (ru) 2011-05-16 2011-05-16 Устройство, регулирующее отношение компонентов топливовоздушной смеси для двигателя внутреннего сгорания
KR1020137030290A KR20130140884A (ko) 2011-05-16 2011-05-16 내연 기관의 공연비 제어 장치
AU2011368598A AU2011368598B2 (en) 2011-05-16 2011-05-16 Air-fuel ratio control device for internal combustion engine
CN201180070871.5A CN103534452B (zh) 2011-05-16 2011-05-16 内燃机的空燃比控制装置
EP11865891.3A EP2711519A4 (en) 2011-05-16 2011-05-16 Air-fuel ratio control device for internal combustion engine
JP2013514898A JP5664884B2 (ja) 2011-05-16 2011-05-16 内燃機関の空燃比制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061176 WO2012157059A1 (ja) 2011-05-16 2011-05-16 内燃機関の空燃比制御装置

Publications (1)

Publication Number Publication Date
WO2012157059A1 true WO2012157059A1 (ja) 2012-11-22

Family

ID=47176428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061176 WO2012157059A1 (ja) 2011-05-16 2011-05-16 内燃機関の空燃比制御装置

Country Status (9)

Country Link
US (1) US9212583B2 (ja)
EP (1) EP2711519A4 (ja)
JP (1) JP5664884B2 (ja)
KR (1) KR20130140884A (ja)
CN (1) CN103534452B (ja)
AU (1) AU2011368598B2 (ja)
BR (1) BR112013029356B1 (ja)
RU (1) RU2566093C2 (ja)
WO (1) WO2012157059A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163301A (ja) * 2013-02-26 2014-09-08 Daihatsu Motor Co Ltd 空燃比制御装置
JP2016003640A (ja) * 2014-06-19 2016-01-12 トヨタ自動車株式会社 内燃機関の制御装置
JP2016014340A (ja) * 2014-07-01 2016-01-28 本田技研工業株式会社 内燃機関の制御装置
JP2019078169A (ja) * 2017-10-19 2019-05-23 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP3051107B1 (en) * 2013-09-27 2019-06-26 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157391B2 (en) * 2013-03-14 2015-10-13 EMIT Technologies, Inc. Systems and methods for controlling a combustion engine
JP6156278B2 (ja) 2014-07-28 2017-07-05 トヨタ自動車株式会社 内燃機関の制御装置
JP6156310B2 (ja) * 2014-09-26 2017-07-05 トヨタ自動車株式会社 内燃機関の制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196438A (ja) * 1997-01-08 1998-07-28 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH1172473A (ja) 1997-06-19 1999-03-16 Denso Corp 空燃比検出装置
JP2000065782A (ja) 1998-08-25 2000-03-03 Denso Corp 積層型空燃比センサ素子
JP2004069547A (ja) 2002-08-07 2004-03-04 Toyota Motor Corp 空燃比センサの制御装置
JP3633295B2 (ja) * 1998-07-22 2005-03-30 トヨタ自動車株式会社 希薄燃焼内燃機関の排気浄化装置
JP2009162139A (ja) 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4390330B2 (ja) * 1999-11-01 2009-12-24 東京瓦斯株式会社 内燃機関の排気ガス浄化装置及びその制御方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1372160A (en) * 1972-03-22 1974-10-30 Nissan Motor Exhaust cleaning apparatus for internal combustion engines
JPS60135637A (ja) * 1983-12-23 1985-07-19 Honda Motor Co Ltd 内燃エンジンの空燃比フイ−ドバツク制御方法
US4915080A (en) * 1987-09-22 1990-04-10 Japan Electronic Control Systems Co., Ltd. Electronic air-fuel ratio control apparatus in internal combustion engine
JPH10184426A (ja) * 1996-12-25 1998-07-14 Toyota Motor Corp 内燃機関の空燃比制御装置
JP3887903B2 (ja) 1997-09-02 2007-02-28 株式会社デンソー 内燃機関の空燃比制御装置
DE19739848A1 (de) * 1997-09-11 1999-03-18 Bosch Gmbh Robert Brennkraftmaschine insbesondere für ein Kraftfahrzeug
US6289672B1 (en) * 1998-07-21 2001-09-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
JP2000303880A (ja) * 1999-04-26 2000-10-31 Unisia Jecs Corp 三元触媒の酸素ストレージ量制御装置
JP3613083B2 (ja) * 1999-08-09 2005-01-26 株式会社日立製作所 排気浄化制御装置
JP3873537B2 (ja) * 1999-08-27 2007-01-24 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2001355485A (ja) * 2000-06-16 2001-12-26 Isuzu Motors Ltd 窒素酸化物吸蔵還元型触媒を備えた排気ガス浄化装置
JP2002195071A (ja) * 2000-12-25 2002-07-10 Mitsubishi Electric Corp 内燃機関制御装置
JP4036088B2 (ja) * 2002-12-05 2008-01-23 トヨタ自動車株式会社 内燃機関の排気浄化装置及び排気浄化方法
JP3873904B2 (ja) * 2003-02-26 2007-01-31 日産自動車株式会社 内燃機関の排気浄化装置
JP4522925B2 (ja) * 2005-08-05 2010-08-11 本田技研工業株式会社 NOx浄化装置の状態判定装置
JP4553144B2 (ja) * 2006-03-24 2010-09-29 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP4877246B2 (ja) * 2008-02-28 2012-02-15 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4997177B2 (ja) * 2008-06-09 2012-08-08 本田技研工業株式会社 内燃機関の排ガス浄化装置
DE102008048854B4 (de) * 2008-09-25 2012-08-02 Umicore Ag & Co. Kg Regelungsstrategie für ein Katalysatorkonzept zur Abgasnachbehandlung mit mehreren Stickoxid-Speicherkatalysatoren
FR2946394B1 (fr) * 2009-06-03 2015-12-11 Peugeot Citroen Automobiles Sa Procede et systeme de stimulation d'un cataliseur
DE102009032280B4 (de) * 2009-07-08 2012-03-08 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
WO2012098641A1 (ja) * 2011-01-18 2012-07-26 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US8904762B2 (en) * 2011-03-10 2014-12-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for an internal combustion engine
US8621844B2 (en) * 2011-05-11 2014-01-07 GM Global Technology Operations LLC System and method for controlling fuel delivery based on output from a post-catalyst oxygen sensor during catalyst light-off
JP5843699B2 (ja) * 2012-05-31 2016-01-13 本田技研工業株式会社 内燃機関の排気浄化システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196438A (ja) * 1997-01-08 1998-07-28 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH1172473A (ja) 1997-06-19 1999-03-16 Denso Corp 空燃比検出装置
JP3633295B2 (ja) * 1998-07-22 2005-03-30 トヨタ自動車株式会社 希薄燃焼内燃機関の排気浄化装置
JP2000065782A (ja) 1998-08-25 2000-03-03 Denso Corp 積層型空燃比センサ素子
JP4390330B2 (ja) * 1999-11-01 2009-12-24 東京瓦斯株式会社 内燃機関の排気ガス浄化装置及びその制御方法
JP2004069547A (ja) 2002-08-07 2004-03-04 Toyota Motor Corp 空燃比センサの制御装置
JP2009162139A (ja) 2008-01-08 2009-07-23 Toyota Motor Corp 内燃機関の空燃比制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2711519A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163301A (ja) * 2013-02-26 2014-09-08 Daihatsu Motor Co Ltd 空燃比制御装置
EP3051107B1 (en) * 2013-09-27 2019-06-26 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2016003640A (ja) * 2014-06-19 2016-01-12 トヨタ自動車株式会社 内燃機関の制御装置
US10697387B2 (en) 2014-06-19 2020-06-30 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
JP2016014340A (ja) * 2014-07-01 2016-01-28 本田技研工業株式会社 内燃機関の制御装置
JP2019078169A (ja) * 2017-10-19 2019-05-23 トヨタ自動車株式会社 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
AU2011368598A1 (en) 2013-12-05
RU2013150622A (ru) 2015-06-27
BR112013029356A2 (pt) 2017-01-24
BR112013029356B1 (pt) 2021-01-19
JP5664884B2 (ja) 2015-02-04
RU2566093C2 (ru) 2015-10-20
CN103534452B (zh) 2017-03-08
JPWO2012157059A1 (ja) 2014-07-31
US20140283504A1 (en) 2014-09-25
AU2011368598B2 (en) 2015-11-05
US9212583B2 (en) 2015-12-15
EP2711519A1 (en) 2014-03-26
KR20130140884A (ko) 2013-12-24
CN103534452A (zh) 2014-01-22
EP2711519A4 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5664884B2 (ja) 内燃機関の空燃比制御装置
JP4973807B2 (ja) 内燃機関の空燃比制御装置
JP2004218541A (ja) 内燃機関の制御装置
US9856811B2 (en) Internal combustion engine
JP5326969B2 (ja) 内燃機関の燃料供給量制御装置
JP5920368B2 (ja) 内燃機関の制御装置
JP5494998B2 (ja) 内燃機関の制御装置
JP5464391B2 (ja) 内燃機関の空燃比制御装置
JP6260452B2 (ja) 内燃機関の制御装置
JP2012225308A (ja) 内燃機関の制御装置
JP5459513B2 (ja) 内燃機関の空燃比制御装置
JP2000337130A (ja) 内燃機関の排出ガス浄化装置
US10781765B2 (en) Control system of internal combustion engine
JP2012062795A (ja) 内燃機関の制御装置
JP2012202271A (ja) 内燃機関の制御装置
JP5331554B2 (ja) 内燃機関の排ガス浄化装置
JP5625758B2 (ja) 多気筒内燃機関の制御装置
JP5817697B2 (ja) 内燃機関の燃料供給制御装置
JP2012062776A (ja) 内燃機関の排ガス浄化装置
JP2013064384A (ja) 内燃機関の空燃比制御装置
JP2009264334A (ja) 内燃機関の制御装置
JP2013002408A (ja) 内燃機関の空燃比制御装置
JP2012062774A (ja) 内燃機関の排気浄化のための制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865891

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514898

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011865891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14117440

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137030290

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011368598

Country of ref document: AU

Date of ref document: 20110516

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013150622

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013029356

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013029356

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131113