JP2020148684A - 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット - Google Patents

流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット Download PDF

Info

Publication number
JP2020148684A
JP2020148684A JP2019047694A JP2019047694A JP2020148684A JP 2020148684 A JP2020148684 A JP 2020148684A JP 2019047694 A JP2019047694 A JP 2019047694A JP 2019047694 A JP2019047694 A JP 2019047694A JP 2020148684 A JP2020148684 A JP 2020148684A
Authority
JP
Japan
Prior art keywords
flow rate
fluid
unit
measured
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019047694A
Other languages
English (en)
Inventor
克行 山本
Katsuyuki Yamamoto
克行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2019047694A priority Critical patent/JP2020148684A/ja
Priority to CN202080017611.0A priority patent/CN113518899A/zh
Priority to DE112020001224.7T priority patent/DE112020001224T5/de
Priority to PCT/JP2020/009226 priority patent/WO2020184344A1/ja
Priority to US17/434,979 priority patent/US20220146296A1/en
Publication of JP2020148684A publication Critical patent/JP2020148684A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured
    • G01F15/043Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means
    • G01F15/046Compensating or correcting for variations in pressure, density or temperature of gases to be measured using electrical means involving digital counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Details Of Flowmeters (AREA)

Abstract

【課題】流量測定装置において、より精度を高めた流量測定を可能にする技術を提供する。【解決手段】主流路(2)を流れる測定対象流体の流量を検出する流量測定装置(1)であって、測定対象流体を加熱する加熱部(113)と、測定対象流体の温度を検出する温度検出部(111、112)と、温度検出部による検出値の時間経過に伴う変化傾向に基づいて、主流路を流れる測定対象流体の流量を補正する流量補正部(133)と、を備える。【選択図】図11

Description

本発明は、流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニットに関する。
従来、ヒータおよびセンサを備え、流体の流れによって変化する温度分布をセンサが検知することにより、流体の流速又は流量を算出する測定装置が提案されていた。
また、加熱部および温度検出部が、測定対象流体の流れ方向と直交する方向に並んで配置されており、流量検出部は、物性値検出流路を除く位置に配置されていることを特徴とする流量測定装置が提案されている(例えば、特許文献1を参照)。
ここで、上述のような、従来の流量測定装置においては、測定対象流体の流れ方向と直交する方向に並んで配置される物性値検出部を設けることで、流量依存性への対処を可能とする。しかしながら、測定対象流体の組成や種類が近似するような場合には、流量依存性を抑制することが困難な場合があった。
特開2012−233776号公報
本発明は、上記のような問題に鑑みてなされたものであり、流量測定装置において、より精度を高めた流量測定を可能にする技術の提供を目的とする。
上記の課題を解決するための本発明は、
主流路を流れる測定対象流体の流量を検出する流量測定装置であって、
測定対象流体を加熱する加熱部と、
前記測定対象流体の温度を検出する温度検出部と、
前記温度検出部による検出値の時間経過に伴う変化傾向に基づいて、前記主流路を流れる測定対象流体の流量を補正する流量補正部と、
を備えることを特徴とする、流量測定装置である。
本流量測定装置によれば、温度検出部の出力について、測定対象流体への加熱の開始からの時間経過に伴う変化傾向に基づいて、組成や種類が近似する流体の物性による影響を抑制し、流量依存性の影響を受け難い正確な流量を出力することが可能となる。
また、本発明においては、前記流量補正部は、
前記測定対象流体への加熱の開始を始点として、前記検出値が、前記加熱された前記測定対象流体の前記検出部近傍での熱平衡温度の第1所定割合を超えるまでの第1経過期間に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段を有するようにしてもよい。
ここで、第1所定割合とは、例えば、加熱部によって加熱された流体の熱平衡状態を1
00パーセントとして表される、加熱期間中の複数の温度検出部の出力に対する相対的な度合いを示す指標である。上述のように、測定対象流体への加熱の開始から、温度検出部の出力が、加熱された測定対象流体の熱平衡温度の第1所定割合を超えるまでの第1経過期間に基づいて測定対象流体の流量を補正することで、組成や種類が近似する流体の熱拡散に影響する物性への依存性を低減した流量を出力することが可能になる。
また、本発明においては、前記流量補正部は、
前記測定対象流体への加熱の開始から、前記検出値が、前記加熱された前記測定対象流体の前記温度検出部近傍での熱平衡温度の第2所定割合に到達したときの時間変化の傾斜に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段を有するようにしてもよい。
ここで、第2所定割合とは、第1所定割合と同様の、加熱部によって加熱された流体の熱平衡状態を100パーセントとして表される、加熱期間中の複数の温度検出部の出力に対する相対的な度合いを示す指標である。上述のように、測定対象流体への加熱の開始から、温度検出部の出力が、加熱された測定対象流体の熱平衡温度の第2所定割合に到達したときの時間変化の傾斜に基づいて補正することで、組成や種類が近似する流体の熱拡散に影響する物性への依存性を低減した流量を出力することが可能になる。
また、本発明においては、前記流量補正部は、
前記測定対象流体への加熱の停止から、前記熱平衡温度に到達した前記検出値が、前記熱平衡温度の第3所定割合を下回るまでの第2経過期間に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段を有するようにしてもよい。
ここで、第3所定割合とは、第1所定割合と同様の、熱平衡状態を100パーセントとして表される、相対的な度合を示す指標である。上述のように、測定対象流体への加熱の停止によって熱量の供給が停止された流体の、温度検出部の出力が、熱平衡温度の第3所定割合を下回るまでの第2経過期間に基づいて補正するようにすれば、流体の熱拡散に影響する物性への依存性を低減した流量を出力することが可能になる。
また、本発明においては、前記流量補正部は、
前記測定対象流体への加熱の開始から第3経過期間が経過した時点の、前記検出値に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段を有するようにしてもよい。これによれば、第3経過期間が経過した時点の温度検出部の出力に基づいて、主経路を流れる測定対象流体の流量を直接的に補正することが可能になる。その結果、演算装置への負荷を減少し、より高速な処理を実現することが可能となる。
また、本発明においては、前記流量補正部は、
前記測定対象流体の流れが停止状態のときに、前記主経路を流れる測定対象流体の流量を補正するための、前記検出値の時間経過に伴う変化傾向を示す情報を取得するようにしてもよい。これによれば、流体の熱拡散に影響する物性についての流量依存性が抑制できるため、流量測定の精度が向上できる。
また、本発明においては、
前記加熱部と前記温度検出部とが、前記測定対象流体の流れ方向を横切る方向に配列されていてもよい。また、前記温度検出部は複数設けられ、少なくとも2つの前記温度検出部は、前記加熱部を挟み込む位置に配列されていてもよい。また、前記温度検出部は、冷接点と温接点を有し、前記冷接点が前記測定対象流体の流れ方向に対して上流側に位置し、前記温接点が前記測定対象流体の流れ方向に対して下流側に位置するように配置されるようにしてもよい。このような構成であっても、流体の熱拡散に影響する物性についての
流量依存性を抑制し、流量測定の精度を向上できる。
また、本発明は、上記した流量測定装置と、
前記流量補正部により補正された流量を表示する表示部と、
前記流量測定装置及び前記表示部を制御する統合制御部と、
を備える、流量測定ユニットであってもよい。
そうすれば、より容易または効率的に、測定対象流体の流量を出力・表示可能なガスメータを製造することが可能になる。
また、本発明は、上記した流量測定装置と、
前記流量測定装置により測定した流量を表示する表示部と、
前記流量測定装置及び前記表示部を制御する統合制御部と、
前記流量測定装置、表示部、及び統合制御部に電力を供給する電源部と、
前記流量測定装置、表示部及び、統合制御部を収納可能な筐体と、
前記筐体の外部から前記流量測定装置の作動に関する設定が可能な操作部と、
を備える、ガスメータであってもよい。
これによれば、より精度を高めた流量測定が可能なガスメータを提供することができる。
本発明によれば、流量測定装置において、より精度を高めた流量測定が可能になる。
本発明の実施例1における流量測定装置の一例を示す分解斜視図である。 本発明の実施例1における流量測定装置の一例を示す断面図である。 本発明の実施例1における副流路部を示す平面図である。 本発明の実施例1におけるセンサ素子の一例を示す斜視図である。 本発明の実施例1におけるセンサ素子の仕組みを説明するための断面図である。 本発明の実施例1における流量検出部の概略構成を示す平面図である。 本発明の実施例1における物性値検出部の概略構成を示平面図である。 本発明の実施例1における回路基板の機能構成を示すブロック図である。 各流体と、各流体が熱平衡状態に至るまでの過渡時間との関係を示すグラフである。 各流体の立ち上がり時間と熱伝導率との関係を示すグラフである。 本発明の実施例1における流量測定処理のフローチャートである。 本発明の実施例2における流量測定処理のフローチャートである。 本発明の実施例3における流量測定処理のフローチャートである。 本発明の実施例4における流量測定処理のフローチャートである。 本発明の実施例5におけるガスメータの機能構成を示すブロック図である。
〔適用例〕
以下、本発明の適用例について、図面を参照しつつ説明する。本発明は例えば、図1に示すような熱式の流量測定装置1に適用される。流量測定装置1は、図2に示すように、主流路部2を流れる流体を分流し、その一部を流量検出部11に導いて、主流路部2の流体の流量と高い相関を有する、流量検出部11における流量を測定するものである。流量
検出部11に用いられるセンサ素子は、図4に示すように、マイクロヒータ(加熱部)101を挟んで二つの温度検出部102が配置された構成を有する。
測定原理としては、流体の流れがない場合、図5(a)に示すようにマイクロヒータ101の周囲の温度分布はほぼ均等になる。一方、例えば、図5(b)において破線の矢印で示す方向に流体が流れた場合、未加熱の流体が移動するため、マイクロヒータ101の上流側よりも下流側の方が温度は高くなる。このように、二つの温度検出部102で検出される温度の温度差ΔTと、その上を通過する流体の流量との間の、ヒータ熱の分布の偏りに伴う相関関係を利用したものである。
また、流量測定装置1の機能ブロック図8に示すように、流量検出部11の出力は、回路基板5に配置されたCPU(Central Processing Unit)により実現される制御部13
の検出値取得部131に送信され、流量算出部133において必要な補正などが施された上で、最終的な出力としての流量が算出される。
しかしながら、測定対象流体の組成や種類が近似するような場合には、二つの温度検出部102で検出される温度の温度差ΔTの所定の範囲内に、上記の組成や種類が近似する流体が含まれてしまう場合があった。例えば、比熱の値が近い複数の種類の物質を混合した流体を測定する場合には、流体の質量や移動のしやすさ等の物理特性に依存するため、流量算出部133で施される補正に対して流量依存性の抑制が困難になる状況が生じていた。
ところで、図9に示すように、マイクロヒータ101の加熱開始から熱平衡状態に至るまでの時間経過に伴う過渡応答特性は、流体を構成する物性との間に相関関係を有することがわかる。また、図10に示すように、加熱開始から熱平衡状態に至るまでの立ち上がり時間は、流体が有する物性との間に相関関係を有することがわかる。ここで、流体が有する物性とは、例えば、熱伝導率や比熱、粘性、密度等の熱拡散に関する特性である。
そこで、本発明においては、複数の温度検出部の出力の時間経過に伴う変化傾向に基づいて、主流路を流れる測定対象流体の流量を補正する流量補正部を備えることとした。これにより、加熱開始から熱平衡状態に至るまでの時間経過に伴う過渡応答特性に基づいて補正を行うことが可能になり、組成や種類が近似する流体の物性による影響を抑制し、流量依存性の影響を受け難い正確な流量を出力することが可能となった。
なお、本発明は上記のような熱式の流量測定装置1に適用してもよいし、流量測定装置1を備えた図15に示すようなガスメータ150に適用しても構わない。ガスメータ150は、流量測定装置1の他、表示部151、電源部152、操作部153、振動検出部154、遮断部155、ガスメータ制御部156、ガスメータ記憶部157、ガスメータ通信部158を備えている。
また、本発明は、図15において、流量測定装置1、表示部151、電源部152、ガスメータ制御部156を含む要素をユニット化し、ガスメータ150を製造する際に組み込み容易とした、流量測定装置ユニット150aに適用しても構わない。
<実施例1>
以下では、本発明の実施例に係る流量測定装置について、図面を用いて、より詳細に説明する。
<装置構成>
図1は、本実施例に係る流量測定装置1の一例を示す分解斜視図である。図2は、流量
測定装置1の一例を示す断面図である。流量測定装置1は、例えばガスメータや燃焼機器、自動車等の内燃機関、燃料電池、その他医療等の産業機器、組込機器に組み込まれ、流路を通過する流体の量を測定する。なお、図1及び図2の破線の矢印は、流体の流れる方向を例示している。
また、図1に示すように、本実施例に係る流量測定装置1は、主流路部2と、副流路部3と、シール4と、回路基板5と、カバー6とを備えている。図1及び図2に示すように、本実施例では、流量測定装置1は主流路部2から分岐した副流路部3を有する。また副流路部3には、流量検出部11と、物性値検出部12が備えられる。流量検出部11及び物性値検出部12は、マイクロヒータによって形成される加熱部とサーモパイルによって形成される温度検出部とを含む熱式のフローセンサによって構成されている。また、本実施例では、物性値検出部12を利用して流体の物性値を検出し、流量検出部11によって検出される流量を流体の物性値に基づいて補正するものとするが、流量測定装置1は、物性値検出部12を備えていなくてもよい。
主流路部2は、測定対象である流体の流路(以下、主流路ともいう)が長手方向に貫通した管状の部材である。図2に示すように、主流路部2の内周面には、流体の流れ方向に対して、上流側に流入口(第1流入口)34Aが形成され、下流側に流出口(第1流出口)35Aが形成されている。例えば主流路部2の軸方向の長さは約50mmであり、内周面の直径(主流路部2の内径)は約20mmであり、主流路部2の外径は約24mmであるが、主流路部2の寸法はこれらに限定されない。また、主流路部2には、流入口34Aと流出口35Aとの間にオリフィス21が設けられている。オリフィス21は、主流路部2においてその前後よりも内径が小さくなった抵抗体であり、オリフィス21の大きさによって副流路部3へ流入する流体の量を調整することができる。
図1及び図2においては、主流路から分岐した副流路を内部に含む部分である副流路部3は主流路部2の鉛直上方に設けられている。また、副流路部3内の副流路は、流入用流路34と、物性値検出用流路32と、流量検出用流路33と、流出用流路35とを含む。副流路部3には、主流路部2を流れる流体の一部が分岐して流入する。
流入用流路34は、主流路部2を流れる流体を流入させて、物性値検出用流路32および流量検出用流路33に分流させるための流路である。流入用流路34は、主流路部2における流体の流れ方向と垂直な方向に沿って形成されており、一端が流入口34Aに連通し、他端は物性値検出用流路32および流量検出用流路33に連通している。主流路部2を流れる流体の一部は、流入用流路34を介して、さらに物性値検出用流路32および流量検出用流路33に分流する。このような物性値検出用流路32及び流量検出用流路33には、主流路部2を流れる流体の量に応じた量の流体が流入する。したがって、流量検出部11は、主流路部2を流れる流体の量に応じた値を検出することができる。
図1に示すように、物性値検出用流路32は、主流路部2の鉛直上方に形成され、主流路部2と平行な方向に延在する、上側から見た断面が略U字型の流路である。物性値検出用流路32は、その内部に、測定対象流体の物性値を検出するための物性値検出部12が配置されている。物性値検出用流路32の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。
流量検出用流路33も、主流路部2における流体の流れ方向と平行な方向に延在する、上側から見た断面が略U字型の流路である。流量検出用流路33には、その内部に、流体の流量を検出するための流量検出部11が配置されている。また、流量検出用流路33の一端は、流入用流路34を介して流入口34Aに連通しており、他端は、流出用流路35を介して流出口35Aに連通している。なお、物性値検出部12、流量検出部11は、そ
れぞれ回路基板5上に実装される。そして、回路基板5は、上部に開口を有する物性値検出用流路32、流量検出用流路33の上部を覆うと共に、物性値検出用流路32に物性値検出部12が位置し、流量検出用流路33に流量検出部11が位置するように配置される。
流出用流路35は、物性値検出用流路32および流量検出用流路33を通過した測定対象流体を、主流路部2に流出させるための流路である。流出用流路35は、主流路部2と垂直な方向に沿って形成されており、一端が流出口35Aに連通し、他端は物性値検出用流路32および流量検出用流路33に連通している。物性値検出用流路32および流量検出用流路33を通過した測定対象流体は、流出用流路35を介して、主流路部2に流出する。
本実施例では、上述のように、1つの流入口34Aから流入させた測定対象流体を、物性値検出用流路32および流量検出用流路33に分流させている。これにより、流量検出部11および物性値検出部12は、それぞれ温度、密度などの条件がほぼ等しい流体に基づいて、測定対象の流体の物性値や流量を検出することができる。なお、流量測定装置1は、副流路部3にシール4を嵌め込んだ後、回路基板5が配置され、さらにカバー6によって回路基板5を副流路部3に固定することで、副流路部3の内部の気密性を確保している。
図3は、図1に示される副流路部3の平面図である。図3に示すように、物性値検出用流路32と流量検出用流路33とは、平面視で流入用流路34の中心軸の位置と流出用流路35の中心軸の位置とを結ぶ線(不図示)に対して対称に配置されている。また、矢印P及びQは、物性値検出用流路32および流量検出用流路33に分流する流体の流量の比率を模式的に表している。本実施例では、分流される流体の量がP対Qの割合になるように、物性値検出用流路32および流量検出用流路33の断面積が定められている。
実際に物性値検出用流路32および流量検出用流路33を流れる流体の量は、主流路部2を流れる流体の流量に応じて変動するが、通常の使用態様において、物性値検出用流路32を流れる流体の量は物性値検出部12の検出レンジ内の値となり、流量検出用流路33を流れる流体の量は流量検出部11の検出レンジ内の値となるように、主流路部2に対する副流路部3の大きさやオリフィス21の大きさ、物性値検出用流路32および流量検出用流路33の幅がそれぞれ設定されている。なお、物性値検出用流路32及び流量検出用流路33の幅は例示であり、図3に示す例には限定されない。
このように、流量測定装置1では、物性値検出用流路32および流量検出用流路33に分流する流体の流量を、それぞれの幅を調整することで個別に制御することが可能である。このため、物性値検出部12の検出レンジに応じて物性値検出用流路32を流れる流体の流量を制御し、流量検出部11の検出レンジに応じて流量検出用流路33を流れる流体の流量を制御することができる。
物性値検出用流路32および流量検出用流路33は、何れも上面視において略コ字型に形成された構成には限定されない。すなわち、物性値検出用流路32および流量検出用流路33は、物性値検出用流路32および流量検出用流路33を通過する流体の流量が制御可能な幅(断面積)に設定されていれば、他の形状を採用するようにしてもよい。
また、物性値検出用流路32および流量検出用流路33において物性値検出部12、流量検出部11が配置される空間の形状を上面視において略正方形にしているが、本発明はこれに限定されない。物性値検出用流路32および流量検出用流路33の形状は、物性値検出部12または流量検出部11が配置可能であればよく、配置される物性値検出部12
および流量検出部11の形状等に応じて決定することができる。
したがって、例えば、物性値検出用流路32の幅よりも、物性値検出部12のサイズが小さい場合には、物性値検出用流路32において物性値検出部12が配置される空間の幅を、物性値検出量流路32の他の部分の幅に一致させてもよい。すなわち、この場合は、物性値検出用流路32の長手方向に延在する部分は、幅がほぼ一定の形状になる。なお、流量検出用流路33についても同様である。
以上のように、物性値検出用流路32および流量検出用流路33を流れる流体の量は、主流路部2を流れる流体の量よりも少ないが、それぞれ主流路部2を流れる流体の量に応じて変化する。仮に流量検出部11や物性値検出部12を主流路部2に配置する場合は、主流路部2を流れる流体の量に応じて流量検出部11および物性値検出部12の規模を大きくする必要が生じるが、本実施形態では主流路部2から分岐する副流路部3を設けることにより、規模の小さい流量検出部11および物性値検出部12によって流体の流量を測定できるようにしている。
また、本実施例においては、物性値検出用流路32の断面積の方が流量検出用流路33の断面積よりも小さく、図3において矢印P及びQの大きさで表したように物性値検出用流路32を流れる流体の量の方が流量検出用流路33を流れる流体の量よりも少なくなっている。このように、流量検出部11を流れる流体の量よりも物性値検出部12を流れる流体の量の方を少なくすることにより、物性値検出部12が流体の物性値や温度を検出する際の流量の影響による誤差を小さくすることができる。
図4は、流量検出部11及び物性値検出部12に用いられるセンサ素子の一例を示す斜視図である。また、図5は、センサ素子の仕組みを説明するための断面図である。センサ素子100は、マイクロヒータ(加熱部ともいう)101と、マイクロヒータ101を挟んで対称に設けられた二つのサーモパイル(温度検出部ともいう)102とを備える。すなわち、マイクロヒータ101と二つのサーモパイル102とは、所定の方向に並ぶように配置されている。これらの上下には、図5に示すように絶縁薄膜103が形成され、マイクロヒータ101、サーモパイル102及び絶縁薄膜103はシリコン基台104上に設けられている。また、マイクロヒータ101及びサーモパイル102の下方のシリコン基台104には、エッチング等により形成されるキャビティ(空洞)105が設けられている。
マイクロヒータ101は、例えばポリシリコンで形成された抵抗である。図5においては、破線の楕円によって、マイクロヒータ101が発熱した場合の温度分布を模式的に示している。なお、破線が太いほど温度が高いことを示すものとする。流体の流れがない場合、図5(a)に示すようにマイクロヒータ101の周囲の温度分布はほぼ均等になる。一方、例えば図5(b)において破線の矢印で示す方向に流体が流れた場合、流体が移動するため、マイクロヒータ101の上流側には未加熱の流体が流入し、マイクロヒータ101の上流側よりも下流側の方が温度は高くなる。センサ素子100は、このようなヒータ熱の分布の偏りを利用して、流量を示す値を出力する。
センサ素子の出力電圧ΔVは、例えば次のような式(1)で表される。
Figure 2020148684
なお、Thはマイクロヒータ101の温度(サーモパイル102におけるマイクロヒータ101側の端部の温度)、Taはサーモパイル102におけるマイクロヒータ101か
ら遠い側の端部の温度のうち低い方の温度(図5(a)では左側のサーモパイル102の左端の温度又は右側のサーモパイル102の右端の温度であり、図5(b)では上流側の端部である左側のサーモパイル102の左端の温度)、Vfは流速の平均値、A及びbは所定の定数である。
また、流量測定装置1の回路基板5は、IC(Integrated Circuit)等により実現される制御部(図示せず)を備え、流量検出部11の出力に基づいて流量を算出する。また、回路基板5は、物性値検出部12の出力に基づいて所定の特性値を算出し、特性値を用いて流量を補正してもよい。
<流量検出部及び物性値検出部>
図6は、図1に示した流量検出部11の概略構成を示す平面図であり、図7は、図1に示した物性値検出部12の概略構成を示す平面図である。図6に示すように、流量検出部11は、測定対象の流体の温度を検出する第1サーモパイル(温度検出部ともいう)111および第2サーモパイル(温度検出部ともいう)112と、測定対象流体を加熱するマイクロヒータ(加熱部ともいう)113とを備えている。加熱部113と、温度検出部111および温度検出部112とは、流量検出部11内において、測定対象流体の流れ方向Pに沿って並べて配置されている。また、加熱部113、温度検出部111、および温度検出部112の形状は、平面視においてそれぞれ略矩形であり、各々の長手方向は測定対象流体の流れ方向Pと直交する。
温度検出部111および温度検出部112は、加熱部113の上流側に温度検出部112が配置され、下流側に温度検出部111が配置されて、加熱部113を挟んで対称な位置の温度を検出する。
流量測定装置1では、物性値検出部12および流量検出部11に、実質的に同一構造のセンサ素子100が用いられている。物性値検出部12のセンサ素子100と流量検出部11のセンサ素子100とは、流体の流れ方向に対する配置角度を、センサ素子100の平面視上、90度異ならせて配置されている。これにより、同一構造のセンサ素子100を物性値検出部12及び流量検出部11に使用することができ、流量測定装置1の製造コストを抑制することができる。
一方、図7に示すように、物性値検出部12は、測定対象流体の温度を検出する第1サーモパイル(温度検出部ともいう。)121および第2サーモパイル(温度検出部ともいう。)122と、測定対象流体を加熱するマイクロヒータ(加熱部ともいう。)123とを備えている。加熱部123と、温度検出部121および温度検出部122とは、物性値検出部12内において、測定対象流体の流れ方向Qと直交する方向に並んで配置されている。また、加熱部123、温度検出部121、および温度検出部122の形状は、平面視においてそれぞれ略矩形であり、各々の長手方向は測定対象流体の流れ方向Qに沿っている。また、温度検出部121および温度検出部122は、加熱部123を挟んで左右対称に配置されており、加熱部123の両側の対称な位置の温度を検出する。したがって、温度検出部121および温度検出部122の測定値はほぼ同一であり、平均値を採用するようにしてもよいし、いずれか一方の値を採用するようにしてもよい。
ここで、流体の流れによって温度分布は下流側に偏るため、流れ方向と直交する方向の温度分布の変化は、流体の流れ方向の温度分布の変化に比べて小さい。このため、温度検出部121と、加熱部123と、温度検出部122とを、この順で測定対象流体の流れ方向と直交する方向に並べて配置することにより、温度分布の変化による温度検出部121および温度検出部122の出力特性の変化を低減することができる。したがって、流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上さ
せることができる。
また、加熱部123の長手方向が測定対象流体の流れ方向に沿って配置されているため、加熱部123は測定対象流体の流れ方向の広範囲に亘って測定対象流体を加熱することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、温度検出部121および温度検出部122の出力特性の変化を低減することができる。同様に、流体温度を測定する場合においては、流速により生じる測定値の誤差を低減することができる。なお、流体温度は、温度検出部121および温度検出部122が検出した温度から、加熱部123による加熱での温度上昇分を減じて求めるようにしてもよいし、加熱部123が加熱を行わない状態で検出するようにしてもよい。物性値検出部12によれば、測定対象流体の流れによる温度分布の変化の影響を抑え、物性値及び流体温度の検出精度を向上させることができる。
さらに、温度検出部121および温度検出部122の長手方向が測定対象流体の流れ方向に沿って配置されているため、温度検出部121および温度検出部122は測定対象流体の流れ方向に亘って広範囲に温度を検出することが可能となる。このため、測定対象流体の流れによって温度分布が下流側に偏った場合であっても、温度検出部121および温度検出部122の出力特性の変化を低減することができる。したがって、測定対象流体の流れによる温度分布の変化の影響を低減して、物性値検出部12による検出精度を向上させることができる。
<機能構成>
図8は、流量測定装置1の機能構成の一例を示すブロック図である。流量測定装置1は、流量検出部11と、物性値検出部12と、制御部13と、記憶部14と、通信部15とを備えている。流量検出部11は、温度検出部111と、温度検出部112とを備える。物性値検出部12は、温度検出部121と、温度検出部122とを備える。なお、図6に示した加熱部113及び図7に示した加熱部123は、図示を省略している。また、制御部13は、検出値取得部131と、特性値算出部132と、流量算出部133とを含む。記憶部14は、フラッシュメモリ、RAM(Random Access Memory)、ROM(Read Only Memory)等の記憶媒体を含み、補正テーブル141が保持される。
流量検出部11は、温度検出部111において検出された温度に応じた信号と温度検出部112において検出された温度に応じた信号との差分を算出し、制御部13の検出値取得部131に出力する。物性値検出部12は、温度検出部121において検出された温度に応じた信号を特性値算出部132に出力する。なお、物性値検出部12は、温度検出部121および温度検出部122において検出された温度に応じた信号の平均値を求め、特性値算出部132に出力するようにしてもよい。また、温度検出部121又は温度検出部122のいずれか一方を用いて温度に応じた信号を取得するようにしてもよい。
検出値取得部131は、所定の測定間隔で、流量検出部11が出力する流体の流量に応じた検出値を取得する。特性値算出部132は、物性値検出部12の温度検出部121及び温度検出部122の少なくともいずれかの検出値に基づいて特性値を算出する。なお、特性値算出部132は、物性値検出部12のマイクロヒータの温度を変化させ、変化の前後において温度検出部121や温度検出部122が検出した測定対象流体の温度の差に所定の係数を乗じて特性値を算出するようにしてもよい。
流量算出部133は、検出値取得部131が取得した検出値に基づいて、流量を算出する。このとき、流量算出部133は、物性値検出部12が算出した特性値を用いて流量を補正するようにしてもよい。また、通信部15は、制御部13において処理した情報を外部に対して無線または有線で送信し、外部から指令や設定値を無線または有線で受信し制
御部13に伝達する。なお、外部から受信された設定値には、記憶部14の補正テーブル141に保持されるデータが含まれる。補正テーブル141には、例えば、過渡応答特性の計測値に対応する補正係数が格納される。
ところで、従来の流量算出部133では、(1)式で得られるΔV式に基づき、流体の体積流量(l/min)が算出される。流体の流れがない場合、図5(a)に示すようにマイクロヒータ101の周囲の温度分布はほぼ均等になる。マイクロヒータ101の周囲の温度分布は、マイクロヒータ101から供給される熱量、および、流体の物性(熱伝導率や比熱、粘性、密度等)にしたがって熱平衡状態に至る。
図9には、マイクロヒータ101の加熱開始から熱平衡状態に至るまでの、マイクロヒータ101を挟んで対称に設けられた二つのサーモパイル102で検出されたセンサ出力SVについて、熱平衡状態近傍の時間経過に伴う過渡応答特性を示すグラフが例示される。図9において、縦軸は物性値検出部12の温度検出部121または122の出力SVであり、横軸は加熱部123の加熱開始からの経過時間(ms)を表す。なお、物性値検出部12の出力SVは、熱平衡状態のセンサ出力値を100パーセントして規格化されている。また、物性値検出部12の出力SVは、温度検出部121および温度検出部122のうちのいずれか一方の出力でもよいし、温度検出部121の出力と温度検出部の出力の平均値でもよい。以下、温度検出部121および温度検出部122のうちのいずれか一方の出力、温度検出部121の出力と温度検出部の出力の平均値を単に、温度検出部121等の出力という。
図9に示すように、熱平衡状態に到達するまでの経過時間は、流体を構成する物性に応じて相違していることがわかる。例えば、センサ出力SVが熱平衡状態に対して95パーセントを示す値に到達するまでの経過時間は、流体の熱拡散に関する物性(熱伝導率や比熱、粘度、密度等)の影響を受けるため、3種類のガス(空気、都市ガス13A、C12)のそれぞれに相違することがわかる。図9の例では、空気による経過時間t1は都市ガス13Aの経過時間t2より長大であり、C12による経過時間t3は都市ガス13Aよりも短小である。
図10には、図9における3種類のガスに関する経過時間と熱伝導率λ(mW/m・K)との関係を示すグラフが例示される。図10において、縦軸は経過時間(ms)、横軸は熱伝導率を表す。図10に示すように、経過時間が最も長大な空気では、熱伝導率が相対的に最も低いことがわかる。また、経過時間が最も短小なガスC12では、熱伝導率が相対的に最も高いことがわかる。経過時間がガスC12より長大で、且つ、空気より短小な都市ガス13Aでは、熱伝導率が空気より相対的に高く、ガスC12より相対的に低いことがわかる。このように、これらの流体においては、加熱開始から熱平衡状態の所定割合(95パーセント)に至るまでの経過時間が長大な程、熱伝導率が低いという関係が有る。
したがって、このような過渡応答特性と熱伝導率との関係を、予め実験的に計測し、平均値や標準偏差分布等の統計処理が施された計測結果をメモリ等に補正テーブルとして保持することで、物性値検出部12等からの出力SVから、測定対象流体の物性値を直接的に補正することが可能になる。この結果、流体の組成の影響を受け難くした流量測定が可能になる。
ここで、過渡応答特性の一例として、図9に示すようにヒータ加熱開始から、センサ出力(SV)が平衡状態の所定割合に到達するまでの経過時間であるセンサ立ち上がり時間が例示できる。また、ヒータの加熱開始から平衡状態に到達するまでの経過過程における、センサ出力(SV)変化の傾き(ΔSV/Δt)を過渡応答特性として計測してもよい
。センサ出力変化の傾きには、流体の種別に対応した物性値が反映されるからである。
さらに、図9のグラフに示すように、所定の経過時間に対応したセンサ出力を過渡応答特性として計測することも可能である。同様にして、ヒータの加熱停止から、センサ出力(SV)が平衡状態の所定割合を下回るまでの経過時間であるセンサ立下り時間を過渡応答特性として計測してもよい。何れにおいても、計測対象の過渡応答には、流体の種別に対応した物性値が反映される。
<流量測定処理>
図11は、流量測定装置1における流量測定処理の一例を示す処理フロー図である。本処理は、流量測定装置1の回路基板1に備えられたCPU(不図示)から、流量検出部11、物性値検出部12、制御部13に指令を発信することで実行される。本処理が実行されると、まずステップS101において物性値検出部12における加熱部123がONされるタイミングを契機として時間計測が開始される。S102においては、加熱部123を駆動する電流の印加開始を時刻(t0)として経過時間(t)が測定される。S102の処理が終了するとS103に進む。
S103においては物性値検出部12の温度検出部121等の検出値(SV)が第1所定割合を超えていることが判定される。ここで、第1所定割合は、測定対象流体の熱平衡値で規格化された、立ち上がり時間を特定するための予め定められた閾値である。このような、第1所定割合として、例えば、流量測定対象流体の熱平衡値を100パーセントとして、粗95パーセントに相当する値が例示される。
S103の処理では、物性値検出部12の温度検出部121等の出力信号が制御部13の特性値算出部132に送信されることで特性値算出部132によりセンサ出力(SV)が検出される。そして、検出されたSVが第1所定割合を超えている場合には(S103、“Yes”)、処理はS104に進み、そうでない場合には(S103、“No”)、処理はS102に進む。
S104においては、経過時間(t1)が測定される。S104の処理が終了すると、S105に進む。S105においては、センサ出力立ち上がり時間が決定される。より具体的には、流量測定対象流体に関するセンサ出力立ち上がり時間(t2)は、経過時間で測定された時刻(t1)と時間計測開始の時刻(t0)との差分から決定される。S105の処理が終了するとS106進む。
S106においては、センサ立ち上がり時間と熱伝導率(W/m・K)の間の補正係数を用いて、流量測定対象流体の特性補正値が決定される。より具体的には、流量算出部132において、予め回路基板5上の記憶部14に記憶されている補正テーブル141にアクセスし、センサ立ち上がり時間(t2)に対応する特性補正値が求められる。S106の処理が終了するとS107に進む。S107においては、流量算出部132においてさらに、必要に応じて、特性補正値を反映させた特性値算出部132からの出力に基づいたガス補正が行われ、最終的な流体の体積流量(l/min)が出力される。S107の処理が終了すると、本ルーチンを一旦終了する。
上述のように、本実施例においては、物性値検出部12から出力される温度検出部121等の規格化された検出値(SV)が第1所定割合に到達するセンサ出力立ち上がり時間と熱伝導率(W/m・K)との関係から流体の物性特性を補正し、体積流量(L/min)が出力されることとした。これにより、測定対象流体の組成や種類の近似による物性の相違を、過渡応答特性であるセンサ立ち上がり時間を用いて判別することが可能になり、流体についての物性の影響を受けず、より精度の高い流量測定が可能になる。さらに、流
量算出部133における補正内容をより簡略化することができ、制御部13における演算負荷を低減することが可能になる。
<実施例2>
次に、実施例2として、センサ出力立ち上がり変化の傾きによる特性補正を可能とした例について説明する。図12は、流量測定装置1における流量測定処理の他の一例を示す処理フロー図である。なお、以下の、図12から図14に示す処理の実行は、実施例1と同様である。
まずステップS111において物性値検出部12における加熱部123がONされるタイミングを契機として時間計測が開始され、ステップS112においては、加熱部123を駆動する電流の印加開始を時刻(t0)として経過時間(t)が測定される。S113においては物性値検出部12の温度検出部等の検出値(SV)が第2所定割合に到達したことが判定される。第2所定割合は、測定対象流体の熱平衡値で規格化された、立ち上がり変化の傾きを求めるための予め定められた閾値である。第2所定割合として、例えば、測定対象流体の熱平衡値を100パーセントとして、粗90パーセントに相当する値が例示される。但し、第2所定割合として設定される値は、例えば、立ち上がり変化の単位時間の割合が誤差の範囲内で近似する領域の中から選定可能である。
S113の処理では、物性値検出部12の温度検出部121及び温度検出部122の出力信号が制御部13の特性値算出部132に送信されることで特性値算出部132によりセンサ出力(SV)が検出される。そして、検出されたセンサ出力(SV)が第2所定割合に到達した場合には(S113、“Yes”)、処理はS114に進み、そうでない場合には(S113、“No”)、処理はS112に進む。
S114においては、経過時間(t3)が測定される。S115においては、センサ出力変化の傾きが決定される。より具体的には、センサ出力変化の傾きは、センサ出力(SV)を経過時間(t3)で除算した値から決定される。S116においては、センサ出力変化の傾き(SV/t3)と熱伝導率(W/m・K)の間の補正係数を用いて、流量測定対象流体の特性補正値が決定される。S117においては、センサ出力変化の傾きから求められた補正値を反映させた特性値算出部132からの出力に基づいたガス補正が行われ、最終的な流体の体積流量(l/min)が出力される。
上述のように、実施例2においては、温度検出部121等の規格化された検出値(SV)が第2所定割合に到達するセンサ出力変化の傾きと熱伝導率(W/m・K)との関係に基づき流体の物性特性を補正し、体積流量(L/min)が出力されることとした。これにより、測定対象流体の組成や種類の近似による物性の相違を、センサ出力変化の傾きを用いて判別することが可能になる。このような過渡応答特性を用いる形態であっても、流体についての物性の影響を受けず、より精度の高い流量測定が可能になる。
<実施例3>
次に、実施例3として、センサ出力立ち下がり時間による特性補正を可能とした例について説明する。図13は、流量測定装置1における流量測定処理の他の一例を示す処理フロー図である。まずステップS121において物性値検出部12における加熱部123がOFFされるタイミングを契機として時間計測が開始され、ステップS122においては、加熱部123を駆動する電流の印加停止を時刻(t0)として経過時間(t)が測定される。S123においては物性値検出部12の温度検出部121等の検出値(SV)が第3所定割合を下回ることが判定される。第3所定割合は、測定対象流体の熱平衡値で規格化された、立ち上がり時間を特定するための予め定められた閾値である。第3所定割合として、例えば、測定対象流体の熱平衡値を100パーセントとして、粗95パーセントに
相当する値が例示される。
S123の処理では、物性値検出部12の温度検出部121等の出力信号が制御部13の特性値算出部132に送信されることで特性値算出部132によりセンサ出力SVが検出される。そして、検出されたセンサ出力SVが第3所定割合を超えている場合には(S123、“Yes”)、処理はS124に進み、そうでない場合には(S123、“No”)、処理はS122に進む。
S124においては、経過時間(t4)が測定される。S125においては、センサ出力立ち下がり時間が決定される。より具体的には、センサ出力立ち下がり時間(t5)は、経過時間で測定された時刻(t4)と時間計測開始の時刻(t0)との差分から決定される。S126においては、センサ立ち下がり時間と熱伝導率(W/m・K)の間の補正係数を用いて、流量測定対象流体の特性補正値が決定される。S127においては、センサ出力立下り時間から求められた補正値を反映させた特性値算出部132からの出力に基づいたガス補正が行われ、最終的な流体の体積流量(l/min)が出力される。
上述のように、実施例3においては、温度検出部121等の規格化された検出値(SV)が第3所定割合を下回るセンサ出力立ち下がり時間と熱伝導率(W/m・K)との関係に基づき流体の物性特性を補正し、体積流量(L/min)が出力されることとした。これにより、測定対象流体の組成や種類の近似による物性の相違を、過渡応答特性であるセンサ出力立ち下がり時間を用いて判別することが可能になる。このような形態であっても、流体についての物性の影響を受けず、より精度の高い流量測定が可能になる。
<実施例4>
次に、実施例4として、時間経過に伴うセンサ出力(SV)による特性補正を可能とした例について説明する。図14は、流量測定装置1における流量測定処理の他の一例を示す処理フロー図である。まずステップS131において物性値検出部12における加熱部123がNOされるタイミングを契機として時間計測が開始され、ステップS132においては、加熱部123を駆動する電流の印加停止を時刻(t0)として経過時間(t)が測定される。S133においては、計測中の経過時間が所定時間(t6)に到達したことが判定される。S133の処理では、計測中の経過時間が所定時間(t6)に到達した場合には(S133、“Yes”)、S134に進み、そうでない場合には(S133、“No”)、S132に進む。
S134においては、物性値検出部12の温度検出部121等の出力信号が制御部13の特性値算出部132に送信され、所定時間(t6)におけるセンサ出力(SV)が決定される。S135においては、決定されたセンサ出力(SV)と熱伝導率(W/m・K)の間の補正係数を用いて、流量測定対象流体の特性補正値が決定される。S136においては、センサ出力(SV)から求められた補正値を反映させた特性値算出部132からの出力に基づいたガス補正が行われ、最終的な流体の体積流量(l/min)が出力される。
上述のように、実施例4においては、所定時間経過後の、温度検出部121等の規格化された検出値(SV)と熱伝導率(W/m・K)との関係に基づき流体の物性特性を補正し、体積流量(L/min)が出力されることとした。これにより、測定対象流体の組成や種類の近似による物性の相違を、過渡応答特性である所定時間経過後におけるセンサ出力を用いて判別することが可能になる。このような形態であっても、流体についての物性の影響を受けず、より精度の高い流量測定が可能になる。
<実施例5>
次に、実施例5として、実施例1から実施例4に係る流量測定装置が組み込まれたガスメータ及び、流量測定装置ユニットについて説明する。本実施例は、実施例1に係る流量測定装置1を、ガスの使用量測定のためのガスメータに組み込んだ例である。図15は、流量測定装置1が組み込まれたガスメータ150の機能構成の一例を示すブロック図である。ガスメータ150は、流量測定装置1の他、表示部151、電源部152、操作部153、振動検出部154、遮断部155、統合制御部としてのガスメータ制御部156、ガスメータ記憶部157、ガスメータ通信部158を備えている。なお、操作部153を除き、これらの構成は筐体150b内に収納されている。
ここで、表示部151は、流量測定装置1によって測定・出力された流量(熱量流量(J/min)、体積流量(l/min)、または両方)に基づくガス使用量の他、日付、遮断処理の有無(後述)等が表示されるディスプレイであり、液晶表示板等が用いられてもよい。電源部152は、流量測定装置1及び、ガスメータ150の他の構成に対して電力を供給する部分で、アルカリ電池等のバッテリーで構成されてもよい。操作部153は、ガスメータ150の外部に設けられており、ガス契約者または検針者等が操作する部分である。例えば、ガスメータ150のリセット、時刻調整、表示・出力する流量(熱量流量か体積流量か、あるいは両方か)の切換、後述する遮断状態の解除等の操作を行うことが可能としてもよい。
振動検出部154は、例えば加速度センサ(不図示)等を含み、ガスメータ150自身の振動を検出する。遮断部155は、ソレノイド等のアクチュエータと主流路部2を閉塞するバルブを有し、振動検出部154において閾値以上の振動が検出された場合には、地震が発生したと判断して主流路部2を通過するガスを遮断する。ガスメータ制御部156は、流量測定装置1、表示部151、電源部152、操作部153、振動検出部154、遮断部155、ガスメータ記憶部157、ガスメータ通信部158と電気的に接続されており、各部の制御を行う。例えば、操作部153からの入力情報を受信し、入力情報に応じた指令を各部に送信する。また、振動検出部154において閾値以上の加速度信号が検出された場合には、遮断部155に遮断信号を送信する。ガスメータ記憶部157は、流量測定装置1や、振動検出部154からの出力を時系列で所定の期間に亘り記憶する部分であり、SRAMやDRAM等のメモリ素子により構成されてもよい。ガスメータ通信部158は、ガスメータ制御部156で処理する各情報を外部へ無線または有線で送信可能であり、外部からの指令や設定値を受信してガスメータ制御部156に伝達する。また、流量測定装置1が有する通信部15と通信することで、流量測定装置1の制御部13で処理する情報を受信し、また、流量測定装置1に対する制御信号や設定値を送信するようにしてもよい。
なお、ガスメータ150の構成のうち、例えば、流量測定装置1、表示部151、電源部152、振動検出部154、ガスメータ制御部156、ガスメータ記憶部157、ガスメータ通信部158をユニット化し、この流量測定装置ユニット150aに、操作部153、遮断部155を電気的に接続して、筐体150b内に組み込むことで、ガスメータ150を構成可能にしておいてもよい。このようにすることで、より効率的にガスメータ150を製造することが可能である。
なお、本実施例において、ガスメータ150、流量測定装置ユニット150aに属する構成は一例であり、ガスメータ150の機能や、製造上の条件に応じて変更が可能である。また、本発明に係る流量測定装置は、上記の実施例で示した構成には限定されない。上記の実施例の構成は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。
また、上記の実施例においては、流量測定装置1では、物性値検出部12の温度検出部
121、122の検出値の過渡応答を用いた補正例を説明したが、これを流量検出部11からの検出値としても略同様の内容が成立する。すなわち、流量測定装置1は、物性値検出部12を含まずに、流量検出部11のみで構成される形態である。この場合、制御部13の特性値算出部132は、物性検出部12の温度検出部121、122に換えて、流量検出部11の温度検出部111、112の検出値の過渡応答を用いるものとすればよい。流量測定値1は、例えば、補正処理を実行する際に、通信部15を通じて、ガスメータ等の上位の制御部に通知し、流量検出部11の流路を滞留させる。滞留は、例えば、遮断部155による主流路部2を閉塞するバルブを介して行われる。流量検出部11の流路が滞留した状態では、流路を流れる流体は無風状態になるため、加熱部113を通じた熱分布は、図5(a)に示す状態になる。そして、流量測定値1は、流量検出部11の温度検出部111、112の検出値から、図11から図14を用いて説明した過渡応答特性による特性補正を行うようにすればよい。
なお、以下には本発明の構成要件と実施例の構成とを対比可能とするために、本発明の構成要件を図面の符号付きで記載しておく。
<発明1>
主流路(2)を流れる測定対象流体の流量を検出する流量測定装置(1)であって、
測定対象流体を加熱する加熱部(113)と、
前記測定対象流体の温度を検出する温度検出部(111、112)と、
前記温度検出部による検出値の時間経過に伴う変化傾向に基づいて、前記主流路を流れる測定対象流体の流量を補正する流量補正部(133)と、
を備えることを特徴とする、流量測定装置。
<発明2>
前記流量補正部(133)は、
前記測定対象流体への加熱の開始を始点として、前記検出値が、前記加熱された前記測定対象流体の前記温度検出部近傍での熱平衡温度の第1所定割合を超えるまでの第1経過期間に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段(133)を有することを特徴とする、請求項1に記載の流量測定装置。
<発明3>
前記流量補正部(133)は、
前記測定対象流体への加熱の開始から、前記検出値が、前記加熱された前記測定対象流体の前記温度検出部近傍での第2所定割合に到達したときの時間変化の傾斜に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段(133)を有することを特徴とする、請求項1に記載の流量測定装置。
<発明4>
前記流量補正部(133)は、
前記測定対象流体への加熱の停止から、前記熱平衡温度に到達した前記検出値が、前記熱平衡温度の第3所定割合を下回るまでの第2経過期間に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段(133)を有することを特徴とする、請求項2または3に記載の流量測定装置。
<発明5>
前記流量補正部(133)は、
前記測定対象流体への加熱の開始から第3経過期間が経過した時点の、前記検出値に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段(133)を有することを特徴とする、請求項1に記載の流量測定装置。
<発明6>
前記流量補正部(133)は、
前記測定対象流体の流れが停止状態のときに、前記主経路を流れる測定対象流体の流量を補正するための、前記検出値の時間経過に伴う変化傾向を示す情報を取得する、請求項1から5の何れか一項に記載の流量測定装置。
<発明7>
前記加熱部と前記温度検出部とが、前記測定対象流体の流れ方向を横切る方向に配列された請求項1から6のいずれか一項に記載の流量測定装置。
<発明8>
前記温度検出部は複数に設けられ、少なくとも2つの前記温度検出部は、前記加熱部を挟み込む位置に配列された請求項7に記載の流量測定装置。
<発明9>
前記温度検出部は、冷接点と温接点を有し、前記冷接点が前記測定対象流体の流れ方向に対して上流側に位置し、前記温接点が前記測定対象流体の流れ方向に対して下流側に位置するように配置される請求項7または8に記載の流量測定装置。
<発明10>
請求項1から9のいずれか一項に記載の流量測定装置(1)と、
前記流量補正部により補正された流量を表示する表示部(151)と、
前記流量測定装置及び前記表示部を制御する統合制御部(156)と、
を備える、流量測定ユニット(150a)。
<発明11>
請求項1から9のいずれか一項に記載の流量測定装置(1)と、
前記流量測定装置により測定した流量を表示する表示部(151)と、
前記流量測定装置及び前記表示部を制御する統合制御部(156)と、
前記流量測定装置(1)、表示部(151)及び、統合制御部(156)に電力を供給する電源部(152)と、
前記流量測定装置(1)、表示部(151)及び、統合制御部(156)を収納可能な筐体(150b)と、
前記筐体(150b)の外部から前記流量測定装置の作動に関する設定が可能な操作部(153)と、
を備える、ガスメータ(150)。
1 :流量測定装置
11 :流量検出部
111 :温度検出部
112 :温度検出部
113 :加熱部
12 :物性値検出部
121 :温度検出部
122 :温度検出部
123 :加熱部
13 :制御部
131 :検出値取得部
132 :特性値算出部
133 :流量算出部
14 :記憶部
141 :補正テーブル
15 :通信部
2 :主流路部
21 :オリフィス
3 :副流路部
32 :物性値検出用流路
33 :流量検出用流路
34 :流入用流路
35 :流出用流路
4 :シール
5 :回路基板
6 :カバー
100 :センサ素子
101 :マイクロヒータ
102 :サーモパイル
103 :絶縁薄膜
104 :シリコン基台
105 :キャビティ
150 :ガスメータ
150a :流量測定装置ユニット

Claims (11)

  1. 主流路を流れる測定対象流体の流量を検出する流量測定装置であって、
    測定対象流体を加熱する加熱部と、
    前記測定対象流体の温度を検出する温度検出部と、
    前記温度検出部による検出値の時間経過に伴う変化傾向に基づいて、前記主流路を流れる測定対象流体の流量を補正する流量補正部と、
    を備えることを特徴とする、流量測定装置。
  2. 前記流量補正部は、
    前記測定対象流体への加熱の開始を始点として、前記検出値が、前記加熱された前記測定対象流体の前記温度検出部近傍での熱平衡温度の第1所定割合を超えるまでの第1経過期間に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段を有することを特徴とする、請求項1に記載の流量測定装置。
  3. 前記流量補正部は、
    前記測定対象流体への加熱の開始から、前記検出値が、前記加熱された前記測定対象流体の前記温度検出部近傍での熱平衡温度の第2所定割合に到達したときの時間変化の傾斜に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段を有することを特徴とする、請求項1に記載の流量測定装置。
  4. 前記流量補正部は、
    前記測定対象流体への加熱の停止から、前記熱平衡温度に到達した前記検出値が、前記熱平衡温度の第3所定割合を下回るまでの第2経過期間に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段を有することを特徴とする、請求項2または3に記載の流量測定装置。
  5. 前記流量補正部は、
    前記測定対象流体への加熱の開始から第3経過期間が経過した時点の、前記検出値に基づいて、前記主経路を流れる測定対象流体の流量を補正する補正手段を有することを特徴とする、請求項1に記載の流量測定装置。
  6. 前記流量補正部は、
    前記測定対象流体の流れが停止状態のときに、前記主経路を流れる測定対象流体の流量を補正するための、前記検出値の時間経過に伴う変化傾向を示す情報を取得する、請求項1から5の何れか一項に記載の流量測定装置。
  7. 前記加熱部と前記温度検出部とが、前記測定対象流体の流れ方向を横切る方向に配列された請求項1から6のいずれか一項に記載の流量測定装置。
  8. 前記温度検出部は複数設けられ、少なくとも2つの前記温度検出部は、前記加熱部を挟み込む位置に配列された請求項7に記載の流量測定装置。
  9. 前記温度検出部は、冷接点と温接点を有し、前記冷接点が前記測定対象流体の流れ方向に対して上流側に位置し、前記温接点が前記測定対象流体の流れ方向に対して下流側に位置するように配置される請求項7または8に記載の流量測定装置。
  10. 請求項1から9のいずれか一項に記載の流量測定装置と、
    前記流量補正部により補正された流量を表示する表示部と、
    前記流量測定装置及び前記表示部を制御する統合制御部と、
    を備える、流量測定ユニット。
  11. 請求項1から9のいずれか一項に記載の流量測定装置と、
    前記流量測定装置により測定した流量を表示する表示部と、
    前記流量測定装置及び前記表示部を制御する統合制御部と、
    前記流量測定装置、表示部及び、統合制御部に電力を供給する電源部と、
    前記流量測定装置、表示部及び、統合制御部を収納可能な筐体と、
    前記筐体の外部から前記流量測定装置の作動に関する設定が可能な操作部と、
    を備える、ガスメータ。
JP2019047694A 2019-03-14 2019-03-14 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット Pending JP2020148684A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019047694A JP2020148684A (ja) 2019-03-14 2019-03-14 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット
CN202080017611.0A CN113518899A (zh) 2019-03-14 2020-03-04 流量测量装置、具备流量测量装置的燃气表及用于燃气表的流量测量装置单元
DE112020001224.7T DE112020001224T5 (de) 2019-03-14 2020-03-04 Durchflussmessgerät, gaszähler mit durchflussmessgerät,und durchflussmessgerät für gaszähler
PCT/JP2020/009226 WO2020184344A1 (ja) 2019-03-14 2020-03-04 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット
US17/434,979 US20220146296A1 (en) 2019-03-14 2020-03-04 Flow amount measurement device, gas meter comprising flow amount measurement device, and flow amount measurement device unit for gas meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019047694A JP2020148684A (ja) 2019-03-14 2019-03-14 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット

Publications (1)

Publication Number Publication Date
JP2020148684A true JP2020148684A (ja) 2020-09-17

Family

ID=72427475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019047694A Pending JP2020148684A (ja) 2019-03-14 2019-03-14 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット

Country Status (5)

Country Link
US (1) US20220146296A1 (ja)
JP (1) JP2020148684A (ja)
CN (1) CN113518899A (ja)
DE (1) DE112020001224T5 (ja)
WO (1) WO2020184344A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147586A1 (ja) * 2011-04-28 2012-11-01 オムロン株式会社 流量測定装置
JP2018025420A (ja) * 2016-08-09 2018-02-15 アズビル株式会社 発熱量測定装置および方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153561A (ja) * 1997-11-21 1999-06-08 Mitsui Mining & Smelting Co Ltd 流体識別方法及び流体識別装置
JP2001235357A (ja) * 2000-02-25 2001-08-31 Toshiba Corp 流量測定装置
JP3945385B2 (ja) * 2002-11-15 2007-07-18 オムロン株式会社 フローセンサ及び流量計測方法
JP3987041B2 (ja) * 2004-01-30 2007-10-03 三井金属鉱業株式会社 液種識別装置
JP2007225609A (ja) * 2006-01-30 2007-09-06 Mitsui Mining & Smelting Co Ltd 流体識別装置および流体識別方法
WO2007086585A1 (ja) * 2006-01-30 2007-08-02 Mitsui Mining & Smelting Co., Ltd. 流体識別装置および流体識別方法
JP2007292724A (ja) * 2006-03-28 2007-11-08 Mitsui Mining & Smelting Co Ltd 流体識別装置及び流体識別方法
JP5207210B2 (ja) * 2008-05-29 2013-06-12 横河電機株式会社 熱式流量計
WO2013105124A1 (ja) * 2012-01-10 2013-07-18 日立オートモティブシステムズ株式会社 流量計測装置
JP6870398B2 (ja) * 2017-03-14 2021-05-12 オムロン株式会社 熱式流量計、流量処理装置および熱式流量計測方法
JP6843014B2 (ja) * 2017-07-31 2021-03-17 アズビル株式会社 熱式流量計および流量補正方法
US11209298B2 (en) * 2018-04-27 2021-12-28 Hitachi Metals, Ltd. Thermal mass flow sensor with improved accuracy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147586A1 (ja) * 2011-04-28 2012-11-01 オムロン株式会社 流量測定装置
JP2018025420A (ja) * 2016-08-09 2018-02-15 アズビル株式会社 発熱量測定装置および方法

Also Published As

Publication number Publication date
US20220146296A1 (en) 2022-05-12
DE112020001224T5 (de) 2021-12-02
CN113518899A (zh) 2021-10-19
WO2020184344A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
KR100485944B1 (ko) 열식 유체센서, 유체판별장치 및 그 방법, 플로센서, 및유량계측장치 및 그 방법
JP5652315B2 (ja) 流量測定装置
US11112285B2 (en) Flow measurement device, flow measurement method, and flow measurement program
US8851744B1 (en) Calibration apparatus and method for heat transfer measurement
JP2008089575A5 (ja)
JP2008292286A (ja) 熱式流量計
CN105008870B (zh) 热式流体计测装置
WO2015137075A1 (ja) 内部温度測定方法及び内部温度測定装置
JP5511470B2 (ja) 熱式流量計、熱式ガス種判別装置及びガス種自動判定方法
WO2018230478A1 (ja) 流量測定装置
JP5450204B2 (ja) 流量計
WO2020184344A1 (ja) 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット
JP3470881B2 (ja) マイクロフローセンサ
JP2021135156A (ja) 流量測定装置
CN111051824B (zh) 流量测定装置、具备流量测定装置的气量计以及用于气量计的流量测定装置单元
WO2019064819A1 (ja) 流量測定装置
JP2002168663A (ja) 流量計測装置及び、漏洩検出装置
JP2021144005A (ja) 流量測定装置、流量測定装置を備えたガスメータ及び、ガスメータのための流量測定装置ユニット
WO2020080189A1 (ja) 流量測定装置及び、流量測定装置の制御方法
JP6434238B2 (ja) 流量計および補正値算出方法
JP5426198B2 (ja) 流量計及び流量制御装置
JP5123231B2 (ja) 流量計、流量計測方法、及び流量計測プログラム
JP2009139387A (ja) 流量計及び流量制御装置
JP2021144002A (ja) 流量計測装置
JP4981308B2 (ja) 流量計測装置及び流体判別装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240130