WO2012147502A1 - 二次電池用非水電解液および非水電解液二次電池 - Google Patents
二次電池用非水電解液および非水電解液二次電池 Download PDFInfo
- Publication number
- WO2012147502A1 WO2012147502A1 PCT/JP2012/059626 JP2012059626W WO2012147502A1 WO 2012147502 A1 WO2012147502 A1 WO 2012147502A1 JP 2012059626 W JP2012059626 W JP 2012059626W WO 2012147502 A1 WO2012147502 A1 WO 2012147502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- aqueous electrolyte
- electrolyte
- secondary battery
- solvent
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a non-aqueous electrolyte for a secondary battery and a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery having excellent charge / discharge characteristics, and the non-aqueous electrolyte secondary battery.
- the present invention relates to a non-aqueous electrolyte for secondary batteries.
- lithium-containing transition metal oxides represented by the chemical formula LiMO 2 (M is a transition metal) and phosphorus having an olivine structure are used, which use metal lithium or an alloy capable of inserting or extracting lithium ions, or a carbon material as a negative electrode active material.
- Non-aqueous electrolyte secondary batteries using lithium iron oxide or the like as a positive electrode material have attracted attention as batteries having a high energy density.
- an electrolytic solution used for the nonaqueous electrolytic solution a solution obtained by dissolving a lithium salt such as LiPF 6 , LiBF 4 , or LiClO 4 as an electrolyte in an aprotic organic solvent is usually used.
- aprotic solvent carbonates such as propylene carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, esters such as ⁇ -butyrolactone and methyl acetate, ethers such as diethoxyethane and the like are usually used.
- Non-Patent Document 1 it is considered effective to use an additive that forms an ion conductive protective film suitable for the negative electrode surface or the positive electrode surface.
- JP 2007-87883 A Japanese Patent No. 4414306
- lithium fluorododecaborate represented by Li 2 B 12 F X Z 12-X has a large effect of suppressing deterioration due to high temperature characteristics and overcharge, but has a small effect of improving charge / discharge characteristics such as cycle characteristics. .
- An object of the present invention is to obtain a non-aqueous electrolyte solution that can improve the charge / discharge characteristics of the non-aqueous electrolyte secondary battery from a low temperature to a high temperature, and a non-aqueous electrolyte secondary battery using the same.
- Another object of the present invention is to obtain a non-aqueous electrolyte solution and a non-aqueous electrolyte secondary battery using the same, which can greatly improve the high-temperature characteristics and overcharge characteristics of the non-aqueous electrolyte secondary battery.
- a nonaqueous electrolytic solution for a secondary battery containing an electrolyte, a solvent and an additive contains a compound represented by the following formula (1),
- R 1 and R 2 are each independently a hydrogen atom, a methyl group or an amino group, n is 1, 2 or 4, and Y is a hydrogen atom when n is 1. Alternatively, it is a monovalent organic group. When n is 2, it is a divalent organic group. When n is 4, it is a tetravalent organic group.)
- the compound represented by the formula (1) is 1,1-bis (acryloyloxymethyl) ethyl isocyanate, N, N′-bis (acryloyloxyethyl) urea, or 2,2-bis (acryloyloxymethyl).
- the non-aqueous electrolyte for a secondary battery according to the above [1] which is at least one selected from the group consisting of ethyl crotonate and vinyl crotonate.
- the electrolyte is lithium fluorododecaborate represented by the formula Li 2 B 12 F X Z 12-X (where X is an integer of 8 to 12, and Z is H, Cl, or Br) ) And at least one selected from LiPF 6 and LiBF 4 , the concentration of the lithium fluorododecaborate is 0.2 mol / L or more with respect to the entire electrolyte, and the LiPF 6 and LiBF 4
- the non-aqueous electrolyte for secondary batteries as described in [1] or [2] above, wherein the total concentration of at least one selected from is 0.05 mol / L or more with respect to the entire electrolyte.
- the non-aqueous electrolyte of the present invention can greatly improve the charge / discharge characteristics of the non-aqueous electrolyte secondary battery by containing a predetermined amount of the additive.
- the non-aqueous electrolyte of the present invention is a lithium fluorododecaborate represented by the formula Li 2 B 12 F X Z 12-X (wherein X is an integer of 8 to 12, Z is H, Cl Or a predetermined amount), the charge / discharge characteristics of the non-aqueous electrolyte secondary battery can be greatly improved.
- the non-aqueous electrolyte of the present invention can improve the thermal stability at high temperatures, the charge / discharge performance at low temperatures, and the rate characteristics at room temperature of the non-aqueous electrolyte secondary battery. Moreover, in the non-aqueous electrolyte of the present invention, the redox shuttle mechanism works during overcharge, and it is possible to prevent decomposition of the electrolyte and the positive electrode, and as a result, deterioration of the non-aqueous electrolyte secondary battery can be prevented.
- FIG. 1 is a diagram showing the cycle test result (a) of the nonaqueous electrolyte secondary battery of Example 1 at 25 ° C. and the cycle test result (b) of the nonaqueous electrolyte secondary battery of Comparative Example 1.
- FIG. 2 is a diagram showing the cycle test result (a) of the nonaqueous electrolyte secondary battery of Example 1 at 60 ° C. and the cycle test result (b) of the nonaqueous electrolyte secondary battery of Comparative Example 1.
- FIG. 3 is a diagram showing a cycle test result (a) of the nonaqueous electrolyte secondary battery of Example 1 at ⁇ 10 ° C. and a cycle test result (b) of the nonaqueous electrolyte secondary battery of Comparative Example 1. .
- the nonaqueous electrolytic solution for a secondary battery according to the present invention includes an electrolyte, a solvent, and an additive.
- the “additive” is blended in an amount of 10 parts by mass or less per one type of additive when the total amount of the solvent constituting the electrolytic solution of the present invention is 100 parts by mass. Furthermore, if a small amount of a solvent component is present in the solvent and the amount of the small amount of the solvent component is less than 10 parts by mass with respect to 100 parts by mass of the total amount of the solvent excluding the small amount of the solvent component.
- the small amount of the solvent component is regarded as an additive and is removed from the solvent.
- a solvent component with a blending amount of less than that is also regarded as an additive.
- the additive in the non-aqueous electrolyte for a secondary battery of the present invention contains a compound represented by the following formula (1).
- R 1 and R 2 are each independently a hydrogen atom, a methyl group or an amino group, n is 1, 2 or 4, and Y is a hydrogen atom when n is 1. Alternatively, it is a monovalent organic group. When n is 2, it is a divalent organic group. When n is 4, it is a tetravalent organic group.
- the additive is a compound represented by the above formula (1), in the secondary battery using the non-aqueous electrolyte for secondary battery of the present invention, this additive is partially reduced on the negative electrode during initial charging.
- a suitable ion conductive protective film is formed on the negative electrode surface, and as a result, charge / discharge characteristics from a low temperature of about ⁇ 25 ° C. to a high temperature of about 60 ° C. are improved.
- Y is a hydrogen atom or a monovalent organic group.
- monovalent organic groups include allyl groups, alkyl groups having 1 to 6 carbon atoms, isocyanate groups, amino groups, imide groups, amide groups, vinyl groups, benzoyl groups, acyl groups, anthraniloyl groups, and glycoloyl groups. Can do. Further, it may be a group formed by replacing a hydrogen atom of an alkyl group having 1 to 6 carbon atoms with a group other than the alkyl group having 1 to 6 carbon atoms.
- Y is a divalent organic group when n is 2.
- the divalent organic group include a phenylene group, an alkylene group, a polymethylene group, a urea group, and a malonyl group. Further, it may be a group formed by replacing a hydrogen atom of an alkylene group or a polymethylene group with a group other than the alkyl group having 1 to 6 carbon atoms mentioned as the monovalent organic group.
- Y is a tetravalent organic group when n is 4.
- the tetravalent organic group include a group obtained by removing four hydrogen atoms from an aliphatic hydrocarbon, benzene, or urea.
- the additive in the non-aqueous electrolyte for a secondary battery of the present invention may be one kind of compound represented by the above formula (1) or two or more kinds of compounds.
- Specific examples of the compound represented by the above formula (1) include 1,1-bis (acryloyloxymethyl) ethyl isocyanate, N, N′-bis (acryloyloxyethyl) urea represented by the following chemical formula (2), 2 , 2-bis (acryloyloxymethyl) ethyl isocyanate diethylene oxide, 2,2-bis (acryloyloxymethyl) ethyl isocyanate triethylene oxide, tetrakis (acryloyloxymethyl) urea, 2-acryloyloxyethyl isocyanate, methyl crotonate, croton Examples include ethyl acid, methyl aminocrotonate, ethyl aminocrotonate, and vinyl crotonic acid.
- the non-aqueous electrolyte for secondary batteries using these compounds as additives can remarkably improve the charge / discharge characteristics from the low temperature of the secondary battery to the high temperature of about 60 ° C.
- the content of the compound represented by the formula (1) in the non-aqueous electrolyte for secondary batteries of the present invention is 0.05 to 100 parts by mass with respect to 100 parts by mass of the whole solvent contained in the non-aqueous electrolyte for secondary batteries. 10 parts by mass, preferably 0.5 to 8 parts by mass, more preferably 1 to 5 parts by mass.
- a suitable ion conductive protective film can be formed on the surface of the negative electrode, and as a result, the secondary battery reaches a low temperature to a high temperature. The charge / discharge characteristics up to can be improved.
- the protective film is not sufficiently formed on the negative electrode, and sufficient charge / discharge from the low temperature to the high temperature of the secondary battery is performed. Characteristics may not be obtained.
- the content of the compound represented by the formula (1) is more than 10 parts by mass, the reaction at the negative electrode proceeds excessively, the film formed on the negative electrode surface becomes thick, and the reaction resistance of the negative electrode increases. On the contrary, there is a risk that charge / discharge characteristics such as a decrease in discharge capacity and cycle performance of the battery may be deteriorated.
- additives are further included in a range not impairing the effects of the present invention, depending on the desired use. You may go out.
- Other additives include vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, 4,5-dipropyl vinylene carbonate, 4-ethyl-5-methyl vinylene carbonate, 4-ethyl-5 -Propyl vinylene carbonate, 4-methyl-5-propyl vinylene carbonate, vinyl ethylene carbonate, divinyl ethylene carbonate, methyl difluoroacetate, 1,3-propane sultone, 1,4-butane sultone, monofluoroethylene carbonate, lithium-bisoxa Rate borate and the like. These other additives may be used alone or in combination of two or more.
- 1,3-propane sultone is particularly preferable when mixed with the additive represented by the formula (1).
- 1,3-propane sultone it becomes easy to improve the charge / discharge characteristics in a wide temperature range from a low temperature to a high temperature of the secondary battery.
- the content of the other additives is preferably 5 parts by mass or less with respect to 100 parts by mass of the whole solvent from the viewpoint of forming a good film, More preferably, it is 2 parts by mass or less. Moreover, it is preferable from a viewpoint of forming a favorable film that content of another additive does not exceed content of the said additive represented by Formula (1).
- the total amount of the additive is preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the whole solvent. Part by mass. If the total amount of the additive is less than 0.5 parts by mass, film formation on the negative electrode may not be sufficient, and sufficient charge / discharge characteristics may not be obtained. The film formed on the electrode becomes thick, the reaction resistance of the negative electrode increases, and the charge / discharge characteristics may be deteriorated.
- the electrolyte is not particularly limited, but lithium fluorododecaborate represented by the formula Li 2 B 12 F X Z 12-X (where X is an integer of 8 to 12, Z is H, Cl, Or at least one selected from LiPF 6 and LiBF 4 . More preferably, both the lithium fluorododecaborate and at least one selected from LiPF 6 and LiBF 4 are included.
- lithium fluorododecaborate As an electrolyte, battery characteristics such as high-temperature heat resistance, in particular, charge / discharge efficiency and cycle life at 45 ° C. or higher, further 60 ° C. or higher, and further 80 ° C. or higher are higher than using LiPF 6 alone.
- the redox shuttle mechanism of the lithium fluorododecaborate anion suppresses the increase in voltage and prevents the decomposition of the solvent and the electrode. Since dendrite generation can also be suppressed, battery deterioration and thermal runaway due to overcharging can be prevented.
- At least one electrolyte salt selected from LiPF 6 and LiBF 4 as a mixed electrolyte, not only can the electrical conductivity be improved, but also the dissolution of aluminum is suppressed when aluminum is used for the positive electrode current collector. can do.
- the additive can be used for an electrolyte containing only at least one selected from LiPF 6 and LiBF 4 as an electrolyte, and can also be used for an electrolyte containing only lithium fluorododecaborate as an electrolyte.
- it can be used for an electrolytic solution containing lithium fluorododecaborate and at least one selected from LiPF 6 and LiBF 4 as an electrolyte.
- the inclusion of lithium fluorododecaborate is essential.
- lithium fluorododecaborates Li 2 B 12 F 8 H 4, Li 2 B 12 F 9 H 3, Li 2 B 12 F 10 H 2, Li 2 B 12 F 11 H, Li 2 B 12 F 12 , a mixture of various lithium fluorododecaborates represented by the above formula having an average x of 9 to 10, Li 2 B 12 F x Cl 12-x (where x is 10 or 11) and Li 2 B 12 F x Br 12-x (wherein x is 10 or 11).
- X in Li 2 B 12 F X Z 12- X is an integer of 8-12. If X is less than 8, the potential causing the redox reaction is too low, and the reaction occurs during the normal operation of the so-called lithium ion battery, which may reduce the charge / discharge efficiency of the battery. Therefore, it is necessary to select a value of X between 8 and 12 according to the type of electrode used and the application of the battery. In general, it is easy to produce and the potential for causing the redox reaction is high when X is 12. However, since it is affected by the type of solvent, it cannot be determined unconditionally.
- Lithium fluorododecaborate having X of 12 is preferable in that the redox reaction is higher than other compounds, the redox reaction is less likely to occur during normal operation of the battery, and the redox shuttle mechanism is effective only during overcharge. .
- the concentration of lithium fluorododecaborate is preferably 0.2 mol / L or more, more preferably 0.3 mol / L or more and 1.0 mol / L or less with respect to the entire electrolyte solution.
- the amount of lithium fluorododecaborate is too small, the electrical conductivity may be too small and the battery charge / discharge resistance may increase, resulting in poor rate characteristics and the redox shuttle mechanism during overcharge. May be insufficient. Conversely, when there is too much lithium fluorododecaborate, the viscosity of electrolyte solution will rise, electrical conductivity may fall, and charge / discharge performance, such as a rate characteristic, may fall.
- the concentration of at least one selected from LiPF 6 and LiBF 4 is preferably 0.05 mol / L or more, more preferably 0.075 mol / L or more and 0.4 mol / L or less with respect to the entire electrolytic solution.
- the amount of at least one selected from LiPF 6 and LiBF 4 is too small, a sufficient protective film may not be formed on the aluminum current collector, and good charge / discharge characteristics may not be obtained. Furthermore, the conductivity of the electrolytic solution is not sufficient, and good charge / discharge characteristics may not be obtained.
- the content A of lithium fluorododecaborate and the content of at least one selected from LiPF 6 and LiBF 4 is preferably 90:10 to 50:50, more preferably 85:15 to 60:40, in terms of molar ratio.
- the total molar concentration of lithium fluorododecaborate and at least one selected from LiPF 6 and LiBF 4 is preferably 0.3 to 1.5 mol / L, more preferably 0 .4 to 1.0 mol / L.
- the total molar concentration is within the above range, a good overcharge prevention effect and good charge / discharge characteristics can be obtained.
- the molar concentration of at least one selected from LiPF 6 and LiBF 4 is the mole of lithium fluorododecaborate. It is preferable that it is below the concentration. If the molar concentration of at least one selected from LiPF 6 and LiBF 4 is higher than the molar concentration of lithium fluorododecaborate, the heat resistance and charge / discharge characteristics at a high temperature of 45 ° C. or higher may be deteriorated, and further overcharging will occur. In some cases, battery deterioration cannot be sufficiently prevented.
- the solvent is not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, and dipropyl carbonate. Fluorine-substituted cyclic or chain carbonates such as trifluoropropylene carbonate, bis (trifluoroethyl) carbonate, trifluoroethylmethyl carbonate, etc., in which a part of hydrogen is substituted with fluorine. These solvents can be used alone or in combination of two or more.
- the solvent contains at least one selected from the group consisting of cyclic carbonates and chain carbonates, it is preferable in that good electrochemical stability and electrical conductivity can be obtained. In order to improve battery performance even in a wide temperature range from low temperature to high temperature, it is preferable to use two or more mixed solvents.
- solvent other than the carbonate dimethoxyethane, diglyme, triglyme, polyethylene glycol, ⁇ -butyrolactone, sulfolane, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, tetrahydrofuran, Solvents such as 2-methyltetrahydrofuran, 1,4-dioxane, acetonitrile and the like can be used, but are not particularly limited thereto.
- the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and the non-aqueous electrolyte for a secondary battery. Since the non-aqueous electrolyte secondary battery of the present invention uses the above-described non-aqueous electrolyte for secondary batteries of the present invention, it exhibits good charge / discharge characteristics.
- the structure and the like of the non-aqueous electrolyte secondary battery are not particularly limited, and can be appropriately selected according to a desired application.
- the nonaqueous electrolyte secondary battery of the present invention may further include a separator made of polyethylene or the like.
- the negative electrode used in the present invention is not particularly limited, and can contain a current collector, a conductive material, a negative electrode active material, a binder and / or a thickener.
- any material that can occlude and release lithium can be used without particular limitation.
- Typical examples include non-graphitized carbon, artificial graphite carbon, natural graphite carbon, metallic lithium, aluminum, lead, silicon, tin, and an alloy of lithium, tin oxide, titanium oxide, and the like.
- a binder such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR) or the like according to a conventional method and used as a mixture.
- PTFE polytetrafluoroethylene
- PVdF polyvinylidene fluoride
- SBR styrene butadiene rubber
- a negative electrode can be produced using this mixture and a current collector such as a copper foil.
- the positive electrode used in the present invention is not particularly limited, and preferably contains a current collector, a conductive material, a positive electrode active material, a binder and / or a thickener.
- a lithium composite oxide with a transition metal such as cobalt, manganese, nickel, or a part of the lithium site or the transition metal site is cobalt, nickel, manganese, aluminum, boron, magnesium.
- a lithium-containing transition metal phosphate having an olivine structure can also be used. These can be mixed with a conductive agent such as acetylene black or carbon black and a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF) and used as a mixture. Using this mixture and a current collector such as an aluminum foil, a positive electrode can be produced.
- a conductive agent such as acetylene black or carbon black
- a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF)
- the solvent was evacuated overnight to give 5.1 g of a colorless brittle solid.
- the crude product was analyzed by 19 F NMR and found to be mainly B 12 F 10 H 2 2- (60%), B 12 F 11 H 2- (35%) and B 12 F 12 2- (5%). I found out.
- the crude reaction product was dissolved in water and the pH of the solution was adjusted to 4-6 with triethylamine and trimethylamine hydrochloride.
- the precipitated product was filtered and dried and resuspended in water to obtain a slurry.
- 2 equivalents of lithium hydroxide monohydrate was added to remove triethylamine. After all the triethylamine was removed by distillation, more lithium hydroxide was added to bring the final solution pH to 9.5. Water was removed by distillation and the final product was vacuum dried at 200 ° C. for 6 hours.
- Example 1 (Battery evaluation 1) [Preparation of electrolyte] LiPF 6 was used as the electrolyte. A solvent comprising a mixture containing 10% by volume of ethylene carbonate, 20% by volume of propylene carbonate, 40% by volume of methyl ethyl carbonate, and 30% by volume of diethyl carbonate was used. In this solvent, LiPF 6 was dissolved to 1.1 mol / L, and 1,1-bis (acryloyloxymethyl) ethyl isocyanate was added as an additive for forming an ion conductive film on the electrode. An electrolyte solution was obtained by adding 1.5 parts by mass with respect to 100 parts by mass.
- FIG. 1 shows the results of this cycle test.
- the discharge capacity for each cycle was as shown by curve a in FIG. 1, and the decrease in capacity was small after 500 cycles and maintained 95% of the initial discharge capacity.
- FIG. 2 shows the results of this cycle test.
- the curve a in FIG. 2 was obtained, and 93% of the initial discharge capacity was maintained after 100 cycles.
- FIG. 3 shows the results of this cycle test.
- the curve a in FIG. 3 was obtained, and 90% of the initial discharge capacity was maintained after 100 cycles.
- LiPF 6 was used as the electrolyte.
- the LiPF 6 in the solvent is dissolved in and adjusted to 1.1 mol / L, further N as an additive for the ion conductive film formation on the electrode, N'- bis (acryloyloxyethyl) entire urea solvent
- An electrolyte solution was obtained by adding 2.0 parts by mass to 100 parts by mass.
- the mass ratio of the active material, the binder and the thickener becomes 97.5: 1.5: 1.
- the battery was charged at a constant current to 4.2V at 1C.
- 4.2V the voltage was held until the current dropped to 0.05C, and then the battery voltage was 3.0V at a constant current of 1C.
- Discharged until The discharge capacity at this time was defined as the discharge capacity of the first cycle.
- the cycle performance of the battery was investigated by repeating charge and discharge in the same manner. In the battery of Example 2, the discharge capacity after 500 cycles had maintained 96% of the initial discharge capacity.
- the battery produced in the same manner was examined for cycle performance at ⁇ 10 ° C. in the same manner as described above.
- the discharge capacity at the 100th cycle maintained 84% of the initial discharge capacity.
- Example 3 (Battery evaluation 3)
- Lithium fluorododecaborate separated from the product obtained in Preparation 1 of lithium fluorododecaborate so that the content of lithium fluorododecaborate whose composition formula is Li 2 B 12 F 12 is 99.9% or more Was used as the electrolyte, and LiPF 6 was used as the mixed electrolyte.
- a solvent comprising a mixture containing 10% by volume of ethylene carbonate, 20% by volume of propylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- lithium fluorododecaborate is dissolved at 0.4 mol / L and LiPF 6 is 0.1 mol / L, and an additive for forming an ion conductive film on the electrode is further added.
- 1-bis (acryloyloxymethyl) ethyl isocyanate was added in an amount of 2.0 parts by mass with respect to 100 parts by mass of the whole solvent to obtain an electrolytic solution.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., the discharge capacity at the 500th cycle maintained 96% of the initial discharge capacity. In the 60 ° C. cycle test, the discharge capacity at the 100th cycle maintained 94% of the initial discharge capacity. In the cycle test at ⁇ 0 ° C., 90% of the initial discharge capacity was maintained at the 100th cycle.
- Example 4 (Battery evaluation 4) Fluorodedecaborate separated from the product obtained in Preparation 2 of lithium fluorododecaborate so that the content of lithium fluorododecaborate whose composition formula is Li 2 B 12 F 11 Br is 99.9% or more Lithium was used as the electrolyte, and LiPF 6 was used as the mixed electrolyte.
- a solvent comprising a mixture containing 10% by volume of ethylene carbonate, 20% by volume of propylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- LiPF 6 is dissolved to 0.1 mol / L so that lithium fluorododecaborate is 0.4 mol / L, and an additive for forming an ion conductive film on the electrode
- an additive for forming an ion conductive film on the electrode As an example, tetrakis (acryloyloxymethyl) urea was added in an amount of 2.0 parts by mass with respect to 100 parts by mass of the whole solvent to obtain an electrolytic solution.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., the discharge capacity at the 500th cycle maintained 93% of the initial discharge capacity. In the 60 ° C. cycle test, the discharge capacity at the 100th cycle maintained 90% of the initial discharge capacity. In the cycle test at ⁇ 10 ° C., 82% of the initial discharge capacity was maintained at the 100th cycle.
- Example 5 (Battery evaluation 5)
- Electrode preparation Fluorododecaborate separated from the product obtained in Preparation 3 of lithium fluorododecaborate so that the content of lithium fluorododecaborate whose composition formula is Li 2 B 12 F 11 Cl is 99.9% or more Lithium was used as the electrolyte, and LiPF 6 was used as the mixed electrolyte.
- a solvent comprising a mixture containing 10% by volume of ethylene carbonate, 20% by volume of propylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- LiPF 6 is dissolved to 0.1 mol / L so that lithium fluorododecaborate is 0.4 mol / L, and an additive for forming an ion conductive film on the electrode
- 1,1-bis (acryloyloxymethyl) ethyl isocyanate was added in an amount of 1.0 part by mass with respect to 100 parts by mass of the whole solvent to obtain an electrolytic solution.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., the discharge capacity at the 500th cycle maintained 89% of the initial discharge capacity. In the 60 ° C. cycle test, the discharge capacity at the 100th cycle was maintained at 82% of the initial discharge capacity. In the cycle test at ⁇ 10 ° C., 74% of the initial discharge capacity was maintained at the 100th cycle.
- Example 6 (Battery evaluation 6)
- LiPF 6 was used as the electrolyte.
- a solvent comprising a mixture containing 10% by volume of ethylene carbonate, 20% by volume of propylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- LiPF 6 was dissolved to 1.1 mol / L, and 1,1-bis (acryloyloxymethyl) ethyl isocyanate was added as an additive for forming an ion conductive film on the electrode.
- An electrolyte solution was obtained by adding 1.5 parts by mass and 0.75 parts by mass of 1,3-propane sultone to 100 parts by mass of the entire solvent.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., the discharge capacity at the 500th cycle maintained 96% of the initial capacity. In the cycle test at 60 ° C., the discharge capacity at the 100th cycle maintained 88% of the initial capacity. In the cycle test at ⁇ 10 ° C., the initial 85% was maintained at the 100th cycle.
- Example 7 (Battery evaluation 7)
- LiPF 6 was used as the electrolyte.
- a solvent comprising a mixture containing 10% by volume of ethylene carbonate, 20% by volume of propylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- LiPF 6 was dissolved to 1.1 mol / L, and 1,1-bis (acryloyloxymethyl) ethyl isocyanate was added as an additive for forming an ion conductive film on the electrode.
- An electrolyte solution was obtained by adding 2.0 parts by mass with respect to parts by mass.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., the discharge capacity at the 500th cycle maintained 95% of the initial discharge capacity. In the 60 ° C. cycle test, the discharge capacity at the 100th cycle maintained 90% of the initial discharge capacity. In the cycle test at ⁇ 10 ° C., 93% of the initial discharge capacity was maintained at the 100th cycle.
- an overcharge test was conducted at 25 ° C. at a rate of 3C.
- the battery voltage becomes 5.2 V or more after the charging depth exceeds 130%, and then the voltage gradually increases as the charging depth progresses.
- the voltage rapidly increases from the time when the charging depth exceeds 200%, and the charging depth 215 %,
- the battery voltage reached 10.0V and the overcharge test was completed. Thereafter, the battery was discharged at a discharge rate of 1 C at 25 ° C., and only 11% of the initial discharge capacity was discharged.
- the battery voltage is charged at 1C until the battery voltage reaches 4.2V, and then the CCCV charge that maintains the voltage until the current value reaches 0.05C after reaching 4.2V and the discharge at 1C up to 3.0V are repeated.
- the discharge capacity did not exceed 10% of the initial discharge capacity, and the test was terminated.
- Example 8 (Battery evaluation 8)
- Lithium fluorododecaborate separated from the product obtained in Preparation 1 of lithium fluorododecaborate so that the content of lithium fluorododecaborate whose composition formula is Li 2 B 12 F 12 is 99.9% or more Was used as the electrolyte, and LiPF 6 was used as the mixed electrolyte.
- a solvent comprising a mixture containing 30% by volume of ethylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- lithium fluorododecaborate is dissolved to 0.4 mol / L
- LiPF 6 is dissolved to 0.2 mol / L
- an additive for forming an ion conductive film on the electrode is 0.5 part by mass of 2-acryloyloxyethyl isocyanate was added to 100 parts by mass of the whole solvent to obtain an electrolytic solution.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., the discharge capacity at the 500th cycle maintained 89% of the initial discharge capacity. In the cycle test at 60 ° C., the discharge capacity at the 100th cycle maintained 75% of the initial discharge capacity. In the cycle test at ⁇ 10 ° C., 88% of the initial discharge capacity was maintained at the 100th cycle.
- Example 9 (Battery evaluation 9)
- Lithium fluorododecaborate separated from the product obtained in Preparation 1 of lithium fluorododecaborate so that the content of lithium fluorododecaborate whose composition formula is Li 2 B 12 F 12 is 99.9% or more Was used as the electrolyte, and LiPF 6 was used as the mixed electrolyte.
- a solvent comprising a mixture containing 30% by volume of ethylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- This solvent the lithium fluorododecaborates as a 0.4 mol / L, LiPF 6 was dissolved as a 0.2 mol / L, further additives for ion conductive coating formation on the electrode
- 1.5 parts by mass of ethyl crotonate and 100 parts by mass of 1,3-propane sultone were added to 100 parts by mass of the whole solvent to obtain an electrolytic solution.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., the discharge capacity at the 500th cycle maintained 93% of the initial discharge capacity. In the 60 ° C. cycle test, the discharge capacity at the 100th cycle maintained 90% of the initial discharge capacity. In the cycle test at ⁇ 10 ° C., 91% of the initial discharge capacity was maintained at the 100th cycle.
- Example 10 (Battery evaluation 10)
- Lithium fluorododecaborate separated from the product obtained in Preparation 1 of lithium fluorododecaborate so that the content of lithium fluorododecaborate whose composition formula is Li 2 B 12 F 12 is 99.9% or more Was used as the electrolyte, and LiPF 6 was used as the mixed electrolyte.
- a solvent comprising a mixture containing 30% by volume of ethylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- lithium fluorododecaborate is dissolved to 0.4 mol / L
- LiPF 6 is dissolved to 0.2 mol / L
- an additive for forming an ion conductive film on the electrode 1.5 parts by mass of vinyl crotonate was added to 100 parts by mass of the whole solvent to obtain an electrolytic solution.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., the discharge capacity at the 500th cycle maintained 91% of the initial discharge capacity. In the cycle test at 60 ° C., the discharge capacity at the 100th cycle maintained 84% of the initial discharge capacity. In the cycle test at ⁇ 10 ° C., 88% of the initial discharge capacity was maintained at the 100th cycle.
- Example 11 (Battery evaluation 11) [Electrolyte preparation] Lithium fluorododecaborate separated from the product obtained in Preparation 1 of lithium fluorododecaborate so that the content of lithium fluorododecaborate whose composition formula is Li 2 B 12 F 12 is 99.9% or more Was used as the electrolyte, and LiPF 6 was used as the mixed electrolyte.
- a solvent comprising a mixture containing 30% by volume of ethylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- This solvent the lithium fluorododecaborates as a 0.4 mol / L, LiPF 6 was dissolved as a 0.2 mol / L, further additives for ion conductive coating formation on the electrode
- an electrolytic solution 1.5 parts by mass of vinyl crotonate and 100 parts by mass of 1,3-propane sultone were added to 100 parts by mass of the whole solvent.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., the discharge capacity at the 500th cycle maintained 95% of the initial discharge capacity. In the cycle test at 60 ° C., the discharge capacity at the 100th cycle maintained 91% of the initial discharge capacity. In the cycle test at ⁇ 10 ° C., 93% of the initial discharge capacity was maintained at the 100th cycle.
- LiPF 6 was used as the electrolyte.
- a solvent comprising a mixture containing 10% by volume of ethylene carbonate, 20% by volume of propylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of diethyl carbonate was used.
- LiPF 6 was dissolved in this solvent so as to be 1.1 mol / L to obtain an electrolytic solution. Here, no additive for film formation was added.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- FIG. 1 shows the results of a cycle test at 25 ° C.
- FIG. 2 shows the results of a cycle test at 60 ° C.
- 80% of the initial discharge capacity was cut at the 48th cycle as shown by curve b in FIG.
- FIG. 1 shows the results of a cycle test at ⁇ 10 ° C.
- 80% of the initial discharge capacity was cut off at the 58th cycle as shown by curve b in FIG.
- LiPF 6 was dissolved so as to be 0.1 mol / L so that lithium fluorododecaborate was 0.4 mol / L to obtain an electrolytic solution.
- an additive for forming an ion conductive film on the electrode was not added.
- a battery was assembled in exactly the same manner as in Battery Evaluation 1 except for the electrolyte solution, using exactly the same positive and negative electrodes as in Battery Evaluation 1.
- the battery evaluation was performed in exactly the same manner as battery evaluation 1. As a result, in the cycle test at 25 ° C., 80% of the initial discharge capacity was cut at the 285th cycle. In the cycle test at 60 ° C., 80% of the initial discharge capacity was cut at the 145th cycle. In the cycle test at ⁇ 10 ° C., 80% of the initial discharge capacity was cut off at the 108th cycle.
- discharge capacity ratio means the ratio of the discharge capacity after the test to the initial discharge capacity.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
[1]電解質、溶媒および添加剤を含む二次電池用非水電解液であって、
前記添加剤が下記式(1)で表わされる化合物を含有し、
前記化合物の含有量が、前記溶媒全体100質量部に対して0.05~10質量部であることを特徴とする二次電池用非水電解液。
[2]前記式(1)で表わされる化合物が、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、N,N'-ビス(アクリロイルオキシエチル)ウレア、2,2-ビス(アクリロイルオキシメチル)エチルイソシアネートジエチレンオキサイド、2,2-ビス(アクリロイルオキシメチル)エチルイソシアネートトリエチレンオキサイド、テトラキス(アクリロイルオキシメチル)ウレア、2-アクリロイルオキシエチルイソシアネート、クロトン酸メチル、クロトン酸エチル、アミノクロトン酸メチル、アミノクロトン酸エチルおよびクロトン酸ビニルからなる群から選択される少なくとも1種であることを特徴とする前記[1]に記載の二次電池用非水電解液。
[3]前記電解質が、式Li2B12FXZ12-Xで表わされるフルオロドデカホウ酸
リチウム(式中、Xは8~12の整数であり、ZはH、Cl、またはBrである。)と、LiPF6およびLiBF4から選ばれる少なくとも1種とを含有し、前記フルオロドデカホウ酸リチウムの濃度が電解液全体に対して0.2mol/L以上であり、前記LiPF6およびLiBF4から選ばれる少なくとも1種の合計の濃度が電解液全体に対して0.05mol/L以上であることを特徴とする前記[1]または[2]に記載の二次電池用非水電解液。
[4]前記フルオロドデカホウ酸リチウムの含有量Aと前記のLiPF6およびLiBF4から選ばれる少なくとも1種の含有量Bとの比(A:B)がモル比で90:10~50:50であることを特徴とする前記[3]に記載の二次電池用非水電解液。
[5]前記フルオロドデカホウ酸リチウムと前記LiPF6およびLiBF4から選ばれる少なくとも1種との合計モル濃度が、電解液全体に対して0.3~1.5mol/Lであることを特徴とする前記[3]または[4]に記載の二次電池用非水電解液。
[6]前記式Li2B12FXZ12-X におけるXが12であることを特徴とする前記[3]~[5]のいずれか1つに記載の二次電池用非水電解液。
[7]前記溶媒が環状カーボネートおよび鎖状カーボネートからなる群から選択される少なくとも1種を含有することを特徴とする前記[1]~[6]のいずれか1つに記載の二次電池用非水電解液。
[8]正極、負極、および前記[1]~[7]のいずれか1つに記載の二次電池用非水電解液を備えることを特徴とする非水電解液二次電池。
本発明に係る二次電池用非水電解液は、電解質、溶媒および添加剤を含む。
本発明において、「添加剤」とは、本発明の電解液を構成する溶媒全体を100質量部としたとき、添加剤1種あたり10質量部以下の量で配合するものである。さらに、仮に溶媒中に少量の溶媒成分が存在し、その少量の溶媒成分の配合量が、当該少量の溶媒成分を除いた溶媒の総量100質量部に対して10質量部未満であった場合には、その少量の溶媒成分を添加剤とみなし、溶媒から除くものとする。ここで、少量の溶媒成分が2種以上存在した場合であって、ある1種の少量の溶媒成分(i)が前記の定義によって添加剤とみなされた場合、当該溶媒成分(i)と同一かまたはそれより少量の配合量の溶媒成分も添加剤とみなす。
添加剤が上記式(1)に示される化合物であることにより、本発明の二次電池用非水電解液を用いた二次電池においては、初期充電時にこの添加剤が負極上で一部還元分解されることにより、好適なイオン導電性の保護被膜が負極表面に形成され、その結果、-25℃くらいの低温から60℃くらいの高温にいたるまでの充放電特性が向上する。
前記電解質としては、特に制限はないが、式Li2B12FXZ12-Xで表わされるフルオロドデカホウ酸リチウム(式中、Xは8~12の整数であり、ZはH、Cl、またはBrである。)、並びに、LiPF6およびLiBF4から選ばれる少なくとも1種が好ましい。前記フルオロドデカホウ酸リチウムと、LiPF6およびLiBF4から選ばれる少なくとも1種との両方を含むことがより好ましい。
前記溶媒としては、特に制限はないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、水素の一部をフッ素置換したトリフルオロプロピレンカーボネート、ビス(トリフルオロエチル)カーボネート、トリフルオロエチルメチルカーボネートなどのフッ素置換環状または鎖状カーボネート等が挙げられる。これらの溶媒は、一種単独で、または二種以上を混合して用いることができる。溶媒が環状カーボネートおよび鎖状カーボネートからなる群から選択される少なくとも1種を含有すると、良好な電気化学的安定性や電気伝導度を得ることができる点で好ましい。低温から高温にいたる広温度領域でも電池性能を良くするには2種以上の混合溶媒を用いることが好ましい。
本発明の非水電解液二次電池は、正極と、負極と、前記の二次電池用非水電解液とを備えることを特徴としている。本発明の非水電解液二次電池は、上記本発明の二次電池用非水電解液を用いるものであるので、良好な充放電特性を示す。
[Li2B12FXH12-X(X=10~12)の調製]
平均ハメット酸度Ho=-2~-4で、ギ酸6mL中にK2B12H12CH3OH2.96g(11.8mmol)を含有する無色のスラリーに、0~20℃で、100%F2(142mmol)を、10%F2/10%O2/80%N2の混合ガスとして添加することにより、無色の溶液を得た。この溶液に30℃で前記混合ガスを添加し、更なるフッ素化(3%)を行った。前記溶液から固体が沈殿した。溶媒を一晩排気して無色の脆い固体5.1gを得た。この粗生成物を19F NMRによって分析したところ、主としてB12F10H2 2-(60%)、B12F11H2-(35%)およびB12F12 2-(5%)であることがわかった。粗反応生成物を水に溶解して、溶液のpHをトリエチルアミンおよびトリメチルアミン塩酸塩で4~6に調整した。沈殿した生成物を濾過して乾燥し、水に再度懸濁させ、スラリーを得た。このスラリーに、2当量の水酸化リチウム一水和物を添加し、トリエチルアミンを除去した。全てのトリエチルアミンを蒸留により除去した後、さらに水酸化リチウムを添加して最終的な溶液のpHを9.5にした。蒸留により水を除去し、最終生成物を200℃で6時間真空乾燥した。Li2B12FxH12-x(x=10、11、12)の収率は約75%であった。
[Li2B12FxBr12-x(x≧10、平均x=11)の調製]
平均組成がLi2B12F11HであるLi2B12FxH12-x(x≧10)3g(0.008mol)を1M HCl 160mLに溶解した。この溶液にBr21.4mL(0.027mol)を添加し、得られた混合液を100℃で4時間還流した。NMR分析のために試料を採取した。
[Li2B12FxCl12-x(平均x=11)の調製]
平均組成がLi2B12F11HであるLi2B12FxH12-xの混合物20gを、還流凝縮器とガラスバブラー(fritted bubbler)を備えた三口丸底フラスコ中の1M HCl160mLに溶解した。この混合液を100℃に加熱し、Cl2ガスにより15標準立方センチメートル毎分(sccm/分)でバブリングした。凝縮器を通った流出液を、KOHとNa2SO3とを含む溶液に通した。16時間Cl2でバブリングした後、溶液を空気でパージした。HClと水を蒸留して除去し、残留物をエーテルで滴定した。エーテルを蒸発させ、白色固体を真空乾燥器で乾燥させて、Li2B12FxCl12-x(平均x=11)で表わされる物質20gを回収した(収率92%)。D2Oでの19F-NMR:-260.5,0.035F;-262.0,0.082F;-263.0,0.022F;-264.5,0.344F;-265.5,0.066F;-267.0,0.308F;-268.0,0.022F;-269.5,1.0F。D2Oでの11B-NMR:-16.841;-17.878。
(電池評価1)
[電解液の調製]
LiPF6を電解質として用いた。エチレンカーボネートを10体積%、プロピレンカーボネートを20体積%、メチルエチルカーボネートを40体積%、ジエチルカーボネートを30体積%含む混合物からなる溶媒を用いた。この溶媒にLiPF6を1.1mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤として1,1-ビス(アクリロイルオキシメチル)エチルイソシアネートを前記溶媒全体100質量部に対して1.5質量部添加して、電解液を得た。
正極活物質としてのLiCo1/3Ni1/3Mn1/3O2と、導電剤としての炭素材料と、結着剤としてのポリフッ化ピニリデンを溶解したN-メチル-2-ピロリドン溶液とを、活物質と導電剤と結着剤の質量比が95:2.5:2.5となるように混合した後、混練して、正極スラリーを作製した。作製したスラリーを集電体としてのアルミニウム箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電タブを取り付けることで、正極を作製した。
負極活物質としての人造黒鉛と、結着剤としてのSBRと、増粘剤としてのカルボキシメチルセルロースとを、活物質と結着剤と増粘剤の質量比が97.5:1.5:1になるように水に混合した後、混練して負極スラリーを作製した。作製したスラリーを集電体としての銅箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電タブを取り付けることで、負極を作製した。
上記記載の通り作製した正極および負極を、ポリエチレン製のセパレーターを挟んで対向させ、アルミラミネートの容器に入れて、Ar(アルゴン)雰囲気下のグローボックス中にて、前記電極の入った容器に上記電解液を滴下し、脱圧しながらラミネート容器を熱圧着して電池を作製した。
上記で作製した電池を0.05C(1÷0.05時間(=20時間)で満充電または満放電する電流)で4.2Vまでゆっくり充電し、その後3.0Vまでゆっくり放電し、さらにもう一度充電放電を繰り返すことにより、エージングした。
(電池評価2)
[電解液の調製]
LiPF6を電解質として用いた。エチレンカーボネートを30体積%、メチルエチルカーボネートを40体積%、ジエチルカーボネートを30体積%含む混合物からなる溶媒を用いた。この溶媒にLiPF6を1.1mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤としてN,N'-ビス(アクリロイルオキシエチル)ウレアを前記溶媒全体100質量部に対して2.0質量部添加して、電解液を得た。
正極活物質としてのLiCo1/3Ni1/3Mn1/3O2と、導電剤としての炭素材料と、結着剤としてのポリフッ化ピニリデンを溶解したN-メチル-2-ピロリドン溶液とを、活物質と導電剤と結着剤の質量比が95:2.5:2.5となるように混合した後、混練して、正極スラリーを作製した。作製したスラリーを集電体としてのアルミニウム箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電タブを取り付けることで、正極を作製した。
負極活物質として天然黒鉛と、結着剤としてのSBRと、増粘剤としてのカルボキシメチルセルロースを、活物質と結着剤と増粘剤の質量比が97.5:1.5:1になるように水に混合した後、混練して負極スラリーを作製した。作製したスラリーを集電体としての銅箔上に塗布した後、乾燥し、その後圧延ローラーを用いて圧延し、集電タブを取り付けることで、負極を作製した。
上記記載の通り作製した正極および負極を、ポリエチレン製のセパレーターを挟んで対向させ、アルミラミネートの容器に入れて、Ar(アルゴン)雰囲気下のグローボックス中にて、前記電極の入った容器に上記電解液を滴下し、脱圧しながらラミネート容器を熱圧着して電池を作製した。
上記で作製した電池を初期2サイクルを0.05Cで4.2Vまでゆっくり充電し、その後3.0Vまでゆっくり放電し、さらに充電放電を繰り返すことにより、エージングした。
(電池評価3)
[電解液作製]
フルオロドデカホウ酸リチウムの調製1で得られた生成物から、組成式がLi2B12F12であるフルオロドデカホウ酸リチウムが99.9%以上であるように分離されたフルオロドデカホウ酸リチウムを電解質として用い、混合電解質としてLiPF6を用いた。エチレンカーボネートを10体積%、プロピレンカーボネートを20体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒に、フルオロドデカホウ酸リチウムが0.4mol/L、LiPF6が0.1mol/Lとなるように溶解して、さらに電極上へのイオン導電性被膜形成のための添加剤として1,1-ビス(アクリロイルオキシメチル)エチルイソシアネートを溶媒全体100質量部に対して2.0質量部添加して、電解液を得た。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、500サイクル目の放電容量は初回放電容量の96%を維持していた。60℃のサイクル試験では、100サイクル目の放電容量は初回放電容量の94%を維持していた。-0℃のサイクル試験では、100サイクル目で初回放電容量の90%を維持していた。
(電池評価4)
[電解液作製]
フルオロドデカホウ酸リチウムの調製2で得られた生成物から、組成式がLi2B12F11Brであるフルオロドデカホウ酸リチウムが99.9%以上であるように分離されたフルオロドデカホウ酸リチウムを電解質として用い、混合電解質としてLiPF6を用いた。エチレンカーボネートを10体積%、プロピレンカーボネートを20体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒に、フルオロドデカホウ酸リチウムを0.4mol/Lとなるように、LiPF6を0.1mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤としてテトラキス(アクリロイルオキシメチル)ウレアを溶媒全体100質量部に対して2.0質量部添加して、電解液を得た。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、500サイクル目の放電容量は初回放電容量の93%を維持していた。60℃のサイクル試験では、100サイクル目の放電容量は初回放電容量の90%を維持していた。-10℃のサイクル試験では、100サイクル目で初回放電容量の82%を維持していた。
(電池評価5)
[電解液作製]
フルオロドデカホウ酸リチウムの調製3で得られた生成物から、組成式がLi2B12F11Clであるフルオロドデカホウ酸リチウムが99.9%以上であるように分離されたフルオロドデカホウ酸リチウムを電解質として用い、混合電解質としてLiPF6を用いた。エチレンカーボネートを10体積%、プロピレンカーボネートを20体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒に、フルオロドデカホウ酸リチウムを0.4mol/Lとなるように、LiPF6を0.1mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤として1,1-ビス(アクリロイルオキシメチル)エチルイソシアネートを溶媒全体100質量部に対して1.0質量部添加して、電解液を得た。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、500サイクル目の放電容量は初回放電容量の89%を維持していた。60℃のサイクル試験では、100サイクル目の放電容量は初回放電容量の82%を維持していた。-10℃のサイクル試験では、100サイクル目で初回放電容量の74%を維持していた。
(電池評価6)
[電解液作製]
LiPF6を電解質として用いた。エチレンカーボネートを10体積%、プロピレンカーボネートを20体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒にLiPF6を1.1mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤として1,1-ビス(アクリロイルオキシメチル)エチルイソシアネートを溶媒全体100質量部に対して1.5質量部および1,3-プロパンスルトンを溶媒全体100質量部に対して0.75質量部添加して、電解液を得た。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、500サイクル目の放電容量は初期容量の96%を維持していた。60℃のサイクル試験では、100サイクル目の放電容量は初期容量の88%を維持していた。-10℃のサイクル試験では、100サイクル目で初回の85%を維持していた。
(電池評価7)
[電解液作製]
LiPF6を電解質として用いた。エチレンカーボネートを10体積%、プロピレンカーボネートを20体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒にLiPF6を1.1mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤として1,1-ビス(アクリロイルオキシメチル)エチルイソシアネートを溶媒全体100質量部に対して2.0質量部添加して、電解液を得た。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、500サイクル目の放電容量は初回放電容量の95%を維持していた。60℃のサイクル試験では、100サイクル目の放電容量は初回放電容量の90%を維持していた。-10℃のサイクル試験では、100サイクル目で初回放電容量の93%を維持していた。
(電池評価8)
[電解液作製]
フルオロドデカホウ酸リチウムの調製1で得られた生成物から、組成式がLi2B12F12であるフルオロドデカホウ酸リチウムが99.9%以上であるように分離されたフルオロドデカホウ酸リチウムを電解質として用い、混合電解質としてLiPF6を用いた。エチレンカーボネートを30体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒に、フルオロドデカホウ酸リチウムを0.4mol/Lとなるように、LiPF6を0.2mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤として2-アクリロイルオキシエチルイソシアネートを溶媒全体100質量部に対して0.5質量部添加して、電解液を得た。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、500サイクル目の放電容量は初回放電容量の89%を維持していた。60℃のサイクル試験では、100サイクル目の放電容量は初回放電容量の75%を維持していた。-10℃のサイクル試験では、100サイクル目で初回放電容量の88%を維持していた。
(電池評価9)
[電解液作製]
フルオロドデカホウ酸リチウムの調製1で得られた生成物から、組成式がLi2B12F12であるフルオロドデカホウ酸リチウムが99.9%以上であるように分離されたフルオロドデカホウ酸リチウムを電解質として用い、混合電解質としてLiPF6を用いた。エチレンカーボネートを30体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒に、フルオロドデカホウ酸リチウムを0.4mol/Lとなるように、LiPF6を0.2mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤としてクロトン酸エチルを溶媒全体100質量部に対して1.5質量部と、1,3-プロパンスルトンを溶媒全体100質量部に対して0.5質量部添加して、電解液を得た。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、500サイクル目の放電容量は初回放電容量の93%を維持していた。60℃のサイクル試験では、100サイクル目の放電容量は初回放電容量の90%を維持していた。-10℃のサイクル試験では、100サイクル目で初回放電容量の91%を維持していた。
(電池評価10)
[電解液作製]
フルオロドデカホウ酸リチウムの調製1で得られた生成物から、組成式がLi2B12F12であるフルオロドデカホウ酸リチウムが99.9%以上であるように分離されたフルオロドデカホウ酸リチウムを電解質として用い、混合電解質としてLiPF6を用いた。エチレンカーボネートを30体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒に、フルオロドデカホウ酸リチウムを0.4mol/Lとなるように、LiPF6を0.2mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤としてクロトン酸ビニルを溶媒全体100質量部に対して1.5質量部添加して、電解液を得た。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、500サイクル目の放電容量は初回放電容量の91%を維持していた。60℃のサイクル試験では、100サイクル目の放電容量は初回放電容量の84%を維持していた。-10℃のサイクル試験では、100サイクル目で初回放電容量の88%を維持していた。
(電池評価11)
[電解液作製]
フルオロドデカホウ酸リチウムの調製1で得られた生成物から、組成式がLi2B12F12であるフルオロドデカホウ酸リチウムが99.9%以上であるように分離されたフルオロドデカホウ酸リチウムを電解質として用い、混合電解質としてLiPF6を用いた。エチレンカーボネートを30体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒に、フルオロドデカホウ酸リチウムを0.4mol/Lとなるように、LiPF6を0.2mol/Lとなるように溶解し、さらに電極上へのイオン導電性被膜形成のための添加剤としてクロトン酸ビニルを溶媒全体100質量部に対して1.5質量部と、1,3-プロパンスルトンを溶媒全体100質量部に対して0.5質量部添加して、電解液を得た。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、500サイクル目の放電容量は初回放電容量の95%を維持していた。60℃のサイクル試験では、100サイクル目の放電容量は初回放電容量の91%を維持していた。-10℃のサイクル試験では、100サイクル目で初回放電容量の93%を維持していた。
(電池評価12)
[電解液作製]
LiPF6を電解質として用いた。エチレンカーボネートを10体積%、プロピレンカーボネートを20体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒にLiPF6を1.1mol/Lとなるように溶解して、電解液を得た。ここでは被膜形成用の添加剤を添加しなかった。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。図1に、25℃のサイクル試験の結果を示す。比較例1の電池においては、25℃のサイクル試験では、220サイクル目で放電容量が図1の曲線bのように初回放電容量の80%を切ってしまった。図2に、60℃のサイクル試験の結果を示す。60℃のサイクル試験では図2の曲線bのように48サイクル目で初回放電容量の80%を切ってしまった。図1に、-10℃のサイクル試験の結果を示す。-10℃のサイクル試験では、図3の曲線bのように58サイクル目で初回放電容量の80%を切ってしまった。
(電池評価13)
[電解液作製]
フルオロドデカホウ酸リチウムの調製1で得られた生成物から、組成式がLi2B12F12であるフルオロドデカホウ酸リチウムが99.9%以上であるように分離されたフルオロドデカホウ酸リチウムを電解質として用い、混合電解質としてLiPF6を用いた。エチレンカーボネートを10体積%、プロピレンカーボネートを20体積%、メチルエチルカーボネートを50体積%、ジエチルカーボネートを20体積%含む混合物からなる溶媒を用いた。この溶媒に、フルオロドデカホウ酸リチウムを0.4mol/Lとなるように、LiPF6を0.1mol/Lとなるように溶解して、電解液を得た。ここでは電極上へのイオン導電性被膜形成のための添加剤は添加しなかった。
電解液以外は電池評価1と全く同じ正極、負極を用いて、電池評価1と全く同じように電池を組み立てた。
電池評価も電池の評価1と全く同じ様にして実施した。その結果、25℃のサイクル試験では、285サイクル目で初回放電容量の80%を切ってしまった。60℃のサイクル試験では、145サイクル目で初回放電容量の80%を切ってしまった。-10℃のサイクル試験では、108サイクル目で初回放電容量の80%を切ってしまった。
PC:プロピレンカーボネート
EMC:メチルエチルカーボネート
DEC:ジエチルカーボネート
表1および表2において、「放電容量率」は、初回放電容量に対する試験後の放電容量の比率を意味する。
Claims (8)
- 前記式(1)で表わされる化合物が、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、N,N'-ビス(アクリロイルオキシエチル)ウレア、2,2-ビス(アクリロイルオキシメチル)エチルイソシアネートジエチレンオキサイド、2,2-ビス(アクリロイルオキシメチル)エチルイソシアネートトリエチレンオキサイド、テトラキス(アクリロイルオキシメチル)ウレア、2-アクリロイルオキシエチルイソシアネート、クロトン酸メチル、クロトン酸エチル、アミノクロトン酸メチル、アミノクロトン酸エチルおよびクロトン酸ビニルからなる群から選択される少なくとも1種であることを特徴とする請求項1に記載の二次電池用非水電解液。
- 前記電解質が、式Li2B12FXZ12-Xで表わされるフルオロドデカホウ酸リチウム(式中、Xは8~12の整数であり、ZはH、Cl、またはBrである。)と、LiPF6およびLiBF4から選ばれる少なくとも1種とを含有し、前記フルオロドデカホウ酸リチウムの濃度が電解液全体に対して0.2mol/L以上であり、前記LiPF6およびLiBF4から選ばれる少なくとも1種の合計の濃度が電解液全体に対して0.05mol/L以上であることを特徴とする請求項1または2に記載の二次電池用非水電解液。
- 前記フルオロドデカホウ酸リチウムの含有量Aと前記のLiPF6およびLiBF4から選ばれる少なくとも1種の含有量Bとの比(A:B)がモル比で90:10~50:50であることを特徴とする請求項3に記載の二次電池用非水電解液。
- 前記フルオロドデカホウ酸リチウムと前記LiPF6およびLiBF4から選ばれる少なくとも1種との合計モル濃度が、電解液全体に対して0.3~1.5mol/Lであることを特徴とする請求項3または4に記載の二次電池用非水電解液。
- 前記式Li2B12FXZ12-X におけるXが12であることを特徴とする請求項3~5のいずれか1項に記載の二次電池用非水電解液。
- 前記溶媒が環状カーボネートおよび鎖状カーボネートからなる群から選択される少なくとも1種を含有することを特徴とする請求項1~6のいずれか1項に記載の二次電池用非水電解液。
- 正極、負極、および請求項1~7のいずれか1項に記載の二次電池用非水電解液を備えることを特徴とする非水電解液二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280020061.3A CN103503219A (zh) | 2011-04-27 | 2012-04-09 | 二次电池用非水电解液和非水电解液二次电池 |
US14/113,338 US20140038063A1 (en) | 2011-04-27 | 2012-04-09 | Nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery |
KR1020137030995A KR20140009521A (ko) | 2011-04-27 | 2012-04-09 | 이차 전지용 비수 전해액 및 비수 전해액 이차 전지 |
SG2013079736A SG194654A1 (en) | 2011-04-27 | 2012-04-09 | Non-aqueous electrolyte solution for secondary cell, and non-aqueous electrolyte secondary cell |
JP2013511993A JPWO2012147502A1 (ja) | 2011-04-27 | 2012-04-09 | 二次電池用非水電解液および非水電解液二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011099348 | 2011-04-27 | ||
JP2011-099348 | 2011-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147502A1 true WO2012147502A1 (ja) | 2012-11-01 |
Family
ID=47072025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/059626 WO2012147502A1 (ja) | 2011-04-27 | 2012-04-09 | 二次電池用非水電解液および非水電解液二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140038063A1 (ja) |
JP (1) | JPWO2012147502A1 (ja) |
KR (1) | KR20140009521A (ja) |
CN (1) | CN103503219A (ja) |
SG (1) | SG194654A1 (ja) |
WO (1) | WO2012147502A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022526116A (ja) * | 2019-03-28 | 2022-05-23 | バイエリッシェ モトーレン ヴェルケ アクチエンゲゼルシャフト | リチウム電池およびその電解質添加剤としての尿素系電解質添加剤の使用 |
KR20220092812A (ko) | 2020-12-25 | 2022-07-04 | 주식회사 엘지에너지솔루션 | 비수계 전해액의 산 또는 수분 저감제, 이를 함유하는 비수계 전해액, 비수계 전해액을 구비하는 리튬 이차전지, 및 비수계 전해액의 산 또는 수분을 저감시키는 방법 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6899387B2 (ja) | 2015-11-30 | 2021-07-07 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 臨床発見ホイール、臨床概念を探すためのシステム |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000149989A (ja) * | 1998-08-31 | 2000-05-30 | Nec Mobile Energy Kk | 非水電解液電池 |
JP2005158695A (ja) * | 2003-09-04 | 2005-06-16 | Air Products & Chemicals Inc | リチウム電解質のためのポリフッ素化ホウ素クラスターアニオン |
JP2005302727A (ja) * | 2004-04-09 | 2005-10-27 | Air Products & Chemicals Inc | 電気化学電池過充電保護 |
JP2007128865A (ja) * | 2005-09-26 | 2007-05-24 | Air Products & Chemicals Inc | 電気化学セルの過充電保護 |
JP2007242496A (ja) * | 2006-03-10 | 2007-09-20 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2007335170A (ja) * | 2006-06-13 | 2007-12-27 | Sony Corp | 非水電解液および非水電解液電池 |
JP2010504624A (ja) * | 2006-09-25 | 2010-02-12 | エルジー・ケム・リミテッド | 非水電解液及びこれを含む電気化学デバイス |
JP2010520610A (ja) * | 2007-03-06 | 2010-06-10 | エア プロダクツ アンド ケミカルズ インコーポレイテッド | レドックスシャトル化学反応をラジカル重合添加剤と組み合わせることによる過充電の予防 |
JP2010177020A (ja) * | 2009-01-29 | 2010-08-12 | Sanwa Yuka Kogyo Kk | 非水電解液及びそれを用いたリチウムイオン二次電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10027626A1 (de) * | 2000-06-07 | 2001-12-13 | Merck Patent Gmbh | Silanverbindungen als Additive in Elektrolyten für elektrochemischen Zellen |
JP4236390B2 (ja) * | 2001-04-19 | 2009-03-11 | 三洋電機株式会社 | リチウム二次電池 |
JP2007287677A (ja) * | 2006-03-24 | 2007-11-01 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
KR100754378B1 (ko) * | 2006-09-04 | 2007-08-31 | 삼성에스디아이 주식회사 | 실란 화합물을 포함하는 유기전해액 및 리튬 전지 |
-
2012
- 2012-04-09 JP JP2013511993A patent/JPWO2012147502A1/ja active Pending
- 2012-04-09 KR KR1020137030995A patent/KR20140009521A/ko not_active Application Discontinuation
- 2012-04-09 SG SG2013079736A patent/SG194654A1/en unknown
- 2012-04-09 WO PCT/JP2012/059626 patent/WO2012147502A1/ja active Application Filing
- 2012-04-09 CN CN201280020061.3A patent/CN103503219A/zh active Pending
- 2012-04-09 US US14/113,338 patent/US20140038063A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000149989A (ja) * | 1998-08-31 | 2000-05-30 | Nec Mobile Energy Kk | 非水電解液電池 |
JP2005158695A (ja) * | 2003-09-04 | 2005-06-16 | Air Products & Chemicals Inc | リチウム電解質のためのポリフッ素化ホウ素クラスターアニオン |
JP2005302727A (ja) * | 2004-04-09 | 2005-10-27 | Air Products & Chemicals Inc | 電気化学電池過充電保護 |
JP2007128865A (ja) * | 2005-09-26 | 2007-05-24 | Air Products & Chemicals Inc | 電気化学セルの過充電保護 |
JP2007242496A (ja) * | 2006-03-10 | 2007-09-20 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2007335170A (ja) * | 2006-06-13 | 2007-12-27 | Sony Corp | 非水電解液および非水電解液電池 |
JP2010504624A (ja) * | 2006-09-25 | 2010-02-12 | エルジー・ケム・リミテッド | 非水電解液及びこれを含む電気化学デバイス |
JP2010520610A (ja) * | 2007-03-06 | 2010-06-10 | エア プロダクツ アンド ケミカルズ インコーポレイテッド | レドックスシャトル化学反応をラジカル重合添加剤と組み合わせることによる過充電の予防 |
JP2010177020A (ja) * | 2009-01-29 | 2010-08-12 | Sanwa Yuka Kogyo Kk | 非水電解液及びそれを用いたリチウムイオン二次電池 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022526116A (ja) * | 2019-03-28 | 2022-05-23 | バイエリッシェ モトーレン ヴェルケ アクチエンゲゼルシャフト | リチウム電池およびその電解質添加剤としての尿素系電解質添加剤の使用 |
JP7331123B2 (ja) | 2019-03-28 | 2023-08-22 | バイエリッシェ モトーレン ヴェルケ アクチエンゲゼルシャフト | リチウム電池およびその電解質添加剤としての尿素系電解質添加剤の使用 |
KR20220092812A (ko) | 2020-12-25 | 2022-07-04 | 주식회사 엘지에너지솔루션 | 비수계 전해액의 산 또는 수분 저감제, 이를 함유하는 비수계 전해액, 비수계 전해액을 구비하는 리튬 이차전지, 및 비수계 전해액의 산 또는 수분을 저감시키는 방법 |
Also Published As
Publication number | Publication date |
---|---|
SG194654A1 (en) | 2013-12-30 |
US20140038063A1 (en) | 2014-02-06 |
CN103503219A (zh) | 2014-01-08 |
KR20140009521A (ko) | 2014-01-22 |
JPWO2012147502A1 (ja) | 2014-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012147566A1 (ja) | 二次電池用非水電解液および非水電解液二次電池 | |
WO2017043576A1 (ja) | 非水電解液用添加剤、非水電解液、及び、蓄電デバイス | |
WO2014125946A1 (ja) | 二次電池用非水電解液および非水電解液二次電池 | |
EP2907183B1 (en) | Electrochemical cells | |
WO2012117852A1 (ja) | 二次電池用非水電解液および非水電解液二次電池 | |
WO2009110490A1 (ja) | 非水電解質電池 | |
WO2016189769A1 (ja) | リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ | |
JP2019164879A (ja) | 非水電解液用添加剤、非水電解液、及び、蓄電デバイス | |
CN110970662B (zh) | 非水电解液及锂离子电池 | |
JP2017033839A (ja) | リチウム二次電池用正極、リチウム二次電池及びリチウムイオン二次電池用正極の製造方法 | |
US10615456B2 (en) | Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device | |
JP5877109B2 (ja) | リン含有スルホン酸エステル化合物、非水電解液用添加剤、非水電解液、及び、蓄電デバイス | |
CN110970652A (zh) | 非水电解液及锂离子电池 | |
WO2012147502A1 (ja) | 二次電池用非水電解液および非水電解液二次電池 | |
CN110970660A (zh) | 非水电解液及锂离子电池 | |
CN114464886A (zh) | 一种锂离子电池非水电解液和锂离子电池 | |
JP5421803B2 (ja) | リチウムイオン二次電池電解液用添加材 | |
JP5877110B2 (ja) | リン含有スルホン酸アミド化合物、非水電解液用添加剤、非水電解液、及び、蓄電デバイス | |
EP4224551A1 (en) | Lithium secondary battery | |
JP5218589B2 (ja) | 非水電解質二次電池 | |
JP2015097139A (ja) | リチウムイオン二次電池 | |
CN111066191A (zh) | 非水电解液用添加剂、非水电解液及蓄电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12776355 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013511993 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14113338 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137030995 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12776355 Country of ref document: EP Kind code of ref document: A1 |