WO2012147586A1 - 流量測定装置 - Google Patents

流量測定装置 Download PDF

Info

Publication number
WO2012147586A1
WO2012147586A1 PCT/JP2012/060470 JP2012060470W WO2012147586A1 WO 2012147586 A1 WO2012147586 A1 WO 2012147586A1 JP 2012060470 W JP2012060470 W JP 2012060470W WO 2012147586 A1 WO2012147586 A1 WO 2012147586A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
flow
physical property
property value
detection
Prior art date
Application number
PCT/JP2012/060470
Other languages
English (en)
French (fr)
Inventor
克行 山本
直亜 上田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP12776213.6A priority Critical patent/EP2703786B1/en
Priority to US14/112,243 priority patent/US9068871B2/en
Publication of WO2012147586A1 publication Critical patent/WO2012147586A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Definitions

  • the present invention relates to a flow rate measuring device for measuring the flow rate of a fluid flowing in a flow path. More specifically, the flow rate can be measured with high accuracy by reducing a change in output characteristics due to a change in physical properties of the fluid.
  • the present invention relates to a flow measuring device that can be used.
  • a thermal type that measures the flow rate of the measurement target fluid based on a change in temperature distribution in the flow path A flow measuring device is used.
  • FIGS. 13A and 13B are schematic diagrams for explaining changes in temperature distribution in a thermal flow measuring device, and FIG. 13A shows a fluid to be measured flowing. FIG. 13B shows the temperature distribution in a state where the measurement target fluid is flowing.
  • thermopile 182 detects a lower temperature than the state where the measurement target fluid is not flowing, and the thermopile 183 detects a higher temperature than the state where the measurement target fluid is not flowing.
  • the flow rate of the fluid to be measured flowing in the flow path is calculated based on the temperature difference detected by the thermopile 182 and the thermopile 183, so that the flow rate measurement with high accuracy can be performed. It is possible.
  • FIGS. 14 (a) and 14 (b) are schematic diagrams showing temperature distributions when Gas A and Gas B having different physical property values are respectively flowed through the flow path 121 at a predetermined flow rate (L / min).
  • FIG. 15 is a graph showing the relationship between the flow rates (L / min) of GasA and GasB shown in FIGS. 14 (a) and 14 (b) and the output value (V) of the flow rate measuring device.
  • the gas heaters having different physical property values have different microheaters.
  • the temperature distribution around 181 is different.
  • the output value (V) of the flow rate measuring device changes even at the same flow rate between Gas A and Gas B having different physical property values. Increasing with increasing flow rate.
  • FIG. 16 is a top view showing the configuration of the microflow sensor 207 provided in the flow rate measuring device disclosed in Patent Document 1
  • FIG. 17 is a perspective view showing the appearance of the flow rate measuring device 301 disclosed in Patent Literature 2. It is.
  • the microflow sensor 207 of Patent Document 1 includes a thermopile 282 and 283 for measuring a flow rate and thermopiles 272 and 273 for detecting a physical property value along the four sides of the microheater 281. Is placed on top.
  • a flow rate sensor 308 is disposed on the inner wall of the main flow path 321, and a physical property value is provided inside a cell 336 that is branched from the main flow path 321.
  • a sensor 307 is arranged.
  • the physical property value of the measurement target fluid is calculated based on the output value of the physical property value sensor, and the flow rate of the measurement target fluid is corrected using the calculated physical property value. It is possible to reduce the change in the output characteristics of the flow rate measuring device due to the change in the physical properties of the fluid.
  • Patent No. 4050857 (Registered on December 7, 2007)”
  • Patent No. 5237523 (Registered on August 17, 1993)
  • the flow rate sensor and the physical property sensor have a specific detection range, and if the flow rate of the fluid to be measured is out of this detection range, the measurement accuracy is lowered or measurement is impossible. For this reason, in order to increase the measurement accuracy of the flow rate measuring device, it is necessary to individually control the optimum flow rates according to the detection ranges of the flow rate sensor and the physical property sensor.
  • Patent Document 1 has a configuration in which thermopiles 282 and 283 for detecting a flow rate and thermopiles 272 and 273 for detecting property values provided on a substrate 205 are arranged in the same flow path. For this reason, the optimal flow rate cannot be individually controlled for each flow sensor and physical property sensor.
  • Patent Document 2 cannot accurately correct the physical property value, and therefore cannot accurately measure the flow rate of the fluid to be measured.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce a change in output characteristics due to a change in physical properties of a measurement target fluid and to measure the flow rate of the measurement target fluid with high accuracy.
  • An object of the present invention is to provide a flow measuring device capable of performing the above.
  • a flow rate measuring device includes a flow rate detection unit for detecting a flow rate of a measurement target fluid flowing through a main flow path, a heating unit for heating the measurement target fluid, and a measurement target fluid.
  • the physical property value detection unit is disposed in the physical property value detection flow path, and the flow rate detection unit is disposed in a position excluding the physical property value detection flow path.
  • the flow rate of the fluid to be measured flowing through the physical property value detection flow path can be individually controlled by adjusting the width of the physical property value detection flow path.
  • the flow rate correction unit is based on the detection signal output from the flow rate detection unit using the highly accurate physical property value calculated based on the detection signal output from the physical property value detection unit.
  • the flow rate of the fluid to be measured calculated in this way can be accurately corrected.
  • the flow rate of the measurement target fluid can be corrected based on the appropriate physical property value corresponding to the change in the physical property value of the measurement target fluid flowing through the main flow path.
  • the heating unit and the temperature detection unit included in the physical property value detection unit are arranged side by side in a direction orthogonal to the flow direction of the measurement target fluid. Since the temperature distribution is biased to the downstream side depending on the flow of the measurement target fluid, the amount of change in the temperature distribution in the direction orthogonal to the flow direction is smaller than the amount of change in the temperature distribution in the flow direction of the measurement target fluid. For this reason, the change of the output characteristic of the temperature detection part by the change of temperature distribution can be reduced by arrange
  • the present invention it is possible to realize a flow rate measuring apparatus capable of measuring the flow rate of the measurement target fluid with high accuracy by reducing the change in the output characteristics due to the change in physical properties of the measurement target fluid.
  • FIG. 1A is an exploded perspective view showing a flow rate measuring device according to the first embodiment
  • FIG. 1B is a perspective view showing the flow rate measuring device shown in FIG.
  • FIG. 2 is a perspective view showing the sub-flow channel portion shown in FIG. 3A is a top view showing a schematic configuration of the physical property sensor shown in FIG. 2
  • FIG. 3B is a top view showing a schematic configuration of the flow sensor shown in FIG.
  • FIG. 4 is a schematic diagram for explaining the flow rate of the measurement target fluid that is divided into the physical property value detection flow path and the flow rate detection flow path shown in FIG. 2.
  • FIG. 5 is a graph showing the relationship between the output values of the physical property sensor and the flow rate sensor shown in FIG. 4 and the flow rate.
  • FIG. 6 is a block diagram illustrating a main configuration of a control unit included in the flow rate measuring device illustrated in FIG. 1A and FIG.
  • FIG. 7 is a flowchart showing the flow of processing of the control unit shown in FIG.
  • FIGS. 8A to 8D are top views showing modified examples of the physical property value detection flow path and the flow rate detection flow path formed on the upper surface of the sub flow path section shown in FIG. It is.
  • FIG. 9 is a top view showing a schematic configuration of a modification of the physical property sensor shown in FIG. (A) of FIG. 10 is a perspective view showing a flow rate measuring device according to Embodiment 2, and (b) of FIG. 10 is a cross-sectional view showing the flow rate measuring device shown in (a) of FIG. FIG.
  • FIG. 10C is a top view showing the sub-flow channel portion shown in FIG.
  • FIG. 11A is a perspective view showing a flow rate measuring device according to the third embodiment
  • FIG. 11B is a top view showing a sub-flow channel portion shown in FIG.
  • FIG. 12A is a perspective view showing a flow rate measuring apparatus according to Embodiment 4
  • FIG. 12B is a perspective view showing a sub-flow channel portion shown in FIG. (C) of FIG. 12 is a top view showing the sub-flow channel portion shown in (b) of FIG.
  • FIGS. 13A and 13B are schematic diagrams for explaining changes in temperature distribution in a thermal flow measuring device, and FIG. 13A shows a fluid to be measured flowing.
  • FIG. 13A shows a fluid to be measured flowing.
  • FIGS. 14 (a) and 14 (b) are schematic diagrams showing temperature distributions when Gas A and Gas B having different physical property values are respectively flowed through the flow path at a predetermined flow rate (L / min).
  • FIG. 15 is a graph showing the relationship between the flow rates (L / min) of GasA and GasB shown in FIGS. 14 (a) and 14 (b) and the output value (V) of the flow rate measuring device.
  • FIG. 16 is a top view showing a configuration of a microflow sensor provided in a conventional flow rate measuring device.
  • FIG. 17 is a perspective view showing the appearance of a conventional flow rate measuring device.
  • FIG. 1A is an exploded perspective view showing a flow rate measuring device 1 according to this embodiment
  • FIG. 1B is a perspective view showing the flow rate measuring device 1 shown in FIG. It is.
  • the flow rate measuring device 1 includes a main channel portion 2 in which a main channel 21 is formed and a sub channel portion in which a sub channel 31 is formed. 3, a seal 4, a circuit board 5, and a cover 6.
  • the main channel portion 2 is a tubular member in which a main channel 21 penetrating in the longitudinal direction is formed.
  • An inlet (first inlet) 34A is formed on the upstream side with respect to the flow direction O of the fluid to be measured on the inner peripheral surface of the main flow path portion 2, and an outlet (first outlet) 35A is formed on the downstream side. Is formed.
  • the axial length of the main channel portion 2 is about 50 mm
  • the diameter of the inner peripheral surface is about 20 mm
  • the diameter of the outer peripheral surface of the main channel portion 2 is about 24 mm.
  • the sub-channel part 3 is provided on the main channel part 2 (outer peripheral surface), and a sub-channel 31 is formed inside and on the top surface.
  • the sub-channel 31 has one end communicating with the inflow port 34A and the other end communicating with the outflow port 35A.
  • the sub-flow channel 31 includes an inflow channel 34, a physical property value detection channel 32, a flow rate detection channel 33, and an outflow channel 35.
  • the inflow flow path 34 is a flow path for allowing the measurement target fluid flowing in the main flow path 21 to flow into the physical property value detection flow path 32 and the flow rate detection flow path 33.
  • the inflow channel 34 is formed through the sub-channel unit 3 in a direction perpendicular to the main channel 21, with one end communicating with the inflow port 34 ⁇ / b> A and the other end on the upper surface of the sub-channel unit 3. It opens and communicates (branches) to the physical property value detection flow path 32 and the flow rate detection flow path 33. As a result, a part of the fluid to be measured flowing through the main flow channel 21 can be divided into the physical property value detection flow channel 32 and the flow rate detection flow channel 33 via the inflow flow channel 34.
  • the physical property value detection channel (physical property value detection channel) 32 is a substantially U-shaped channel formed on the upper surface of the sub-channel unit 3 and extending in a direction parallel to the main channel 21. One end of the physical property value detection channel 32 communicates with the inflow port 34A through the inflow channel 34, and the other end communicates with the outflow port 35A through the outflow channel 35.
  • This physical property value detection flow path 32 has a physical property value sensor (physical property value detection unit) 7 for detecting a physical property value of the fluid to be measured at a portion extending in the longitudinal direction (a direction parallel to the main flow channel 21).
  • the physical property value detection area 36 is arranged.
  • the flow rate detection flow path (flow rate detection flow path) 33 is a substantially U-shaped flow path formed on the upper surface of the sub flow path portion 3 and extending in a direction parallel to the main flow path 21. One end of the flow rate detection channel 33 communicates with the inflow port 34A via the inflow channel 34, and the other end communicates with the outflow port 35A via the outflow channel 35.
  • This flow rate detection flow path 33 is a flow rate in which a flow rate sensor (flow rate detection unit) 8 for detecting the flow rate of the fluid to be measured is arranged in a portion extending in the longitudinal direction (a direction parallel to the main flow path 21). A detection area 37 is provided.
  • the physical property value sensor 7 and the flow rate sensor 8 and the circuit board 5 are illustrated as separated from each other.
  • the physical property value sensor 7 is disposed in the physical property value detection region 36
  • the flow rate sensor 8 is disposed in the flow rate detection region 37.
  • the outflow channel 35 is a channel for allowing the measurement target fluid that has passed through the physical property value detection channel 32 and the flow rate detection channel 33 to flow out to the main channel 21.
  • the outflow passage 35 is formed through the sub-flow passage portion 3 in a direction perpendicular to the main flow passage 21, one end communicating with the outflow port 35 ⁇ / b> A, and the other end on the upper surface of the sub-flow passage portion 3. It opens and communicates with the physical property value detection flow path 32 and the flow rate detection flow path 33. As a result, the fluid to be measured that has passed through the physical property value detection flow path 32 and the flow rate detection flow path 33 can flow out into the main flow path 21 through the outflow flow path 35 without any delay.
  • the physical property value sensor 7 and the flow rate sensor 8 are configured to have the temperature and concentration by dividing the fluid to be measured flowing from the same inflow port 34A into the physical property value detection flow channel 32 and the flow rate detection flow channel 33.
  • the physical property value or the flow rate can be detected based on the fluid to be measured having the same conditions such as. Therefore, the measurement accuracy of the flow rate measuring device 1 can be improved.
  • the circuit board 5 is arranged after the seal 4 is fitted into the sub-flow channel part 3, and the circuit board 5 is fixed to the sub-flow channel part 3 by the cover 6, thereby Airtightness inside the road portion 3 is ensured.
  • FIG. 2 is a perspective view showing the auxiliary flow path portion 3 shown in FIG.
  • the physical property value detection channel 32 has one end communicating with the inflow channel 34 and the other end communicating with the outflow channel 35.
  • the flow rate detection flow path 33 has one end communicating with the inflow flow path 34 and the other end communicating with the outflow flow path 35.
  • both end portions of the physical property value detection flow path 32 and the flow rate detection flow path 33 are also in communication with each other, and the physical property value detection flow path 32 and the flow rate detection flow path 33 are arranged on the upper surface of the sub flow path portion 3. A rectangular flow path is formed.
  • the physical property value detection region 36 and the flow rate detection region 37 both have a square shape when viewed from a direction perpendicular to the upper surface of the sub-flow channel unit 3. They are formed at positions that are substantially symmetrical with respect to a straight line connecting the flow path 35.
  • the lengths of one side of the physical property value detection region 36 and the flow rate detection region 37 are both about 4 mm.
  • the physical property value detection region 36 and the flow rate detection region 37 are square, but the present invention is not limited to this.
  • the shape of the physical property value detection region 36 and the flow rate detection region 37 may be any as long as the physical property value sensor 7 or the flow rate sensor 8 can be arranged, and is appropriately determined according to the shape of the physical property value sensor 7 and the flow rate sensor 8 to be arranged. .
  • the width of the physical property value detection region 36 may be matched with the width of the physical property value detection flow path 32.
  • the portion extending in the longitudinal direction of the physical property value detection channel 32 is formed in a linear shape. The same applies to the flow rate detection region 37.
  • FIG. 3A is a top view showing a schematic configuration of the physical property sensor 7 shown in FIG. 2
  • FIG. 3B is a top view showing a schematic configuration of the flow sensor 8 shown in FIG. It is.
  • the physical property value sensor 7 includes a micro heater (heating unit) 71 that heats the measurement target fluid, and a first physical property thermopile (temperature detection unit) that detects the temperature of the measurement target fluid. ) 72 and a second physical property value thermopile (temperature detection unit) 73.
  • the micro heater 71, the first physical property value thermopile 72, and the second physical property value thermopile 73 are arranged side by side in a direction perpendicular to the flow direction of the measurement target fluid in the physical property value detection region 36.
  • the first physical property value thermopile 72 and the second physical property value thermopile 73 are arranged symmetrically with the microheater 71 inserted, and detect temperatures at symmetrical positions on both sides of the microheater 71.
  • the first physical property value thermopile 72, the micro heater 71, and the second physical property value thermopile 73 are arranged in this order in a direction orthogonal to the flow direction of the fluid to be measured, thereby changing the temperature distribution. Changes in the output characteristics of the first physical property value thermopile 72 and the second physical property value thermopile 73 can be reduced. Therefore, the influence of the change in temperature distribution due to the flow of the fluid to be measured can be reduced, and the detection accuracy by the physical property sensor 7 can be improved.
  • the microheater 71 can heat the measurement target fluid over a wide range in the flow direction of the measurement target fluid. .
  • the first physical property value thermopile 72 and the second physical property value thermopile 73 can easily detect the temperature of the measurement target fluid. Changes in the output characteristics of the first physical property value thermopile 72 and the second physical property value thermopile 73 can be reduced. Therefore, the influence of the temperature distribution change due to the flow of the measurement target fluid can be reduced, the influence of the temperature distribution change due to the flow of the measurement target fluid can be reduced, and the detection accuracy by the physical property value sensor 7 can be improved.
  • the flow sensor 8 includes a micro heater 81 that heats the fluid to be measured, a first flow thermopile 82 and a second flow thermopile 83 that detect the temperature of the fluid to be measured. It has.
  • the micro heater 81, the first flow rate thermopile 82, and the second flow rate thermopile 83 are arranged side by side in the flow direction of the measurement target fluid in the flow rate detection region 37.
  • the first flow thermopile 82 and the second flow thermopile 83 are symmetrical with the first flow thermopile 82 disposed upstream of the microheater 81 and the second flow thermopile 83 disposed downstream, with the microheater 81 inserted. Detect the temperature of the position.
  • sensors having substantially the same structure are used as the physical property value sensor 7 and the flow rate sensor 8, and they are arranged at 90 ° different arrangement angles with respect to the flow direction of the measurement target fluid.
  • sensors having the same structure can be made to function as the physical property value sensor 7 or the flow rate sensor 8, so that the manufacturing cost of the flow rate measuring device 1 can be reduced.
  • the physical property value detection channel 32 and the flow rate detection channel 33 have different widths of the channels extending in the longitudinal direction. Specifically, the width of the flow path having the physical property value detection region 36 is narrower than the width of the flow path having the flow rate detection region 37. As a result, in the flow rate measuring device 1, the flow rates of the measurement target fluids divided into the physical property value detection channel 32 and the flow rate detection channel 33 are individually controlled.
  • FIG. 4 is a schematic diagram for explaining the flow rate of the measurement target fluid that is divided into the physical property value detection flow path 32 and the flow rate detection flow path 33 shown in FIG.
  • the measurement target fluid of the flow rate P is divided into the physical property value detection flow path 32, and the measurement target fluid of the flow rate Q flows through the flow detection flow path 33.
  • the widths of the physical property value detection flow path 32 and the flow rate detection flow path 33 are set.
  • the values of the flow rate P and the flow rate Q vary depending on the flow rate of the fluid to be measured flowing through the main flow path 21. However, in a normal use mode, the flow rate P is a value within the detection range of the physical property value sensor 7.
  • the widths of the physical property value detection flow path 32 and the flow rate detection flow path 33 are set so that Q is a value within the detection range of the flow sensor 8.
  • the flow rate of the measurement target fluid divided into the physical property value detection flow path 32 and the flow rate detection flow path 33 can be individually controlled by adjusting the respective widths. is there. For this reason, the flow rate of the measurement target fluid flowing through the physical property value detection area 36 is controlled according to the detection range of the physical property value sensor 7, and the flow rate of the measurement target fluid flowing through the flow rate detection area 37 according to the detection range of the flow sensor 8. Can be controlled.
  • the physical property value sensor 7 can detect the physical property value of the fluid to be measured at an optimum flow rate corresponding to the specific detection range, the detection accuracy of the physical property value sensor 7 can be improved.
  • the flow rate sensor 8 can detect the flow rate of the fluid to be measured at an optimum flow rate according to the specific detection range, the detection accuracy of the flow rate sensor 8 can be improved.
  • FIG. 5 is a graph showing the relationship between the output values of the physical property sensor 7 and the flow sensor 8 shown in FIG. 4 and the flow rate.
  • the horizontal axis defines the flow rate (%)
  • the vertical axis defines the output value (%) of each sensor.
  • the maximum flow rate of the detection range of the physical property sensor 7 and the flow rate sensor 8 is 100%, and the maximum flow rate The sensor output value is defined as 100%.
  • the output value of the flow rate sensor 8 increases as the flow rate of the fluid to be measured flowing through the flow rate detection region 37 increases.
  • the output value of the physical property value sensor 7 is constant without being affected by the flow rate change of the measurement target fluid flowing through the physical property value detection region 36.
  • the physical property value sensor 7 can detect the physical property value of the measurement target fluid without being affected by the flow rate change of the measurement target fluid. Can be increased.
  • the flow rate calculation unit 52 calculates the flow rate of the fluid to be measured based on the temperature detection signals output from the first flow rate thermopile 82 and the second flow rate thermopile 83. Specifically, the flow rate calculation unit 52 calculates the difference between the temperature indicated by the temperature detection signal output from the first flow rate thermopile 82 and the temperature indicated by the temperature detection signal output from the second flow rate thermopile 83. Then, the flow rate of the fluid to be measured is calculated based on the temperature difference. Then, the flow rate calculation unit 52 outputs the calculated flow rate of the measurement target fluid to the flow rate correction unit 54.
  • the physical property value calculation unit 53 calculates the physical property value of the fluid to be measured based on the temperature detection signal (detection signal) output from the first physical property value thermopile 72 and the second physical property value thermopile 73. Specifically, the physical property value calculation unit 53 is based on the average value of the temperatures indicated by the temperature detection signals output from the first physical property value thermopile 72 and the second physical property value thermopile 73, and the thermal conductivity, thermal diffusion, Alternatively, a physical property value (for example, a thermal diffusion constant) determined by specific heat or the like is calculated. The physical property value calculation unit 53 outputs the calculated physical property value of the measurement target fluid to the flow rate correction unit 54.
  • the flow rate correction unit 54 corrects the flow rate of the measurement target fluid output from the flow rate calculation unit 52 using the physical property value of the measurement target fluid output from the flow rate calculation unit 52. Specifically, the flow rate correction unit 54 corrects the flow rate of the measurement target fluid output from the flow rate calculation unit 52 using the physical property value of the measurement target fluid output from the flow rate calculation unit 52, so that the corrected flow rate is obtained. The flow rate is calculated. The flow rate correction unit 54 notifies the user by displaying the corrected flow rate on a display.
  • FIG. 7 is a flowchart showing the flow of processing of the control unit 51 shown in FIG.
  • the flow rate calculation unit 52 calculates the flow rate of the fluid to be measured based on the two temperature detection signals. Calculate (S1).
  • the flow rate calculation unit 52 calculates the difference between the temperature indicated by the temperature detection signal output from the first flow rate thermopile 82 and the temperature indicated by the temperature detection signal output from the second flow rate thermopile 83. To do. Then, the flow rate calculation unit 52 calculates the flow rate of the measurement target fluid based on the calculated temperature difference. The flow rate calculation unit 52 outputs the calculated flow rate of the measurement target fluid to the flow rate correction unit 54.
  • the physical property value calculation unit 53 is based on the average value of the temperatures indicated by the two temperature detection signals.
  • the physical property value of the fluid is calculated (S2).
  • the speed of heat transmitted through the fluid to be measured corresponds to a physical property value such as a thermal diffusion constant determined by thermal conductivity, thermal diffusion, specific heat, or the like. Therefore, the thermal diffusion constant can be obtained by detecting the temperature difference between the micro heater 71 and the first physical property value thermopile 72 and the second physical property value thermopile 73. For example, the greater the temperature difference between the microheater 71 and the first physical property value thermopile 72 and the second physical property value thermopile 73, the smaller the thermal diffusion constant (thermal conductivity).
  • the temperature of the fluid to be measured is detected by the first physical property thermopile 72 and the second physical property thermopile 73 that are arranged with the micro heater 71 sandwiched in a direction orthogonal to the flow direction of the fluid to be measured. By doing so, the physical property value of the fluid to be measured can be calculated.
  • the flow rate of the fluid to be measured flowing through the physical property value detection region 36 is controlled in accordance with the detection range of the physical property value sensor 7, so the first physical property value thermopile 72 and the second physical property value thermopile. 73 can detect the heat generated from the micro heater 71 without being affected by the flow rate of the fluid to be measured.
  • the first physical property value thermopile 72 and the second physical property value thermopile 73 can output the temperature detection signal to the physical property value calculation unit 53 while maintaining a certain output characteristic.
  • the physical property value can be calculated with high accuracy.
  • the physical property value calculation unit 53 outputs the calculated physical property value of the measurement target fluid to the flow rate correction unit 54.
  • the flow rate correction unit 54 corrects the flow rate of the fluid to be measured output from the flow rate calculation unit 52 using the physical property value output from the physical property value calculation unit 53, and calculates the corrected flow rate (S3). ). Specifically, the flow rate correction unit 54 calculates the corrected flow rate using the following calculation formula (2).
  • the flow rate of the measurement target fluid detected by the flow rate sensor 8 can be appropriately corrected based on the physical property value detected by the physical property value sensor 7.
  • the flow rate can be measured with high accuracy.
  • the flow rate measuring device 1 includes the flow rate sensor 8 for detecting the flow rate of the measurement target fluid flowing through the main flow path 21, the micro heater 71 that heats the measurement target fluid, and A physical property value sensor 7 for detecting a physical property value of the fluid to be measured, having a first physical property value thermopile 72 and a second physical property value thermopile 73 for detecting the temperature of the fluid to be measured, and one end opened in the main flow path 21
  • a sub-flow channel portion 3 having a physical property value detection flow channel 32 in which the physical property value sensor 7 is disposed, and communicated with the inflow port 34A and the other end communicating with the outflow port 35A opened in the main flow channel 21;
  • the flow rate of the measurement target fluid calculated based on the detection signal output from the physical property value sensor 7 is compensated.
  • the physical property sensor 7 is disposed in the physical property detection flow path 32, and the flow sensor is disposed in the flow detection flow path 33. Therefore, for example, by adjusting the width of the physical property value detection flow path 32, the flow rate of the measurement target fluid flowing through the physical property value detection flow path 32 can be individually controlled. As a result, it is possible to suppress the change in the output characteristics of the physical property sensor 7 due to the influence of the flow rate of the measurement target fluid, and it is possible to effectively suppress the occurrence of turbulence due to the flow of the measurement target fluid. Become.
  • the flow rate correction unit 54 uses the highly accurate physical property value calculated based on the temperature detection signal output from the physical property value sensor 7, and the temperature output from the flow rate sensor 8. The flow rate of the measurement target fluid calculated based on the detection signal can be accurately corrected.
  • the physical property value sensor 7 is connected to the inflow port 34 ⁇ / b> A having one end opened in the main flow path 21, and connected to the outflow port 35 ⁇ / b> A having the other end opened in the main flow path 21. It is arranged in the value detection flow path 32. For this reason, since the flow of the measurement target fluid in the physical property value detection flow path 32 flows without stagnation from the inflow port 34A to the outflow port 35A, replacement of the measurement target fluid existing around the physical property value sensor 7 is efficient. Can be done automatically.
  • the flow rate measuring device 1 it is possible to accurately correct the flow rate of the measurement target fluid based on the appropriate physical property value corresponding to the change in the physical property value of the measurement target fluid flowing through the main flow path 21.
  • the first physical property value thermopile 72, the microheater 71, and the second physical property value thermopile 73 are arranged side by side in a direction orthogonal to the flow direction of the fluid to be measured, whereby the first physical property value thermopile 72 due to a change in temperature distribution and The change in the output characteristics of the second physical property value thermopile 73 can be reduced. Therefore, the influence of the change in temperature distribution due to the flow of the fluid to be measured can be reduced, and the detection accuracy by the physical property value sensor 7 can be improved.
  • the physical property value detection flow path 32 and the flow rate detection flow path 33 are both formed in a substantially U shape, thereby forming a rectangular shape on the upper surface of the sub flow path portion 3.
  • the present invention is not limited to this.
  • the shape of the physical property value detection channel 32 and the flow rate detection channel 33 is not particularly limited as long as the flow rate of the fluid to be measured that passes through the physical property value detection region 36 and the flow rate detection region 37 can be individually controlled.
  • the physical property value detection channel 32 is formed in a straight line connecting the inflow channel 34 and the outflow channel 35, and the flow rate detection channel 33 is substantially omitted. You may form in a U shape.
  • the physical property value sensor 7 includes a micro heater 71 that heats the measurement target fluid, a first physical property value thermopile 72 that detects the temperature of the measurement target fluid, and Although the two physical property value thermopile 73 is provided and the first physical property value thermopile 72 and the second physical property value thermopile 73 are arranged symmetrically with the micro heater 71 inserted, the present invention is not limited to this.
  • FIG. 9 is a top view showing a schematic configuration of a modification of the physical property sensor 7 shown in FIG.
  • the second physical property value thermopile 73 may be omitted, and the physical property value sensor 7 a may be configured by the micro heater 71 and the first physical property value thermopile 72.
  • the manufacturing cost of the physical property value sensor 7a can be reduced by using the physical property value sensor 7a in which the micro heater 71 and the first physical property value thermopile 72 are arranged in a direction orthogonal to the flow direction of the fluid to be measured. Can be reduced.
  • the flow measurement device is mainly different from the flow measurement device according to the first embodiment in that a flow sensor is disposed in the main flow path.
  • FIG. 10A is a perspective view showing a flow rate measuring device 1a according to the present embodiment
  • FIG. 10B is a cross-sectional view showing the flow rate measuring device 1a shown in FIG.
  • FIG. 10C is a top view showing the sub-flow channel portion 3a shown in FIG.
  • an opening is formed between the inlet 34A and the outlet 35A formed on the inner peripheral surface of the main flow path portion 2a.
  • a portion 37A is further formed.
  • a cell-shaped flow rate detection region 37a in which the flow rate sensor 8 is arranged is formed inside the sub-flow channel unit 3a, and the flow rate detection region 37a communicates with the opening 37A. For this reason, the fluid to be measured flowing through the main flow path 21a flows into the flow rate detection region 37a through the opening 37A, and the flow rate sensor 8 detects the flow rate.
  • the sub-channel 31a includes an inflow channel 34, a physical property value detection channel 32, and an outflow channel 35.
  • the physical property value detection channel 32 is a fluid to be measured in the main channel 21a.
  • the flow measurement device is mainly different from the flow measurement devices according to the first and second embodiments in that they have two independent sub-flow paths.
  • FIG. 11A is a perspective view showing a flow rate measuring device 1c according to the present embodiment
  • FIG. 11B is a top view showing the sub-flow channel portion 3b shown in FIG. It is.
  • the sub-flow channel portion 3b has a first sub-flow channel 31b and a second sub-flow channel 31B inside and on the upper surface thereof. Is formed.
  • the first sub-channel 31b includes an inflow channel 34b, a physical property value detection channel 32b, and an outflow channel 35b.
  • the physical property value detection flow path 32b extends in parallel with the flow direction of the measurement target fluid in the main flow path 21b, and the physical property value detection in which the physical property value sensor 7 for detecting the physical property value of the measurement target fluid is arranged.
  • a region 36 is provided.
  • the second sub-channel 31B includes an inflow channel 34B, a flow rate detection channel 33B, and an outflow channel 35B.
  • the flow rate detection flow path 33B extends in parallel with the flow direction of the measurement target fluid in the main flow path 21b, and has a flow rate detection region 37 in which the flow rate sensor 8 for detecting the flow rate of the measurement target fluid is arranged. is doing.
  • the sub-channel unit 3b has the first sub-channel 31b and the second sub-channel 31B which are two independent sub-channels.
  • the flow sensor 8 is disposed in the second sub-channel 31B.
  • the flow measurement device is mainly different from the flow measurement devices according to the first to third embodiments in that the physical property value detection flow path is formed in the flow detection flow path.
  • FIG. 12A is a perspective view showing the flow rate measuring device 1c according to the present embodiment
  • FIG. 12B is a perspective view showing the sub-flow channel portion 3c shown in FIG.
  • FIG. 12C is a top view showing the sub-flow channel portion 3c shown in FIG.
  • the sub flow channel portion 3c has a sub flow channel 31c formed inside and on the upper surface thereof.
  • the sub-channel 31c is composed of an inflow channel 34, a physical property value detection channel 32c, a flow rate detection channel 33c, and an outflow channel 35.
  • the physical property value detection flow channel 32c is formed in the flow rate detection region 37c in the flow rate detection flow channel 33c, and the flow rate sensor 8 is arranged upstream in the flow direction of the measurement target fluid.
  • the physical property value sensor 7 is disposed on the downstream side.
  • the physical property value detection channel 32c is separated from the flow rate detection channel 33c (flow rate detection region 37c) by the flow rate control member 40 for controlling the flow rate of the fluid to be measured. Is disposed inside the flow control member 40.
  • the flow rate control member 40 is for controlling the flow rate of the fluid to be measured that passes through the physical property detection region 36c, and includes a first side wall portion 40a and a second side wall portion 40b.
  • the first side wall portion 40a and the second side wall portion 40b are both substantially U-shaped plate-like members, and are arranged at a predetermined interval in a state where the respective end portions are opposed to each other. For this reason, the flow rate of the measurement target fluid that passes through the physical property value detection region 36c, that is, inside the flow rate control member 40, can be controlled by adjusting the distance between the first side wall portion 40a and the second side wall portion 40b. it can.
  • the flow rate control member 40 is provided in the sub-flow channel 31c formed in the sub-flow channel part 3c, and the physical property value sensor 7 is disposed inside the flow rate control member 40. .
  • an arbitrary position in the sub-channel 31c can be set as the physical property value detection region 36c.
  • the flow rate of the fluid to be measured that passes through the physical property value detection region 36c therein can be easily controlled.
  • the physical property value detection channel 32c is formed in the flow rate detection channel 33c as in the flow rate measuring device 1c, it corresponds to the detection ranges of the physical property value sensor 7 and the flow rate sensor 8. Since the flow rate can be individually controlled, it is possible to prevent the output characteristic of the physical property sensor 7 from changing due to the influence of the flow rate of the fluid to be measured.
  • the flow rate measuring device 1c that can measure the flow rate of the measurement target fluid with high accuracy by reducing the change in the output characteristic due to the change in the physical property of the measurement target fluid.
  • the flow rate measuring device detects the flow rate detection unit for detecting the flow rate of the measurement target fluid flowing through the main channel, the heating unit for heating the measurement target fluid, and the temperature of the measurement target fluid.
  • a physical property value detection unit for detecting a physical property value of the fluid to be measured, having a temperature detection unit, one end communicating with the first inlet opening in the main flow channel, and the other end in the main flow channel Calculated based on the sub-flow channel portion having the physical property value detection flow channel in which the physical property value detection unit is disposed and the detection signal output from the physical property value detection unit and communicating with the opened first outlet
  • a flow rate correction unit that corrects the flow rate of the measurement target fluid calculated based on the detection signal output from the flow rate detection unit using the physical property value of the measurement target fluid, and the heating unit and the temperature detection unit Is the direct flow direction of the fluid to be measured.
  • Are arranged side by side in the direction of the flow detector is characterized in that it is arranged at a position other than the physical property value detecting channel.
  • the physical property value detection unit is disposed in the physical property value detection flow path, and the flow rate detection unit is disposed in a position excluding the physical property value detection flow path.
  • the flow rate of the fluid to be measured flowing through the physical property value detection flow path can be individually controlled by adjusting the width of the physical property value detection flow path.
  • the flow rate correction unit is based on the detection signal output from the flow rate detection unit using the highly accurate physical property value calculated based on the detection signal output from the physical property value detection unit.
  • the flow rate of the fluid to be measured calculated in this way can be accurately corrected.
  • the physical property value detection unit communicates with the first inflow port having one end opened in the main flow channel, and communicated with the first outflow port opened in the main flow channel with the other end. It is arranged in the detection channel. For this reason, since the flow of the measurement target fluid in the physical property value detection flow path flows without stagnation from the first inflow port to the first outflow port, replacement of the measurement target fluid existing around the physical property value detection unit is efficient. Can be done automatically.
  • the flow rate of the measurement target fluid can be corrected based on the appropriate physical property value corresponding to the change in the physical property value of the measurement target fluid flowing through the main flow path.
  • the heating unit and the temperature detection unit included in the physical property value detection unit are arranged side by side in a direction orthogonal to the flow direction of the measurement target fluid. Since the temperature distribution is biased to the downstream side depending on the flow of the measurement target fluid, the amount of change in the temperature distribution in the direction orthogonal to the flow direction is smaller than the amount of change in the temperature distribution in the flow direction of the measurement target fluid. For this reason, the change of the output characteristic of the temperature detection part by the change of temperature distribution can be reduced by arrange
  • the sub-flow channel unit further includes a flow rate detection channel in which the flow rate detection unit is disposed, and one end of the flow rate detection channel is the first flow rate. The other end communicates with the first outlet, and the measurement target fluid flowing in from the first inlet is divided into the physical property value detection channel and the flow rate detection channel. preferable.
  • the flow rate of the measurement target fluid flowing through the physical property value detection flow path and the flow rate detection unit can be individually controlled.
  • the measurement accuracy of the flow rate measuring device can be improved.
  • the physical property value detection flow path is provided in the flow rate detection flow path, and a part of the measurement target fluid flowing in the flow rate detection flow path is detected by the physical property value detection. It is preferable to flow into the flow path.
  • the physical property value detection flow path is provided in the flow rate detection flow path, and a part of the measurement target fluid flowing in the flow rate detection flow path is caused to flow into the physical property value detection flow path.
  • the physical property value detection unit and the flow rate detection unit detect the physical property value and the flow rate based on the measurement target fluid having the same conditions such as temperature and concentration, and the physical property value detection flow channel and the flow rate detection that occupy the sub flow channel unit. It becomes possible to reduce the ratio of the flow paths.
  • the sub-flow channel unit further includes a flow rate detection channel in which the flow rate detection unit is disposed, and one end of the flow rate detection channel is in the main flow channel. It is preferable that the second inflow port is communicated with the second inflow port, and the other end communicates with the second outflow port opened in the main flow path.
  • the sub-flow channel portion has a flow rate detection flow channel whose one end communicates with the second inflow port opened in the main flow channel and whose other end communicates with the second outflow port opened in the main flow channel.
  • the sub flow channel section has the physical property value detection flow channel and the flow rate detection flow channel as two independent sub flow channels. For this reason, by adjusting the widths of the physical property value detection flow path and the flow rate detection unit, it is possible to individually control the flow rates of the measurement target fluids flowing through the physical property value detection flow path and the flow rate detection unit.
  • the physical property value detection flow path and the flow rate detection flow path can be provided at optimal positions with respect to the main flow path, so that the measurement accuracy of the flow measurement device can be improved.
  • the flow rate detection unit is disposed in the main flow path.
  • the physical property value detection unit is disposed in the physical property value detection flow path, and the flow rate detection unit is disposed in the main flow path. Therefore, by controlling the flow rate of the measurement target fluid flowing through the physical property value detection flow path, it is possible to prevent the output characteristic of the physical property value detection unit from changing due to the influence of the flow rate of the measurement target fluid.
  • the configuration of the sub-flow channel portion can be simplified and the measurement accuracy of the flow rate measuring device can be improved.
  • the heating unit is arranged such that the longitudinal direction of the heating unit is along the flow direction of the fluid to be measured.
  • the heating unit can heat the measurement target fluid over a wide range in the flow direction of the measurement target fluid. Become. For this reason, even if the temperature distribution is biased to the downstream side due to the flow of the measurement target fluid, the temperature detection unit can easily detect the temperature of the measurement target fluid, thereby reducing the change in the output characteristics of the temperature detection unit. be able to.
  • the temperature detection unit is arranged such that the longitudinal direction of the temperature detection unit is along the flow direction of the fluid to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 流量測定装置(1)は、流量センサ(8)と、マイクロヒータおよびサーモパイルを有する物性値センサ(7)と、物性値センサ(7)が配置された物性値検出用流路(32)を有する副流路部(3)とを備える。マイクロヒータおよびサーモパイルは、測定対象流体の流れ方向と直交する方向に並んで配置されており、流量センサ(8)は、物性値検出用流路(32)を除く位置に配置されている。

Description

流量測定装置
 本発明は、流路内を流れる流体の流量を測定するための流量測定装置に関し、より詳細には、流体の物性変化による出力特性の変化を低減して、高精度に流量を測定することができる流量測定装置に関する。
 従来、流路内を流れるガスなどの流体(以下、測定対象流体と称する)の流量を測定するために、流路内の温度分布の変化に基づいて測定対象流体の流量を測定する熱式の流量測定装置が用いられている。
 図13の(a)および図13の(b)は、熱式の流量測定装置における温度分布の変化を説明するための模式図であり、図13の(a)は、測定対象流体が流れていない状態の温度分布を示し、図13の(b)は、測定対象流体が流れている状態の温度分布を示している。
 図13の(a)に示されるように、測定対象流体が流れていない状態では、マイクロヒータ181によってその周辺に存在する測定対象流体が加熱される。このため、マイクロヒータ181に対して上流側に配置されたサーモパイル182と下流側に配置されたサーモパイル183とに亘って均等な温度分布が生じる。
 このような状態から、図中の矢印の方向に測定対象流体の流れが生じると、図13の(b)に示されるように、マイクロヒータ181周辺の温度分布が測定対象流体の流れの下流側、すなわち、サーモパイル183側に偏る。このため、サーモパイル182では測定対象流体が流れていない状態よりも低い温度が検出され、サーモパイル183では測定対象流体が流れていない状態よりも高い温度が検出される。
 このように、熱式の流量測定装置では、サーモパイル182およびサーモパイル183によって検出された温度の差分に基づいて、流路内を流れる測定対象流体の流量を算出することで、精度の高い流量測定を可能としている。
 ところが、測定対象流体の種類や組成などが変わると、熱伝導率や比熱、粘性、密度などの物性値も変化する。このため、従来の熱式の流量測定装置では、出力特性が測定対象流体の物性値に応じて変化するという問題があった。
 図14の(a)および図14の(b)は、物性値が異なるGasAおよびGasBをそれぞれ所定の流量(L/min)で流路121に流したときの温度分布を示す模式図であり、図15は、図14の(a)および図14の(b)に示されるGasAおよびGasBの流量(L/min)と流量測定装置の出力値(V)との関係を示すグラフである。
 図14の(a)および図14の(b)に示されるように、同じ流量の測定対象流体を流路121に流した場合であっても、物性値が異なるGasAとGasBとでは、マイクロヒータ181周辺の温度分布が異なる。
 このため、図15に示されるように、物性値が異なるGasAとGasBとでは、同じ流量であっても流量測定装置の出力値(V)が変化しており、この変化量は測定対象流体の流量の増加に伴って大きくなる。
 このように、従来の熱式の流量測定装置では、測定対象流体の物性値が変化した場合、流量測定装置の出力特性が変化するため、高精度な流量測定が困難であった。
 このような問題に対して、特許文献1および特許文献2には、測定対象流体の物性値を検出する物性値センサを備えた流量測定装置が開示されている。
 図16は、特許文献1に開示された流量測定装置が備えるマイクロフローセンサ207の構成を示す上面図であり、図17は、特許文献2に開示された流量測定装置301の外観を示す斜視図である。
 図16に示されるように、特許文献1のマイクロフローセンサ207は、流量測定用のサーモパイル282・283と物性値検出用のサーモパイル272・273とが、マイクロヒータ281の4辺に沿って基板205上に配置されている。
 具体的には、測定対象流体の流れ方向Rに対して、マイクロヒータ281の上流側に流量測定用のサーモパイル282が配置され、下流側に流量測定用のサーモパイル283が配置されている。さらに、マイクロヒータ281の長手方向(流れ方向Rと直交する方向)の両端に物性値検出用のサーモパイル272・273がそれぞれ配置されている。
 また、図17に示されるように、特許文献2の流量測定装置301は、主流路321の内壁に流量センサ308が配置され、主流路321から分岐して設けられたセル336の内部に物性値センサ307が配置されている。
 特許文献1および特許文献2によれば、物性値センサの出力値に基づいて測定対象流体の物性値を算出し、算出した物性値を用いて測定対象流体の流量を補正することで、測定対象流体の物性変化に起因する流量測定装置の出力特性の変化を低減することができる。
日本国公開特許公報「特許第4050857号公報(2007年12月7日登録)」 米国公開特許公報「特許第5237523号公報(1993年08月17日登録)」
 ここで、流量センサおよび物性値センサは、固有の検出レンジを有しており、測定対象流体の流量がこの検出レンジから外れると、測定精度が低下したり、測定不能になる。このため、流量測定装置の測定精度を高めるためには、流量センサおよび物性値センサの検出レンジに応じた最適な流量を個別に制御する必要がある。
 しかしながら、特許文献1の技術では、基板205上に設けられた流量検出用のサーモパイル282・283と物性値検出用のサーモパイル272・273とが同一の流路内に配置された構成である。このため、流量センサおよび物性値センサごとに、最適な流量を個別に制御することができない。
 このため、特許文献1の技術では、物性値センサ(物性値検出用のサーモパイル272・273)の出力特性が測定対象流体の流量の影響を受けて変化するので、算出された物性値に対して、さらに測定対象流体の流量に応じた補正を行う必要がある。すなわち、下記の計算式(1)に示されるように、流量出力値を補正するために検出した物性値(係数)を、補正前の流量出力値を用いて補正する必要がある。
Figure JPOXMLDOC01-appb-M000001
 したがって、特許文献1の技術では、物性値による誤差を完全に補正することができないため、測定対象流体の流量を高精度に測定することができない。
 また、特許文献2の技術では、主流路321とセル336とは1つの管で連通した構成であるため、セル336への測定対象流体の流入・流出が停滞し、セル336内の測定対象流体を効率的に置換することができない。
 このため、特許文献2の技術では、例えば、測定対象流体の物性が変化した場合、セル336に配置された物性値センサ307周辺を流れる測定対象流体と、主流路321に配置された流量センサ308周辺を流れる測定対象流体との物性が異なり、物性値センサ307によって適切な物性値を検出することができない。
 したがって、特許文献2の技術では、物性値による正確な補正ができないため、測定対象流体の流量を高精度に測定することができない。
 本発明は、上記の課題に鑑みてなされたものであって、その目的は、測定対象流体の物性変化による出力特性の変化を低減して、測定対象流体の流量を高精度に測定することができる流量測定装置を提供することにある。
 本発明に係る流量測定装置は、上記の課題を解決するために、主流路を流れる測定対象流体の流量を検出するための流量検出部と、測定対象流体を加熱する加熱部および測定対象流体の温度を検出する温度検出部を有する、測定対象流体の物性値を検出するための物性値検出部と、一端が前記主流路内に開口した第1流入口に連通し、且つ、他端が前記主流路内に開口した第1流出口に連通するとともに、前記物性値検出部が配置された物性値検出流路を有する副流路部と、前記物性値検出部から出力された検出信号に基づいて算出された測定対象流体の物性値を用いて、前記流量検出部から出力された検出信号に基づいて算出された測定対象流体の流量を補正する流量補正部と、を備え、前記加熱部および前記温度検出部は、測定対象流体の流れ方向と直交する方向に並んで配置されており、前記流量検出部は、前記物性値検出流路を除く位置に配置されていることを特徴としている。
 上記の構成では、物性値検出部は物性値検出流路に配置され、流量検出部は物性値検出流路を除く位置に配置されている。このため、例えば、物性値検出流路の幅を調整することで物性値検出流路を流れる測定対象流体の流量を個別に制御することが可能となる。これにより、測定対象流体の流量の影響によって物性値検出部の出力特性が変化することを抑止することができるとともに、測定対象流体の流れによる乱流の発生を効果的に抑制することが可能となる。
 したがって、上記の構成によれば、流量補正部は、物性値検出部から出力された検出信号に基づいて算出された精度の高い物性値を用いて、流量検出部から出力された検出信号に基づいて算出された測定対象流体の流量を正確に補正することができる。
 また、上記の構成では、物性値検出部は、一端が主流路内に開口した第1流入口に連通し、且つ、他端が主流路内に開口した第1流出口に連通した、物性値検出流路に配置されている。このため、物性値検出流路における測定対象流体の流れが停滞することなく、第1流入口から第1流出口へ滞りなく流れるため、物性値検出部周辺に存在する測定対象流体の置換を効率的に行うことができる。
 したがって、上記の構成によれば、主流路を流れる測定対象流体の物性値が変化に応じた適切な物性値に基づいて、測定対象流体の流量を補正することが可能となる。
 さらに、上記の構成では、物性値検出部が有する加熱部および温度検出部は、測定対象流体の流れ方向と直交する方向に並んで配置されている。測定対象流体の流れによって温度分布は下流側に偏るため、流れ方向と直交する方向の温度分布の変化量は、測定対象流体の流れ方向の温度分布の変化量に比べて小さい。このため、加熱部および温度検出部を測定対象流体の流れ方向と直交する方向に並んで配置することで、温度分布の変化による温度検出部の出力特性の変化を低減することができる。
 したがって、上記の構成によれば、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部による検出精度を向上させることが可能となる。
 それゆえ、本発明によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置を実現することができる。
 以上のように、本発明に係る流量測定装置は、主流路を流れる測定対象流体の流量を検出するための流量検出部と、測定対象流体を加熱する加熱部および測定対象流体の温度を検出する温度検出部を有する、測定対象流体の物性値を検出するための物性値検出部と、一端が前記主流路内に開口した第1流入口に連通し、且つ、他端が前記主流路内に開口した第1流出口に連通するとともに、前記物性値検出部が配置された物性値検出流路を有する副流路部と、前記物性値検出部から出力された検出信号に基づいて算出された測定対象流体の物性値を用いて、前記流量検出部から出力された検出信号に基づいて算出された測定対象流体の流量を補正する流量補正部と、を備え、前記加熱部および前記温度検出部は、測定対象流体の流れ方向と直交する方向に並んで配置されており、前記流量検出部は、前記物性値検出流路を除く位置に配置されている。
 それゆえ、本発明によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置を実現することができるという効果を奏する。
図1の(a)は、実施形態1に係る流量測定装置を示す分解斜視図であり、図1の(b)は、図1の(a)に示される流量測定装置を示す透視図である。 図2は、図1に示される副流路部を示す斜視図である。 図3の(a)は、図2に示される物性値センサの概略構成を示す上面図であり、図3の(b)は、図2に示される流量センサの概略構成を示す上面図である。 図4は、図2に示される物性値検出用流路および流量検出用流路に分流する測定対象流体の流量を説明するための模式図である。 図5は、図4に示される物性値センサおよび流量センサの出力値と流量との関係を示すグラフである。 図6は、図1の(a)および図1の(b)に示される流量測定装置が備える制御部の要部構成を示すブロック図である。 図7は、図6に示される制御部の処理の流れを示すフローチャートである。 図8の(a)~図8の(d)は、図4に示される副流路部の上面に形成された、物性値検出用流路および流量検出用流路の変形例を示す上面図である。 図9は、図3の(a)に示される物性値センサの変形例の概略構成を示す上面図である。 図10の(a)は、実施形態2に係る流量測定装置を示す斜視図であり、図10の(b)は、図10の(a)に示される流量測定装置を示す断面図であり、図10の(c)は、図10の(a)に示される副流路部を示す上面図である。 図11の(a)は、実施形態3に係る流量測定装置を示す斜視図であり、図11の(b)は、図11の(a)に示される副流路部を示す上面図である。 図12の(a)は、実施形態4に係る流量測定装置を示す斜視図であり、図12の(b)は、図12の(a)に示される副流路部を示す斜視図であり、図12の(c)は、図12の(b)に示される副流路部を示す上面図である。 図13の(a)および図13の(b)は、熱式の流量測定装置における温度分布の変化を説明するための模式図であり、図13の(a)は、測定対象流体が流れていない状態の温度分布を示し、図13の(b)は、測定対象流体が流れている状態の温度分布を示している。 図14の(a)および図14の(b)は、物性値が異なるGasAおよびGasBをそれぞれ所定の流量(L/min)で流路に流したときの温度分布を示す模式図である。 図15は、図14の(a)および図14の(b)に示されるGasAおよびGasBの流量(L/min)と流量測定装置の出力値(V)との関係を示すグラフである。 図16は、従来の流量測定装置が備えるマイクロフローセンサの構成を示す上面図である。 図17は、従来の流量測定装置の外観を示す斜視図である。
 〔実施形態1〕
 本発明に係る流量測定装置の第一の実施形態について、図1~図9に基づいて説明すれば、以下のとおりである。本実施形態では、本発明に係る流量測定装置を用いて、ガスなどの流体(以下、測定対象流体と称する)の流量を測定する場合について説明する。
 (1)流量測定装置の構成
 まず、図1~図4を参照して、本実施形態に係る流量測定装置の構成について説明する。
 図1の(a)は、本実施形態に係る流量測定装置1を示す分解斜視図であり、図1の(b)は、図1の(a)に示される流量測定装置1を示す透視図である。
 図1の(a)および図1の(b)に示されるように、流量測定装置1は、主流路21が形成された主流路部2と、副流路31が形成された副流路部3と、シール4と、回路基板5と、カバー6とを備えている。
 主流路部2は、長手方向に貫通した主流路21が内部に形成された管状部材である。主流路部2の内周面には、測定対象流体の流れ方向Oに対して、上流側に流入口(第1流入口)34Aが形成され、下流側に流出口(第1流出口)35Aが形成されている。
 例えば、主流路部2の軸方向の長さは約50mmであり、内周面の直径(主流路21の直径)は約20mmであり、主流路部2の外周面の直径は約24mmである。
 副流路部3は、主流路部2の上(外周面)に設けられており、その内部および上面には、副流路31が形成されている。副流路31は、一端が流入口34Aに連通し、他端が流出口35Aに連通している。
 流量測定装置1では、副流路31は、流入用流路34と、物性値検出用流路32と、流量検出用流路33と、流出用流路35とから構成されている。
 流入用流路34は、主流路21を流れる測定対象流体を流入させて、物性値検出用流路32および流量検出用流路33に分流させるための流路である。流入用流路34は、主流路21と垂直な方向に、副流路部3を貫通して形成されており、一端が流入口34Aに連通し、他端は副流路部3の上面で開口して、物性値検出用流路32および流量検出用流路33に連通(分岐)している。これにより、主流路21を流れる測定対象流体の一部を、流入用流路34を介して、物性値検出用流路32および流量検出用流路33に分流させることができる。
 物性値検出用流路(物性値検出流路)32は、副流路部3の上面に形成された、主流路21と平行な方向に延在する略コの字型の流路である。物性値検出用流路32の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。この物性値検出用流路32は、長手方向(主流路21と平行な方向)に延在する部分に、測定対象流体の物性値を検出するための物性値センサ(物性値検出部)7が配置された物性値検出領域36を有している。
 流量検出用流路(流量検出流路)33は、副流路部3の上面に形成された、主流路21と平行な方向に延在する略コの字型の流路である。流量検出用流路33の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。この流量検出用流路33は、長手方向(主流路21と平行な方向)に延在する部分に、測定対象流体の流量を検出するための流量センサ(流量検出部)8が配置された流量検出領域37を有している。
 なお、図面では、説明の便宜上、物性値センサ7および流量センサ8と、回路基板5とが分離された状態で図示されているが、実際には、物性値センサ7および流量センサ8は、回路基板5に実装された状態で、物性値センサ7が物性値検出領域36に、流量センサ8が流量検出領域37にそれぞれ配置されている。
 流出用流路35は、物性値検出用流路32および流量検出用流路33を通過した測定対象流体を、主流路21に流出させるための流路である。流出用流路35は、主流路21と垂直な方向に、副流路部3を貫通して形成されており、一端が流出口35Aに連通し、他端は副流路部3の上面で開口して、物性値検出用流路32および流量検出用流路33に連通している。これにより、物性値検出用流路32および流量検出用流路33を通過した測定対象流体を、流出用流路35を介して、主流路21に滞りなく流出させることができる。
 このように、同じ流入口34Aから流入させた測定対象流体を、物性値検出用流路32および流量検出用流路33に分流させることで、物性値センサ7および流量センサ8は、温度、濃度などの条件が等しい測定対象流体に基づいて物性値または流量を検出することができる。したがって、流量測定装置1の測定精度を向上させることができる。
 なお、流量測定装置1では、副流路部3にシール4を嵌め込んだ後、回路基板5が配置され、さらにカバー6によって回路基板5を副流路部3に固定することで、副流路部3の内部の気密性を確保している。
 図2は、図1の(a)に示される副流路部3を示す斜視図である。図2に示されるように、物性値検出用流路32は、一端が流入用流路34に連通し、他端が流出用流路35に連通している。同様に、流量検出用流路33は、一端が流入用流路34に連通し、他端が流出用流路35に連通している。
 また、物性値検出用流路32と流量検出用流路33との両端部も互いに連通しており、物性値検出用流路32および流量検出用流路33は、副流路部3の上面において矩形形状の流路を構成している。
 流量測定装置1では、物性値検出領域36および流量検出領域37は、何れも副流路部3の上面と垂直な方向から見たときの形状が正方形であり、流入用流路34と流出用流路35とを結ぶ直線に対して略対称となる位置にそれぞれ形成されている。
 例えば、物性値検出領域36および流量検出領域37の一辺の長さは、何れも約4mmである。
 また、本実施形態では、物性値検出領域36および流量検出領域37の形状を正方形としているが、本発明はこれに限定されない。物性値検出領域36および流量検出領域37の形状は、物性値センサ7または流量センサ8が配置可能であればよく、配置される物性値センサ7および流量センサ8の形状に応じて適宜決定される。
 したがって、例えば、物性値検出用流路32の幅よりも、物性値センサ7のサイズが小さい場合には、物性値検出領域36の幅を物性値検出用流路32の幅に一致させてもよい。この場合、物性値検出用流路32の長手方向に延在する部分は、直線形状に形成されることとなる。なお、流量検出領域37についても同様である。
 図3の(a)は、図2に示される物性値センサ7の概略構成を示す上面図であり、図3の(b)は、図2に示される流量センサ8の概略構成を示す上面図である。
 図3の(a)に示されるように、物性値センサ7は、測定対象流体を加熱するマイクロヒータ(加熱部)71と、測定対象流体の温度を検出する第1物性値サーモパイル(温度検出部)72および第2物性値サーモパイル(温度検出部)73とを備えている。マイクロヒータ71と、第1物性値サーモパイル72および第2物性値サーモパイル73とは、物性値検出領域36において、測定対象流体の流れ方向と直交する方向に並んで配置されている。
 第1物性値サーモパイル72および第2物性値サーモパイル73は、マイクロヒータ71を挿んで左右対称に配置されており、マイクロヒータ71の両側の対称な位置の温度を検出する。
 ここで、測定対象流体の流れによって温度分布は下流側に偏るため、流れ方向と直交する方向の温度分布の変化量は、測定対象流体の流れ方向の温度分布の変化量に比べて小さい。このため、第1物性値サーモパイル72と、マイクロヒータ71と、第2物性値サーモパイル73とを、この順で測定対象流体の流れ方向と直交する方向に並べて配置することにより、温度分布の変化による第1物性値サーモパイル72および第2物性値サーモパイル73の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値センサ7による検出精度を向上させることができる。
 また、マイクロヒータ71の長手方向が測定対象流体の流れ方向に沿って配置されているため、マイクロヒータ71は測定対象流体の流れ方向に亘って広範囲に測定対象流体を加熱することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、第1物性値サーモパイル72および第2物性値サーモパイル73によって、測定対象流体の温度を検出し易くなるので、第1物性値サーモパイル72および第2物性値サーモパイル73の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値センサ7による検出精度を向上させることができる。
 さらに、第1物性値サーモパイル72および第2物性値サーモパイル73の長手方向が測定対象流体の流れ方向に沿って配置されているため、第1物性値サーモパイル72および第2物性値サーモパイル73は測定対象流体の流れ方向に亘って広範囲に温度を検出することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、第1物性値サーモパイル72および第2物性値サーモパイル73によって、測定対象流体の温度を検出し易くなるので、第1物性値サーモパイル72および第2物性値サーモパイル73の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値センサ7による検出精度を向上させることができる。
 一方、図3の(b)に示されるように、流量センサ8は、測定対象流体を加熱するマイクロヒータ81と、測定対象流体の温度を検出する第1流量サーモパイル82および第2流量サーモパイル83とを備えている。マイクロヒータ81と、第1流量サーモパイル82および第2流量サーモパイル83とは、流量検出領域37において、測定対象流体の流れ方向に並んで配置されている。
 第1流量サーモパイル82および第2流量サーモパイル83は、マイクロヒータ81の上流側に第1流量サーモパイル82が配置され、下流側に第2流量サーモパイル83が配置されて、マイクロヒータ81を挿んで対称な位置の温度を検出する。
 流量測定装置1では、物性値センサ7および流量センサ8として、実質的に同一構造のセンサが用いられており、測定対象流体の流れ方向に対する配置角度を90°異ならせてそれぞれ配置されている。これにより、同一構造のセンサを物性値センサ7または流量センサ8として機能させることが可能となるため、流量測定装置1の製造コストを低減することができる。
 ここで、流量測定装置1では、物性値検出用流路32と流量検出用流路33とは、長手方向に延在する流路の幅がそれぞれ異なっている。具体的には、物性値検出領域36を有する流路の幅が、流量検出領域37を有する流路の幅よりも狭くなっている。これにより、流量測定装置1では、物性値検出用流路32および流量検出用流路33に分流される測定対象流体の流量がそれぞれ個別に制御されている。
 図4は、図2に示される物性値検出用流路32および流量検出用流路33に分流する測定対象流体の流量を説明するための模式図である。図4に示されるように、本実施形態では、物性値検出用流路32には流量Pの測定対象流体が分流され、流量検出用流路33には流量Qの測定対象流体が流れるように、物性値検出用流路32および流量検出用流路33の幅が設定されている。
 この流量Pおよび流量Qの値は、主流路21を流れる測定対象流体の流量によって変動するものであるが、通常の使用態様において、流量Pは物性値センサ7の検出レンジ内の値となり、流量Qは流量センサ8の検出レンジ内の値となるように、物性値検出用流路32および流量検出用流路33の幅がそれぞれ設定されている。
 例えば、物性値検出用流路32の幅は約0.4mmであり、流量検出用流路33の幅は約0.8mmである。
 このように、流量測定装置1では、物性値検出用流路32および流量検出用流路33に分流する測定対象流体の流量を、それぞれの幅を調整することで個別に制御することが可能である。このため、物性値センサ7の検出レンジに応じて物性値検出領域36を流れる測定対象流体の流量を制御し、流量センサ8の検出レンジに応じて流量検出領域37を流れる測定対象流体の流量を制御することができる。
 したがって、物性値センサ7は、固有の検出レンジに応じた最適な流量で、測定対象流体の物性値を検出することができるので、物性値センサ7の検出精度を高めることができる。
 同様に、流量センサ8は、固有の検出レンジに応じた最適な流量で、測定対象流体の流量を検出することができるので、流量センサ8の検出精度を高めることができる。
 図5は、図4に示される物性値センサ7および流量センサ8の出力値と流量との関係を示すグラフである。図5では、横軸が流量(%)、縦軸が各センサの出力値(%)を規定しており、物性値センサ7および流量センサ8の検出レンジの最大流量を100%、最大流量時のセンサ出力値を100%として規定している。
 図5に示されるように、流量センサ8の出力値は、流量検出領域37を流れる測定対象流体の流量の増加に伴って増加する。これに対して、物性値センサ7の出力値は、物性値検出領域36を流れる測定対象流体の流量変化の影響を受けず一定である。
 このように、流量測定装置1によれば、物性値センサ7は、測定対象流体の流量変化の影響を受けることなく測定対象流体の物性値を検出することができるので、物性値の検出精度を高めることができる。
 (2)制御部の構成
 次に、本実施形態に係る流量測定装置1が備える制御部の構成を、図6を参照して説明する。図6は、図1の(a)および図1の(b)に示される流量測定装置1が備える制御部51の要部構成を示すブロック図である。
 図6に示されるように、制御部51は、流量算出部52と、物性値算出部53と、流量補正部54とを備えている。物性値算出部53には、第1物性値サーモパイル72および第2物性値サーモパイル73が接続されている。また、流量算出部52には、第1流量サーモパイル82および第2流量サーモパイル83が接続されている。
 流量算出部52は、第1流量サーモパイル82および第2流量サーモパイル83から出力された温度検出信号に基づいて、測定対象流体の流量を算出するものである。具体的には、流量算出部52は、第1流量サーモパイル82から出力された温度検出信号で示される温度と、第2流量サーモパイル83から出力された温度検出信号で示される温度との差分を算出し、温度の差分に基づいて、測定対象流体の流量を算出する。そして、流量算出部52は、算出した測定対象流体の流量を流量補正部54に出力する。
 物性値算出部53は、第1物性値サーモパイル72および第2物性値サーモパイル73から出力された温度検出信号(検出信号)に基づいて、測定対象流体の物性値を算出するものである。具体的には、物性値算出部53は、第1物性値サーモパイル72および第2物性値サーモパイル73から出力された温度検出信号で示される温度の平均値に基づいて、熱伝導率、熱拡散、または比熱などによって決定される物性値(例えば、熱拡散定数など)を算出する。物性値算出部53は、算出した測定対象流体の物性値を流量補正部54に出力する。
 流量補正部54は、流量算出部52から出力された測定対象流体の物性値を用いて、流量算出部52から出力された測定対象流体の流量を補正するものである。具体的には、流量補正部54は、流量算出部52から出力された測定対象流体の物性値を用いて、流量算出部52から出力された測定対象流体の流量を補正することで、補正後の流量を算出する。流量補正部54は、補正後の流量をディスプレイに表示するなどして、ユーザに通知する。
 (3)流量測定装置の処理
 次に、本実施形態に係る流量測定装置1が備える制御部51の処理の流れについて、図7を参照して説明する。図7は、図6に示される制御部51の処理の流れを示すフローチャートである。
 図7に示されるように、流量算出部52は、第1流量サーモパイル82および第2流量サーモパイル83から温度検出信号が出力されたとき、2つの温度検出信号に基づいて、測定対象流体の流量を算出する(S1)。
 具体的には、流量算出部52は、第1流量サーモパイル82から出力された温度検出信号で示される温度と、第2流量サーモパイル83から出力された温度検出信号で示される温度との差分を算出する。そして、流量算出部52は、算出した温度の差分に基づいて、測定対象流体の流量を算出する。流量算出部52は、算出した測定対象流体の流量を流量補正部54に出力する。
 なお、第1流量サーモパイル82および第2流量サーモパイル83から出力された温度検出信号に基づいて定対象流体の流量を算出する手法は、公知のものを用いることができる。
 また、物性値算出部53は、第1物性値サーモパイル72および第2物性値サーモパイル73から温度検出信号が出力されたとき、2つの温度検出信号で示される温度の平均値に基づいて、測定対象流体の物性値を算出する(S2)。
 ここで、測定対象流体を伝わる熱の速度は、熱伝導率、熱拡散または比熱などによって決定される熱拡散定数などの物性値に対応している。このため、マイクロヒータ71と、第1物性値サーモパイル72および第2物性値サーモパイル73との温度差を検出することによって、熱拡散定数を求めることができる。例えば、マイクロヒータ71と、第1物性値サーモパイル72および第2物性値サーモパイル73との温度差が大きいほど、熱拡散定数(熱伝導率)は小さくなる。
 このような性質を利用して、測定対象流体の流れ方向と直交する方向にマイクロヒータ71を挟んで配置された第1物性値サーモパイル72および第2物性値サーモパイル73によって測定対象流体の温度を検出することにより、測定対象流体の物性値を算出することができる。
 ここで、流量測定装置1では、物性値センサ7の検出レンジに応じて物性値検出領域36を流れる測定対象流体の流量が制御されているため、第1物性値サーモパイル72および第2物性値サーモパイル73は、測定対象流体の流量の影響を受けずにマイクロヒータ71から発せられた熱を検出することができる。
 このため、第1物性値サーモパイル72および第2物性値サーモパイル73は、一定の出力特性を維持したまま、温度検出信号を物性値算出部53に出力することができるので、物性値算出部53は、高い精度をもって物性値を算出することができる。物性値算出部53は、算出した測定対象流体の物性値を流量補正部54に出力する。
 次に、流量補正部54は、物性値算出部53から出力された物性値を用いて、流量算出部52から出力された測定対象流体の流量を補正し、補正後の流量を算出する(S3)。具体的には、流量補正部54は、下記の計算式(2)を用いて、補正後の流量を算出する。
Figure JPOXMLDOC01-appb-M000002
 上述のように、流量測定装置1では、物性値センサ7の出力特性が測定対象流体の流量の影響を受けない。このため、流量補正部54は、従来のように、物性値算出部53から出力された測定対象流体の物性値に対して流量に応じた補正を行うことなく、流量算出部52から出力された測定対象流体の流量を補正することができる。
 したがって、流量測定装置1によれば、流量センサ8によって検出された測定対象流体の流量を、物性値センサ7によって検出された物性値に基づいて適切に補正することができるため、測定対象流体の流量を高精度に測定することができる。
 (4)まとめ
 以上のように、本実施形態に係る流量測定装置1は、主流路21を流れる測定対象流体の流量を検出するための流量センサ8と、測定対象流体を加熱するマイクロヒータ71および測定対象流体の温度を検出する第1物性値サーモパイル72・第2物性値サーモパイル73を有する、測定対象流体の物性値を検出するための物性値センサ7と、一端が主流路21内に開口した流入口34Aに連通し、且つ、他端が主流路21内に開口した流出口35Aに連通するとともに、物性値センサ7が配置された物性値検出用流路32を有する副流路部3と、物性値センサ7から出力された検出信号に基づいて算出された測定対象流体の物性値を用いて、流量センサ8から出力された検出信号に基づいて算出された測定対象流体の流量を補正する流量補正部54と、を備え、マイクロヒータ71および第1物性値サーモパイル72・第2物性値サーモパイル73は、測定対象流体の流れ方向と直交する方向に並んで配置されており、流量センサ8は、物性値検出用流路32を除く位置に配置されている。
 流量測定装置1では、物性値センサ7は物性値検出用流路32に配置され、流量センサは流量検出用流路33に配置されている。このため、例えば、物性値検出用流路32の幅を調整することで物性値検出用流路32を流れる測定対象流体の流量を個別に制御することが可能となる。これにより、測定対象流体の流量の影響によって物性値センサ7の出力特性が変化することを抑止することができるとともに、測定対象流体の流れによる乱流の発生を効果的に抑制することが可能となる。
 したがって、流量測定装置1によれば、流量補正部54は、物性値センサ7から出力された温度検出信号に基づいて算出された精度の高い物性値を用いて、流量センサ8から出力された温度検出信号に基づいて算出された測定対象流体の流量を正確に補正することができる。
 また、流量測定装置1では、物性値センサ7は、一端が主流路21内に開口した流入口34Aに連通し、且つ、他端が主流路21内に開口した流出口35Aに連通した、物性値検出用流路32に配置されている。このため、物性値検出用流路32における測定対象流体の流れが停滞することなく、流入口34Aから流出口35Aへ滞りなく流れるため、物性値センサ7周辺に存在する測定対象流体の置換を効率的に行うことができる。
 したがって、流量測定装置1によれば、主流路21を流れる測定対象流体の物性値が変化に応じた適切な物性値に基づいて、測定対象流体の流量を正確に補正することが可能となる。
 さらに、測定対象流体の流れによって温度分布は下流側に偏るため、流れ方向と直交する方向の温度分布の変化量は、測定対象流体の流れ方向の温度分布の変化量に比べて小さいため、第1物性値サーモパイル72と、マイクロヒータ71と、第2物性値サーモパイル73とを、測定対象流体の流れ方向と直交する方向に並べて配置することにより、温度分布の変化による第1物性値サーモパイル72および第2物性値サーモパイル73の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値センサ7による検出精度を向上させることができる。
 それゆえ、本実施形態によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置1を実現することができる。
 (5)変形例
 次に、本実施形態に係る流量測定装置1の変形例について、図8の(a)~図8の(d)および図9を参照して説明する。
 (5-1)変形例1
 本実施形態では、図4に示されるように、物性値検出用流路32および流量検出用流路33を何れも略コの字型に形成することで、副流路部3の上面において矩形形状の流路を構成する場合について説明したが、本発明はこれに限定されない。物性値検出用流路32および流量検出用流路33は、物性値検出領域36および流量検出領域37を通過する測定対象流体の流量が個別に制御可能であれば、その形状は特に限定されない。
 図8の(a)~図8の(d)は、図4に示される副流路部3の上面に形成された、物性値検出用流路32および流量検出用流路33の変形例を示す上面図である。
 図8の(a)に示されるように、例えば、物性値検出用流路32を、流入用流路34および流出用流路35を結ぶ直線状に形成し、流量検出用流路33を略コの字型に形成してもよい。
 また、図8の(b)~図8の(d)に示されるように、流量検出領域37に対して測定対象流体を流入させる方向と直行する方向から物性値検出領域36に対して測定対象流体を流入させるように、物性値検出用流路32を形成してもよい。
 この場合、物性値センサ7と流量センサ8との配置角度を一致させることができるため、流量測定装置1の製造過程において、回路基板5に物性値センサ7および流量センサ8を実装する工程を簡略化することができる。
 (5-2)変形例2
 本実施形態では、図3の(a)に示されるように、物性値センサ7は、測定対象流体を加熱するマイクロヒータ71と、測定対象流体の温度を検出する第1物性値サーモパイル72および第2物性値サーモパイル73とを備え、第1物性値サーモパイル72および第2物性値サーモパイル73が、マイクロヒータ71を挿んで左右対称に配置された構成について説明したが、本発明はこれに限定されない。
 図9は、図3の(a)に示される物性値センサ7の変形例の概略構成を示す上面図である。図9に示されるように、第2物性値サーモパイル73を省略して、マイクロヒータ71と、第1物性値サーモパイル72とで、物性値センサ7aを構成してもよい。
 このように、マイクロヒータ71と第1物性値サーモパイル72とが、測定対象流体の流れ方向と直交する方向に並んで配置された物性値センサ7aを用いることで、物性値センサ7aの製造コストを低減することができる。
 〔実施形態2〕
 本発明に係る流量測定装置の第二の実施形態について、図10の(a)~図10の(c)に基づいて説明すれば、以下のとおりである。なお、実施形態1と同様の部材に関しては同じ符号を付し、その説明を省略する。
 本実施形態に係る流量測定装置は、流量センサが主流路に配置される点において、実施形態1に係る流量測定装置と主に異なっている。
 図10の(a)は、本実施形態に係る流量測定装置1aを示す斜視図であり、図10の(b)は、図10の(a)に示される流量測定装置1aを示す断面図であり、図10の(c)は、図10の(a)に示される副流路部3aを示す上面図である。
 図10の(a)~図10の(c)に示されるように、流量測定装置1aでは、主流路部2aの内周面に形成された流入口34Aと流出口35Aとの間に、開口部37Aがさらに形成されている。
 副流路部3aの内部には、流量センサ8が配置されたセル状の流量検出領域37aが形成されており、流量検出領域37aは開口部37Aに連通している。このため、流量検出領域37aには、開口部37Aを介して主流路21aを流れる測定対象流体が流入し、流量センサ8によってその流量が検出される。
 なお、開口部37Aの大きさを調整することによって、主流路21aから流量検出領域37aに流入する測定対象流体の流量を制御することができる。
 副流路31aは、流入用流路34と、物性値検出用流路32と、流出用流路35とから構成されており、物性値検出用流路32は、主流路21aにおける測定対象流体の流れ方向Oと平行に延在する流路に、測定対象流体の物性値を検出するための物性値センサ7が配置された物性値検出領域36を有している。
 このように、流量測定装置1aでは、物性値センサ7が副流路31aに配置され、流量センサ8が主流路21aに配置されている。このため、流量測定装置1aでは、物性値センサ7および流量センサ8の検出レンジに応じた流量を個別に制御することができるので、測定対象流体の流量の影響によって物性値センサ7の出力特性が変化することを抑止することが可能である。
 それゆえ、本実施形態によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置1aを実現することができる。
 〔実施形態3〕
 本発明に係る流量測定装置の第三の実施形態について、図11の(a)および図11の(b)に基づいて説明すれば、以下のとおりである。なお、実施形態1および2と同様の部材に関しては同じ符号を付し、その説明を省略する。
 本実施形態に係る流量測定装置は、独立した2つの副流路を有する点において、実施形態1および2に係る流量測定装置と主に異なっている。
 図11の(a)は、本実施形態に係る流量測定装置1cを示す斜視図であり、図11の(b)は、図11の(a)に示される副流路部3bを示す上面図である。
 図11の(a)および図11の(b)に示されるように、流量測定装置1cでは、副流路部3bは、その内部および上面に第1副流路31bおよび第2副流路31Bが形成されている。
 第1副流路31bは、流入用流路34bと、物性値検出用流路32bと、流出用流路35bとから構成されている。物性値検出用流路32bは、主流路21bにおける測定対象流体の流れ方向と平行に延在しており、測定対象流体の物性値を検出するための物性値センサ7が配置された物性値検出領域36を有している。
 第2副流路31Bは、流入用流路34Bと、流量検出用流路33Bと、流出用流路35Bとから構成されている。流量検出用流路33Bは、主流路21bにおける測定対象流体の流れ方向と平行に延在しており、測定対象流体の流量を検出するための流量センサ8が配置された流量検出領域37を有している。
 このように、流量測定装置1bでは、副流路部3bが独立した2つの副流路である第1副流路31bおよび第2副流路31Bを有しており、物性値センサ7が第1副流路31bに配置され、流量センサ8が第2副流路31Bに配置されている。このため、流量測定装置1bでは、物性値センサ7および流量センサ8の検出レンジに応じた流量を個別に制御することができるので、測定対象流体の流量の影響によって物性値センサ7の出力特性が変化することを抑止することが可能である。
 それゆえ、本実施形態によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置1bを実現することができる。
 〔実施形態4〕
 本発明に係る流量測定装置の第四の実施形態について、図12の(a)~図12の(c)に基づいて説明すれば、以下のとおりである。なお、実施形態1~3と同様の部材に関しては同じ符号を付し、その説明を省略する。
 本実施形態に係る流量測定装置は、物性値検出用流路が、流量検出用流路内に形成されている点において、実施形態1~3に係る流量測定装置と主に異なっている。
 図12の(a)は、本実施形態に係る流量測定装置1cを示す斜視図であり、図12の(b)は、図12の(a)に示される副流路部3cを示す斜視図であり、図12の(c)は、図12の(b)に示される副流路部3cを示す上面図である。
 図12の(a)~図12の(c)に示されるように、流量測定装置1cでは、副流路部3cは、その内部および上面に副流路31cが形成されている。
 副流路31cは、流入用流路34と、物性値検出用流路32cと、流量検出用流路33cと、流出用流路35とから構成されている。
 副流路31cでは、物性値検出用流路32cが、流量検出用流路33c内の流量検出領域37cに形成されており、測定対象流体の流れ方向に対して上流側に流量センサ8が配置され、下流側に物性値センサ7がそれぞれ配置されている。
 ここで、物性値検出用流路32cは、測定対象流体の流量を制御するための流量制御部材40によって、流量検出用流路33c(流量検出領域37c)と仕切られており、物性値センサ7は流量制御部材40の内部に配置されている。
 流量制御部材40は、物性値検出領域36cを通過する測定対象流体の流量を制御するためのものであり、第1側壁部40aと第2側壁部40bとから構成されている。第1側壁部40aおよび第2側壁部40bは何れも略コの字型の板状部材であり、それぞれの端部を対向させた状態で、所定の間隔をおいて配置されている。このため、第1側壁部40aと第2側壁部40bとの間隔を調整することによって、流量制御部材40の内部、すなわち、物性値検出領域36cを通過する測定対象流体の流量を制御することができる。
 このように、流量測定装置1cでは、副流路部3cに形成された副流路31c内に、流量制御部材40が設けられ、流量制御部材40の内部に物性値センサ7が配置されている。このため、副流路31c内の任意の位置を物性値検出領域36cとすることが可能となる。また、流量制御部材40を設けることで、その内部の物性値検出領域36cを通過する測定対象流体の流量を容易に制御することができる。
 したがって、流量測定装置1cのように、物性値検出用流路32cが、流量検出用流路33c内に形成された構成であっても、物性値センサ7および流量センサ8の検出レンジに応じた流量を個別に制御することができるので、測定対象流体の流量の影響によって物性値センサ7の出力特性が変化することを抑止することが可能である。
 それゆえ、本実施形態によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置1cを実現することができる。
 本発明は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 〔実施形態の総括〕
 以上のように、本発明に係る流量測定装置は、主流路を流れる測定対象流体の流量を検出するための流量検出部と、測定対象流体を加熱する加熱部および測定対象流体の温度を検出する温度検出部を有する、測定対象流体の物性値を検出するための物性値検出部と、一端が前記主流路内に開口した第1流入口に連通し、且つ、他端が前記主流路内に開口した第1流出口に連通するとともに、前記物性値検出部が配置された物性値検出流路を有する副流路部と、前記物性値検出部から出力された検出信号に基づいて算出された測定対象流体の物性値を用いて、前記流量検出部から出力された検出信号に基づいて算出された測定対象流体の流量を補正する流量補正部と、を備え、前記加熱部および前記温度検出部は、測定対象流体の流れ方向と直交する方向に並んで配置されており、前記流量検出部は、前記物性値検出流路を除く位置に配置されていることを特徴としている。
 上記の構成では、物性値検出部は物性値検出流路に配置され、流量検出部は物性値検出流路を除く位置に配置されている。このため、例えば、物性値検出流路の幅を調整することで物性値検出流路を流れる測定対象流体の流量を個別に制御することが可能となる。これにより、測定対象流体の流量の影響によって物性値検出部の出力特性が変化することを抑止することができるとともに、測定対象流体の流れによる乱流の発生を効果的に抑制することが可能となる。
 したがって、上記の構成によれば、流量補正部は、物性値検出部から出力された検出信号に基づいて算出された精度の高い物性値を用いて、流量検出部から出力された検出信号に基づいて算出された測定対象流体の流量を正確に補正することができる。
 また、上記の構成では、物性値検出部は、一端が主流路内に開口した第1流入口に連通し、且つ、他端が主流路内に開口した第1流出口に連通した、物性値検出流路に配置されている。このため、物性値検出流路における測定対象流体の流れが停滞することなく、第1流入口から第1流出口へ滞りなく流れるため、物性値検出部周辺に存在する測定対象流体の置換を効率的に行うことができる。
 したがって、上記の構成によれば、主流路を流れる測定対象流体の物性値が変化に応じた適切な物性値に基づいて、測定対象流体の流量を補正することが可能となる。
 さらに、上記の構成では、物性値検出部が有する加熱部および温度検出部は、測定対象流体の流れ方向と直交する方向に並んで配置されている。測定対象流体の流れによって温度分布は下流側に偏るため、流れ方向と直交する方向の温度分布の変化量は、測定対象流体の流れ方向の温度分布の変化量に比べて小さい。このため、加熱部および温度検出部を測定対象流体の流れ方向と直交する方向に並んで配置することで、温度分布の変化による温度検出部の出力特性の変化を低減することができる。
 したがって、上記の構成によれば、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部による検出精度を向上させることが可能となる。
 それゆえ、本発明によれば、測定対象流体の物性変化による出力特性の変化を低減して、高精度に測定対象流体の流量を測定することができる流量測定装置を実現することができる。
 また、本発明に係る流量測定装置では、前記副流路部は、前記流量検出部が配置された流量検出流路をさらに有しており、前記流量検出流路は、一端が前記第1流入口に連通し、且つ、他端が前記第1流出口に連通しており、前記第1流入口から流入した測定対象流体を、前記物性値検出流路および前記流量検出流路に分流させるが好ましい。
 上記の構成では、副流路部は、流量検出部が配置された流量検出流路をさらに有し、流入口から流入した測定対象流体を、物性値検出流路および流量検出流路のそれぞれに分流させる。このように、同じ流入口から流入させた測定対象流体を物性値検出流路および流量検出流路に分流させることで、物性値検出部および流量検出部は、温度、濃度などの条件が等しい測定対象流体に基づいて物性値または流量を検出することができる。
 また、例えば、物性値検出流路および流量検出部の幅を調整することで、物性値検出流路および流量検出部を流れる測定対象流体の流量を個別に制御することが可能となる。
 したがって、上記の構成によれば、流量測定装置の測定精度を向上させることができる。
 また、本発明に係る流量測定装置では、前記物性値検出流路は、前記流量検出流路内に設けられており、前記流量検出流路内を流れる測定対象流体の一部を前記物性値検出流路に流入させることが好ましい。
 上記の構成では、物性値検出流路は、流量検出流路内に設けられており、流量検出流路内を流れる測定対象流体の一部を前記物性値検出流路に流入させる。このため、物性値検出部および流量検出部は、温度、濃度などの条件が等しい測定対象流体に基づいて物性値および流量を検出するとともに、副流路部に占める物性値検出流路および流量検出流路の割合を減少させることが可能となる。
 したがって、上記の構成によれば、流量測定装置の測定精度を向上させることができるとともに、流量測定装置の小型化を図ることができる。
 また、本発明に係る流量測定装置では、前記副流路部は、前記流量検出部が配置された流量検出流路をさらに有しており、前記流量検出流路は、一端が前記主流路内に開口した第2流入口に連通し、且つ、他端が前記主流路内に開口した第2流出口に連通していることが好ましい。
 上記の構成では、副流路部は、一端が主流路内に開口した第2流入口に連通し、且つ、他端が主流路内に開口した第2流出口に連通した流量検出流路をさらに有している。すなわち、副流路部は、物性値検出流路および流量検出流路を、独立した2つの副流路として有している。このため、物性値検出流路および流量検出部の幅をそれぞれ調整することで、物性値検出流路および流量検出部を流れる測定対象流体の流量を個別に制御することが可能となる。
 したがって、上記の構成によれば、物性値検出流路および流量検出流路を、主流路に対して最適な位置にそれぞれ設けることができるので、流量測定装置の測定精度を向上させることができる。
 また、本発明に係る流量測定装置では、前記流量検出部は、前記主流路に配置されていることが好ましい。
 上記の構成では、物性値検出部は物性値検出流路に配置され、流量検出部は主流路に配置されている。そのため、物性値検出流路を流れる測定対象流体の流量を制御することで、測定対象流体の流量の影響によって物性値検出部の出力特性が変化することを抑止することができる。
 したがって、上記の構成によれば、副流路部の構成を簡略化することができるとともに、流量測定装置の測定精度を向上させることができる。
 また、本発明に係る流量測定装置では、前記加熱部は、当該加熱部の長手方向が測定対象流体の流れ方向に沿って配置されていることが好ましい。
 上記の構成では、加熱部の長手方向が測定対象流体の流れ方向に沿って配置されているため、加熱部は測定対象流体の流れ方向に亘って広範囲に測定対象流体を加熱することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、温度検出部によって測定対象流体の温度を検出し易くなるので、温度検出部の出力特性の変化を低減することができる。
 したがって、上記の構成によれば、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部による検出精度を向上させることができる。
 また、本発明に係る流量測定装置では、前記温度検出部は、当該温度検出部の長手方向が測定対象流体の流れ方向に沿って配置されていることが好ましい。
 上記の構成では、温度検出部の長手方向が測定対象流体の流れ方向に沿って配置されているため、温度検出部は測定対象流体の流れ方向に亘って広範囲に温度を検出することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、温度検出部によって測定対象流体の温度を検出し易くなるので、温度検出部の出力特性の変化を低減することができる。
 したがって、上記の構成によれば、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部による検出精度を向上させることができる。
 本発明に係る流量測定装置は、ガスメータ、燃焼機器、自動車内燃機関、または燃料電池などに好適に利用することがきる。
  1  流量測定装置
  3  副流路部
  3a 副流路部
  3b 副流路部
  3c 副流路部
  7  物性値センサ(物性値検出部)
  7a 物性値センサ(物性値検出部)
  8  流量センサ(流量検出部)
 21  主流路
 21a 主流路
 21b 主流路
 31  副流路
 31a 副流路
 31b 第1副流路
 31B 第2副流路
 31c 副流路
 32  物性値検出用流路(物性値検出流路)
 32b 物性値検出用流路(物性値検出流路)
 32c 物性値検出用流路(物性値検出流路)
 33  流量検出用流路(流量検出流路)
 33B 流量検出用流路(流量検出流路)
 33c 流量検出用流路(流量検出流路)
 34  流入用流路
 34A 流入口(第1流入口)
 35  流出用流路
 35A 流出口(第1流出口)
 36  物性値検出領域
 37  流量検出領域
 54  流量補正部
 71  マイクロヒータ(加熱部)
 72  第1物性値サーモパイル(温度検出部)
 73  第2物性値サーモパイル(温度検出部)

Claims (7)

  1.  主流路を流れる測定対象流体の流量を検出するための流量検出部と、
     測定対象流体を加熱する加熱部および測定対象流体の温度を検出する温度検出部を有する、測定対象流体の物性値を検出するための物性値検出部と、
     一端が前記主流路内に開口した第1流入口に連通し、且つ、他端が前記主流路内に開口した第1流出口に連通するとともに、前記物性値検出部が配置された物性値検出流路を有する副流路部と、
     前記物性値検出部から出力された検出信号に基づいて算出された測定対象流体の物性値を用いて、前記流量検出部から出力された検出信号に基づいて算出された測定対象流体の流量を補正する流量補正部と、
     を備え、
     前記加熱部および前記温度検出部は、測定対象流体の流れ方向と直交する方向に並んで配置されており、
     前記流量検出部は、前記物性値検出流路を除く位置に配置されていることを特徴とする流量測定装置。
  2.  前記副流路部は、前記流量検出部が配置された流量検出流路をさらに有しており、
     前記流量検出流路は、一端が前記第1流入口に連通し、且つ、他端が前記第1流出口に連通しており、
     前記第1流入口から流入した測定対象流体を、前記物性値検出流路および前記流量検出流路に分流させることを特徴とする請求項1に記載の流量測定装置。
  3.  前記物性値検出流路は、前記流量検出流路内に設けられており、
     前記流量検出流路内を流れる測定対象流体の一部を前記物性値検出流路に流入させることを特徴とする請求項2に記載の流量測定装置。
  4.  前記副流路部は、前記流量検出部が配置された流量検出流路をさらに有しており、
     前記流量検出流路は、一端が前記主流路内に開口した第2流入口に連通し、且つ、他端が前記主流路内に開口した第2流出口に連通していることを特徴とする請求項1に記載の流量測定装置。
  5.  前記流量検出部は、前記主流路に配置されていることを特徴とする請求項1に記載の流量測定装置。
  6.  前記加熱部は、当該加熱部の長手方向が測定対象流体の流れ方向に沿って配置されていることを特徴とする請求項1から5の何れか1項に記載の流量測定装置。
  7.  前記温度検出部は、当該温度検出部の長手方向が測定対象流体の流れ方向に沿って配置されていることを特徴とする請求項1から6の何れか1項に記載の流量測定装置。
PCT/JP2012/060470 2011-04-28 2012-04-18 流量測定装置 WO2012147586A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12776213.6A EP2703786B1 (en) 2011-04-28 2012-04-18 Flow rate measuring device
US14/112,243 US9068871B2 (en) 2011-04-28 2012-04-18 Flow rate measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-101998 2011-04-28
JP2011101998A JP5652315B2 (ja) 2011-04-28 2011-04-28 流量測定装置

Publications (1)

Publication Number Publication Date
WO2012147586A1 true WO2012147586A1 (ja) 2012-11-01

Family

ID=47072107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060470 WO2012147586A1 (ja) 2011-04-28 2012-04-18 流量測定装置

Country Status (4)

Country Link
US (1) US9068871B2 (ja)
EP (1) EP2703786B1 (ja)
JP (1) JP5652315B2 (ja)
WO (1) WO2012147586A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184344A1 (ja) * 2019-03-14 2020-09-17 オムロン株式会社 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット
CN111684241A (zh) * 2018-02-09 2020-09-18 欧姆龙株式会社 流量测量装置以及埋入式气量计

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493235B2 (ja) * 2016-01-20 2019-04-03 オムロン株式会社 流量測定装置、流量の測定方法及び流量測定プログラム
JP5971638B1 (ja) * 2016-05-12 2016-08-17 株式会社三重木型製作所 接触検出装置
US10274353B2 (en) * 2017-03-22 2019-04-30 A. O. Smith Corporation Flow sensor with hot film anemometer
JP2019002717A (ja) * 2017-06-12 2019-01-10 オムロン株式会社 流量測定装置
JP2019052962A (ja) * 2017-09-15 2019-04-04 オムロン株式会社 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット
JP6825589B2 (ja) * 2018-02-20 2021-02-03 オムロン株式会社 検出装置
KR101993208B1 (ko) * 2018-02-28 2019-06-27 엠케이프리시젼 주식회사 유량 측정 장치
JP2019158763A (ja) * 2018-03-15 2019-09-19 オムロン株式会社 ガスメータ
NL2021082B1 (en) * 2018-06-08 2019-12-11 Berkin Bv Pressure-insensitive thermal type flow meter
JP7451875B2 (ja) * 2019-03-14 2024-03-19 オムロン株式会社 流量測定装置
CN113518914A (zh) 2019-03-19 2021-10-19 欧姆龙株式会社 浓度测量装置
JP7415412B2 (ja) * 2019-10-08 2024-01-17 オムロン株式会社 流量測定装置
JP7419855B2 (ja) * 2020-02-10 2024-01-23 オムロン株式会社 流量測定装置、流量の測定方法及び流量測定プログラム
JP2021143855A (ja) 2020-03-10 2021-09-24 オムロン株式会社 パッケージ型フローセンサ
JP2021139861A (ja) 2020-03-10 2021-09-16 オムロン株式会社 パッケージ型フローセンサ
JP7487500B2 (ja) * 2020-03-13 2024-05-21 オムロン株式会社 流量計測装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222815A (ja) * 1988-12-16 1990-09-05 Yamatake Honeywell Co Ltd 流量計における流体組成補正方法
JPH0447228A (ja) * 1990-06-14 1992-02-17 Tokyo Gas Co Ltd 流速センサ及び流速センサ付フルイディック流量計
US5237523A (en) 1990-07-25 1993-08-17 Honeywell Inc. Flowmeter fluid composition and temperature correction
JP2001512231A (ja) * 1997-07-29 2001-08-21 ガスコントロール・ベスローテン・フェンノートシャップ ガス流量計
JP2001355800A (ja) * 2000-06-14 2001-12-26 Nippon Applied Flow Kk ガス供給装置
JP4050857B2 (ja) 1999-04-27 2008-02-20 矢崎総業株式会社 流体判別装置及び流量計測装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515714A (en) 1994-11-17 1996-05-14 General Motors Corporation Vapor composition and flow sensor
DE10082701D2 (de) 1999-09-09 2002-08-14 Sensirion Ag Zuerich Verfahren und Vorrichtung zur Präzisions-Massenflussmessung
JP4168417B2 (ja) * 2002-11-18 2008-10-22 株式会社山武 流体検出装置
JP5178388B2 (ja) * 2008-08-11 2013-04-10 日立オートモティブシステムズ株式会社 空気流量測定装置
US8467050B2 (en) * 2009-06-11 2013-06-18 M-I Llc Apparatus and method for metering flare gas
JP4929333B2 (ja) * 2009-09-30 2012-05-09 日立オートモティブシステムズ株式会社 センサの構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222815A (ja) * 1988-12-16 1990-09-05 Yamatake Honeywell Co Ltd 流量計における流体組成補正方法
JPH0447228A (ja) * 1990-06-14 1992-02-17 Tokyo Gas Co Ltd 流速センサ及び流速センサ付フルイディック流量計
US5237523A (en) 1990-07-25 1993-08-17 Honeywell Inc. Flowmeter fluid composition and temperature correction
JP2001512231A (ja) * 1997-07-29 2001-08-21 ガスコントロール・ベスローテン・フェンノートシャップ ガス流量計
JP4050857B2 (ja) 1999-04-27 2008-02-20 矢崎総業株式会社 流体判別装置及び流量計測装置
JP2001355800A (ja) * 2000-06-14 2001-12-26 Nippon Applied Flow Kk ガス供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2703786A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684241A (zh) * 2018-02-09 2020-09-18 欧姆龙株式会社 流量测量装置以及埋入式气量计
WO2020184344A1 (ja) * 2019-03-14 2020-09-17 オムロン株式会社 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット
JP2020148684A (ja) * 2019-03-14 2020-09-17 オムロン株式会社 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット

Also Published As

Publication number Publication date
EP2703786B1 (en) 2017-02-01
US9068871B2 (en) 2015-06-30
EP2703786A1 (en) 2014-03-05
JP2012233776A (ja) 2012-11-29
EP2703786A4 (en) 2014-11-05
JP5652315B2 (ja) 2015-01-14
US20140069205A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
WO2012147586A1 (ja) 流量測定装置
JP6493235B2 (ja) 流量測定装置、流量の測定方法及び流量測定プログラム
AU2011201469B2 (en) Molded flow restrictor
KR101456469B1 (ko) 미소 유량 센서
US7631562B1 (en) Mass-flow sensor with a molded flow restrictor
JP2012233776A5 (ja)
JP2007333460A (ja) 圧力計一体形マルチ渦流量計
WO2018230478A1 (ja) 流量測定装置
JP5336640B1 (ja) 熱式流量計
CN210123295U (zh) 流量测定装置
JP7419855B2 (ja) 流量測定装置、流量の測定方法及び流量測定プログラム
WO2019064819A1 (ja) 流量測定装置
JP5575359B2 (ja) 熱式流量計
JP7487500B2 (ja) 流量計測装置
WO2019054030A1 (ja) 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット
JP2007121221A (ja) 流体流量検出装置
JP4793098B2 (ja) 磁気式酸素測定方法及び磁気式酸素計
JP3864165B2 (ja) 熱式流量計
JP5019958B2 (ja) 流量計
JP5273950B2 (ja) 流量計
KR20090044755A (ko) 차압방식 풍속센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776213

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012776213

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012776213

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14112243

Country of ref document: US