JP4036088B2 - 内燃機関の排気浄化装置及び排気浄化方法 - Google Patents

内燃機関の排気浄化装置及び排気浄化方法 Download PDF

Info

Publication number
JP4036088B2
JP4036088B2 JP2002353394A JP2002353394A JP4036088B2 JP 4036088 B2 JP4036088 B2 JP 4036088B2 JP 2002353394 A JP2002353394 A JP 2002353394A JP 2002353394 A JP2002353394 A JP 2002353394A JP 4036088 B2 JP4036088 B2 JP 4036088B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
upstream
downstream
ratio sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002353394A
Other languages
English (en)
Other versions
JP2004183585A (ja
Inventor
大介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002353394A priority Critical patent/JP4036088B2/ja
Publication of JP2004183585A publication Critical patent/JP2004183585A/ja
Application granted granted Critical
Publication of JP4036088B2 publication Critical patent/JP4036088B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路に配設された触媒の上流側及び下流側の排気通路にそれぞれ空燃比センサを備え、各空燃比センサの出力値に基いて機関の空燃比をフィードバック制御する内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
従来より、この種の排気浄化装置として、例えば下記特許文献1に開示された技術が知られている。この特許文献1に開示された内燃機関の排気浄化装置は、内燃機関の排気通路に配設された触媒よりも上流側及び下流側の排気通路にそれぞれ上流側空燃比センサ、及び下流側空燃比センサを介装し、上流側空燃比センサの出力値と所定の上流側目標空燃比に対応する所定の上流側目標値とが等しくになるように前記機関の空燃比をフィードバック制御するとともに、このフィードバック制御中において下流側空燃比センサの出力値と所定の下流側目標空燃比に対応する所定の下流側目標値とが等しくなるように、前記上流側空燃比センサの出力値を調整する調整量を算出するとともに同調整量を前記フィードバック制御に使用することで前記フィードバック制御される機関の空燃比を調整するようになっている。
【0003】
換言すれば、上記開示した装置では、前記調整量により調整された後の上流側空燃比センサの出力値が上流側目標値と等しくなるとともに下流側空燃比センサの出力値が下流側目標値と等しくなるように機関の空燃比がフィードバック制御され、その結果、機関の空燃比は最終的には上流側目標値に対応する上流側目標空燃比に拘わらず、下流側目標値に対応する下流側目標空燃比になるように調整される。特に、内燃機関が(所定時間以上継続して)定常運転状態にあると、下流側空燃比センサの出力値が下流側目標値と等しくなって機関の空燃比は前記下流側目標空燃比と等しくなる。
【0004】
【特許文献1】
特開平7−197837号公報
【0005】
【発明が解決しようとする課題】
しかしながら、このとき、新品時における出力特性のばらつきや経年変化等により下流側目標空燃比に対応する(検出される排気ガスの空燃比が下流側目標空燃比であるときの)下流側空燃比センサの出力値が前記下流側目標値から偏移していると、機関の空燃比は同偏移に応じた分だけ前記下流側目標空燃比(例えば、理論空燃比)から外れた値に制御されることになり、その結果、触媒の排気ガス浄化効率が低下することによりエミッションの排出量が増大する。
【0006】
従って、上記開示した装置では必要に応じて下流側空燃比センサを較正する必要がある。しかしながら、上記開示された装置は下流側空燃比センサを較正するための構成を有していないので、必用に応じて下流側空燃比センサを較正することができないという問題がある。
【0007】
従って、本発明の目的は、内燃機関の排気通路に配設された触媒の上流側及び下流側の排気通路にそれぞれ上流側空燃比センサ及び下流側空燃比センサを備え、各空燃比センサの出力値に基いて機関の空燃比をフィードバック制御する内燃機関の排気浄化装置において、下流側空燃比センサを較正することができるものを提供することにある。
【0008】
【本発明の概要】
本発明の第1の特徴は、内燃機関の排気通路に配設された触媒と、前記触媒よりも上流の前記排気通路に配設された上流側空燃比センサと、前記触媒よりも下流の前記排気通路に配設された下流側空燃比センサと、前記上流側空燃比センサの出力値と所定の上流側目標空燃比に対応する所定の上流側目標値とに基いて前記機関の空燃比をフィードバック制御するメインフィードバック制御手段と、前記フィードバック制御中において前記下流側空燃比センサの出力値と所定の下流側目標空燃比に対応する所定の下流側目標値とに基いて、前記フィードバック制御される機関の空燃比を調整するための調整量を算出するとともに同調整量を前記フィードバック制御に使用させることで同機関の空燃比を調整するサブフィードバック制御手段と、を備えた内燃機関の排気浄化装置が、前記上流側目標空燃比に対応する前記上流側空燃比センサの出力値と前記上流側目標値とが一致するように同上流側空燃比センサの出力値又は同上流側目標値を較正する上流側較正手段と、前記上流側較正手段により前記上流側空燃比センサの出力値又は前記上流側目標値が較正された後であって、且つ、前記内燃機関が定常運転状態にあるとき、同上流側空燃比センサの出力値及び前記下流側空燃比センサの出力値に基いて、前記下流側目標空燃比に対応する同下流側空燃比センサの出力値と前記下流側目標値とが一致するように同下流側空燃比センサの出力値又は同下流側目標値を較正する下流側較正手段とを備えたことにある。
【0009】
一般に、触媒よりも上流の前記排気通路に配設された上流側空燃比センサは、広い範囲に渡って排気ガスの空燃比を正確に検出する必要があるので、同上流側空燃比センサとして、広い範囲で空燃比に略比例した出力値を発生することができる所謂限界電流式の酸素濃度センサが使用されることが多い。
【0010】
この限界電流式の酸素濃度センサは、十分に暖機されて同センサの温度が活性化温度に到達した後に空燃比に応じた出力値を発生する一方で、冷間始動時(機関の温度が略外気温まで低下している状態から機関が始動された時)等、同センサの温度が活性化温度より低くて同センサ(内の触媒)が不活性な状態にあるときは、排気ガスの実際の空燃比に拘わらず理論空燃比に対応する(検出される排気ガスの空燃比が理論空燃比であるときの)出力値を発生し続けるという特性を有する。
【0011】
従って、上流側空燃比センサとして例えば限界電流式の酸素濃度センサを使用し、且つ、同センサの前記した不活性状態時における特性を利用することにより、上流側較正手段は、冷間始動直後等の上流側空燃比センサが不活性な状態にあるときに、理論空燃比に対応する同上流側空燃比センサの(予め既知となっている)所定の出力目標値(所定の上流側目標値)と同出力目標値と同一の値となるべき同上流側空燃比センサの実際の出力値とを比較することで、所定の上流側目標空燃比(理論空燃比)に対応する同上流側空燃比センサの出力値と同上流側目標空燃比に対応する所定の上流側目標値とが一致するように同上流側空燃比センサの出力値又は同上流側目標値を較正することができる。これにより、以後、較正された上流側空燃比センサは、検出される排気ガスの空燃比に応じた出力値を正確に発生することができるようになる。
【0012】
一方、触媒に流入した排気ガスの空燃比が短時間理論空燃比から外れた場合でも、同触媒の所謂酸素吸蔵・放出機能により、同触媒から流出した排気ガスの空燃比は理論空燃比近傍に保持され得る。従って、触媒よりも下流の排気ガスの空燃比の理論空燃比からの偏移量は比較的小さい場合が多い。従って、一般に、触媒よりも下流の前記排気通路に配設された下流側空燃比センサでは、理論空燃比近傍における排気ガスの空燃比のみを正確に検出できることが要求されるので、同下流側空燃比センサとして、理論空燃比近傍のみで空燃比に略比例した出力値を発生する比較的安価な所謂起電力式(濃淡電池式)の酸素濃度センサが使用されることが多い。
【0013】
しかしながら、この起電力式の酸素濃度センサは上記限界電流式の酸素濃度センサとは異なり、検出される排気ガスの実際の空燃比が未知であるときには較正され得ない。従って、起電力式の酸素濃度センサを較正するためには、同センサを通過している(検出される)排気ガスの実際の空燃比が既知である必要がある。
【0014】
他方、内燃機関が所定時間以上継続して定常運転状態にあるとき、触媒内部の状態も定常状態となって触媒の上流側の排気ガスの空燃比と同触媒の下流側の排気ガスの空燃比とが等しくなる。従って、上流側空燃比センサが上記のように較正された後であれば、上流側空燃比センサの出力値に対応する(予め既知となっている)空燃比は、下流側空燃比センサを通過している排気ガスの真の空燃比を表す値となる。
【0015】
かかる知見に基き、下流側較正手段は、上流側較正手段により上流側空燃比センサの出力値又は上流側目標値が較正された後(上流側空燃比センサが較正された後)であって、且つ、内燃機関が(所定時間以上継続して)定常運転状態にあるとき、上流側空燃比センサの出力値に対応する前記真の空燃比に相当する(検出される排気ガスの空燃比が前記真の空燃比であるときの)下流側空燃比センサの所定の出力目標値(較正後の下流側空燃比センサが出力するであろう出力値)と同出力目標値と同一の値となるべき下流側空燃比センサの実際の出力値とを比較することで(即ち、上流側空燃比センサの出力値及び下流側空燃比センサの出力値に基いて)、所定の下流側目標空燃比(例えば、理論空燃比)に対応する下流側空燃比センサの出力値と同下流側目標空燃比に対応する所定の下流側目標値とが一致するように同下流側空燃比センサの出力値又は同下流側目標値を較正することができる。これにより、下流側空燃比センサは起電力式の酸素濃度センサであるときでも較正され得、以後、検出される排気ガスの空燃比に応じた出力値を正確に発生することができるようになる。
【0016】
本発明の第2の特徴は、前記第1の特徴と同様の触媒、上流側空燃比センサ、及び下流側空燃比センサ、及び上流側較正手段を備えるとともに、前記上流側空燃比センサの出力値と所定の上流側目標空燃比に対応する所定の上流側目標値との定常偏差がゼロになるように同上流側空燃比センサの出力値に基いて前記機関の空燃比をフィードバック制御するメインフィードバック制御手段と、前記フィードバック制御中において前記下流側空燃比センサの出力値と所定の下流側目標空燃比に対応する所定の下流側目標値との定常偏差がゼロになるように同下流側空燃比センサの出力値に基いて、前記上流側空燃比センサの出力値又は前記上流側目標値を調整する調整量を算出するとともに同調整量を前記フィードバック制御に使用させることで前記フィードバック制御される機関の空燃比を調整するサブフィードバック制御手段とを備えた内燃機関の排気浄化装置が、前記上流側較正手段により前記上流側空燃比センサの出力値又は前記上流側目標値が較正された後の前記フィードバック制御中であって、且つ、前記内燃機関が定常運転状態にあるとき、前記上流側目標空燃比と前記下流側目標空燃比の差、及び前記調整量に基いて、前記下流側目標空燃比に対応する前記下流側空燃比センサの出力値と前記下流側目標値とが一致するように同下流側空燃比センサの出力値又は同下流側目標値を較正する下流側較正手段とを備えたことにある。
【0017】
これによれば、前記フィードバック制御中であって、且つ、内燃機関が(所定時間以上継続して)定常運転状態にあるとき、前記調整量による調整後である上流側空燃比センサの出力値が上流側目標値と等しくなる(、或いは、前記調整量による調整後である上流側目標値が上流側空燃比センサの(実際の)出力値と等しくなる。いずれにしろ、両者の定常偏差がゼロになる)。
【0018】
ここで、上述したように上流側空燃比センサが較正された後であれば、同センサの出力値に対応する空燃比は触媒の上流側の排気ガスの真の空燃比を表す値となっている。従って、このとき、触媒の上流側の排気ガスの真の空燃比は、(前記調整量による調整前の)上流側目標値に対応する上流側目標空燃比から同調整量に相当する空燃比の変化分だけ正確に偏移した値となっている。
【0019】
一方、内燃機関が(所定時間以上継続して)定常運転状態にあるとき、上述したように触媒の上流側の排気ガスの空燃比と同触媒の下流側の排気ガスの空燃比とは等しくなる。よって、触媒の下流側の排気ガスの真の空燃比も、前記上流側目標空燃比から同調整量に相当する空燃比の変化分だけ正確に偏移した値となっている。
【0020】
他方、前記フィードバック制御中であって、且つ、内燃機関が(所定時間以上継続して)定常運転状態にあるとき、下流側空燃比センサの出力値が下流側目標値と等しくなっている(両者の定常偏差がゼロになっている)。従って、このとき、仮に、下流側空燃比センサが較正されていれば(検出される排気ガスの空燃比に応じた出力値を正確に発生していれば)、触媒の下流側の排気ガスの真の空燃比は下流側目標値に対応する下流側目標空燃比となっているはずであり、この結果、前記上流側目標空燃比から前記調整量に相当する空燃比の変化分だけ偏移した空燃比が下流側目標空燃比と等しくなるはずである。
【0021】
換言すれば、前記調整量に相当する空燃比の変化分は上流側目標空燃比と下流側目標空燃比との差と等しくなっているはずである(従って、上流側目標空燃比と下流側目標空燃比とが等しい場合、前記調整量はゼロになる)。また、前記調整量に相当する空燃比の変化分は、上流側空燃比センサの出力値と空燃比との関係を規定するテーブル等を利用して求めることができる。従って、前記調整量に相当する既知である空燃比の変化分と上流側目標空燃比と下流側目標空燃比との差との間に相違があれば、その相違量は、下流側目標空燃比に対応する下流側空燃比センサの(実際の)出力値の同下流側目標空燃比に対応する下流側目標値からの偏移量(誤差)に応じた量となる。
【0022】
以上のことから、下流側較正手段は、上流側空燃比センサが較正された後の前記フィードバック制御中であって、且つ、内燃機関が(所定時間以上継続して)定常運転状態にあるとき、上流側目標空燃比と下流側目標空燃比の差、及び前記調整量に基いて、前記下流側目標空燃比に対応する前記下流側空燃比センサの出力値と前記下流側目標値とが一致するように同下流側空燃比センサの出力値又は同下流側目標値を較正することができる。これにより、下流側空燃比センサは起電力式の酸素濃度センサであるときでも較正され得、以後、検出される排気ガスの空燃比に応じた出力値を正確に発生することができるようになる。
【0023】
この場合、前記サブフィードバック制御手段は、少なくとも前記下流側目標値と前記下流側空燃比センサの出力値との差の時間積分値に基いて前記上流側空燃比センサの出力値を調整する前記調整量を算出するように構成されているとともに、前記上流側目標空燃比と前記下流側目標空燃比とは一致していて、前記下流側較正手段は、前記時間積分値がゼロになるように同時間積分値に基いて前記下流側空燃比センサの出力値又は前記下流側目標値を較正するよう構成されることが好適である。
【0024】
これによれば、少なくとも下流側目標値と下流側空燃比センサの出力値との差の時間積分値に基いて前記調整量が算出されるので、前記フィードバック制御中であって、且つ、内燃機関が(所定時間以上継続して)定常運転状態にあるとき、下流側目標値と下流側空燃比センサの出力値との定常偏差がゼロになることが保証される。
【0025】
また、上流側目標空燃比と下流側目標空燃比と一致しているので、上述したように、仮に、下流側空燃比センサが較正されていれば前記調整量はゼロになる。従って、前記調整量がゼロでなければ、同調整量は、下流側目標空燃比に対応する下流側空燃比センサの(実際の)出力値の同下流側目標空燃比に対応する下流側目標値からの偏移量(誤差)に応じた量となる。
【0026】
一方、下流側目標値と下流側空燃比センサの出力値との差がゼロに維持されているので、前記調整量は前記時間積分値のみに応じた量となる。よって、以上のことから、下流側較正手段は、前記時間積分値がゼロになるように同時間積分値に基いて前記下流側空燃比センサの出力値又は前記下流側目標値を較正することで、下流側空燃比センサを較正することができる。
【0027】
また、本発明の第3の特徴に係る排気浄化方法は、上記本発明の第2の特徴を方法の観点から捉えたものであって、内燃機関の排気通路に配設された触媒と、前記触媒よりも上流の前記排気通路に配設された上流側空燃比センサと、前記触媒よりも下流の前記排気通路に配設された下流側空燃比センサとを備えた排気浄化装置に適用される内燃機関の排気浄化方法であって、所定の上流側目標空燃比に対応する前記上流側空燃比センサの出力値と同上流側目標空燃比に対応する所定の上流側目標値とが一致するように同上流側空燃比センサの出力値又は同上流側目標値を較正し、その後、前記上流側空燃比センサの出力値と前記上流側目標値との定常偏差がゼロになるように同上流側空燃比センサの出力値に基いて前記機関の空燃比をフィードバック制御し、前記フィードバック制御中において前記下流側空燃比センサの出力値と所定の下流側目標空燃比に対応する所定の下流側目標値との定常偏差がゼロになるように同下流側空燃比センサの出力値に基いて、前記上流側空燃比センサの出力値又は前記上流側目標値を調整する調整量を算出するとともに同調整量を前記フィードバック制御に使用することで前記フィードバック制御される機関の空燃比を調整するとともに、前記フィードバック制御中であって、且つ、前記内燃機関が定常運転状態にあるとき、前記上流側目標空燃比と前記下流側目標空燃比の差、及び前記調整量に基いて、前記下流側目標空燃比に対応する前記下流側空燃比センサの出力値と前記下流側目標値とが一致するように同下流側空燃比センサの出力値又は同下流側目標値を較正する内燃機関の排気浄化方法である。
【0028】
【発明の実施の形態】
以下、本発明による内燃機関の排気浄化装置を含む空燃比制御装置の実施形態について図面を参照しつつ説明する。図1は、この空燃比制御装置を火花点火式多気筒(4気筒)内燃機関10に適用したシステムの概略構成を示している。
【0029】
この内燃機関10は、シリンダブロック、シリンダブロックロワーケース、及びオイルパン等を含むシリンダブロック部20と、シリンダブロック部20の上に固定されるシリンダヘッド部30と、シリンダブロック部20にガソリン混合気を供給するための吸気系統40と、シリンダブロック部20からの排気ガスを外部に放出するための排気系統50とを含んでいる。
【0030】
シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23、及びクランク軸24を含んでいる。ピストン22はシリンダ21内を往復動し、ピストン22の往復動がコンロッド23を介してクランク軸24に伝達され、これにより同クランク軸24が回転するようになっている。シリンダ21とピストン22のヘッドは、シリンダヘッド部30とともに燃焼室25を形成している。
【0031】
シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、吸気弁32を駆動するインテークカムシャフトを含むとともに同インテークカムシャフトの位相角を連続的に変更する可変吸気タイミング装置33、可変吸気タイミング装置33のアクチュエータ33a、燃焼室25に連通した排気ポート34、排気ポート34を開閉する排気弁35、排気弁35を駆動するエキゾーストカムシャフト36、点火プラグ37、点火プラグ37に与える高電圧を発生するイグニッションコイルを含むイグナイタ38、及び燃料を吸気ポート31内に噴射するインジェクタ(燃料噴射手段)39を備えている。
【0032】
吸気系統40は、吸気ポート31に連通し同吸気ポート31とともに吸気通路を形成するインテークマニホールドを含む吸気管41、吸気管41の端部に設けられたエアフィルタ42、吸気管41内にあって吸気通路の開口断面積を可変とするスロットル弁43、スロットル弁駆動手段を構成するDCモータからなるスロットル弁アクチュエータ43a、スワールコントロールバルブ(以下、「SCV」と称呼する。)44、及びDCモータからなるSCVアクチュエータ44aを備えている。
【0033】
排気系統50は、排気ポート34に連通したエキゾーストマニホールド51、エキゾーストマニホールド51(実際には、各排気ポート34に連通した各々のエキゾーストマニホールド51が集合した集合部)に接続されたエキゾーストパイプ(排気管)52、エキゾーストパイプ52に配設(介装)された上流側の三元触媒53(上流側触媒コンバータ、又はスタート・キャタリティック・コンバータとも云うが、以下「第1触媒53」と称呼する。)、及びこの第1触媒53の下流のエキゾーストパイプ52に配設(介装)された下流側の三元触媒54(車両のフロア下方に配設されるため、アンダ・フロア・キャタリティック・コンバータとも云うが、以下「第2触媒54」と称呼する。)を備えている。排気ポート34、エキゾーストマニホールド51、及びエキゾーストパイプ52は、排気通路を構成している。
【0034】
一方、このシステムは、熱線式エアフローメータ61、スロットルポジションセンサ62、カムポジションセンサ63、クランクポジションセンサ64、水温センサ65、第1触媒53の上流の排気通路(本例では、上記各々のエキゾーストマニホールド51が集合した集合部)に配設された空燃比センサ66(以下、「上流側空燃比センサ66」と称呼する。)、第1触媒53の下流であって第2触媒54の上流の排気通路に配設された空燃比センサ67(以下、「下流側空燃比センサ67」と称呼する。)、及びアクセル開度センサ68を備えている。
【0035】
熱線式エアフローメータ61は、吸気管41内を流れる吸入空気の単位時間あたりの質量流量に応じた電圧Vgを出力するようになっている。かかるエアフローメータ61の出力Vgと、計測された吸入空気量(流量)Gaとの関係は、図2に示したとおりである。スロットルポジションセンサ62は、スロットル弁43の開度を検出し、スロットル弁開度TAを表す信号を出力するようになっている。カムポジションセンサ63は、インテークカムシャフトが90°回転する毎に(即ち、クランク軸24が180°回転する毎に)一つのパルスを有する信号(G2信号)を発生するようになっている。クランクポジションセンサ64は、クランク軸24が10°回転する毎に幅狭のパルスを有するとともに同クランク軸24が360°回転する毎に幅広のパルスを有する信号を出力するようになっている。この信号は、エンジン回転速度NEを表す。水温センサ65は、内燃機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。
【0036】
上流側空燃比センサ66は、限界電流式の酸素濃度センサであり、図3に実線にて示したように、空燃比A/Fに応じた電流を出力し、この電流に応じた電圧である出力値vabyfsを出力するようになっていて、特に、空燃比が理論空燃比であるときには出力値vabyfsは上流側目標値vstoichになる。図3から明らかなように、上流側空燃比センサ66によれば、広範囲にわたる空燃比A/Fを精度良く検出することができる。
【0037】
下流側空燃比センサ67は、起電力式(濃淡電池式)の酸素濃度センサであり、図4に実線にて示したように、理論空燃比近傍において急変する電圧である出力値Voxsを出力するようになっている。より具体的に述べると、下流側空燃比センサ67は、空燃比が理論空燃比よりもリーンのときは略0.1(V)、空燃比が理論空燃比よりもリッチのときは略0.9(V)、及び空燃比が理論空燃比のときは0.5(V)の電圧を出力するようになっている。アクセル開度センサ68は、運転者によって操作されるアクセルペダル81の操作量を検出し、同アクセルペダル81の操作量Accpを表す信号を出力するようになっている。
【0038】
電気制御装置70は、互いにバスで接続されたCPU71、CPU71が実行するルーチン(プログラム)、テーブル(ルックアップテーブル、マップ)、及び定数等を予め記憶したROM72、CPU71が必要に応じてデータを一時的に格納するRAM73、電源が投入された状態でデータを格納するとともに同格納したデータを電源が遮断されている間も保持するバックアップRAM74、並びにADコンバータを含むインターフェース75等からなるマイクロコンピュータである。インターフェース75は、前記センサ61〜68と接続され、CPU71にセンサ61〜68からの信号を供給するとともに、同CPU71の指示に応じて可変吸気タイミング装置33のアクチュエータ33a、イグナイタ38、インジェクタ39、スロットル弁アクチュエータ43a、及びSCVアクチュエータ44aに駆動信号を送出するようになっている。
【0039】
(空燃比フィードバック制御の概要)
次に、上記のように構成された排気浄化装置を含んだ空燃比制御装置が行う機関の空燃比のフィードバック制御の概要について説明する。
【0040】
第1触媒53(第2触媒54も同様である。)は、同第1触媒53に流入するガスの空燃比が理論空燃比であるときに、HC,COを酸化するとともにNOxを還元し、これらの有害成分を高い効率で浄化する。また、第1触媒53は、酸素を吸蔵・放出する機能(酸素吸蔵・放出機能)を有し、この酸素吸蔵・放出機能により、空燃比が理論空燃比からある程度まで偏移したとしても、HC,CO、及びNOxを浄化することができる。即ち、機関の空燃比がリーンとなって第1触媒53に流入するガスにNOxが多量に含まれると、第1触媒53はNOxから酸素分子を奪って同酸素分子を吸蔵するとともに同NOxを還元し、これによりNOxを浄化する。また、機関の空燃比がリッチになって第1触媒53に流入するガスにHC,COが多量に含まれると、三元触媒はこれらに吸蔵している酸素分子を与えて(放出して)酸化し、これによりHC,COを浄化する。
【0041】
従って、第1触媒53が連続的に流入する多量のHC,COを効率的に浄化するためには、同第1触媒53が酸素を多量に貯蔵していなければならず、逆に連続的に流入する多量のNOxを効率的に浄化するためには、同第1触媒53が酸素を十分に貯蔵し得る状態になければならないことになる。以上のことから、第1触媒53の浄化能力は、同第1触媒53が貯蔵し得る最大の酸素量(最大酸素吸蔵量)に依存する。
【0042】
一方、第1触媒53のような三元触媒は燃料中に含まれる鉛や硫黄等による被毒、或いは触媒に加わる熱により劣化し、これに伴い最大酸素吸蔵量が次第に低下してくる。このように最大酸素吸蔵量が低下した場合であっても、エミッションの排出量を継続的に抑制するには、第1触媒53から排出されるガスの空燃比(従って、第1触媒53に流入するガスの平均空燃比)が、理論空燃比に極めて近い状態となるように制御する必要がある。
【0043】
そこで、本実施形態の空燃比制御装置は、下流側空燃比センサ67の出力値が下流側目標空燃比としての理論空燃比に対応する下流側目標値Voxsref(0.5(V))となるように、下流側空燃比センサ67の出力値Voxs(即ち、第1触媒下流の空燃比)に応じて機関10に供給される混合気の空燃比(即ち、機関の空燃比)を制御する。
【0044】
より具体的に述べると、この空燃比制御装置(以下、「本装置」と云うこともある。)は、機能ブロック図である図5に示したように、A1〜A19の各手段を含んで構成されている。以下、図5を参照しながら各手段について説明していく。
【0045】
<基本燃料噴射量の算出>
先ず、一時遅れ処理手段A1は、エアフローメータ61が計測している吸入空気流量Gaに所定の時定数T、所定の比例定数Kによる一時遅れ処理を施し、同一時遅れ処理後の現時点での吸入空気流量を求める。筒内吸入空気量算出手段A2は、一時遅れ処理手段A1により求められた一時遅れ処理後の現時点での吸入空気流量をクランクポジションセンサ64の出力に基いて得られるエンジン回転速度NEで除することで今回の吸気行程を迎える気筒の吸入空気量である筒内吸入空気量Mc(k)を求める。ここで、添え字の(k)は、今回の吸気行程に対する値であることを示している(以下、他の物理量についても同様。)。筒内吸入空気量Mcは、各気筒の吸気行程に対応されながらRAM73に記憶されていく。
【0046】
上流側目標空燃比設定手段A3は、内燃機関10の運転状態であるエンジン回転速度NE、及びスロットル弁開度TA等に基いて上流側目標空燃比abyfr(k)を決定する。この上流側目標空燃比abyfr(k)は、例えば、内燃機関10の暖機終了後においては、特殊な場合を除き理論空燃比に設定されている。また、上流側目標空燃比abyfrは、各気筒の吸気行程に対応されながらRAM73に記憶されていく。
【0047】
基本燃料噴射量算出手段A4は、筒内吸入空気量算出手段A2により求められた筒内吸入空気量Mc(k)を上流側目標空燃比設定手段A3により設定された上流側目標空燃比abyfr(k)で除することにより、機関の空燃比を理論空燃比とするための今回の吸気行程に対する目標筒内燃料供給量Fcr(k)(即ち、基本燃料噴射量Fbase)を求める。目標筒内燃料供給量Fcrは、各気筒の吸気行程に対応されながらRAM73に記憶されていく。
【0048】
このように、本装置は、一時遅れ処理手段A1、筒内吸入空気量算出手段A2、上流側目標空燃比設定手段A3、及び基本燃料噴射量算出手段A4を利用して、下記数1に基き基本燃料噴射量Fbaseを求める。下記数1において、関数fは、吸入空気流量Ga、エンジン回転速度NE、及び上流側目標空燃比abyfr(k)を引数として基本燃料噴射量Fbaseを求める関数である。
【0049】
【数1】
Fbase=f(Ga,NE,abyfr(k))
【0050】
<燃料噴射量の算出>
本装置は、燃料噴射量算出手段A5により、基本燃料噴射量算出手段A4により求められた基本燃料噴射量Fbaseに後述するPIコントローラA19により求められるメインフィードバック制御量DFiを加えることで、下記数2に基いて燃料噴射量Fiを求める。そして、本装置は、燃料噴射量算出手段A5により求められた燃料噴射量Fiの燃料を今回の吸気行程を迎える気筒に対してインジェクタ39により噴射する。
【0051】
【数2】
Fi=Fbase+DFi
【0052】
<上流側空燃比センサの出力値の設定>
本装置は、上流側空燃比センサ出力値設定手段A7により、上流側空燃比センサ66が出力する較正前の実際の出力値vabyfs0に後述する上流側空燃比センサ較正値設定手段A6により現時点にて求められている(最新の)上流側空燃比センサ較正値vabyfsaddを加えることで、下記数3に基いて現時点での出力値vabyfsを求め、この値を上流側空燃比センサ66の現時点での(較正後の実際の)出力値vabyfsとして設定する。
【0053】
【数3】
vabyfs=vabyfs0+vabyfsadd
【0054】
<下流側空燃比センサの出力値の設定>
本装置は、下流側空燃比センサ出力値設定手段A9により、下流側空燃比センサ67が出力する較正前の実際の出力値Voxs0に後述する下流側空燃比センサ較正値更新手段A8により現時点にて求められている(最新の)下流側空燃比センサ較正値Voxsaddを加えることで、下記数4に基いて現時点での出力値Voxsを求め、この値を下流側空燃比センサ67の現時点での(較正後の実際の)出力値Voxsとして設定する。
【0055】
【数4】
Voxs=Voxs0+Voxsadd
【0056】
<サブフィードバック制御量の算出>
先ず、下流側目標値設定手段A10は、上述した上流側目標値設定手段A3と同様、内燃機関10の運転状態であるエンジン回転速度NE、及びスロットル弁開度TA等に基いて下流側目標空燃比に対応する下流側目標値Voxsrefを決定する。この下流側目標値Voxsrefは、例えば、内燃機関10の暖機終了後においては、特殊な場合を除き理論空燃比に対応する値である0.5(V)に設定されている(図4を参照。)。また、本例では、下流側目標値Voxsrefは、同下流側目標値Voxsrefに対応する下流側目標空燃比が上述した上流側目標空燃比abyfr(k)と常時一致するように設定される。
【0057】
出力偏差量算出手段A11は、下記数5に基いて、下流側目標値設定手段A10により設定されている現時点での下流側目標値Voxsrefから下流側空燃比センサ出力値設定手段A9により設定されている現時点での下流側空燃比センサ67の出力値Voxsを減じることにより、出力偏差量DVoxsを求める。
【0058】
【数5】
DVoxs=Voxsref-Voxs
【0059】
PIDコントローラA12は、出力偏差量算出手段A11により算出された出力偏差量DVoxsを比例・積分・微分処理(PID処理)することで、下記数6に基いて上流側空燃比センサ66の出力値を調整するための調整量としてのサブフィードバック制御量vafsfbを求める。
【0060】
【数6】
vafsfb=Kp・DVoxs+Ki・SDVoxs+Kd・DDVoxs
【0061】
上記数6において、Kpは予め設定された比例ゲイン(比例定数)、Kiは予め設定された積分ゲイン(積分定数)、Kdは予め設定された微分ゲイン(微分定数)である。また、SDVoxsは出力偏差量DVoxsの時間積分値であり、DDVoxsは出力偏差量DVoxsの時間微分値である。
【0062】
ここで、PIDコントローラA12は積分項Ki・SDVoxsを含んでいるので、定常状態では出力偏差量DVoxsがゼロになることが保証される。換言すれば、下流側目標値Voxsrefと下流側空燃比センサ67の出力値Voxsとの定常偏差がゼロになる。また、定常状態では、出力偏差量DVoxsがゼロになることで比例項Kp・DVoxs、微分項Kd・DDVoxsが共にゼロとなるから、サブフィードバック制御量vafsfbは積分項Ki・SDVoxsの値と同一となる(従って、前記時間積分値SDVoxsのみに応じた値となる)。
【0063】
このようにして、本装置は、下流側目標値Voxsrefと下流側空燃比センサ67の出力値Voxsとの定常偏差がゼロになるように同出力値Voxsに基いて、調整量としてのサブフィードバック制御量vafsfbを求める。ここで、下流側目標値設定手段A10、出力偏差量算出手段A11、及びPIDコントローラA12がサブフィードバック制御手段に相当する。
【0064】
<上流側空燃比センサの出力値の調整>
本装置は、上流側空燃比センサ出力値調整手段A13により、上流側空燃比センサ出力値設定手段A7により設定されている現時点での上流側空燃比センサ66の出力値vabyfsにPIDコントローラA12により求められているサブフィードバック制御量vafsfbを加えることで上流側空燃比センサ66の出力値を調整するとともに、調整後の上流側空燃比センサ66の出力値(vabyfs+vafsfb)を求める。
【0065】
<メインフィードバック制御量の算出>
先ず、テーブル変換手段A14は、上流側空燃比センサ出力値調整手段A13により調整された調整後の上流側空燃比センサ66の出力値(vabyfs+vafsfb)と、先に説明した図3にグラフ(実線)により示した上流側空燃比センサ出力値と空燃比との関係を規定したテーブルとに基いて、現時点におけるメインフィードバック制御用空燃比abyfsを求める。このメインフィードバック制御用空燃比abyfsは、上流側空燃比センサ66の出力値をサブフィードバック制御量vafsfbにより調整したことにより得られる第1触媒53の上流における現時点での「見かけ上の空燃比」である。
【0066】
筒内吸入空気量遅延手段A15は、筒内吸入空気量算出手段A2により吸気行程毎に求められRAM73に記憶されている筒内吸入空気量Mcのうち、現時点からNストローク(N回の吸気行程)前に吸気行程を迎えた気筒の筒内吸入空気量McをRAM73から読み出し、これを筒内吸入空気量Mc(k-N)として設定する。
【0067】
筒内燃料供給量算出手段A16は、筒内吸入空気量遅延手段A15により求められた現時点からNストローク前の筒内吸入空気量Mc(k-N)をテーブル変換手段A14により求められた現時点におけるメインフィードバック制御用空燃比abyfsで除することで、現時点からNストローク前の実際の筒内燃料供給量Fc(k-N)を求める。ここで、前記値Nは、内燃機関10の排気量、及び燃料室25から上流側空燃比センサ66までの距離等により異なる値である。
【0068】
このように、現時点からNストローク前の筒内燃料供給量Fc(k-N)を求めるために、現時点からNストローク前の筒内吸入吸気量Mc(k-N)をメインフィードバック制御用空燃比abyfsで除するのは、燃焼室25内で燃料された混合気が上流側空燃比センサ66に到達するまでには、Nストロークに相当する時間Lを要しているからである。
【0069】
目標筒内燃料供給量遅延手段A17は、基本燃料噴射量算出手段A4により吸気行程毎に求められRAM73に記憶されている目標筒内燃料供給量Fcrのうち、現時点からNストローク前の目標筒内燃料供給量FcrをRAM73から読み出し、これを目標筒内燃料供給量Fcr(k-N)として設定する。
【0070】
筒内燃料供給量偏差算出手段A18は、下記数7に基いて、目標筒内燃料供給量遅延手段A17により設定された現時点からNストローク前の目標筒内燃料供給量Fcr(k-N)から筒内燃料供給量算出手段A16により求められた現時点からNストローク前の実際の筒内燃料供給量Fc(k-N)を減じることにより、筒内燃料供給量偏差DFcを求める。この筒内燃料供給量偏差DFcは、Nストローク前の時点で筒内に供給された燃料の過不足分を表す量となる。
【0071】
【数7】
DFc=Fcr(k-N)-Fc(k-N)
【0072】
PIコントローラA19は、筒内燃料供給量偏差算出手段A18により算出された筒内燃料供給量偏差DFcを比例・積分処理(PI処理)することで、下記数8に基いてNストローク前の燃料供給量の過不足を補償するためのメインフィードバック制御量DFiを求める。このメインフィードバック制御量DFiは、前述したように、基本燃料噴射量算出手段A4により求められた基本燃料噴射量Fbaseに加えられて燃料噴射量Fiに反映されていく。
【0073】
【数8】
DFi=(Gp・DFc+Gi・SDFc)・KFB
【0074】
上記数8において、Gpは予め設定された比例ゲイン(比例定数)、Giは予め設定された積分ゲイン(積分定数)である。SDFcは筒内燃料供給量偏差DFcの時間積分値である。また、係数KFBは、エンジン回転速度NE、及び筒内吸入空気量Mc等により可変とすることが好適であるが、本例では「1」としている。
【0075】
ここで、PIコントローラA19は積分項Gi・SDFcを含んでいるので、定常状態では筒内燃料供給量偏差DFcがゼロになることが保証される。換言すれば、現時点からNストローク前の目標筒内燃料供給量Fcr(k-N)と現時点からNストローク前の実際の筒内燃料供給量Fc(k-N)との定常偏差がゼロになる(上流側目標値vstoichと上記調整後の上流側空燃比センサ66の出力値(vabyfs+vafsfb)との定常偏差がゼロになる)。また、定常状態では、筒内燃料供給量偏差DFcがゼロになることで比例項Gp・DFcがゼロとなるから、メインフィードバック制御量DFiは積分項Gi・SDFcの値と同一となる(従って、前記時間積分値SDFcのみに応じた値となる)。
【0076】
このように、本装置は、現時点からNストローク前の目標筒内燃料供給量Fcr(k-N)と現時点からNストローク前の実際の筒内燃料供給量Fc(k-N)との定常偏差がゼロになるように(上流側目標値vstoichと上記調整後の上流側空燃比センサ66の出力値(vabyfs+vafsfb)との定常偏差がゼロになるように)上流側空燃比センサ66の出力値vabyfsに基いて機関の空燃比をフィードバックする。換言すれば、前記現時点での「見かけ上の空燃比」が(現時点からNストローク前の)上流側目標空燃比abyfrと一致するように機関の空燃比がフィードバックされる。ここで、テーブル変換手段A14、筒内吸入空気量遅延手段A15、筒内燃料供給量算出手段A16、目標筒内燃料供給量遅延手段A17、筒内燃料供給量偏差算出手段A18、及びPIコントローラA19がメインフィードバック制御手段に相当する。
【0077】
以上のように、PIDコントローラA12によりサブフィードバック制御量vafsfbが求められ、この値は上流側空燃比センサ出力値調整手段A13により上流側空燃比センサ66の実際の出力値vabyfsに加えられ、その和(vabyfs + vafsfb)が、テーブル変換手段A14によってメインフィードバック制御用空燃比abyfsに変換される。このようにして、下流側空燃比センサ67の出力Voxsに基いて求められるメインフィードバック制御用空燃比abyfsは、上流側空燃比センサ66が実際に検出している空燃比vabyfsに対して、サブフィードバック制御量vafsfbに相当する分だけ異なる空燃比として求められる。
【0078】
この結果、筒内燃料供給量算出手段A16により求められる筒内燃料供給量Fc(k-N)が下流側空燃比センサ67の出力Voxsに応じて変化するので、PIコントローラA19により求められるメインフィードバック制御量DFiが同下流側空燃比センサ67の出力Voxsに応じて変更せしめられる。
【0079】
例えば、機関の平均的な空燃比がリーンであるために下流側空燃比センサ67の出力Voxsが理論空燃比よりもリーンである空燃比に対応した値を示すと、出力偏差量算出手段A11により求められる出力偏差量DVoxsが正の値となるので(図4を参照。)、PIDコントローラA12にて求められるサブフィードバック制御量vafsfbは正の値となる。従って、テーブル変換手段A14にて求められるメインフィードバック制御用空燃比abyfsは上流側空燃比センサ66が実際に検出している空燃比よりもリーンな値(より大きな値)として求められる。このため、筒内燃料供給量算出手段A16にて求められる筒内燃料供給量Fc(k-N)は小さい値となり、筒内燃料供給量偏差DFcは大きい正の値として求められるので、メインフィードバック制御量DFiが大きい正の値となる。これにより、燃料噴射量算出手段A5にて求められる燃料噴射量Fiは、基本燃料噴射量Fbaseよりも大きくなって、機関の空燃比がリッチとなるように制御される。
【0080】
反対に、機関の平均的な空燃比がリッチであるために下流側空燃比センサ67の出力Voxsが理論空燃比よりもリッチ空燃比に対応した値を示すと、出力偏差量算出手段A11により求められる出力偏差量DVoxsが負の値となるので(図4を参照。)、PIDコントローラA12にて求められるサブフィードバック制御量vafsfbは負の値となる。従って、テーブル変換手段A14にて求められるメインフィードバック制御用空燃比abyfsは上流側空燃比センサ66が実際に検出している空燃比よりもリッチな値(より小さな値)として求められる。このため、筒内燃料供給量算出手段A16にて求められる筒内燃料供給量Fc(k-N)は大きい値となり、筒内燃料供給量偏差DFcは負の値として求められるので、メインフィードバック制御量DFiが負の値となる。これにより、燃料噴射量算出手段A5にて求められる燃料噴射量Fiは、基本燃料噴射量Fbaseよりも小さくなって、機関の空燃比がリーンとなるように制御される。
【0081】
このようにして、第1触媒53の下流側の空燃比が下流側目標値設定手段A10により設定された目標値Voxsrefで表された空燃比に一致するように、機関の空燃比が制御せしめられる。以上が、上記のように構成された排気浄化装置を含んだ空燃比制御装置が行う機関の空燃比のフィードバック制御の概要である。
【0082】
(上流側空燃比センサの較正)
次に、上流側空燃比センサ66の較正の概要について説明する。限界電流式の酸素濃度センサである上流側空燃比センサ66は、先に説明したように、冷間始動時等、同上流側空燃比センサ66の温度が活性化温度より低くて同上流側空燃比センサ66(内の触媒)が不活性な状態にあるときは、排気ガスの実際の空燃比に拘わらず理論空燃比に対応する(検出される排気ガスの空燃比が理論空燃比であるときの)出力値を発生し続けるという特性を有する。従って、上流側空燃比センサ66が検出される排気ガスの空燃比に応じた出力値を正確に発生していれば、冷間始動直後においては、上流側空燃比センサ66が出力する較正前の実際の出力値vabyfs0が上流側目標値vstoichと一致するはずである(図3において実線を参照。)。
【0083】
しかしながら、新品時における出力特性のばらつきや経年変化等により上流側空燃比センサ66の出力値が図3において実線にて示される正常値から偏移していることがある(例えば、図3において一点鎖線を参照。)。この場合、冷間始動直後において上流側空燃比センサ66が出力する較正前の実際の出力値vabyfs0が上流側目標値vstoich(一定値)と一致しなくなる。
【0084】
そこで、かかる知見に基き、本装置は、上流側空燃比センサ較正値設定手段A6により、内燃機関10が冷間始動される直後毎に、下記数9に基き上流側センサ出力較正値vabyfsaddを求める。そして、本装置は、次回の冷間始動時点にて上流側センサ出力較正値vabyfsaddが更新されるまで、上流側空燃比センサ出力値設定手段A7により、今回求めた上流側センサ出力較正値vabyfsaddを上流側空燃比センサ66が出力する較正前の実際の出力値vabyfs0に加えた値を上流側空燃比センサ66の(較正後の実際の)出力値vabyfsとして設定する。
【0085】
【数9】
vabyfsadd=vstoich-vabyfs0
【0086】
これにより、理論空燃比である上流側目標空燃比abyfrに対応する上流側空燃比センサ66の出力値vabyfsと上流側目標値vstoichとが(前記サブフィードバック制御量vafsfbによる調整前において)一致するように上流側空燃比センサ66の出力値が較正され、上流側空燃比センサ66は図3において実線にて示されるように、検出される排気ガスの空燃比に応じた出力値を正確に発生するようになる。このように、上記数9に基いて上流側センサ出力較正値vabyfsaddを求めるとともに同出力較正値vabyfsaddを較正前の実際の出力値vabyfs0に加えて較正後の上流側空燃比センサ66の出力値vabyfsを求める手段が上流側較正手段に相当する。以上が、上流側空燃比センサ66の較正の概要である。
【0087】
(下流側空燃比センサの較正)
次に、下流側空燃比センサ67の較正について説明する。下流側空燃比センサ67は、先に説明したように起電力式の酸素濃度センサである。この下流側空燃比センサ67においても、新品時における出力特性のばらつきや経年変化等によりその出力値が図4において実線にて示される正常値から偏移することがある(例えば、図4において一点鎖線及び二点鎖線を参照。)。この起電力式の酸素濃度センサは上記限界電流式の酸素濃度センサとは異なり、検出される排気ガスの実際の空燃比が未知であるときには較正され得ない。従って、下流側空燃比センサ67を較正するためには、同センサ67を通過している(検出される)排気ガスの実際の空燃比が既知となっている必要がある。
【0088】
ここで、上述した空燃比フィードバック制御中であって、且つ、内燃機関10が(所定時間以上継続して)定常運転状態にあるとき、先に説明したように、前記サブフィードバック制御量vafsfbによる調整後である上流側空燃比センサの出力値(vabyfs+vafsfb)が上流側目標値vstoichと等しくなる。
【0089】
このとき、上流側空燃比センサ66が較正されていれば、同センサ66の出力値vabyfsに対応する空燃比(検出空燃比)は第1触媒53の上流側の排気ガスの真の空燃比を表す値となっている。従って、このとき、第1触媒53の上流側の排気ガスの真の空燃比は、上流側目標値vstoichに対応する上流側目標空燃比abyfrからサブフィードバック制御量vafsfbに相当する空燃比の変化分だけ正確に偏移した値となっている。
【0090】
一方、内燃機関10が(所定時間以上継続して)定常運転状態にあるとき、先に説明したように第1触媒53内部の状態も定常状態となって同触媒53の上流側の排気ガスの空燃比と同触媒53の下流側の排気ガスの空燃比とは等しくなる。よって、第1触媒53の下流側の排気ガスの真の空燃比(従って、下流側空燃比センサ67を通過している(検出される)排気ガスの真の空燃比)も、上流側目標空燃比abyfr(即ち、理論空燃比)からサブフィードバック制御量vafsfbに相当する空燃比の変化分だけ正確に偏移した値となっている。
【0091】
他方、前記空燃比フィードバック制御中であって、且つ、内燃機関10が(所定時間以上継続して)定常運転状態にあるとき、先に説明したように、下流側空燃比センサ67の出力値Voxsが下流側目標値Voxsref(一定値)と等しくなっている。従って、このとき、仮に、下流側空燃比センサ67が較正されていれば(図4に実線にて示すように、検出される排気ガスの空燃比に応じた出力値を正確に発生していれば)、第1触媒53の下流側の排気ガスの真の空燃比は下流側目標値Voxsrefに対応する下流側目標空燃比(理論空燃比。即ち、上流側目標空燃比と同一の空燃比)となっているはずであり、この結果、サブフィードバック制御量vafsfbに相当する空燃比の変化分(即ち、サブフィードバック制御量vafsfb)はゼロになっているはずである。
【0092】
換言すれば、上流側空燃比センサ66が較正された後の前記空燃比フィードバック制御中であって、且つ、内燃機関10が(所定時間以上継続して)定常運転状態にあるとき、前記サブフィードバック制御量vafsfbがゼロでなければ、そのサブフィードバック制御量vafsfb(このとき、PIDコントローラA12内の比例項Kp・DVoxs、及び微分項Kd・DDVoxsは共にゼロになっているので、サブフィードバック制御量vafsfbは積分項Ki・SDVoxsの値と等しくなっている。)は、下流側目標空燃比(理論空燃比)に対応する下流側空燃比センサ67の(実際の)出力値Voxsの下流側目標値Voxsrefからの偏移量(誤差)に応じた量となる。
【0093】
より具体的に述べると、上流側空燃比センサ66の出力値vabyfs、及び下流側空燃比センサ67の出力値Voxsが、それぞれ、図3、及び図4に実線で示したように正常値となっているとき、内燃機関10が(所定時間以上継続して)定常運転状態にあると、上記のようにサブフィードバック制御量vafsfbがゼロになるとともに、上流側空燃比センサ66の出力値vabyfsが上流側目標値vstoichと等しくなり、下流側空燃比センサ67の出力値Voxsが下流側目標値Voxsrefと等しくなって、機関の空燃比、第1触媒53の上流側及び下流側の空燃比が全て理論空燃比に維持される。
【0094】
この状態から、例えば、下流側空燃比センサ67の出力値が図4に一点鎖線で示すように正常値から負の方向にoffset1だけオフセットされたと仮定すると、出力偏差量DVoxsが正の値となるので、サブフィードバック制御量vafsfbは正の値となる。従って、メインフィードバック制御用空燃比abyfsは上流側空燃比センサ66が実際に検出している理論空燃比よりもリーンな値(より大きな値)として求められ、この結果、機関の空燃比がリッチとなるように制御される。これにより、第1触媒53の上流側及び下流側の空燃比はリッチとなって下流側目標値Voxsrefに対応する下流側空燃比67の検出空燃比rich0(図4を参照。)に近づくと共に、調整後の上流側空燃比センサの出力値(vabyfs+vafsfb)が上流側目標値vstoichに近づく。
【0095】
そして、定常状態になると、機関の空燃比、第1触媒53の上流側及び下流側の空燃比が全て前記検出空燃比rich0に維持されると共に、サブフィードバック制御量vafsfbが正の所定値に維持される。この正の所定値は、前記負の方向へのオフセット量offset1の増加に応じて大きくなる値である。以上のことから、定常状態において、サブフィードバック制御量vafsfbが正の所定値に維持されているとき、同正の所定値の増加に応じて増加する量だけ下流側空燃比センサ67の出力値を正の方向にオフセットすれば、下流側空燃比センサ67を較正することができる。即ち、その後の定常状態において、サブフィードバック制御量vafsfb(従って、積分項Ki・SDVoxs(時間積分値))がゼロになるとともに、機関の空燃比、第1触媒53の上流側及び下流側の空燃比が全て理論空燃比に維持される。
【0096】
一方、例えば、下流側空燃比センサ67の出力値が図4に二点鎖線で示すように正常値から正の方向にoffset2だけオフセットされたと仮定すると、同様にして、その後の定常状態において、機関の空燃比、第1触媒53の上流側及び下流側の空燃比が全て検出空燃比lean0(図4を参照。)に維持されると共に、サブフィードバック制御量vafsfbが負の所定値に維持される。この負の所定値(の絶対値)も、前記正の方向へのオフセット量offset2の増加に応じて大きくなる値である。よって、定常状態において、サブフィードバック制御量vafsfbが負の所定値に維持されているとき、同負の所定値(の絶対値)の増加に応じて増加する量だけ下流側空燃比センサ67の出力値を負の方向にオフセットすれば、下流側空燃比センサ67を較正することができる。
【0097】
以上のことから、上流側空燃比センサ66が較正された後の前記空燃比フィードバック制御中であって、且つ、内燃機関10が(所定時間以上継続して)定常運転状態にあるとき、その時点におけるサブフィードバック制御量vafsfbと、サブフィードバック制御量vafsfbとオフセット量offsetとの関係を規定する図6にグラフにより示したテーブルとに基いてオフセット量offsetを求め、下流側空燃比センサ67のその時点での出力値に同オフセット量offsetを加えることで下流側空燃比センサ67を較正することができる。
【0098】
そこで、かかる知見に基き、本装置は、下流側空燃比センサ較正値更新手段A8により、内燃機関10が定常運転状態に維持されているときであって所定時間T1が経過する毎に、その時点でのサブフィードバック制御量vafsfbと、図6に示したサブフィードバック制御量vafsfbとオフセット量offsetとの関係を規定するテーブルとに基きオフセット量offsetを求め、下記数10に基きその時点での下流側センサ出力較正値Voxsaddに前記オフセット量offsetを加えた値を新たな下流側センサ出力較正値Voxsaddとして設定(更新)する。そして、本装置は、次回下流側センサ出力較正値Voxsaddが更新されるまで、下流側空燃比センサ出力値設定手段A9により、今回更新した下流側センサ出力較正値Voxsaddを下流側空燃比センサ67が出力する較正前の実際の出力値Voxs0に加えた値を下流側空燃比センサ67の(較正後の実際の)出力値Voxsとして設定する。
【0099】
【数10】
Voxsadd=Voxsadd+offset
【0100】
このようにして、上流側空燃比センサ66が較正された後の定常状態におけるサブフィードバック制御量vafsfb(即ち、積分項Ki・SDVoxs(時間積分値))がゼロになるように同サブフィードバック制御量vafsfbに基いて、下流側空燃比センサ67の出力値が較正され、この結果、理論空燃比である下流側目標空燃比に対応する下流側空燃比センサ67の出力値Voxsと下流側目標値Voxsrefとが一致するようになる。これにより、下流側空燃比センサ67は図4において実線にて示されるように、検出される排気ガスの空燃比に応じた出力値を正確に発生するようになる。このように、上記数10に基いて下流側センサ出力較正値Voxsaddを更新とともに同出力較正値Voxsaddを較正前の実際の出力値Voxs0に加えて較正後の下流側空燃比センサ67の出力値Voxsを求める手段が下流側較正手段に相当する。以上が、下流側空燃比センサ67の較正の概要である。
【0101】
(実際の作動)
次に、上記空燃比制御装置の実際の作動について説明する。
<上流側空燃比センサの較正>
CPU71は、図7にフローチャートにより示した上流側空燃比センサ66の較正を行うルーチンを、所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU71はステップ700から処理を開始し、ステップ705に進んで、図示しないイグニッションスイッチが「OFF」から「ON」に変更されたか否かを判定する。ここで、イグニッションスイッチが「OFF」から「ON」に変更された直後でなければ、CPU71はステップ795に直接進んで本ルーチンを一旦終了する。
【0102】
いま、運転者によりイグニッションスイッチが「OFF」から「ON」に変更されて冷間始動された直後であるものとすると、CPU71はステップ705の判定にて「Yes」と判定してステップ710に進み、上流側空燃比センサ較正フラグXCORRECTの値を「0」に設定する。ここで、上流側空燃比センサ較正フラグXCORRECTは、その値が「1」のとき上流側空燃比センサ66が較正された状態にあることを示し、その値が「0」のとき同上流側空燃比センサ66が較正された状態にないことを示す。
【0103】
次に、CPU71はステップ715に進んで、水温センサ65が検出する冷却水温THWが冷間始動判定基準値THWref以下であるか否かを判定し、冷却水温THWが冷間始動判定基準値THWrefより高ければステップ795に直接進んで本ルーチンを一旦終了する。
【0104】
現時点は、冷間始動された直後であるから、冷却水温THWは冷間始動判定基準値THWref以下となっている。従って、CPU71はステップ715の判定にて「Yes」と判定してステップ720以降の上流側空燃比センサ66の較正処理を行う。即ち、本例では、冷間始動された直後のみ、上流側空燃比センサ66の較正処理が実行される。
【0105】
CPU71はステップ720に進むと、上記数9に従って、一定値である上流側目標値vstoichから現時点での上流側空燃比センサ66の較正前の実際の出力値vabyfs0を減じた値を上流側センサ出力較正値vabyfsaddとして設定する。次いで、CPU71はステップ725に進み、以後、今回求めた上流側センサ出力較正値vabyfsaddを上流側空燃比センサ66が出力する較正前の実際の出力値vabyfs0に加えた値を上流側空燃比センサ66の(較正後の実際の)出力値vabyfsとして設定する。
【0106】
そして、CPU71はステップ730に進んで、上流側空燃比センサ較正フラグXCORRECTの値を「1」に設定した後、ステップ795に進んで本ルーチンを一旦終了する。以降、CPU71はステップ705に進んだとき「No」と判定してステップ795に直接進んで本ルーチンを一旦終了するようになる。
【0107】
以上のようにして、冷間始動される直後毎に、上流側空燃比センサ66の較正が実行される。そして、内燃機関10が冷間始動されて上流側空燃比センサの較正が実行された場合には上流側空燃比センサ較正フラグXCORRECTの値が「1」に設定され、一方、内燃機関10が冷間始動されずに(内燃機関10が暖機された状態で始動されて)上流側空燃比センサの較正が実行されなかった場合には上流側空燃比センサ較正フラグXCORRECTの値が「0」に設定される。
【0108】
<空燃比フィードバック制御>
CPU71は、図8にフローチャートにより示した燃料噴射量Fiの計算、及び燃料噴射の指示を行うルーチンを、各気筒のクランク角が各吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎に、繰り返し実行するようになっている。従って、任意の気筒のクランク角度が前記所定クランク角度になると、CPU71はステップ800から処理を開始してステップ805に進み、上記数1に従って、エアフローメータ61により計測された吸入空気流量Ga、エンジン回転速度NE等に基いて、機関の空燃比を理論空燃比とするための基本燃料噴射量Fbaseを求める。
【0109】
次いで、CPU71はステップ810に進み、上記数2に従って、基本燃料噴射量Fbaseに後述する空燃比フィードバック補正量(メインフィードバック制御量)DFiを加えた値を燃料噴射量Fiとして設定する。
【0110】
次に、CPU71はステップ815に進み、同ステップ815にて燃料噴射量Fiの燃料を噴射するための指示をインジェクタ39に対して行った後、ステップ895に進み、本ルーチンを一旦終了する。以上により、フィードバック補正された燃料噴射量Fiの燃料が吸気行程を迎える気筒に対して噴射される。
【0111】
次に、上記メインフィードバック制御量DFiを算出する際の作動について説明すると、CPU71は図9にフローチャートにより示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU71はステップ900から処理を開始し、ステップ905に進んで空燃比フィードバック制御条件(メインフィードバック条件)が成立しているか否かを判定する。この空燃比フィードバック制御条件は、例えば、機関の冷却水温THWが第1所定温度以上であって、機関の一回転当りの吸入空気量(負荷)が所定値以下であるときに成立する。
【0112】
いま、空燃比フィードバック制御条件が成立しているものとして説明を続けると、CPU71はステップ905にて「Yes」と判定してステップ910に進み、現時点の上流側空燃比センサ66の(較正後の)出力値vabyfsと後述するサブフィードバック制御量vafsfbとの和(vabyfs+vafsfb)を図3に実線にて示したテーブルに基いて変換することにより、現時点におけるメインフィードバック制御用空燃比abyfsを求める。このメインフィードバック制御用空燃比abyfsが、上流側空燃比センサ66の出力をサブフィードバック制御量vafsfbにより補正した第1触媒53の上流における上記「見かけ上の空燃比」である。
【0113】
次に、CPU71はステップ915に進み、現時点からNストローク(N回の吸気行程)前に吸気行程を迎えた気筒の吸入空気量である筒内吸入空気量Mc(k-N)を前記求めたメインフィードバック制御用空燃比abyfsで除することにより、現時点からNストローク前の実際の筒内燃料供給量Fc(k-N)を求める。
【0114】
次いで、CPU71はステップ920に進み、現時点からNストローク前の筒内吸入空気量Mc(k-N)を現時点からNストローク前の目標空燃比abyfr(k-N)で除することにより、現時点からNストローク前の目標筒内燃料供給量Fcr(k-N)を求める。
【0115】
そして、CPU71はステップ925に進んで、上記数7に従って、目標筒内燃料供給量Fcr(k-N)から筒内燃料供給量Fc(k-N)を減じた値を筒内燃料供給量偏差DFcとして設定する。つまり、筒内燃料供給量偏差DFcは、Nストローク前の時点で筒内に供給された燃料の過不足分を表す量となる。次に、CPU71はステップ930に進み、上記数8に基いてメインフィードバック制御量DFiを求める。
【0116】
次いで、CPU71は、ステップ935にてその時点における筒内燃料供給量偏差DFcの積分値SDFcに上記ステップ925にて求めた筒内燃料供給量偏差DFcを加えて、新たな筒内燃料供給量偏差の積分値SDFcを求め、ステップ995にて本ルーチンを一旦終了する。
【0117】
以上により、メインフィードバック制御量DFiが比例積分制御により求められ、このメインフィードバック制御量DFiが前述した図8のステップ810により燃料噴射量に反映されるので、Nストローク前の燃料供給量の過不足が補償され、内燃機関の空燃比が目標空燃比abyfrと略一致せしめられるようにフィードバック制御される。
【0118】
一方、ステップ905の判定時において、空燃比フィードバック制御条件が不成立であると、CPU71は同ステップ905にて「No」と判定してステップ940に進んでメインフィードバック制御量DFiの値を「0」に設定し、その後ステップ995に進んで本ルーチンを一旦終了する。このように、空燃比フィードバック制御条件が不成立であるときは、メインフィードバック制御量DFiを「0」として空燃比の補正を行わない。
【0119】
次に、下流側空燃比センサ67の出力Voxsに基く空燃比フィードバック制御(サブフィードバック制御)について説明する。このサブフィードバック制御により、サブフィードバック制御量vafsfbが算出される。
【0120】
CPU71は、サブフィードバック制御量vafsfbを求めるために、図10に示したルーチンを所定時間の経過毎に実行している。従って、所定のタイミングになると、CPU71はステップ1000から処理を開始し、ステップ1005に進んでサブフィードバック制御条件が成立しているか否かを判定する。サブフィードバック制御条件は、例えば、前述したステップ905での空燃比フィードバック制御条件に加え、機関の冷却水温THWが前記第1所定温度よりも高い第2所定温度以上のときに成立する。
【0121】
いま、サブフィードバック制御条件が成立しているものとして説明を続けると、CPU71はステップ1005にて「Yes」と判定してステップ1010に進み、上記数5に従って、所定の下流側目標値Voxsrefから現時点の下流側空燃比センサ67の出力値Voxsを減じることにより、出力偏差量DVoxsを求める。
【0122】
次に、CPU71はステップ1015に進んで、下記数11に基き出力偏差量DVoxsの微分値DDVoxsを求める。
【0123】
【数11】
DDVoxs=(DVoxs-DVoxs1)/Δt
【0124】
上記数11において、DVoxs1は前回の本ルーチン実行時において後述するステップ1030にて設定(更新)された出力偏差量DVoxsの前回値である。また、Δtは本ルーチンの計算周期(前記所定時間)である。
【0125】
次いで、CPU71はステップ1020に進み、上記数6に従って、サブフィードバック制御量vafsfbを求めた後、ステップ1025に進んで、その時点における出力偏差量の積分値SDVoxsに上記ステップ1010にて求めた出力偏差量DVoxsを加えて、新たな出力偏差量の積分値SDVoxsを求め、続くステップ1030にて、上記ステップ1010にて求めた出力偏差量DVoxsを出力偏差量DVoxsの前回値DVoxs1として設定した後、ステップ1095に進んで本ルーチンを一旦終了する。このようにして、サブフィードバック制御量vafsfbが求められ、この値は前述した図9のステップ910にて上流側空燃比センサ66の実際の出力値vabyfsに加えられる。
【0126】
一方、サブフィードバック制御条件が不成立であるとき、CPU71はステップ1005にて「No」と判定してステップ1035に進み、同ステップ1035にてサブフィードバック制御量vafsfbを「0」に設定し、ステップ1095にて本ルーチンを一旦終了する。これにより、下流側空燃比センサ67の出力Voxsに基くサブフィードバック制御が停止される。
【0127】
<下流側空燃比センサの較正>
CPU71は、図11にフローチャートにより示した下流側空燃比センサ67の較正を行うルーチンを、所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU71はステップ1100から処理を開始し、ステップ1105に進んで、上流側空燃比センサ較正フラグXCORRECTの値が「1」になっているか否かを判定し、上流側空燃比センサ較正フラグXCORRECTの値が「0」になっていれば、ステップ1105にて「No」と判定してステップ1140に直接進んでカウンタMの値を「0」に設定した後ステップ1195に直接進んで本ルーチンを一旦終了する。
【0128】
いま、冷間始動により上流側空燃比センサ較正フラグXCORRECTの値が「1」になっているものとすると、CPU71はステップ1105の判定にて「Yes」と判定してステップ1110に進み、内燃機関10が定常運転状態にあるか否かを判定する。ここで、内燃機関10が定常運転状態にあると判定される場合は、例えば、前述したステップ1005でのサブフィードバック制御条件に加え、エンジン回転速度NE、及び、機関の一回転当りの吸入空気量(負荷)が共に所定時間以上略一定である場合である。
【0129】
ここで、ステップ1110の判定において、内燃機関10が定常運転状態にないと判定されると、CPU71はステップ1110にて「No」と判定してステップ1140に直接進んでカウンタMの値を「0」に設定した後ステップ1195に進んで本ルーチンを一旦終了する。
【0130】
一方、いま、内燃機関10が定常運転状態になったものとすると、CPU71はステップ1110にて「Yes」と判定してステップ1115に進んでその時点でのカウンタMの値(現時点では「0」)を「1」だけ増大した値を新たなカウンタMの値として設定する。即ち、カウンタMの値は、内燃機関10の定常運転状態の継続時間に対応する値である。
【0131】
次に、CPU71は1120に進んで、カウンタMの値が前記所定時間T1に相当する下流側較正判定基準値Mcor以上であるか否かを判定する。現時点では、カウンタMの値が「1」であって下流側較正判定基準値Mcor未満であるので、CPU71はステップ1120にて「No」と判定してステップ1195に直接進んで本ルーチンを一旦終了する。以降、内燃機関10が定常運転状態に維持されている限りにおいて所定時間T1が経過するまで、CPU71はステップ1100、1105(「Yes」と判定)、1110(「Yes」と判定)、1115、1120(「No」と判定)、1195の処理を繰り返し実行する。
【0132】
そして、ステップ1125が繰り返し実行されることによりカウンタMの値が下流側較正判定基準値Mcor以上になると(即ち、内燃機関10の定常運転状態の継続時間が所定時間T1に達すると)、CPU71はステップ1120に進んだとき「Yes」と判定してステップ1125に進み、現時点でのサブフィードバック制御量vafsfbの値と、図6に示したテーブルと同様のステップ1125内に記載のテーブルとに基いてオフセット量offsetを計算する。
【0133】
次に、CPU71はステップ1130に進んで、上記数10に従って、その時点での下流側センサ出力較正値Voxsaddにステップ1125にて算出したオフセット量offsetを加えた値を新たな下流側センサ出力較正値Voxsaddとして設定(更新)する。そして、CPU71はステップ1135に進んで、次回下流側センサ出力較正値Voxsaddが更新されるまで、ステップ1130にて更新した下流側センサ出力較正値Voxsaddを下流側空燃比センサ67が出力する較正前の実際の出力値Voxs0に加えた値を下流側空燃比センサ67の(較正後の実際の)出力値Voxsとして設定する。
【0134】
次いで、CPU71はステップ1140に進んで、カウンタMの値を「0」に設定した後、ステップ1195に進んで本ルーチンを一旦終了する。以降、内燃機関10の定常運転状態の継続時間が所定時間T1に達する毎に、CPU71はステップ1120にて「Yes」と判定してステップ1125以降の上記下流側空燃比センサ67の較正処理を実行する。以上のようにして、内燃機関10の定常運転状態の継続時間が所定時間T1に達する毎に、下流側空燃比センサ67の較正が実行される。
【0135】
以上、説明したように、本発明による内燃機関の排気浄化装置の実施形態によれば、検出する排気ガスの空燃比が未知であっても不活性状態における特性を利用して較正することができる限界電流式の上流側空燃比センサ66が冷間始動直後毎に較正された後、上記空燃比フィードバック制御中において内燃機関10の定常運転状態の継続時間が所定時間T1に達する毎に、その時点でのサブフィードバック制御量vafsfbの値、即ち、積分項Ki・SDVoxs(時間積分値)の値に基いて起電力式の下流側空燃比センサ67が較正され得る。従って、起電力式の下流側空燃比センサ67が使用される場合であっても、前記空燃比フィードバック制御を継続しながら機関の空燃比が下流側目標空燃比(理論空燃比)に正確に一致するように制御され得ることになり、その結果、第1触媒53(従って、第2触媒54)の排気ガス浄化効率が低下することなくエミッションの排出量が増大するを防止できた。
【0136】
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態においては、上流側空燃比センサの較正前の出力値vabyfs0に上流側センサ出力較正値vabyfsaddを加えることで上流側空燃比センサを較正しているが、上流側空燃比センサの出力値には変更を加えることなく、上流側目標値vstoichから同出力較正値vabyfsaddを減じた値を新たな上流側目標値vstoichとして設定することで上流側空燃比センサを較正するように構成してもよい。
【0137】
また、上記実施形態においては、下流側空燃比センサの較正前の出力値Voxs0に下流側センサ出力較正値Voxsaddを加えることで下流側空燃比センサを較正しているが、下流側空燃比センサの出力値には変更を加えることなく、下流側目標値Voxsrefから同出力較正値Voxsaddを減じた値を新たな下流側目標値Voxsrefとして設定することで下流側空燃比センサを較正するように構成してもよい。
【0138】
また、上記実施形態においては、サブフィードバック制御量vafsfbを上流側空燃比センサ67の出力値vabyfsに加えることで上流側空燃比センサ67の出力値vabyfsを調整し、調整後の上流側空燃比センサ67の出力値(vabyfs+vafsfb)が上流側目標値vstoichになるように機関の空燃比がフィードバック制御されているが、サブフィードバック制御量vafsfbを上流側目標値vstoichから減じることで上流側目標値vstoichを調整し、上流側空燃比センサ67の出力値vabyfsが調整後の上流側目標値(vstoich-vafsfb)になるように機関の空燃比がフィードバック制御されるように構成してもよい。
【0139】
また、上記実施形態において、上流側センサ出力較正値vabyfsaddが所定値よりも大きい場合、上流側空燃比センサの異常と判定し、上記空燃比フィードバック制御を中止する等の処置を行うように構成してもよい。同様に、下流側センサ出力較正値Voxsaddが所定値よりも大きい場合、下流側空燃比センサの異常と判定し、上記空燃比フィードバック制御(或いは、上記サブフィードバック制御のみ)を中止する等の処置を行うように構成してもよい。
【0140】
また、上記実施形態においては、下流側空燃比センサの較正を行う際に、定常状態におけるサブフィードバック制御量vafsfb(積分項、時間積分値)の値自体を使用して下流側センサ出力較正値Voxsadd(オフセット量offset)を決定しているが、サブフィードバック制御量(積分項、時間積分値)の値自体に所定のローパスフィルタ処理を施した後の値を使用して下流側センサ出力較正値Voxsadd(オフセット量offset)を決定するように構成してもよい。
【0141】
また、上記実施形態においては、下流側空燃比センサの較正を行う際に、上流側空燃比センサの較正後の定常状態におけるサブフィードバック制御量vafsfb(積分項、時間積分値)の値に基いて同サブフィードバック制御量vafsfbがその後の定常状態においてゼロになるように下流側センサ出力較正値Voxsadd(オフセット量offset)を決定しているが、上流側空燃比センサの較正後の定常状態における上流側空燃比センサの出力値に対応する空燃比(検出空燃比)に相当する(検出される排気ガスの空燃比が上流側空燃比センサの検出空燃比であるときの)下流側空燃比センサの出力目標値(下流側空燃比センサが図4に実線にて示した正常値を出力する場合の同下流側空燃比センサの出力値)から下流側空燃比センサの実際の出力値Voxsを減じた値を下流側センサ出力較正値Voxsadd(オフセット量offset)として決定するように構成してもよい。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る空燃比制御装置(排気浄化装置)を適用した内燃機関の概略図である。
【図2】 図1に示したエアフローメータの出力電圧と計測された吸入空気流量との関係を示したグラフである。
【図3】 図1に示した上流側空燃比センサの出力電圧と空燃比との関係を示したグラフである。
【図4】 図1に示した下流側空燃比センサの出力電圧と空燃比との関係を示したグラフである。
【図5】 図1に示した空燃比制御装置が空燃比フィードバック制御を実行する際の機能ブロック図である。
【図6】 図1に示したCPUが参照するサブフィードバック制御量とオフセット量との関係を規定したテーブルを示したグラフである。
【図7】 図1に示したCPUが実行する上流側空燃比センサを較正するためのルーチンを示したフローチャートである。
【図8】 図1に示したCPUが実行する燃料噴射量計算のためのルーチンを示したフローチャートである。
【図9】 図1に示したCPUが実行する空燃比フィードバック補正量(メインフィードバック制御量)を計算するためのルーチンを示したフローチャートである。
【図10】 図1に示したCPUが実行するサブフィードバック制御量を計算するためのルーチンを示したフローチャートである。
【図11】 図1に示したCPUが実行する下流側空燃比センサを較正するためのルーチンを示したフローチャートである。
【符号の説明】
10…内燃機関、25…燃焼室、39…インジェクタ、52…エキゾーストパイプ(排気管)、53…三元触媒(第1触媒)、54…三元触媒(第2触媒)、66…上流側空燃比センサ、67…下流側空燃比センサ、70…電気制御装置、71…CPU

Claims (4)

  1. 内燃機関の排気通路に配設された触媒と、
    前記触媒よりも上流の前記排気通路に配設された上流側空燃比センサと、
    前記触媒よりも下流の前記排気通路に配設された下流側空燃比センサと、
    前記上流側空燃比センサの出力値と所定の上流側目標空燃比に対応する所定の上流側目標値とに基いて前記機関の空燃比をフィードバック制御するメインフィードバック制御手段と、
    前記フィードバック制御中において前記下流側空燃比センサの出力値と所定の下流側目標空燃比に対応する所定の下流側目標値とに基いて、前記フィードバック制御される機関の空燃比を調整するための調整量を算出するとともに同調整量を前記フィードバック制御に使用させることで同機関の空燃比を調整するサブフィードバック制御手段と、を備えた内燃機関の排気浄化装置であって、
    前記上流側目標空燃比に対応する前記上流側空燃比センサの出力値と前記上流側目標値とが一致するように同上流側空燃比センサの出力値又は同上流側目標値を較正する上流側較正手段と、
    前記上流側較正手段により前記上流側空燃比センサの出力値又は前記上流側目標値が較正された後であって、且つ、前記内燃機関が定常運転状態にあるとき、同上流側空燃比センサの出力値及び前記下流側空燃比センサの出力値に基いて、前記下流側目標空燃比に対応する同下流側空燃比センサの出力値と前記下流側目標値とが一致するように同下流側空燃比センサの出力値又は同下流側目標値を較正する下流側較正手段と、
    を備えた内燃機関の排気浄化装置。
  2. 内燃機関の排気通路に配設された触媒と、
    前記触媒よりも上流の前記排気通路に配設された上流側空燃比センサと、
    前記触媒よりも下流の前記排気通路に配設された下流側空燃比センサと、
    前記上流側空燃比センサの出力値と所定の上流側目標空燃比に対応する所定の上流側目標値との定常偏差がゼロになるように同上流側空燃比センサの出力値に基いて前記機関の空燃比をフィードバック制御するメインフィードバック制御手段と、
    前記フィードバック制御中において前記下流側空燃比センサの出力値と所定の下流側目標空燃比に対応する所定の下流側目標値との定常偏差がゼロになるように同下流側空燃比センサの出力値に基いて、前記上流側空燃比センサの出力値又は前記上流側目標値を調整する調整量を算出するとともに同調整量を前記フィードバック制御に使用させることで前記フィードバック制御される機関の空燃比を調整するサブフィードバック制御手段と、を備えた内燃機関の排気浄化装置であって、
    前記上流側目標空燃比に対応する前記上流側空燃比センサの出力値と前記上流側目標値とが前記調整量による調整前において一致するように同上流側空燃比センサの出力値又は同上流側目標値を較正する上流側較正手段と、
    前記上流側較正手段により前記上流側空燃比センサの出力値又は前記上流側目標値が較正された後の前記フィードバック制御中であって、且つ、前記内燃機関が定常運転状態にあるとき、前記上流側目標空燃比と前記下流側目標空燃比の差、及び前記調整量に基いて、前記下流側目標空燃比に対応する前記下流側空燃比センサの出力値と前記下流側目標値とが一致するように同下流側空燃比センサの出力値又は同下流側目標値を較正する下流側較正手段と、
    を備えた内燃機関の排気浄化装置。
  3. 請求項2に記載の内燃機関の排気浄化装置において、
    前記サブフィードバック制御手段は、少なくとも前記下流側目標値と前記下流側空燃比センサの出力値との差の時間積分値に基いて前記上流側空燃比センサの出力値を調整する前記調整量を算出するように構成されているとともに、
    前記上流側目標空燃比と前記下流側目標空燃比とは一致していて、
    前記下流側較正手段は、前記時間積分値がゼロになるように同時間積分値に基いて前記下流側空燃比センサの出力値又は前記下流側目標値を較正するよう構成された内燃機関の排気浄化装置。
  4. 内燃機関の排気通路に配設された触媒と、
    前記触媒よりも上流の前記排気通路に配設された上流側空燃比センサと、
    前記触媒よりも下流の前記排気通路に配設された下流側空燃比センサとを備えた排気浄化装置に適用される内燃機関の排気浄化方法であって、
    所定の上流側目標空燃比に対応する前記上流側空燃比センサの出力値と同上流側目標空燃比に対応する所定の上流側目標値とが一致するように同上流側空燃比センサの出力値又は同上流側目標値を較正し、
    その後、前記上流側空燃比センサの出力値と前記上流側目標値との定常偏差がゼロになるように同上流側空燃比センサの出力値に基いて前記機関の空燃比をフィードバック制御し、
    前記フィードバック制御中において前記下流側空燃比センサの出力値と所定の下流側目標空燃比に対応する所定の下流側目標値との定常偏差がゼロになるように同下流側空燃比センサの出力値に基いて、前記上流側空燃比センサの出力値又は前記上流側目標値を調整する調整量を算出するとともに同調整量を前記フィードバック制御に使用することで前記フィードバック制御される機関の空燃比を調整するとともに、
    前記フィードバック制御中であって、且つ、前記内燃機関が定常運転状態にあるとき、前記上流側目標空燃比と前記下流側目標空燃比の差、及び前記調整量に基いて、前記下流側目標空燃比に対応する前記下流側空燃比センサの出力値と前記下流側目標値とが一致するように同下流側空燃比センサの出力値又は同下流側目標値を較正する内燃機関の排気浄化方法。
JP2002353394A 2002-12-05 2002-12-05 内燃機関の排気浄化装置及び排気浄化方法 Expired - Fee Related JP4036088B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353394A JP4036088B2 (ja) 2002-12-05 2002-12-05 内燃機関の排気浄化装置及び排気浄化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353394A JP4036088B2 (ja) 2002-12-05 2002-12-05 内燃機関の排気浄化装置及び排気浄化方法

Publications (2)

Publication Number Publication Date
JP2004183585A JP2004183585A (ja) 2004-07-02
JP4036088B2 true JP4036088B2 (ja) 2008-01-23

Family

ID=32754692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353394A Expired - Fee Related JP4036088B2 (ja) 2002-12-05 2002-12-05 内燃機関の排気浄化装置及び排気浄化方法

Country Status (1)

Country Link
JP (1) JP4036088B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792779B2 (ja) 2005-03-29 2011-10-12 株式会社ニコン ズームレンズ
JP4438681B2 (ja) 2005-04-27 2010-03-24 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4280931B2 (ja) 2005-10-19 2009-06-17 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP4380625B2 (ja) 2005-11-24 2009-12-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP2007162565A (ja) 2005-12-14 2007-06-28 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4816341B2 (ja) * 2006-09-01 2011-11-16 日産自動車株式会社 内燃機関
JP4725478B2 (ja) * 2006-10-10 2011-07-13 トヨタ自動車株式会社 内燃機関の空燃比制御装置
WO2011052096A1 (ja) 2009-10-29 2011-05-05 トヨタ自動車株式会社 内燃機関システム制御装置
WO2012032631A1 (ja) 2010-09-09 2012-03-15 トヨタ自動車株式会社 空燃比制御装置
EP2617974B1 (en) 2010-09-15 2016-04-20 Toyota Jidosha Kabushiki Kaisha Air-fuel-ratio control device
WO2012157059A1 (ja) * 2011-05-16 2012-11-22 トヨタ自動車株式会社 内燃機関の空燃比制御装置
JP5704038B2 (ja) * 2011-10-05 2015-04-22 トヨタ自動車株式会社 空燃比センサの補正装置
DE102012208092B4 (de) 2012-05-15 2022-02-24 Robert Bosch Gmbh Verfahren und Steuereinheit zur Kompensation eines Spannungsoffsets einer Zweipunkt-Lambdasonde
CN106227150B (zh) * 2016-07-15 2019-03-29 北京安控科技股份有限公司 一种基于软件标定精度的方法和装置

Also Published As

Publication number Publication date
JP2004183585A (ja) 2004-07-02

Similar Documents

Publication Publication Date Title
US7278394B2 (en) Air-fuel-ratio control apparatus for internal combustion engine
KR100773276B1 (ko) 내연 기관의 공연비 제어 장치
US7677223B2 (en) Air-fuel-ratio control apparatus for internal combustion engine
US7484504B2 (en) Air-fuel ratio control system and method for internal combustion engine
JP4957559B2 (ja) 内燃機関の空燃比制御装置
US7698886B2 (en) Catalyst deterioration degree acquiring apparatus in internal combustion engine
JP3846480B2 (ja) 内燃機関の排気浄化装置
JP2004044454A (ja) 内燃機関の燃料噴射量制御装置
JP4036088B2 (ja) 内燃機関の排気浄化装置及び排気浄化方法
US20100132681A1 (en) Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine
JP3922091B2 (ja) 内燃機関の空燃比制御装置
JP4280931B2 (ja) 内燃機関の空燃比制御装置
US20130110380A1 (en) Air-fuel ratio control apparatus for an internal combustion engine
US20120271534A1 (en) Control device for internal combustion engine
JP4710716B2 (ja) 内燃機関の空燃比制御装置
JP4888397B2 (ja) 内燃機関の空燃比制御装置
JP2006112274A (ja) 内燃機関の空燃比制御装置
JP2005009401A (ja) 内燃機関の排気浄化装置
JP4299218B2 (ja) 内燃機関の空燃比制御装置
JP2009197683A (ja) 内燃機関の空燃比制御装置
JP2007278186A (ja) 内燃機関の空燃比制御装置
JP2007231902A (ja) 内燃機関の空燃比制御装置
JP3303614B2 (ja) 内燃機関のアイドル回転速度制御装置
JP2008215106A (ja) 内燃機関の空燃比制御装置
JPH11148403A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees