WO2012150684A1 - ポリヒドロキシウレタン微粒子及びその製造方法 - Google Patents

ポリヒドロキシウレタン微粒子及びその製造方法 Download PDF

Info

Publication number
WO2012150684A1
WO2012150684A1 PCT/JP2012/060969 JP2012060969W WO2012150684A1 WO 2012150684 A1 WO2012150684 A1 WO 2012150684A1 JP 2012060969 W JP2012060969 W JP 2012060969W WO 2012150684 A1 WO2012150684 A1 WO 2012150684A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
compound
polyhydroxyurethane
carbon dioxide
cyclic carbonate
Prior art date
Application number
PCT/JP2012/060969
Other languages
English (en)
French (fr)
Inventor
学 宇留野
高橋 賢一
千也 木村
花田 和行
Original Assignee
大日精化工業株式会社
浮間合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社, 浮間合成株式会社 filed Critical 大日精化工業株式会社
Priority to US14/111,135 priority Critical patent/US9416227B2/en
Priority to CN201280021666.4A priority patent/CN103502309B/zh
Priority to KR1020137031837A priority patent/KR101556837B1/ko
Priority to EP12779542.5A priority patent/EP2706078B1/en
Publication of WO2012150684A1 publication Critical patent/WO2012150684A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to polyhydroxyurethane fine particles and a method for producing the same.
  • it is useful as a modifier that gives paints, coating agents, resins, rubbers, elastomers, etc. excellent performance in oil absorption and wear resistance, etc., and the use of carbon dioxide as its raw material
  • the present invention relates to a technique for providing polyhydroxyurethane fine particles that are capable of containing carbon dioxide at a high concentration.
  • polymer fine particles have been used in various applications as industrial materials.
  • examples of the application include rheology control agents and matting agents for paints, cosmetic modifiers, liquid crystal spacers, resin shrinkage inhibitors, column fillers, and toners.
  • the functions expressed due to the polymer fine particles used include those derived from the raw materials constituting the fine particles and the shapes of the fine particles themselves.
  • the properties of the surface of the fine particles are important, and the function required for the fine particles depends largely on the characteristics of the material constituting the particles.
  • the size and shape of the fine particles themselves are used as an important function, as is evident from the fact that spherical fine particles with uniform particle diameters are used for matting agents and liquid crystal spacers for paints. Yes.
  • Conventional polymer fine particle production methods include a pulverization method in which a resin is pulverized to a desired particle size, and a polymerization method in which polymer fine particles are directly obtained by emulsion polymerization or suspension polymerization.
  • the polymerization method is particularly useful as a method for obtaining spherical polymer fine particles.
  • many of the polymer fine particles used for industrial use have a smaller addition amount when the particle shape is spherical, or even spherical, and the particle size distribution is narrower. Since an effect is acquired, it is advantageous. From such a viewpoint, it can be said that the fine particle synthesis by the polymerization method as described above is a more useful method than the pulverization method as a method for producing polymer fine particles that can be used for applications requiring high functionality.
  • polymer fine particles that are industrialized by the polymerization method include fine particles made of materials such as acrylic, polystyrene epoxy, polyester, polyamide, and polyurethane.
  • polyurethane fine particles are mainly used for paints and coating agents because they have wear resistance, solvent resistance, heat resistance, adhesion and oil resistance derived from the properties of the base polyurethane. It is widely used as a modifier.
  • a method for industrially producing polyurethane fine particles used in such modifiers is a polymerization method, for example, using a dispersant in water to disperse a polyisocyanate prepolymer and utilizing a reaction with water.
  • Patent Document 1 A non-aqueous suspension polymerization method that is not affected by water
  • Patent Document 2 A non-aqueous suspension polymerization method that is not affected by water
  • Patent Document 2 A non-aqueous suspension polymerization method that is not affected by water
  • Patent Document 2 A non-aqueous suspension polymerization method that is not affected by water
  • the isocyanate compound used as a raw material in the above-described method for producing polyurethane fine particles is industrially produced as a variety of compounds, but any isocyanate compound is a harmful substance and has a drawback that it is difficult to handle. . Furthermore, phosgene used for the production of isocyanate compounds is a very toxic substance, and it is strongly desired to reduce its use.
  • Patent Documents 3 and 4 a method of reacting a cyclic carbonate and an amine has been reported as a method for producing a polyurethane resin without using isocyanate.
  • This production method is characterized in that isocyanate is not used as a raw material, and the cyclic carbonate used as a raw material is obtained by using carbon dioxide as the raw material.
  • the obtained polyurethane resin is also a compound in which carbon dioxide is taken into the chemical structure.
  • the above-mentioned technology is a technology that should be noted from another viewpoint of a technology that contributes to the reduction of carbon dioxide, which is a kind of greenhouse gas, which has been a problem in recent years.
  • Patent Documents 3 and 4 are specific to the production method of a resin solution used for a paint binder, and no method has yet been reported for a method of synthesizing polyurethane fine particles using this reaction.
  • the object of the present invention is to develop a technology capable of solving the above-mentioned conventional problems and providing polyhydroxyurethane fine particles that can be applied to a wide range of applications and have a narrow particle size distribution. It is to be.
  • the present invention is a spherical polymer fine particle having a particle diameter of 0.1 ⁇ m to 300 ⁇ m, and the polymer constituting the fine particle is represented by the following (1) or (2) in the structure thereof.
  • a polyhydroxyurethane fine particle having at least one of chemical structural units, wherein —O—CO— bonds constituting these chemical structural units are derived from carbon dioxide.
  • the —O—CO— bond constituting the chemical structural unit is formed using a 5-membered cyclic carbonate group synthesized using carbon dioxide as one of the raw materials as a reactive group. And the above-mentioned polyhydroxyurethane fine particles containing 1 to 30% by mass of the carbon dioxide-derived —O—CO— bonds in the polymer constituting the fine particles.
  • a method for producing the above polyhydroxyurethane fine particles which comprises reacting a compound having at least two 5-membered cyclic carbonate groups as reactive groups with at least two amino groups. These compounds are uniformly dispersed in an inert liquid containing a dispersing agent using a compound having a functional group, and then heated to react both compounds to be dispersed in an inert liquid.
  • a compound having three or more reactive groups in one molecule is used for either one of the above compounds, and both compounds have a functional group equivalent ratio of 0.7 defined by the following formula:
  • a method for producing polyhydroxyurethane fine particles characterized by reacting at ⁇ 1.5. (The number of functional groups in the above formula is the number of cyclic carbonate structures or amino groups in each molecule of the carbonate compound and the amine compound.)
  • the compound having a 5-membered cyclic carbonate group as a reactive group is synthesized using carbon dioxide as one of the raw materials.
  • the carbon dioxide-derived- 1-30% by mass of O—CO— bonds are contained.
  • 1 to 40% by mass of the mass of the polymer fine particles is composed of carbon dioxide-derived —O—CO— bonds;
  • the structure has a nonpolar part and a polar part, the nonpolar part has a polybutadiene skeleton, and the polar part is either a 5-membered cyclic carbonate structure or a hydroxyurethane structure.
  • the inert liquid is removed from the polymer fine particles dispersed in the inert liquid, and is taken out as powdered polymer fine particles.
  • polyhydroxyurethane fine particles that can be applied to a wide range of applications can be used, so that the composition can be appropriately designed and fine particles with a narrow particle size distribution can be easily provided. Furthermore, since the polyhydroxyurethane fine particles provided by the present invention can use a specific cyclic carbonate compound synthesized using carbon dioxide as a raw material, provision of useful technology from the viewpoint of saving resources and protecting the environment. Is possible.
  • FIG. 1 is a chart showing the particle size distribution of polyhydroxyurethane fine particles (1) obtained in Example 1.
  • FIG. 4 is an electron micrograph of polyhydroxyurethane fine particles (1) obtained in Example 1.
  • the polyhydroxyurethane fine particles of the present invention are spherical polymer fine particles having a particle diameter of 0.1 ⁇ m to 300 ⁇ m, and the polymer constituting the fine particles is represented by the following (1) or (2) in the structure. And the —O—CO— bond constituting these chemical structural units is derived from carbon dioxide.
  • the polyhydroxyurethane fine particles provided by the present invention are polymer fine particles obtained by incorporating carbon dioxide into the structure.
  • the chemical structural unit represented by the above (1) or (2), which characterizes the present invention can be formed, for example, by an addition reaction between a 5-membered cyclic carbonate compound and an amine compound.
  • this addition reaction as shown in the following formula (A), since there are two types of cleavage of the 5-membered cyclic carbonate, it is known that products of two types of structures can be obtained.
  • these chemical structural units represented by (1) or (2) are considered to be present randomly in the obtained polymer.
  • these chemical structural units have a hydroxyl group adjacent to the urethane bond.
  • Such a structure cannot be obtained by a conventional polyurethane synthesis reaction by a reaction between an isocyanate and a hydroxyl group, and the polyhydroxyurethane fine particles of the present invention are characterized by having an unprecedented unique structure.
  • the polyhydroxyurethane resin that characterizes the present invention has a urethane structure, but can be considered as a polymer different from the conventional polyurethane resin. Hydroxyurethane fine particles also exhibit different characteristics from conventional polyurethane fine particles.
  • the polyhydroxyurethane fine particles of the present invention can be obtained by utilizing the reaction represented by the above formula (A).
  • a compound having at least two 5-membered cyclic carbonate groups as reactive groups hereinafter sometimes simply referred to as a cyclic carbonate compound
  • a compound having at least two amino groups as reactive groups (Hereinafter sometimes abbreviated as an amine compound) as an essential component
  • these compounds are uniformly dispersed in an inert liquid containing a dispersant, and then heated to react both compounds.
  • Polyhydroxyurethane fine particles dispersed in an inert liquid are obtained.
  • a compound having three or more reactive groups in one molecule is used for either one of the two kinds of compounds essential as described above, and both compounds are combined with a functional group equivalent ratio. React at 0.7-1.5.
  • the functional group equivalent ratio in the present invention is the same concept as the molar equivalent ratio of functional groups, and is calculated by the following formula.
  • the calculation method of the functional group equivalent ratio in that case is to calculate the mass of each compound of the numerator and denominator as the total compound. It is calculated by making the molecular weight and the number of functional groups the weighted average value of all compositions.
  • the functional group number in a following formula is the number of the cyclic carbonate structure or amino group which a cyclic carbonate compound and an amine compound have in each 1 molecule. A specific calculation method will be described later.
  • the above-mentioned cyclic carbonate compound characterizing the present invention is preferably obtained by a reaction between an epoxy compound and carbon dioxide, and specifically obtained as follows.
  • an epoxy compound as a raw material is reacted in the presence of a catalyst at a temperature of 0 ° C. to 160 ° C. in a carbon dioxide atmosphere pressurized to about atmospheric pressure to about 1 MPa for 4 to 24 hours.
  • a cyclic carbonate compound in which carbon dioxide is immobilized at the ester site can be obtained.
  • the reaction ratio between the cyclic carbonate compound and the amine compound should be based on 1.0 where the relative ratio of carbonate groups and amino groups contained in each compound is equivalent. That's fine. For this reason, when one compound has a trifunctional or higher functional group, it is preferable to use one compound in a large amount as long as the other compound has a bifunctional functional group.
  • the relative ratio of both does not necessarily need to be 1.0, and fine particles can be formed even when one of them is excessive.
  • the range of the functional group equivalent ratio in which fine particles can be satisfactorily formed is 0.7 to 1.5.
  • a more preferable ratio of both compounds is a molar equivalent ratio in the range of 0.9 to 1.2.
  • the amount of cyclic carbonate compound used is large, it is possible to produce fine particles incorporating a larger amount of carbon dioxide.
  • the amount of amine compound used is large, the reaction rate increases and production efficiency is improved. To do.
  • the reaction can be performed in a temperature range from room temperature to 200 ° C., and more preferably in the range of 60 to 120 ° C. If the reaction temperature is too low, the progress of the reaction is slow, and the production efficiency of the particles may deteriorate. On the other hand, if the reaction is carried out at a high reaction temperature within the above range, there is no problem in reaction, but if the temperature exceeds the boiling point of an inert liquid described later used in the production, the synthesis is hindered. Because it comes, it is necessary to be careful.
  • the inert liquid used in the production method of the present invention is a reaction solvent, which is an organic compound (organic solvent) that does not contain a chemical component that reacts with any of the 5-membered cyclic carbonate compound and the amine compound, which are essential components of the reaction. That is.
  • various organic compounds can be used as the organic compound, but the cyclic carbonate compound and the amine compound, which are reaction components, and further, the hydroxyurethane resin obtained by the reaction of both does not completely dissolve. This is an essential condition, and if these are satisfied, it can be appropriately selected according to the solubility of the monomer used.
  • inert liquid examples include pentane, hexane, heptane, octane, decane, petroleum ether, petroleum benzine, ligroin, petroleum spirit, cyclohexane, methylcyclohexane, ethylcyclohexane, These include hydrocarbon solvents such as toluene, aromatic solvents such as toluene and xylene, fluorine solvents, silicone oils, and the like, and these can also be used as a mixture.
  • the amount of the inert liquid as described above is 100 parts by mass or more with respect to 100 parts by mass of the total amount of the cyclic carbonate compound and the amine compound, which are essential components used in the production, and a preferable range is 100. It is not less than 400 parts by mass. If it is less than 100 parts by mass, the inert liquid tends to be emulsified in the raw material, and it is difficult to produce fine particles in a good state. On the other hand, a system using a large amount of an inert liquid exceeding 400 parts by mass is not preferable because production efficiency deteriorates.
  • the production of the polyhydroxyurethane fine particles of the present invention can be carried out without using a catalyst, but it can also be carried out in the presence of the following catalysts in order to promote the reaction.
  • a basic catalyst such as triethylamine, tributylamine, diazabicycloundecene (DBU), triethylenediamine (DABCO), pyridine, or a Lewis acid catalyst such as tetrabutyltin or dibutyltin dilaurate can be used.
  • a basic catalyst such as triethylamine, tributylamine, diazabicycloundecene (DBU), triethylenediamine (DABCO), pyridine, or a Lewis acid catalyst such as tetrabutyltin or dibutyltin dilaurate
  • the preferred amount of these catalysts used is 0.01 to 10 parts by mass with respect to the total amount (100 parts by mass) of the cyclic carbonate compound and amine compound used.
  • the cyclic carbonate compound and the amine compound which are reaction components, are uniformly dispersed in the inert liquid as listed above containing a dispersant, and then heated to heat both compounds. Reaction is performed to obtain polymer fine particles dispersed in an inert liquid.
  • a dispersant used in this case a compound having a polar part and a nonpolar part, which are chemical structures of general dispersants, in one molecule can be used.
  • a block oligomer or block polymer a polymer or oligomer having chemically modified terminals and side chains, and the like.
  • the structure of the nonpolar part of the dispersant suitable for the present invention is preferably a chemical structure having a strong affinity for the above-mentioned inert liquid.
  • an oligomer having a molecular weight of 500 or more is used. Or it is preferable that it is a polymer.
  • specific chemical structures of the dispersant suitable for the present invention include those having a hydrocarbon skeleton or a polysiloxane skeleton.
  • those having a polybutadiene skeleton are particularly preferred from the viewpoints of less variation in the particle diameter of the emulsified particles, and less aggregation when the fine particles are dried and good redispersibility.
  • the polar part of the dispersant has polar functional groups such as hydroxyl group, amino group, carboxyl group, sulfone group, ether bond, ester bond, amide bond, urethane bond, urea bond, carbonate bond, etc. in its structure. It preferably has a polarized chemical bond.
  • Particularly preferred structures include those having the same cyclic carbonate structure as that of the cyclic carbonate as an essential component of the emulsifying reaction and those containing a urethane bond generated by the reaction with an amino compound.
  • the amount of the dispersant used in the present invention is preferably 0.1 to 20 parts by mass, more preferably 0 to 100 parts by mass of the total amount of the essential cyclic carbonate compound and amine compound used in the reaction. 4 to 5 parts by mass.
  • the amount is less than 0.1 parts by mass, the emulsifying property of the raw material becomes insufficient, the emulsified fine particles are broken during the production process, and agglomerates are likely to be generated. It becomes difficult to obtain fine particles of up to 300 ⁇ m.
  • the amount of the dispersant is more than 20 parts by mass, the emulsified fine particles are stable and there is no problem in producing good fine particles, but the amount is excessive for the purpose of obtaining the action as a dispersant. There is no particular advantage, and it is not preferable because it is inferior in economic efficiency.
  • the production apparatus that can be used in the production method of the present invention is not particularly limited, and for example, a reaction apparatus equipped with a simple stirring device, a homogenizer with higher emulsifying ability, a disperser such as a jet mill can be used. Among these, it is preferable in terms of production efficiency to use a homogenizer in that the time until the particle size of the polymer fine particles obtained by emulsification is short is short.
  • the inert liquid is removed from the polymer fine particles produced in the state dispersed in the inert liquid as described above to form powdered polymer fine particles.
  • a manufacturing method is provided. Since the polymer fine particles produced by the method as described above are obtained in a state of being dispersed in an inert organic solvent, a process for removing the inert organic solvent is required in order to obtain powdery polymer fine particles. .
  • the polymer fine particles may be first separated from the inert organic solvent before removing the inert organic solvent. Examples of the separation method used in that case include a method by filtration and a method of volatilizing an inert organic solvent. As a filtering method, it can be carried out by normal pressure, reduced pressure or pressure using paper or resin filter paper or filter cloth, and any known general filtration device can be used. .
  • the inert organic solvent is removed from the filtered polymer fine particles to obtain a dry powder.
  • it is also effective to remove the inert organic solvent without going through the above-described separation step.
  • the method for removing the inert organic solvent include a method in which the inert organic solvent is volatilized under normal pressure or reduced pressure and then dried.
  • the drying temperature suitable for the removal of the inert organic solvent is influenced by the boiling point and vapor pressure of the inert organic solvent, the particle size of the polymer fine particles and the thermal softening point, but a preferable range is 40 ° C. to 80 ° C. is there.
  • the apparatus necessary for such drying is not particularly limited, and any known apparatus can be used.
  • a device such as a shelf dryer, a vacuum dryer, or a spray dryer is preferable.
  • the polyhydroxyurethane fine particles of the present invention can be obtained from a cyclic carbonate compound and an amine compound, but the cyclic carbonate compound used here is obtained by reaction of an epoxy compound and carbon dioxide. Is preferably used. Specifically, it is preferable to synthesize the polyhydroxyurethane fine particles of the present invention using a carbonate compound having two 5-membered cyclic carbonate groups as reactive groups obtained by the following method. For example, an epoxy compound as a raw material is reacted in the presence of a catalyst at a temperature of 0 ° C. to 160 ° C. in a carbon dioxide atmosphere pressurized to about atmospheric pressure to about 1 MPa for 4 to 24 hours. As a result, a cyclic carbonate compound in which carbon dioxide is immobilized at the ester site can be obtained.
  • the obtained polyhydroxyurethane fine particles are represented by the following (1) and / or (2) in the polymer structure. It has a chemical structural unit. As a result, the —O—CO— bond in (1) and (2) is derived from carbon dioxide.
  • the content of the carbon dioxide-derived —O—CO— bond (carbon dioxide fixation amount) in the polyhydroxyurethane fine particles provided in the present invention should be as high as possible. It is preferable to make it.
  • carbon dioxide is contained in the range of 1 to 30% by mass in the structure of the obtained polyhydroxyurethane resin. be able to. That is, in the polyhydroxyurethane fine particles of the present invention, 1 to 30% by mass of the mass is a material occupied by carbon dioxide-derived —O—CO— bonds as raw materials.
  • Examples of the catalyst used in the reaction for obtaining the cyclic carbonate compound from the epoxy compound and carbon dioxide described above include halogenation such as lithium chloride, lithium bromide, lithium iodide, sodium chloride, sodium bromide and sodium iodide. Salts and quaternary ammonium salts are preferred.
  • the amount used is 1 to 50 parts by mass, preferably 1 to 20 parts by mass, per 100 parts by mass of the raw material epoxy compound.
  • triphenylphosphine or the like may be used at the same time in order to improve the solubility of salts serving as these catalysts.
  • the reaction between the epoxy compound and carbon dioxide can be performed in the presence of an organic solvent.
  • organic solvent any organic solvent can be used as long as it dissolves the aforementioned catalyst.
  • amide solvents such as N, N-dimethylformamide, dimethyl sulfoxide, dimethylacetamide, N-methyl-2-pyrrolidone, alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, propylene glycol, Ether solvents such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol methyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, and tetrahydrofuran are preferable organic solvents.
  • the cyclic carbonate compound that can be used in the production method of the present invention will be described. There is no restriction
  • the main skeleton of the compound to which the cyclic carbonate group is bonded for example, those having an aromatic skeleton, aliphatic, alicyclic and heterocyclic cyclic carbonate compounds can be used.
  • the structure of the bond part of the main skeleton and the cyclic carbonate group can be any structure of an ether bond, an ester bond, and a tertiary amine bond.
  • the compound which can be used for the manufacturing method of this invention is illustrated.
  • Examples of the cyclic carbonate compound having an aliphatic skeleton that can be used in the production method of the present invention include the following compounds.
  • Examples of the cyclic carbonate compound having an aromatic skeleton that can be used in the production method of the present invention include the following compounds.
  • Examples of the alicyclic and heterocyclic cyclic carbonate compounds that can be used in the production method of the present invention include the following compounds.
  • a polyfunctional amine compound having at least two amino groups as reactive groups used in the reaction with the cyclic carbonate compound as listed above in the method for producing polyhydroxyurethane resin fine particles of the present invention will be described.
  • Any known compound can be used as the compound.
  • Preferred examples include ethylenediamine, diethylenetriamine, dipropylenetriamine, triethylenetetramine, tetraethylenepentamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, and 1,8-diamino.
  • Chain aliphatic polyamines such as octane, 1,10-diaminodecane, 1,12-diaminododecane, isophoronediamine, norbornanediamine, 1,6-cyclohexanediamine, piperazine, 2,5-diaminopyridine, 4,4'- Cycloaliphatic polyamines such as diaminodicyclohexylmethane and 1,3-bis (aminomethyl) cyclohexane, aliphatic polyamines having aromatic rings such as xylylenediamine, and aromatic polyamines such as metaphenylenediamine and diaminodiphenylmethane Min, and the like. Moreover, the ethylene oxide adduct and propylene oxide adduct of these compounds are also mentioned as a preferable compound.
  • a part or all of the raw material components described above may include a colorant such as a dye or pigment, a plasticizer, an antioxidant, an ultraviolet absorber, an antistatic agent, Various additives such as abrasives may be mixed, and polyhydroxyurethane fine particles containing these may be synthesized.
  • the “functional group equivalent ratio” between the cyclic carbonate compound and the amine compound used in each reaction is a value calculated as follows using the following formula. Since the “number of functional groups ⁇ molecular weight of carbonate compound” of the cyclic carbonate compound required in the above formula is an index indicating the molar equivalent of carbonate group per 1 g of carbonate compound, this is defined as “carbonate equivalent”. Measured by the following measurement method. The reason for this is that the cyclic carbonate compound synthesized from the epoxy compound and carbon dioxide used in the examples is obtained as a mixture having different numbers of carbonate groups in one molecule. In addition, there is no this problem about an amine compound, and a molar equivalent can be calculated
  • carbonate equivalent (unit eq / g). That is, the carbonate equivalent can be determined by [amount of n-hexylamine reacted with 1 g of carbonate compound (g) /101.19 (unit eq / g)].
  • reaction solution was diluted with 200 parts of ethyl acetate, transferred to a separatory funnel, and washed 4 times with brine to remove N-methyl-2-pyrrolidone and sodium iodide.
  • washed ethyl acetate layer was transferred to an evaporator, and ethyl acetate was removed under reduced pressure. As a result, 97 parts of a transparent liquid compound (yield 72%) was obtained.
  • the obtained compound was analyzed by an infrared spectrometer (manufactured by JASCO Corporation, FT / IR-350; the following production examples were also abbreviated as IR hereinafter), and the raw material was epoxy-derived in the vicinity of 910 cm ⁇ 1. The peak of disappeared. Further, a peak derived from a carbonyl group of a carbonate group that does not exist in the raw material was confirmed in the vicinity of 1,800 cm ⁇ 1 .
  • FIG. 1 shows an IR spectrum measured for MY0510 used as a raw material
  • FIG. 2 shows an IR spectrum measured for the obtained substance.
  • FIG. 3 shows the differential molecular weight distribution of MY0510 used as a raw material
  • FIG. 4 shows the differential molecular weight distribution of the obtained substance.
  • the obtained substance was a compound having a structure represented by the following formula in which a cyclic carbonate group was introduced by the reaction of an epoxy group and carbon dioxide. This was designated as AI.
  • the proportion of the component derived from carbon dioxide in this compound AI was 30.6% (calculated value).
  • MEK methyl ethyl ketone
  • the dispersion stabilizer used in the examples was obtained.
  • the obtained dispersion stabilizer had a polybutadiene skeleton as a nonpolar part, and had a structure having a hydroxyurethane bond in which a cyclic carbonate and an amine reacted and an unreacted cyclic carbonate group at the molecular end as a polar part. .
  • Example 1 (Preparation of polyhydroxyurethane fine particles) ⁇ Example 1>
  • 5.0 parts of the dispersant obtained in Synthesis Example 1 and 150 parts of isononane (trade name: Kyowasol C-900, manufactured by Kyowa Hakko Co., Ltd., also in the following examples) are added and mixed in advance.
  • This emulsion was a stable emulsion having an average dispersed particle size of dispersoid of 5.0 ⁇ m and no separation.
  • blending of the cyclic carbonate compound and amino compound in the above is a mixing
  • FIG. 5 shows a particle size distribution chart. This solution was vacuum-dried at 100 Torr to separate isononane to obtain polyhydroxyurethane fine particles (1). The obtained fine particles (1) were observed with a scanning electron microscope (trade name: JSM-5510LV, manufactured by JEOL Ltd., the same as in the following production examples).
  • FIG. 6 shows an electron micrograph of the obtained polyhydroxyurethane fine particles (1). Moreover, the ratio of the component derived from carbon dioxide in the fine particles was 21.1% (calculated value).
  • Example 2 Polyhydroxyurethane fine particles (2) were obtained in the same manner as in Example 1, except that 100 parts of (A-II) obtained in Production Example 2 and 29.6 parts of metaxylenediamine were used.
  • the obtained fine particles were in the form of a spherical white powder having an average particle diameter of 5.1 ⁇ m.
  • the ratio of the component derived from carbon dioxide in the fine particles was 18.3% (calculated value).
  • blending of the cyclic carbonate compound and amino compound in the above is a mixing
  • Example 3 In advance, 2.0 parts of the dispersant obtained in Synthesis Example 1 and 150 parts of isononane were added to a stainless steel container to prepare a mixed solution. Gradually add 100 parts of (A-II) obtained in Production Example 2 and 34.7 parts of hexamethylenediamine (manufactured by Asahi Kasei Co., Ltd., abbreviated as HMDA in the table) into the previously prepared mixture.
  • polyhydroxyurethane fine particles (3) were obtained in the same manner as in Example 1. The obtained fine particles (3) were in the form of a true white powder having an average dispersed particle diameter of 10.5 ⁇ m. Further, the proportion of the component derived from carbon dioxide in the fine particles was 17.6% (calculated value).
  • the blending of the cyclic carbonate compound and the amino compound in the above is a blending having a functional group equivalent ratio of 0.90.
  • Example 4 In advance, 150 parts of the dispersant obtained in Synthesis Example 1 and 150 parts of isononane were added to a stainless steel container to prepare a mixed solution. 100 parts of (A-III) obtained in Production Example 3 and 30.9 parts of metaxylenediamine were gradually added to the mixed liquid prepared above, and polyureta fine particles (4 ) The obtained fine particles (4) were in the form of a true white powder having an average dispersed particle diameter of 7.2 ⁇ m. Further, the proportion of the component derived from carbon dioxide in the fine particles was 16.1% (calculated value). In addition, the mixing
  • Example 5 In advance, 3.0 parts of the dispersant obtained in Synthesis Example 1 and 150 parts of isononane were added to a stainless steel container to prepare a mixed solution. 100 parts of (A-IV) obtained in Production Example 4 and 48.2 parts of metaxylenediamine were gradually added to the mixture prepared above, and polyhydroxyurethane fine particles ( 5) was obtained. The obtained fine particles (5) were in the form of a true white powder having an average dispersed particle size of 8.1 ⁇ m. Moreover, the ratio of the component derived from the carbon dioxide in this microparticles
  • Example 6 In advance, 5.0 parts of the dispersant obtained in Synthesis Example 1 and 150 parts of isononane were added to a stainless steel container to prepare a mixed solution. 50 parts of (AI) obtained in Production Example 1, 50 parts of (A-II) obtained in Production Example 2 and 34.0 parts of hexamethylenediamine were gradually added to the mixture prepared above. In the same manner as in Example 1, polyhydroxyurethane fine particles (6) were obtained. The obtained fine particles (6) were in the form of a true white powder having an average dispersed particle diameter of 5.0 ⁇ m. Moreover, the ratio of the component derived from carbon dioxide in the fine particles was 20.3% (calculated value). In addition, the mixing
  • Fine particles (1) to (6) obtained in the above Examples 1 to 6, and existing urethane fine particles (trade name: Dimic Beads UCN-5070, average particle size 7.0 ⁇ m, Dainichi Seika Kogyo Co., Ltd. as comparative examples) Performance) was evaluated. Evaluation was evaluated by the following method and evaluation criteria for the following test items. Table 2 summarizes the evaluation results.
  • particle size Using the polymer fine particle dispersions obtained in Examples and Comparative Examples, particle sizes were measured with isononane as a measurement solvent with a particle size distribution meter (trade name: Microtrac X100, manufactured by Nikkiso Co., Ltd.).
  • the polyhydroxyurethane fine particles of the present invention showed the same shape and physical characteristics as compared with the existing polyurethane fine particles. This indicates that the polyhydroxyurethane fine particles provided by the present invention can be substituted for conventional polyurethane fine particles.
  • production of polyhydroxyurethane fine particles has not been seen in the past, and the production method of the present invention has also been found to be useful as a method for producing novel polyhydroxyurethane fine particles.
  • the hydroxyurethane fine particles of the present invention fix carbon dioxide at a high concentration as part of the chemical structure, compared to existing polyurethane fine particles, it is possible to provide products that address unprecedented environmental problems. It has also proved industrially useful as a possible polyurethane microparticle.
  • a cyclic carbonate compound and an amine compound are used as raw materials, and particularly preferably, a compound having a polar part and a nonpolar part in a single molecule structure is used as a dispersant.
  • a production method capable of efficiently obtaining polyhydroxyurethane fine particles having a structure different from that of a conventional polyurethane resin, which could not be obtained by a technique, and having a controlled particle size.
  • the polyhydroxyurethane fine particles provided in the present invention are spherical and have properties equivalent to existing polyurethane fine particles, such as being extremely easy to redisperse in various solvents. It can be expected to be used for similar purposes.
  • the polyhydroxyurethane fine particles provided in the present invention are technologies that are expected to be industrially applied from the viewpoint of global environmental protection in that carbon dioxide can be used as a raw material for polymer synthesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)

Abstract

 広範囲の用途に適用可能なポリヒドロキシウレタン微粒子であって、かつ、粒度分布の狭いポリヒドロキシウレタン微粒子を提供すること。 粒子径が0.1μm~300μmである球状のポリマー微粒子であって、該微粒子を構成するポリマーが、その構造中に、下記(1)及び/又は(2)で表される化学構造ユニットを有し、かつ、(1)及び(2)の-O-CO-結合が二酸化炭素由来であることを特徴とするポリヒドロキシウレタン微粒子。

Description

ポリヒドロキシウレタン微粒子及びその製造方法
 本発明は、ポリヒドロキシウレタン微粒子及びその製造方法に関する。特には、塗料、コーティング剤、樹脂、ゴム、エラストマーなどに、吸油性や耐摩耗性などに優れた性能を与える改質剤などとして有益であり、しかも、その原材料に二酸化炭素を使用することができ、かつ、該二酸化炭素を高濃度で含むことが可能なポリヒドロキシウレタン微粒子を提供する技術に関する。
 従来から、ポリマー微粒子は、工業材料として種々の用途に使用されている。その用途としては、例えば、塗料用のレオロジーコントロール剤や艶消し剤、化粧品用の改質剤、液晶スペーサー、樹脂の収縮防止剤、カラム充填剤、トナーといったものが挙げられる。これらの場合、用いたポリマー微粒子に起因して発現される機能は、微粒子を構成する原材料に由来する機能と、微粒子の形状そのものによって達成されるものがある。例えば、前述したカラム充填剤やトナーの場合は、微粒子表面の性状が重要になるため、微粒子に求められる機能は、粒子を構成する材料の特性によるところが大きい。一方、塗料用の艶消し剤や液晶スペーサーには、粒子径の揃った真球微粒子が用いられていることからも明らかなように、微粒子の有する大きさや形状そのものが重要な機能として利用されている。
 従来より行われているポリマー微粒子の製造方法としては、樹脂を所望する粒径に粉砕する粉砕法や、乳化重合や懸濁重合によって直接ポリマー微粒子を得る重合法がある。該重合法は、特に球状のポリマー微粒子を得る方法として有用である。前述の如く、工業用として使用されているポリマー微粒子の多くは、粒子形状が、球状、さらには真球状であって、かつ、粒子径の分布が狭い方が、より少ない添加量で、その添加効果が得られるため、有利である。このような観点から、高い機能性が求められる用途に対応できるポリマー微粒子の製造方法としては、粉砕法よりも、上記に挙げたような重合法による微粒子合成が有用な方法であると言える。
 現在、重合法により工業化されているポリマー微粒子としては、アクリル、ポリスチレンエポキシ、ポリエステル、ポリアミド、ポリウレタンなどの材料からなる微粒子が挙げられる。これら微粒子中でも、ポリウレタン微粒子は、ベースとなるポリウレタンの特性に由来した、耐摩耗性、耐溶剤性、耐熱性、密着性や耐油性を有するものとなることから、主に、塗料やコーティング剤用の改質剤として広く用いられている。このような改質剤に用いられているポリウレタン微粒子を工業的に製造する方法は重合法であり、例えば、水中で分散剤を利用してポリイソシアネートプレポリマーを分散させ、水との反応を利用して硬化させる方法(特許文献1)や、水の影響を受けない非水系での懸濁重合法が提案されている(特許文献2)。
 上記のようなポリウレタン微粒子の製造方法において原料とされているイソシアネート化合物は、多様な化合物として工業的に製造されているが、いずれのイソシアネート化合物も有害な物質であり、取り扱いが難しいという欠点がある。さらには、イソシアネート化合物の製造に使用されるホスゲンは、非常に毒性の強い物質であり、その使用を削減していくことが強く望まれている。
 これに対し、イソシアネートを使用しないポリウレタン樹脂の製造方法として環状カーボネートとアミンとを反応させる方法が報告さている(特許文献3、4)。この製造方法は、原材料にイソシアネートを使用しないことを特徴としており、原料となる環状カーボネートは、その原材料に二酸化炭素を使用して得られたものを用いている。このため、得られたポリウレタン樹脂も、化学構造中に二酸化炭素が取り込まれた化合物となる。このことは、上記技術は、近年問題となっている温室効果ガスの一種である二酸化炭素削減に貢献する技術という別の観点においても注目されるべき技術であることを意味している。
 しかしながら、特許文献3、4の製造方法は、塗料バインダーに利用する樹脂溶液の製造方法に特化したものであり、この反応を利用したポリウレタン微粒子の合成方法については、いまだ報告がされていない。
特許第3100977号公報 特開平7-97424号公報 米国特許第3072613号明細書 特許第3840347号公報
 従って、本発明の目的は、上記した従来の課題を解決するとともに、広範囲の用途に適用可能なポリヒドロキシウレタン微粒子であって、かつ、粒度分布の狭いポリヒドロキシウレタン微粒子を提供し得る技術を開発することである。
 上記課題は本発明によって解決される。すなわち、本発明は、粒子径が0.1μm~300μmである球状のポリマー微粒子であり、かつ、該微粒子を構成するポリマーが、その構造中に、下記(1)又は(2)で表される化学構造ユニットの少なくともいずれか一方を有し、これらの化学構造ユニットを構成している-O-CO-結合が二酸化炭素由来であることを特徴とするポリヒドロキシウレタン微粒子を提供する。
Figure JPOXMLDOC01-appb-I000003
 本発明の好ましい形態としては、前記化学構造ユニットを構成している-O-CO-結合が、二酸化炭素を原材料の一つとして合成された5員環環状カーボネート基を反応性基として形成されたものであり、かつ、微粒子を構成するポリマー中に該二酸化炭素由来の-O-CO-結合が1~30質量%含有される上記のポリヒドロキシウレタン微粒子が挙げられる。
 また、本発明は別の実施の形態として、上記のポリヒドロキシウレタン微粒子の製造方法であって、少なくとも2つの5員環環状カーボネート基を反応性基として有する化合物と、少なくとも2つのアミノ基を反応性基として有する化合物とを用い、これらの化合物を、分散剤を含む不活性液体中に均一に分散させた後、加熱して両化合物を反応させて、不活性液体中に分散された状態のポリマー微粒子を得る際に、上記化合物のどちらか一方に、1分子中に3つ以上の反応性基を有する化合物を用い、かつ、両化合物を下記式で定義される官能基当量比0.7~1.5で反応させることを特徴とするポリヒドロキシウレタン微粒子の製造方法を提供する。
Figure JPOXMLDOC01-appb-I000004
(上記式中の官能基数とは、カーボネート化合物とアミン化合物がそれぞれの1分子中に有する環状カーボネート構造またはアミノ基の個数である。)
 本発明のポリヒドロキシウレタン微粒子の製造方法の好ましい形態としては、下記のことが挙げられる。
 前記5員環環状カーボネート基を反応性基として有する化合物が、二酸化炭素を原材料の一つとして合成されたものであり、該化合物を反応に用いて得たポリマー中に、上記二酸化炭素由来の-O-CO-結合が1~30質量%含有されていること。より好ましくは、ポリマー微粒子の質量のうち1~40質量%が二酸化炭素由来の-O-CO-結合から構成されたものとなること;
 前記分散剤として、その構造中に非極性部と極性部とを有し、該非極性部はポリブタジエン骨格を有し、かつ、該極性部は、5員環環状カーボネート構造もしくはヒドロキシウレタン構造のいずれかを有するものを用いること;
 さらに、前記不活性液体中に分散している状態のポリマー微粒子から該不活性液体を取り除き、粉末状のポリマー微粒子にして取り出すことである。
 本発明によれば、広範な用途に適用可能なポリヒドロキシウレタン微粒子にするため、その組成を適宜に設計することが可能で、かつ、粒度分布の狭い微粒子を容易に提供することが可能になる。さらに、本発明によって提供されるポリヒドロキシウレタン微粒子は、その原材料として二酸化炭素を利用して合成した特定の環状カーボネート化合物を利用できることから、省資源、環境保護に資する点からも有用な技術の提供が可能になる。
製造例1で用いた原料のMY0510の赤外吸収スペクトルを示す図。 製造例1で得られたA-Iの赤外吸収スペクトルを示す図。 製造例1で用いた原料のMY0510の微分分子量分布を示す図。 製造例1で得られた物質の微分分子量分布を示す図。 実施例1で得られたポリヒドロキシウレタン微粒子(1)の粒度分布を示すチャート図。 実施例1で得られたポリヒドロキシウレタン微粒子(1)の電子顕微鏡写真。
 次に、発明を実施するための最良の形態を挙げて、本発明をさらに詳細に説明する。
 本発明のポリヒドロキシウレタン微粒子は、粒子径が0.1μm~300μmである球状のポリマー微粒子であって、該微粒子を構成するポリマーが、その構造中に、下記(1)又は(2)で表される化学構造ユニットの少なくともいずれか一方を有し、これらの化学構造ユニットを構成している-O-CO-結合が二酸化炭素由来であることを特徴とする。
Figure JPOXMLDOC01-appb-I000005
 すなわち、本発明により提供されるポリヒドロキシウレタン微粒子は、その構造中に二酸化炭素を取り込んでなるポリマー微粒子である。以下、各構成について、具体的に説明する。本発明を特徴づける、上記(1)又は(2)で表わされる化学構造ユニットは、例えば、5員環環状カーボネート化合物とアミン化合物との付加反応により形成することができる。この付加反応においては、下記式(A)に示すように、5員環環状カーボネートの開裂が2種類あるため、2種類の構造の生成物が得られることが知られている。この結果、これら(1)又は(2)で表わされる化学構造ユニットは、得られたポリマー中にランダムに存在するものと考えられる。
Figure JPOXMLDOC01-appb-I000006
 上記(1)又は(2)に示される通り、これらの化学構造ユニットは、ウレタン結合に近接して水酸基を有している。このような構造は、従来のイソシアネートと水酸基との反応によるポリウレタンの合成反応では得られないものであり、本発明のポリヒドロキシウレタン微粒子は、従来にない特有の構造を有することを特徴とする。すなわち、本発明を特徴づけるポリヒドロキシウレタン樹脂は、ウレタン構造を有しているが、従来のポリウレタン樹脂とは異なる高分子と考えることができ、この樹脂の構造上の特徴から、本発明のポリヒドロキシウレタン微粒子も従来のポリウレタン微粒子とは異なる特徴をも示すものになる。
 次に、上記した新規な構造を有するポリヒドロキシウレタン微粒子の製造方法について、詳細を説明する。
 本発明のポリヒドロキシウレタン微粒子は、上記式(A)で示される反応を利用することで得ることができる。具体的な製造方法では、少なくとも2つの5員環環状カーボネート基を反応性基として有する化合物(以下、単に環状カーボネート化合物と略す場合がある)と、少なくとも2つのアミノ基を反応性基として有する化合物(以下、アミン化合物と略す場合がある)とを必須成分として用い、これらの化合物を、分散剤を含む不活性液体中に均一に分散させた後、加熱して両化合物を反応させることで、不活性液体中に分散した状態のポリヒドロキシウレタン微粒子を得る。さらに、本発明の製造方法では、上記で必須とする2種の化合物のどちらか一方に、1分子中に3つ以上の反応性基を有する化合物を用い、かつ、両化合物を官能基当量比0.7~1.5で反応させる。
 本発明における官能基当量比とは、官能基のモル当量比と同様の概念であり、下記式で算出されるものである。本発明では、環状カーボネート化合物或いはアミン化合物のいずれかを2種類以上使用することも可能であるが、その場合の官能基当量比の算出方法は、分子及び分母のそれぞれの化合物の質量を全化合物の質量の合計値とし、分子量及び官能基数を全組成物の加重平均値にすることにより算出される。なお、下記式中の官能基数とは、環状カーボネート化合物とアミン化合物がそれぞれの1分子中に有する環状カーボネート構造またはアミノ基の個数である。具体的な算出方法については、後述する。
Figure JPOXMLDOC01-appb-I000007
 本発明を特徴づける上記した環状カーボネート化合物は、エポキシ化合物と二酸化炭素との反応によって得られたものであることが好ましく、具体的には下記のようにして得られる。例えば、原材料であるエポキシ化合物を、触媒の存在下、0℃~160℃の温度にて、大気圧~1MPa程度に加圧した二酸化炭素雰囲気下で4~24時間反応させる。この結果、二酸化炭素を、エステル部位に固定化した環状カーボネート化合物を得ることができる。
 本発明のポリヒドロキシウレタン微粒子を製造する場合、環状カーボネート化合物とアミン化合物との反応比率は、それぞれの化合物中に含まれるカーボネート基とアミノ基の相対比が等量の1.0を基準にすればよい。このため、一方の化合物が3官能以上の官能基を有する化合物の場合、もう一方が2官能の官能基を有する化合物であれば、一方の化合物を多く使用することが好ましい。しかし、両者の相対比率は必ずしも1.0である必要はなく、どちらかが過剰の状態においても微粒子を形成することができ、両化合物の相対比率を上記で述べる官能基当量と定義した場合、微粒子の形成が良好に行える官能基当量比の範囲は、0.7~1.5である。より好ましい両化合物の使用比率としては、モル当量比を0.9~1.2の範囲とするとよい。環状カーボネート化合物の使用量が多い場合は、より多くの二酸化炭素を取り込んだ微粒子の製造が可能になり、一方、アミン化合物の使用量が多くなれば、反応速度が速くなるため、生産効率が向上する。
 反応の際の加熱温度としては、反応は、室温から200℃の温度範囲で可能であり、より好ましくは60~120℃の範囲とする。反応温度が低すぎると反応の進行が遅く、粒子の製造効率が悪くなる場合がある。一方、上記範囲内であれば高い反応温度で反応を行っても特に反応上の問題はないが、温度が製造の際に用いる後述する不活性液体の沸点を超えてしまうと、合成に支障をきたすので留意する必要がある。
 本発明の製造方法に使用される不活性液体は反応溶媒であり、反応の必須成分である5員環環状カーボネート化合物及びアミン化合物のいずれとも反応する化学成分を含まない有機化合物(有機溶剤)のことである。本発明では、該有機化合物として種々のものを使用することが可能であるが、反応成分である環状カーボネート化合物及びアミン化合物、さらには、両者が反応して得られるヒドロキシウレタン樹脂が完全に溶解しないことが必須条件であり、これらを満たせば、使用するモノマーの溶解性に合わせて適宜に選択することができる。また、このような有機溶剤の沸点は、低すぎると粒子合成の反応が遅くなり生産効率が悪くなるので、40℃以上であることが好ましい。逆に沸点が高すぎる有機溶剤を用いた場合は、合成して得た微粒子を有機溶剤と分離した粉体として取り出す場合に有機溶剤の除去が困難となるので、沸点が220℃以下のものを使用することが好ましい。上記した要件を満足する本発明に好適に使用できる不活性液体としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、石油エーテル、石油ベンジン、リグロイン、石油スピリット、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、などの炭化水素系溶剤、トルエン、キシレンなどの芳香族系溶剤、フッ素系溶剤、シリコーンオイルなどが挙げられ、これらを混合して使用することもできる。
 上記したような不活性液体の使用量は、製造に使用する必須成分である環状カーボネート化合物とアミン化合物との合計量の100質量部に対して、100質量部以上であり、好ましい範囲としては100質量部以上400質量部以下である。100質量部未満では原材料中に不活性液体が乳化した状態となり易く、良好な状態の微粒子を製造することが難しい。一方、400質量部を超えて不活性液体を多量に使用した系では、生産効率が悪くなるので好ましくない。
 本発明のポリヒドロキシウレタン微粒子の製造は、特に触媒を使用せずに行うことができるが、反応を促進させるために、下記に挙げるような触媒の存在下で行うことも可能である。その場合には、例えば、トリエチルアミン、トリブチルアミン、ジアザビシクロウンデセン(DBU)、トリエチレンジアミン(DABCO)、ピリジンなどの塩基性触媒、テトラブチル錫、ジブチル錫ジラウリレートなどのルイス酸触媒が使用できる。これらの触媒の好ましい使用量は、使用する環状カーボネート化合物とアミン化合物の総量(100質量部)に対して、0.01~10質量部である。
 本発明の製造方法では、分散剤を含有させた先に列挙したような不活性液体中に、反応成分である環状カーボネート化合物とアミン化合物とを均一に分散させた後、加熱して両化合物を反応させて、不活性液体中に分散した状態のポリマー微粒子を得る。この際に使用される分散剤としては、一般的な分散剤の化学構造である極性部と非極性部を一分子中に備えた化合物を用いることができる。例えば、ブロックオリゴマーやブロックポリマー、末端や側鎖を化学修飾したポリマーやオリゴマーなどを用いることが好ましい。
 本発明に好適な分散剤の非極性部の構造としては、前述の不活性液体に対する親和力が強い化学構造であることが好ましく、乳化した微粒子をより安定化するためには、分子量500以上のオリゴマー或いはポリマーであることが好ましい。上記したような理由から、本発明に好適な分散剤の具体的な化学構造としては、炭化水素系骨格又はポリシロキサン骨格を有するものが挙げられる。さらに、乳化した粒子の粒子径のばらつきが少ない点、及び微粒子を乾燥した際の凝集が少なく再分散性がよいといった観点から、特にポリブタジエン骨格を有するものが好ましい。
 一方、分散剤の極性部の構造としては、反応の必須成分である環状カーボネート化合物及びアミン化合物に対する親和力が強い化学構造を有するものが好ましい。そのため、分散剤の極性部は、その構造中に、水酸基、アミノ基、カルボキシル基、スルホン基などの極性官能基や、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、カーボネート結合などの分極した化学結合を有していることが好ましい。特に好ましい構造としては、乳化させる反応の必須成分としての環状カーボネートと同じ環状カーボネート構造や、アミノ化合物との反応により生じるウレタン結合を含むものが挙げられる。
 本発明における分散剤の使用量は、反応に使用する必須の環状カーボネート化合物とアミン化合物の合計量の100質量部に対して、0.1~20質量部であることが好ましく、より好ましくは0.4~5質量部である。0.1質量部未満であると、原料の乳化性が不十分となって、製造過程で乳化微粒子が破壊されて凝集塊が発生し易くなり、本発明が目的とする粒子径が0.1μm~300μmの微粒子を得にくくなる。一方、分散剤の量が20質量部より多くても乳化した微粒子は安定で、良好な微粒子を製造することについての問題はないが、分散剤としての作用を得る目的には過剰な量であり特に利点はなく、かえって経済性に劣るので好ましくない。
 本発明の製造方法において使用できる製造装置は特に限定されず、例えば、簡易な撹拌装置を備えた反応装置や、より乳化能力の高いホモジナイザー、ジェットミルなどの分散機を使用することができる。これらの中でも、乳化して得られるポリマー微粒子の粒子径が安定するまでの時間が短いという点で、ホモジナイザーを使用することが生産効率上は好ましい。
 本発明では、もう一つの実施形態として、上記のようにして不活性液体中に分散した状態で製造されたポリマー微粒子から不活性液体(不活性有機溶剤)を取り除き、粉末状のポリマー微粒子にして取出す製造方法を提供する。前述の如き方法で製造されたポリマー微粒子は、不活性有機溶剤中に分散された状態で得られるため、粉末状のポリマー微粒子にするためには、不活性有機溶剤を除去する工程が必要になる。本発明においては、不活性有機溶剤を除去する前に、まず、不活性有機溶剤からポリマー微粒子を分離してもよい。その場合に用いる分離方法としては、濾別による方法や、不活性有機溶剤を揮発させる方法が挙げられる。濾別する方法としては、紙製や樹脂製の濾紙或いは濾布を使用した、常圧か減圧或いは加圧の各方法によって行うことができ、公知一般的な濾過装置であればいずれも使用できる。
 次に、濾別したポリマー微粒子から不活性有機溶剤を除去して乾燥粉末とするが、場合によっては、上記した分離工程を経ることなく、不活性有機溶剤を除去することも有効である。不活性有機溶剤を除去する方法としては、常圧か減圧下で不活性有機溶剤を揮発させ、乾燥する方法が挙げられる。不活性有機溶剤の除去に適した乾燥温度としては、不活性有機溶剤の沸点及び蒸気圧、ポリマー微粒子の粒子径や熱軟化点に影響されるが、好ましい範囲としては、40℃~80℃である。また、減圧下で行うことが好ましく、不活性有機溶剤の沸点が40~80℃の範囲となるような圧力下で行うことが好ましい。このような乾燥に必要な装置は、特に限定されたものではなく、公知の装置がいずれも使用できる。例えば、棚式乾燥機や真空乾燥機、スプレードライヤーなどの装置が好ましい装置として挙げられる。
 上記したように、本発明のポリヒドロキシウレタン微粒子は、環状カーボネート化合物とアミン化合物とから得ることができるが、ここで使用する環状カーボネート化合物は、エポキシ化合物と二酸化炭素との反応によって得られたものを使用することが好ましい。具体的には、下記のような方法で得られる2つの5員環環状カーボネート基を反応性基として有するカーボネート化合物を用いて、本発明のポリヒドロキシウレタン微粒子を合成することが好ましい。例えば、原材料であるエポキシ化合物を、触媒の存在下、0℃~160℃の温度にて、大気圧~1MPa程度に加圧した二酸化炭素雰囲気下で4~24時間反応させる。この結果、二酸化炭素を、エステル部位に固定化した環状カーボネート化合物を得ることができる。
Figure JPOXMLDOC01-appb-I000008
 上記したようにして二酸化炭素を原料として合成された環状カーボネート化合物を使用することによって、得られたポリヒドロキシウレタン微粒子は、そのポリマーの構造中に、下記(1)及び/又は(2)で表される化学構造ユニットを有するものとなる。この結果、(1)及び(2)中の-O-CO-結合は二酸化炭素由来のものとなる。
Figure JPOXMLDOC01-appb-I000009
 二酸化炭素の有効利用の立場からは、本発明で提供するポリヒドロキシウレタン微粒子中における、上記二酸化炭素由来の-O-CO-結合(二酸化炭素の固定化量)の含有量は、できるだけ高くなるようにすることが好ましい。これに対し、例えば、上記したようにして合成した環状カーボネート化合物を用いてポリマー微粒子を製造した場合は、得られるポリヒドロキシウレタン樹脂の構造中に1~30質量%の範囲で二酸化炭素を含有させることができる。すなわち、本発明のポリヒドロキシウレタン微粒子は、その質量のうちの1~30質量%が、原料とした二酸化炭素由来の-O-CO-結合が占める材料となる。
 先に述べたエポキシ化合物と二酸化炭素とから環状カーボネート化合物を得る反応に使用される触媒としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウムなどのハロゲン化塩類や、4級アンモニウム塩が好ましいものとして挙げられる。その使用量は、原料のエポキシ化合物100質量部当たり1~50質量部、好ましくは1~20質量部である。また、これらの触媒となる塩類の溶解性を向上させるためにトリフェニルホスフィンなどを同時に使用してもよい。
 上記したエポキシ化合物と二酸化炭素との反応は、有機溶剤の存在下で行うこともできる。この際に用いる有機溶剤としては、前述の触媒を溶解するものであれば使用可能である。具体的には、例えば、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド系溶剤、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコールなどのアルコール系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフランなどのエーテル系溶剤が、好ましい有機溶剤として挙げられる。
 本発明の製造方法に使用可能な環状カーボネート化合物について説明する。該環状カーボネート化合物の構造には特に制限がなく、一分子中に2つ以上の環状カーボネート基を有するものであれば使用可能である。より好ましくは、環状カーボネート基が3つ以上ある化合物を用いると、粒子合成の反応時間を短くすることができるので生産上有利である。環状カーボネート基が結合する化合物の主骨格としては、例えば、芳香族骨格を持つものや、脂肪族系、脂環式系、複素環式のいずれの環状カーボネート化合物も使用可能である。また、主骨格と環状カーボネート基の結合部分の構造は、エーテル結合、エステル結合、3級アミン結合のいずれの構造でも使用可能である。以下に、本発明の製造方法に使用可能な化合物を例示する。
 本発明の製造方法に使用し得る脂肪族骨格を持つ環状カーボネート化合物としては、以下に挙げるような化合物が例示される。
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
 本発明の製造方法に使用し得る芳香族骨格を持つ環状カーボネート化合物としては、以下に挙げるような化合物が例示される。
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
 本発明の製造方法に使用し得る脂環式系、複素環式系の環状カーボネート化合物としては、以下に挙げるような化合物が例示される。
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
 次に、本発明のポリヒドロキシウレタン樹脂微粒子の製造方法において、上記に列挙したような環状カーボネート化合物との反応に使用する、少なくとも2つのアミノ基を反応性基として有する多官能アミン化合物について説明する。該化合物としては、従来公知のいずれのものも使用できる。好ましいものとして、例えば、エチレンジアミン、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,6-ジアミノへキサン、1,8-ジアミノオクタン、1,10-ジアミノデカン、1,12-ジアミノドデカンなどの鎖状脂肪族ポリアミン、イソホロンジアミン、ノルボルナンジアミン、1,6-シクロヘキサンジアミン、ピペラジン、2,5-ジアミノピリジン、4,4’-ジアミノジシクロヘキシルメタン、1,3-ビス(アミノメチル)シクロヘキサンなどの環状脂肪族ポリアミン、キシリレンジアミンなどの芳香環を持つ脂肪族ポリアミン、メタフェニレンジアミン、ジアミノジフェニルメタンなどの芳香族ポリアミンが挙げられる。また、これらの化合物のエチレンオキサイド付加体やプロピレンオキサイド付加体も好ましい化合物として挙げられる。
 また、本発明のポリヒドロキシウレタン微粒子の製造方法では、上記したような原料成分の一部または全部に、染料や顔料などの着色剤、可塑剤、酸化防止剤、紫外線吸収剤、帯電防止剤、研磨剤などの各種添加剤を混合してもよく、これらを含むポリヒドロキシウレタン微粒子を合成することもできる。
 次に、具体的な製造例、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の例における「部」及び「%」は特に断りのない限り質量基準である。
(官能基当量比)
 以下において、それぞれの反応に使用した環状カーボネート化合物とアミン化合物との「官能基当量比」は、下記式を用い、下記のようにして算出した値である。
Figure JPOXMLDOC01-appb-I000026
 上記の算出式で必要となる環状カーボネート化合物の「官能基数÷カーボネート化合物の分子量」は、カーボネート化合物1gあたりのカーボネート基のモル当量を示す指数であることから、これを「カーボネート当量」と定義し、以下の測定方法により実測した。このようにした理由は、実施例で使用したエポキシ化合物と二酸化炭素から合成した環状カーボネート化合物は、1分子中におけるカーボネート基の数が異なるものの混合物として得られるためである。なお、アミン化合物についてはこの問題はなく、分子量からモル当量を求めることができる。
 「カーボネート当量」を測定する対象のカーボネート化合物1gをN,N-ジメチルホルムアミド50gに溶解し、濃度1mol/Lに調整したn-ヘキシルアミン(分子量101.19)のトルエン溶液10mLを加え、60℃で10時間反応させた。反応後の溶液を0.5N塩酸にて中和滴定し、未反応のn-ヘキシルアミン量を定量した。別途カーボネート化合物を加えないブランク滴定を行い、消費したn-ヘキシルアミン量を逆算し、その消費量をヘキシルアミンの分子量で除したものを「カーボネート当量」とした(単位eq/g)。すなわち、カーボネート当量は、[カーボネート化合物1gと反応したn-ヘキシルアミン量(g)÷101.19(単位eq/g)]で求めることができる。
(化合物の二酸化炭素含有量)
 また、各実施例で使用したカーボネート基中の-O-CO-結合は、二酸化炭素に由来するものであることより、上記で得た「カーボネート当量」から、カーボネート化合物中の二酸化炭素含有量を算出できる。すなわち、二酸化炭素含有量(%)は、[カーボネート当量(eq/g)×44(=CO2分子量)×100]で求めることができる。本発明では、二酸化炭素含有量は上記のようにして計算で求めた。
<製造例1>[環状カーボネート含有化合物(A-I)の合成]
 エポキシ当量100のパラ-アミノフェノール型エポキシ樹脂(商品名:MY0510、ハンツマン社製、以下、MY0510と略記)100部と、ヨウ化ナトリウム(和光純薬社製)20部と、N-メチル-2-ピロリドン150部を、撹拌装置及び大気解放口のある還流器を備えた反応容器内に仕込んだ。次いで、撹拌しながら二酸化炭素を連続して吹き込み、100℃にて10時間の反応を行った。その後、得られた反応液を200部の酢酸エチルで希釈した後、分液ロートに移し、食塩水にて4回洗浄を行って、N-メチル-2-ピロリドン及びヨウ化ナトリウムを除去した。次に、洗浄後の酢酸エチル層をエバポレーターに移し、酢酸エチルを減圧除去したところ、透明液体化合物97部(収率72%)が得られた。
 得られた化合物を赤外分光装置(日本分光社製、FT/IR-350;以下の製造実施例も同様、以下、IRと略記)にて分析したところ、910cm-1付近の原材料のエポキシ由来のピークは消失していた。また、1,800cm-1付近に原材料には存在しないカーボネート基のカルボニル基に由来するピークが確認された。図1に、原料に用いたMY0510について測定したIRスペクトルを示し、図2に、得られた物質について測定したIRスペクトルを示した。また、ジメチルホルムアミド(以下、DMFと略記)を移動相としたGPC(東ソー社製、GPC-8220;カラムSuper AW2500+AW3000+AW4000+AW5000;以下の製造例なども同様)の測定の結果、得られた物質の重量平均分子量は404(ポリエチレンオキサイド換算)であった。図3に、原料に用いたMY0510の微分分子量分布を、図4に、得られた物質の微分分子量分布を示した。
 以上のことから、得られた物質は、エポキシ基と二酸化炭素の反応により環状カーボネート基が導入された、下記式で表される構造の化合物と確認された。これをA-Iとした。この化合物A-I中に占める二酸化炭素由来の成分の割合は、30.6%であった(計算値)。
Figure JPOXMLDOC01-appb-I000027
<製造例2>[環状カーボネート含有化合物(A-II)の合成]
 エポキシ当量142のグリセロールポリグリシジルエーテル(商品名:デナコールEX-313、ナガセケムテックス社製)100部と、ヨウ化ナトリウム(和光純薬社製)20部と、N-メチル-2-ピロリドン150部とを、撹拌装置及び大気解放口のある還流器を備えた反応容器内に仕込んだ。次いで、撹拌しながら二酸化炭素を連続して吹き込み、100℃にて10時間の反応を行った。反応終了後、エバポレーターにて溶剤を蒸発させ、オイル状の化合物を132部(収率99.9%)得た。
 得られた化合物をIRにて分析したところ、910cm-1付近の原材料エポキシ由来のピークは消失しており、一方、1,800cm-1付近に原材料には存在しないカーボネート基のカルボニル基に由来するピークが確認された。また、DMFを移動相としたGPCの測定の結果、得られた物質の重量平均分子量は397(ポリエチレンオキサイド換算)であった。以上のことから、この物質は、エポキシ基と二酸化炭素の反応により環状カーボネート基が導入された下記式で表される構造の化合物と確認された。これをA-IIとした。この化合物A-II中に占める二酸化炭素由来の成分の割合は、23.7%であった(計算値)。
Figure JPOXMLDOC01-appb-I000028
<製造例3>[環状カーボネート含有化合物(A-III)の合成]
 エポキシ当量165のソルビトールポリグリシジルエーテル(商品名:デナコールEX-614、ナガセケムテックス社製)100部と、ヨウ化ナトリウム(和光純薬社製)20部と、N-メチル-2-ピロリドン150部とを、撹拌装置及び大気解放口のある還流器を備えた反応容器内に仕込んだ。次いで、撹拌しながら二酸化炭素を連続して吹き込み、100℃にて10時間の反応を行った。反応終了後、エバポレーターにて溶剤を蒸発させ、オイル状の化合物を130部(収率99.5%)得た。
 得られた化合物をIRにて分析したところ、910cm-1付近の原材料エポキシ由来のピークは消失しており、一方、1,800cm-1付近に原材料には存在しないカーボネート基のカルボニル基に由来するピークが確認された。また、DMFを移動相としたGPCの測定の結果、得られた物質の重量平均分子量は880(ポリエチレンオキサイド換算)であった。以上のことから、この物質は、エポキシ基と二酸化炭素の反応により環状カーボネート基が導入された下記式で表される構造の化合物と確認された。これをA-IIIとした。この化合物A-III中に占める二酸化炭素由来の成分の割合は、21.1であった(計算値)。
Figure JPOXMLDOC01-appb-I000029
<製造例4>[環状カーボネート含有化合物(A-IV)の合成]
 エポキシ当量90のテトラグリシジルキシレンジアミン(商品名:TETRAD-X、三菱ガス化学社製)100部と、ヨウ化ナトリウム(和光純薬社製)20部と、N-メチル-2-ピロリドン150部とを、撹拌装置及び大気解放口のある還流器を備えた反応容器内に仕込んだ。次いで、撹拌しながら二酸化炭素を連続して吹き込み、100℃にて10時間の反応を行った。反応終了後の溶液に、溶剤であるメチルエチルケトン(以下、MEKと略記)166部とトルエン83部とを加え、取出した。さらに、取出した溶液を分液ロートに移し、食塩水にて4回の洗浄を行い、触媒を除去した。さらに、エバポレーターにて溶剤を蒸発させることで、オイル状の化合物を125部(収率84%)得た。
 得られた化合物をIRにて分析したところ、910cm-1付近の原材料エポキシ由来のピークは消失しており、一方、1,800cm-1付近に原材料には存在しないカーボネート基のカルボニル基に由来するピークが確認された。また、DMFを移動相としたGPCの測定の結果、得られた物質の重量平均分子量は594(ポリエチレンオキサイド換算)であった。以上のことから、この物質は、エポキシ基と二酸化炭素の反応により環状カーボネート基が導入された下記式で表される構造の化合物と確認された。これをA-IVとした。この化合物A-IV中に占める二酸化炭素由来の成分の割合は、32.8%であった(計算値)。
Figure JPOXMLDOC01-appb-I000030
(極性部と非極性部を一分子中に備えた分散安定剤の合成)
<合成例1>
 エポキシ当量1571のポリブタジエン骨格を有する末端ジグリシジルエーテル(商品名:R45EPT、ナガセケミテックス社製)100部と、ヨウ化ナトリウムの20部(和光純薬社製)と、N-メチル-2-ピロリドン100部とを、撹拌装置及び大気開放口のある還流器を備えた反応容器内に仕込んだ。撹拌しながら二酸化炭素を連続して吹き込み、100℃にて10時間反応を行った。反応後の溶液を1,000mlの蒸留水中に注ぎ、分離したオイル状の化合物を回収した。オイル状の化合物は、製造例1と同様の分析により、ポリブタジエン骨格を有する末端環状カーボネート化合物であることを確認した。
 次に、得られたオイル状の化合物100部と、該化合物に対して0.5当量となるメタキシレンジアミン4.2部を、還流器を備えた反応容器内に仕込み80℃で12時間反応させ、実施例で使用する分散安定剤を得た。得られた分散安定剤は、非極性部としてポリブタジエン骨格を有し、極性部として、環状カーボネートとアミンが反応したヒドロキシウレタン結合と分子末端に未反応の環状カーボネート基を有する構造を有していた。
(ポリヒドロキシウレタン微粒子の作成)
<実施例1>
 予め、ステンレス容器に、合成例1で得た分散剤5.0部と、イソノナン(商品名:キョウワゾールC-900、協和発酵社製、以下の実施例でも同様)150部とを加えて混合液とした。製造例1で得た(A-I)を100部と、メタキシレンジアミン(三菱ガス化学社製、表中はMXDAと略記)44.9部とを、先に準備した混合液の中に徐々に加え、ホモジナイザーで15分間乳化した。この乳化液は、分散質の平均分散粒子径が5.0μmであり、分離もなく安定な乳化液であった。なお、上記における環状カーボネート化合物とアミノ化合物との配合は、官能基当量比が1.05となる配合である。
 次に、これを撹拌機付き反応釜に仕込み、80℃、6時間の反応を行い、微粒子分散溶液を得た。得られた微粒子分散溶液について、粒度分布計(商品名:Microtrac X100、日機装社製、以下の実施例でも同様)を用いて測定した結果、その平均粒子径が5.0μmであった。図5に粒度分布チャートを示した。この溶液を100Torrで真空乾燥を行って、イソノナンを分離し、ポリヒドロキシウレタン微粒子(1)を得た。得られた微粒子(1)を走査型電子顕微鏡(商品名:JSM-5510LV、日本電子社製、以下の製造実施例でも同様)で観察した結果、微粒子は、真球状の白色粉末状であった。図6に得られたポリヒドロキシウレタン微粒子(1)の電子顕微鏡写真を示した。また、この微粒子中に占める二酸化炭素由来の成分の割合は、21.1%であった(計算値)。
<実施例2>
 製造例2で得た(A-II)を100部と、メタキシレンジアミン29.6部を用いた以外は、実施例1と同様にして、ポリヒドロキシウレタン微粒子(2)を得た。得られた微粒子は、平均粒子径5.1μmの真球状の白色粉末状であった。また、この微粒子中に占める二酸化炭素由来の成分の割合は、18.3%であった(計算値)。なお、上記における環状カーボネート化合物とアミノ化合物との配合は、官能基当量比が1.24となる配合である。
<実施例3>
 予め、ステンレス容器に、合成例1で得た分散剤2.0部とイソノナン150部とを加え、混合液とした。製造例2で得た(A-II)を100部と、ヘキサメチレンジアミン(旭化成社製、表中はHMDAと略記)を34.7部とを、上記で予め準備した混合液の中に徐々に加え、実施例1と同様にして、ポリヒドロキシウレタン微粒子(3)を得た。得られた微粒子(3)は、平均分散粒子径が10.5μmの真球状の白色粉末状であった。また、この微粒子中に占める二酸化炭素由来の成分の割合は、17.6%であった(計算値)。なお、上記における環状カーボネート化合物とアミノ化合物との配合は、官能基当量比0.90となる配合である。
<実施例4>
 予め、ステンレス容器に、合成例1で得た分散剤4.0部とイソノナンとを150部加え、混合液とした。製造例3で得た(A-III)100部と、メタキシレンジアミン30.9部とを、上記で準備した混合液の中に徐々に加え、実施例1と同様にして、ポリウレタ微粒子(4)を得た。得られた微粒子(4)は、平均分散粒子径が7.2μmの真球状の白色粉末状であった。また、この微粒子中に占める二酸化炭素由来の成分の割合は、16.1%であった(計算値)。なお、上記における環状カーボネート化合物とアミノ化合物との配合は、官能基当量比が1.06となる配合である。
<実施例5>
 予め、ステンレス容器に、合成例1で得た分散剤3.0部と、イソノナンを150部加え、混合液とした。製造例4で得た(A-IV)100部と、メタキシレンジアミン48.2部を、上記で準備した混合液の中に徐々に加え、実施例1と同様にして、ポリヒドロキシウレタン微粒子(5)を得た。得られた微粒子(5)は、平均分散粒子径が8.1μmの真球状の白色粉末状であった。また、この微粒子(5)中に占める二酸化炭素由来の成分の割合は、22.1%であった(計算値)。なお、上記における環状カーボネート化合物とアミノ化合物との配合は、官能基当量比が1.05となる配合である。
<実施例6>
 予め、ステンレス容器に、合成例1で得た分散剤5.0部と、イソノナンを150部とを加えて混合液とした。製造例1で得た(A-I)50部と製造例2で得た(A-II)50部、ヘキサメチレンジアミン34.0部を、上記で準備した混合液の中に徐々に加え、実施例1と同様にして、ポリヒドロキシウレタン微粒子(6)を得た。得られた微粒子(6)は、平均分散粒子径が5.0μmの真球状の白色粉末状であった。また、この微粒子中に占める二酸化炭素由来の成分の割合は、20.3%であった(計算値)。なお、上記における環状カーボネート化合物とアミノ化合物との配合は、官能基当量比が1.05となる配合である。
Figure JPOXMLDOC01-appb-I000031
(評価)
 上記実施例1~6で得られた微粒子(1)~(6)、及び、比較例として既存のウレタン微粒子(商品名:ダイミックビーズUCN-5070、平均粒子径7.0μm、大日精化工業社製)について、性能を評価した。評価は、下記の試験項目について、以下の方法及び評価基準で評価した。表2に評価結果をまとめて示した。
[粒子径]
 実施例及び比較例で得たポリマー微粒子分散液を用い、粒度分布計(商品名:Microtrac X100、日機装社製)でイソノナンを測定溶媒としてそれぞれの粒子径を測定した。
[円形度]
 実施例及び比較例のそれぞれの微粒子について、粒子形状画像解析装置(商品名:PITA-1、セイシン企業社製)を用いて測定し、その値で評価した。その測定原理は、粒子投影の周囲長を測定し、微粒子の円形度を以下の式から算出するものである。なお、円形度は、真円で1となり、形状が複雑になるほど、その値は小さくなる。
 円形度=円相当径から求めた円の周囲長/粒子投影の周囲長
[耐溶剤性]
 実施例及び比較例のそれぞれの微粒子を各10部、以下に挙げた4種の各有機溶剤90部にそれぞれに添加し、室温で3時間の撹拌を行った後、有機溶剤を濾別して微粒子を回収した。回収した微粒子を真空乾燥した後、試験前後の重量減少量を測定し、以下の基準で評価した。試験溶剤として、MEK、DMF、トルエン(TOL)、イソプロピルアルコール(IPA)の4種を用いた。
 ○:いずれの溶剤においても重量減少が10%未満
 △:一種以上の溶剤に対して重量減少が、10%以上~20%未満
 ×:一種以上の溶剤に対して重量減少が、20%以上
[再分散性]
 実施例及び比較例の微粒子を各20部ずつ取り、これをそれぞれMEK80部に添加し、ディスパーで60秒間の撹拌を行い、分散液の状態を肉眼及び顕微鏡で観察し、以下の基準で評価した。
 5:完全に分散
 4:ほぼ分散するものの、僅かに粗大粒子あり
 3:一部に粗大粒子あり
 2:全体がペースト
 1:ゲル化し沈降
[耐熱性]
 TG-DTAにて、250℃/30分における重量減を測定した。
 ○:重量減少率が5%未満
 △:重量減少率が5%以上~10%未満
 ×:重量減少率が10%以上
[二酸化炭素含有量]
 二酸化炭素含有量は、得られた微粒子の化学構造中における、原料の二酸化炭素由来のセグメントの質量%を算出して求めた。具体的には、ポリウレタン微粒子の合成反応に使用した、化合物A-I~IVを合成する際に使用した、モノマーに対して含まれる二酸化炭素の理論量から算出した計算値で示した。例えば、実施例1の場合には、使用した化合物A-Iの二酸化炭素由来の成分は30.6%であり、これより実施例1のポリヒドロキシウレタン微粒子中の二酸化炭素濃度は、(100部×30.6%)/144.9全量=21.1質量%となる。
Figure JPOXMLDOC01-appb-I000032
 表2の結果から明らかなように、本発明のポリヒドロキシウレタン微粒子は既存のポリウレタン微粒子と比較し、同等の形状及び物理特性を示した。このことは、本発明によって提供されるポリヒドロキシウレタン微粒子は、従来のポリウレタン微粒子に代替し得るものであることを示している。また、ポリヒドロキシウレタン微粒子の製造は過去に例がなく、本発明の製造方法は、新規なポリヒドロキシウレタン微粒子の製造方法として有用なことも明らかとなった。さらに、本発明のヒドロキシウレタン微粒子は、化学構造の一部として二酸化炭素を高濃度で固定化していることより、既存のポリウレタン微粒子と比較して、従来にない環境問題に対応した製品の提供を可能にできるポリウレタン微粒子としても工業的に有用であることが証明された。
 以上の本発明によれば、環状カーボネート化合物とアミン化合物とを原料とし、特に好ましくは、極性部と非極性部とを一分子の構造中に備えた化合物を分散剤として用いることで、従来の技術では得られなかった、従来のポリウレタン樹脂とはその構造が異なり、さらに、粒子径のコントロールされたポリヒドロキシウレタン微粒子が効率的に得られる製造方法が提供される。また、本発明で提供するポリヒドロキシウレタン微粒子は、真球状であり、各種の溶媒への再分散も極めて容易であるなど、既存のポリウレタン微粒子と同等の性状を有するものであり、既存のポリウレタン微粒子と同様の用途への使用が期待できる。特に本発明で提供するポリヒドロキシウレタン微粒子は、ポリマーの合成原料として二酸化炭素を使用できる点で、地球環境保護の観点からも工業的な応用が期待される技術である。

Claims (6)

  1.  粒子径が0.1μm~300μmである球状のポリマー微粒子であり、かつ、該微粒子を構成するポリマーが、その構造中に、下記(1)又は(2)で表される化学構造ユニットの少なくともいずれか一方を有し、これらの化学構造ユニットを構成している-O-CO-結合が二酸化炭素由来であることを特徴とするポリヒドロキシウレタン微粒子。

    Figure JPOXMLDOC01-appb-I000001
  2.  前記化学構造ユニットを構成している-O-CO-結合が、二酸化炭素を原材料の一つとして合成された5員環環状カーボネート基を反応性基として形成されたものであり、かつ、微粒子を構成するポリマー中に該二酸化炭素由来の-O-CO-結合が1~30質量%含有される請求項1に記載のポリヒドロキシウレタン微粒子。
  3.  請求項1又は2に記載のポリヒドロキシウレタン微粒子の製造方法であって、
     少なくとも2つの5員環環状カーボネート基を反応性基として有する化合物と、少なくとも2つのアミノ基を反応性基として有する化合物とを用い、これらの化合物を、分散剤を含む不活性液体中に均一に分散させた後、加熱して両化合物を反応させて、不活性液体中に分散された状態のポリマー微粒子を得る際に、
     上記化合物のどちらか一方に、1分子中に3つ以上の反応性基を有する化合物を用い、かつ、両化合物を下記式で定義される官能基当量比0.7~1.5で反応させることを特徴とするポリヒドロキシウレタン微粒子の製造方法。
    Figure JPOXMLDOC01-appb-I000002
    (上記式中の官能基数とは、カーボネート化合物とアミン化合物がそれぞれの1分子中に有する環状カーボネート構造またはアミノ基の個数である。)
  4.  前記5員環環状カーボネート基を反応性基として有する化合物が、二酸化炭素を原材料の一つとして合成されたものであり、該化合物を反応に用いて得たポリマー中に、上記二酸化炭素由来の-O-CO-結合が1~30質量%含有されている請求項3に記載のポリヒドロキシウレタン微粒子の製造方法。
  5.  前記分散剤として、その構造中に非極性部と極性部とを有し、該非極性部はポリブタジエン骨格を有し、かつ、該極性部は、5員環環状カーボネート構造もしくはヒドロキシウレタン構造のいずれかを有するものを用いる請求項3又は4に記載のポリヒドロキシウレタン微粒子の製造方法。
  6.  さらに、前記不活性液体中に分散している状態のポリマー微粒子から該不活性液体を取り除き、粉末状のポリマー微粒子にして取り出す請求項3~5のいずれか1項に記載のポリヒドロキシウレタン微粒子の製造方法。
PCT/JP2012/060969 2011-05-02 2012-04-24 ポリヒドロキシウレタン微粒子及びその製造方法 WO2012150684A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/111,135 US9416227B2 (en) 2011-05-02 2012-04-24 Polyhydroxyurethane microparticles, and process for producing same
CN201280021666.4A CN103502309B (zh) 2011-05-02 2012-04-24 聚羟基氨基甲酸酯微粒及其制造方法
KR1020137031837A KR101556837B1 (ko) 2011-05-02 2012-04-24 폴리하이드록시우레탄 미립자 및 그의 제조방법
EP12779542.5A EP2706078B1 (en) 2011-05-02 2012-04-24 Polyhydroxyurethane microparticles, and process for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011103299 2011-05-02
JP2011-103299 2011-05-02
JP2011-108602 2011-05-13
JP2011108602A JP5809847B2 (ja) 2011-05-02 2011-05-13 ポリヒドロキシウレタン微粒子の製造方法

Publications (1)

Publication Number Publication Date
WO2012150684A1 true WO2012150684A1 (ja) 2012-11-08

Family

ID=47107873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060969 WO2012150684A1 (ja) 2011-05-02 2012-04-24 ポリヒドロキシウレタン微粒子及びその製造方法

Country Status (6)

Country Link
US (1) US9416227B2 (ja)
EP (1) EP2706078B1 (ja)
JP (1) JP5809847B2 (ja)
KR (1) KR101556837B1 (ja)
CN (1) CN103502309B (ja)
WO (1) WO2012150684A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9487662B1 (en) * 2014-01-21 2016-11-08 Nanotech Industries, Inc. Radiation-curable biobased flooring compositions with nonreactive additives
TWI738778B (zh) * 2016-05-25 2021-09-11 日商三菱鉛筆股份有限公司 氟系樹脂之非水系分散體、使用其之含氟系樹脂之熱硬化樹脂組成物及其硬化物、聚醯亞胺前驅物溶液組成物
TWI794172B (zh) * 2016-05-25 2023-03-01 日商三菱鉛筆股份有限公司 氟系樹脂之非水系分散體、使用其之含氟系樹脂之熱硬化樹脂組成物及其硬化物、聚醯亞胺前驅物溶液組成物
JP6697351B2 (ja) * 2016-08-19 2020-05-20 大日精化工業株式会社 ポリウレタン樹脂組成物及び該組成物を用いたゴルフボール用カバー材
FR3086950B1 (fr) 2018-10-09 2020-12-25 Hutchinson Composition de caoutchouc pour applications dynamiques, son procede de preparation, produits l'incorporant et utilisations
US11822117B2 (en) * 2019-10-08 2023-11-21 Corning Incorporated Primary coating compositions with improved microbending performance
JP6899941B1 (ja) * 2020-03-31 2021-07-07 大日精化工業株式会社 接着剤用樹脂組成物、接着剤、及び接着構造体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072613A (en) 1957-08-20 1963-01-08 Union Carbide Corp Multiple cyclic carbonate polymers
JPH03215504A (ja) * 1990-01-22 1991-09-20 Nippon Oil & Fats Co Ltd 架橋重合体微粒子及びそれを含む塗料組成物
JPH0797424A (ja) 1993-09-28 1995-04-11 Dainichiseika Color & Chem Mfg Co Ltd 吸水性ポリウレタンゲル微粒子及びその製造方法
JP3100977B2 (ja) 1990-11-20 2000-10-23 根上工業株式会社 ポリウレタンビーズの製造方法
JP2000319504A (ja) * 1999-05-11 2000-11-21 Japan Chemical Innovation Institute 新規なポリヒドロキシウレタン及びその製造方法
JP2006009001A (ja) * 2004-05-26 2006-01-12 Japan Paint Manufacturers Association ポリヒドロキシウレタンの製造方法
JP2007297544A (ja) * 2006-05-01 2007-11-15 Dai Ichi Kogyo Seiyaku Co Ltd ポリヒドロキシウレタンの製造方法及びポリヒドロキシウレタン水分散体

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2522680A (en) 1949-07-20 1950-09-19 American Cyanamid Co Polymerizable dioxolane compound, products prepared therefrom, and methods of preparation
US3084140A (en) 1957-10-31 1963-04-02 Dow Chemical Co Polyhydroxyurethanes
JPS57202317A (en) 1981-06-09 1982-12-11 Dainippon Ink & Chem Inc Curable resin composition
DE3529263A1 (de) 1985-08-16 1987-02-19 Hoechst Ag Verfahren zur herstellung von 2-oxo-1,3-dioxolanen
EP0296098A3 (en) * 1987-06-16 1989-08-23 W.R. Grace & Co.-Conn. Crosslinked polyurethane emulsion, process and prepolymer for its production and process for forming coatings from said emulsion
DE3723782A1 (de) 1987-07-16 1989-01-26 Dainippon Ink & Chemicals Verfahren zur herstellung von cyclocarbonatverbindungen
JPH0625409A (ja) 1992-04-14 1994-02-01 Kyowa Hakko Kogyo Co Ltd ウレタン基含有重合体
US5175231A (en) * 1992-04-17 1992-12-29 Fiber-Cote Corporation Urethane oligomers and polyurethanes
JP3489850B2 (ja) 1993-03-30 2004-01-26 株式会社クラレ ガスバリアー性材料
JPH0710283A (ja) 1993-06-22 1995-01-13 Sanyo Special Steel Co Ltd 円柱状または円筒状材料の自動整列投入装置
JPH0791367A (ja) 1993-09-20 1995-04-04 Nippon Carbureter Co Ltd 真空ポンプ装置
JPH0791368A (ja) 1993-09-20 1995-04-04 Fujitsu Ltd クライオポンプの制御方法
JPH07112518A (ja) 1993-10-18 1995-05-02 Teijin Ltd 積層延伸フイルム
DE4344510A1 (de) 1993-12-24 1995-06-29 Hoechst Ag Flüssige Zweikomponenten-Überzugsmittel
JP3580331B2 (ja) 1995-10-11 2004-10-20 三菱瓦斯化学株式会社 共重合ポリアミド
JP3801319B2 (ja) 1996-12-27 2006-07-26 株式会社クレハ 樹脂組成物及びそれからなるガスバリヤー性フィルム
US6120905A (en) 1998-06-15 2000-09-19 Eurotech, Ltd. Hybrid nonisocyanate polyurethane network polymers and composites formed therefrom
JP4524463B2 (ja) 1999-07-27 2010-08-18 三井化学株式会社 ガスバリア性ポリウレタン樹脂及びこれを含むガスバリア性フィルム
US7232877B2 (en) 2001-10-01 2007-06-19 Homecom Communications, Inc. Preparation of oligomeric cyclocarbonates and their use in ionisocyanate or hybrid nonisocyanate polyurethanes
JP2003327854A (ja) 2002-05-09 2003-11-19 Japan Paint Manufacturers Association 水性硬化性樹脂組成物
JP4434907B2 (ja) 2003-10-15 2010-03-17 三井化学ポリウレタン株式会社 水性ポリウレタン樹脂組成物及び積層フィルム
JP4539814B2 (ja) * 2003-11-20 2010-09-08 日本ゼオン株式会社 粉体成形用熱可塑性ポリウレタン樹脂組成物及びその製造方法
JP2007291157A (ja) 2006-04-21 2007-11-08 Kansai Paint Co Ltd 水性樹脂組成物及びこれを含む塗料組成物
JP2008285539A (ja) 2007-05-16 2008-11-27 Konishi Co Ltd 硬化性樹脂組成物
JP4994116B2 (ja) * 2007-05-25 2012-08-08 三井化学株式会社 水性ウレタン樹脂
JP5087063B2 (ja) 2009-11-16 2012-11-28 大日精化工業株式会社 印刷インキバインダー及び印刷インキ
CN101775137B (zh) * 2010-03-15 2012-06-13 华中科技大学 一种水性非异氰酸酯聚氨酯及其制备方法
CN103270071B (zh) 2010-08-26 2014-11-26 大日精化工业株式会社 自交联型聚硅氧烷改性多羟基聚氨酯树脂、含有该树脂的树脂材料、该树脂的制造方法、使用该树脂形成的人造革及热塑性聚烯烃表皮材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3072613A (en) 1957-08-20 1963-01-08 Union Carbide Corp Multiple cyclic carbonate polymers
JPH03215504A (ja) * 1990-01-22 1991-09-20 Nippon Oil & Fats Co Ltd 架橋重合体微粒子及びそれを含む塗料組成物
JP3100977B2 (ja) 1990-11-20 2000-10-23 根上工業株式会社 ポリウレタンビーズの製造方法
JPH0797424A (ja) 1993-09-28 1995-04-11 Dainichiseika Color & Chem Mfg Co Ltd 吸水性ポリウレタンゲル微粒子及びその製造方法
JP2000319504A (ja) * 1999-05-11 2000-11-21 Japan Chemical Innovation Institute 新規なポリヒドロキシウレタン及びその製造方法
JP3840347B2 (ja) 1999-05-11 2006-11-01 財団法人化学技術戦略推進機構 新規なポリヒドロキシウレタンの製造方法
JP2006009001A (ja) * 2004-05-26 2006-01-12 Japan Paint Manufacturers Association ポリヒドロキシウレタンの製造方法
JP2007297544A (ja) * 2006-05-01 2007-11-15 Dai Ichi Kogyo Seiyaku Co Ltd ポリヒドロキシウレタンの製造方法及びポリヒドロキシウレタン水分散体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROMINA V. GOMEZ ET AL.: "Syntheis of Polyhydroxy [n]-Polyurethanes Derived from a Carbohydrate Precursor", MACROMOLECULES, vol. 42, no. ISS.21, 8 September 2009 (2009-09-08), pages 8112 - 8117, XP055134565 *

Also Published As

Publication number Publication date
EP2706078A1 (en) 2014-03-12
EP2706078A4 (en) 2014-10-01
CN103502309A (zh) 2014-01-08
EP2706078B1 (en) 2020-06-10
KR101556837B1 (ko) 2015-10-01
KR20140006090A (ko) 2014-01-15
US20140030526A1 (en) 2014-01-30
CN103502309B (zh) 2015-11-25
JP5809847B2 (ja) 2015-11-11
US9416227B2 (en) 2016-08-16
JP2012246327A (ja) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5809847B2 (ja) ポリヒドロキシウレタン微粒子の製造方法
Liu et al. Synthesis, modification and properties of rosin-based non-isocyanate polyurethanes coatings
JP6563242B2 (ja) ポリヒドロキシウレタン樹脂の水分散体、水分散体の製造方法及び該水分散体を用いてなるガスバリア性フィルム
JP5935423B2 (ja) 架橋剤とその製造方法
KR102019641B1 (ko) 폴리히드록시우레탄 수지의 수분산체, 해당 수분산체의 제조 방법, 해당 수분산체를 사용하여 이루어지는 가스 배리어성 수지 필름, 점토 광물 함유의 폴리히드록시우레탄 수지 수분산체 조성물, 해당 조성물을 사용하여 이루어지는 가스 배리어성 코팅제 및 가스 배리어성 수지 필름
WO2013028134A1 (en) An aqueous dispersible polymer composition
JP5231114B2 (ja) ポリウレタンビーズの製造方法
JP2006273974A (ja) 酸性アクリルブロック樹脂
CN109312081A (zh) 用于固化环氧树脂组合物的复合颗粒以及使用所述颗粒制备的可固化的和经固化的环氧树脂组合物
CN107189053A (zh) 一种多元环碳酸酯树脂及其常压下制备方法与应用
JP5120747B2 (ja) 表面改質カーボンブラックとその製造方法およびその分散体
JP5601115B2 (ja) 潜在性硬化剤の製造方法
Sahin et al. Polyoxazoline‐modified graphene oxides with improved water and epoxy resin dispersibility and stability towards composite applications
Guo et al. Synthesis and properties of novel water‐dispersible polyisocyanates
JP2019127548A (ja) ヒドロキシポリウレタン樹脂の水分散体、該水分散体を用いてなるガスバリア性フィルム及びヒドロキシポリウレタン樹脂の水分散体の製造方法
JP2006306998A (ja) 光干渉樹脂微粒子及び光干渉複合微粒子
JP2017116810A5 (ja)
JP2018070840A (ja) ポリヒドロキシウレタン樹脂の水分散体、該水分散体の製造方法及び該水分散体を用いてなるガスバリア性樹脂フィルム
JP2019127574A (ja) ヒドロキシポリウレタン樹脂の水分散体組成物、これを用いたガスバリア性コーティング剤及びガスバリア性フィルム
CA2217431A1 (en) Amine curatives for powder coating applications
Abbasian et al. A novel epoxy-based resin nanocomposite: co-curing of epoxidized novolac and epoxidized poly (vinyl chloride) using amine-functionalized silica nanoparticles
JP4547620B2 (ja) 架橋アリルアミン類重合体の製造方法
JP7033636B1 (ja) ポリヒドロキシウレタン樹脂の水分散体、及びガスバリア性フィルム、並びにポリヒドロキシウレタン樹脂の水分散体の製造方法
JP2007197503A (ja) エポキシ変性ポリアルキレンイミン及びその製造方法
CN100400525C (zh) N-缩水甘油基胺的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12779542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012779542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14111135

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137031837

Country of ref document: KR

Kind code of ref document: A