WO2012144574A1 - 被覆切削工具 - Google Patents

被覆切削工具 Download PDF

Info

Publication number
WO2012144574A1
WO2012144574A1 PCT/JP2012/060651 JP2012060651W WO2012144574A1 WO 2012144574 A1 WO2012144574 A1 WO 2012144574A1 JP 2012060651 W JP2012060651 W JP 2012060651W WO 2012144574 A1 WO2012144574 A1 WO 2012144574A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
cutting tool
coated cutting
average
tool according
Prior art date
Application number
PCT/JP2012/060651
Other languages
English (en)
French (fr)
Inventor
雄亮 平野
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to US14/112,492 priority Critical patent/US9199311B2/en
Priority to JP2013511042A priority patent/JP5679048B2/ja
Priority to EP12774455.5A priority patent/EP2700460B1/en
Publication of WO2012144574A1 publication Critical patent/WO2012144574A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick

Definitions

  • the present invention relates to a coated cutting tool which has excellent chipping resistance and wear resistance, and has excellent wear resistance even when used for milling and interrupted cutting as well as continuous cutting of, for example, steel and cast iron. .
  • the conventional technology of coated cutting tools is composed of two or more alternating layers of titanium nitride and titanium carbonitride layers with an average layer thickness of 3 to 10 ⁇ m and a granular crystal structure on the surface of a tungsten carbide base cemented carbide substrate. And a surface-coated tungsten carbide based cemented carbide cutting tool in which at least one of the titanium carbonitride layers has a vertically elongated crystal structure (see, for example, Patent Document 1).
  • the tool edge position was frequently corrected in order to correct deviations in the machining dimensions of the work material.
  • the correction of the tool edge position lowers the machining efficiency, there has been a demand for a cutting tool that is less likely to cause the tool edge position to be retracted than before.
  • an object of the present invention is to provide a coated cutting tool having excellent wear resistance and chipping resistance, in which the tool tip position is not easily retracted due to wear or chipping.
  • the present inventor conducted research and development to reduce the wear of the coated cutting tool and the retraction of the tool edge position due to chipping.
  • TiN having an average film thickness of 10 to 300 nm was formed on the surface of the cemented carbide substrate by chemical vapor deposition.
  • the tool edge position is prevented from retreating due to wear or chipping, thereby suppressing changes in the machining dimensions of the work material. Therefore, the number of times of correcting the tool edge position, which has been performed in order to suppress the change in the machining dimension, is reduced.
  • the gist of the present invention is as follows. (1) A coated cutting tool comprising a cemented carbide substrate and a coating formed on the surface of the substrate by chemical vapor deposition, wherein the coating has an average film thickness of 3 to 20 ⁇ m, A lower film having an average film thickness of 2 to 15 ⁇ m formed on the surface of the base material, and an upper film having an average film thickness of 1 to 10 ⁇ m formed on the surface of the lower film opposite to the surface in contact with the base material The lower film has an alternately laminated film in which TiN films having an average film thickness of 10 to 300 nm and TiCN films having an average film thickness of 0.1 to 0.5 ⁇ m are alternately laminated. Coated cutting tool having an aluminum oxide film.
  • At least the upper film is selected from the group consisting of Ti carbide, Ti carbonate, Ti carbonitride oxide, carbonate containing Ti and Al, and carbonitride oxide containing Ti and Al.
  • the coated cutting tool according to (1) comprising an intermediate film made of one type of metal compound, and the intermediate film is in contact with the lower film.
  • the coated cutting tool of the present invention exhibits excellent wear resistance and chipping resistance.
  • the coated cutting tool of the present invention is used, in the cutting apparatus to which the tool is attached, the tool edge position is prevented from retreating due to wear or chipping, and the machining dimension of the work material is unlikely to change. This leads to an improvement in the productivity of various processed products.
  • the coated cutting tool of the present invention includes a cemented carbide substrate and a coating formed on the surface of the cemented carbide substrate by chemical vapor deposition.
  • the cemented carbide substrate is, for example, selected from the group consisting of WC and carbides, nitrides, carbonitrides, and mutual solid solutions of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, or W. It is a cemented carbide obtained by sintering a mixed powder of at least one kind of hard phase forming powder and Co binder phase forming powder.
  • the cemented carbide thus obtained includes a WC hard phase and a Co-based binder phase, or a WC hard phase and Ti, Zr, Hf, V, Nb, Ta, Cr, Mo or It is comprised by the hard phase which consists of at least 1 sort (s) chosen from the group which consists of the carbide
  • a hard phase ( ⁇ phase) consisting of at least one selected from the group consisting of mutual solid solutions and a binder phase containing Co as a main component
  • a hard phase of WC and Co When a ⁇ -free layer composed of a binder phase containing as a main component is formed, the coated cutting tool of the present invention exhibits excellent toughness and is excellent over a long period of use without occurrence of uneven wear, fracture, etc. Demonstrate wear resistance.
  • the average thickness of the de- ⁇ layer is preferably 1 to 30 ⁇ m, and among them, the average thickness of the de- ⁇ layer is more preferably 5 to 25 ⁇ m from the viewpoint of improving the fracture resistance.
  • the thickness of the cemented carbide substrate described above is not particularly limited, but is usually 1 to 120 mm.
  • the coating film constituting the coated cutting tool of the present invention is formed by chemical vapor deposition.
  • the adhesion strength between the substrate and the coating can be increased. This is presumably because the temperature of the chemical vapor deposition method is high and diffusion of the cemented carbide base material component occurs at the interface between the base material and the coating. Therefore, when the coating film is formed by the chemical vapor deposition method, a coated cutting tool having excellent peeling resistance and chipping resistance can be obtained as compared with the case of forming by the physical vapor deposition method.
  • the average film thickness of the coating film constituting the coated cutting tool of the present invention is less than 3 ⁇ m, the wear resistance of the coated cutting tool is lowered, whereas when it exceeds 20 ⁇ m, the cutting edge is likely to be chipped. Therefore, in the present invention, the average film thickness is 3 to 20 ⁇ m.
  • the average film thickness is obtained as an average value obtained by measuring the thickness at any five locations from the cross section of the film using a transmission electron microscope. The same applies hereinafter.
  • the average film thickness of the coating is preferably 3.5 to 18 ⁇ m.
  • the coating is composed of a lower film and an upper film, and the lower film is formed on the surface of the cemented carbide substrate by chemical vapor deposition.
  • the average film thickness of the lower film is set to 2 to 15 ⁇ m.
  • the average film thickness of the lower film is preferably 2 to 13 ⁇ m.
  • Such a lower film has an alternately laminated film in which TiN films having an average film thickness of 10 to 300 nm and TiCN films having an average film thickness of 0.1 to 0.5 ⁇ m are alternately laminated. Since the TiN film is excellent in toughness and the TiCN film is excellent in wear resistance, both the toughness and wear resistance of the coated cutting tool of the present invention can be improved by using these alternate laminated films.
  • the average film thickness of the alternately laminated TiN film is set to 10 to 300 nm. From the viewpoint of wear resistance of the coated cutting tool, the average thickness of the TiN film is preferably 10 to 250 nm.
  • the average film thickness of the TiCN film in the alternate laminated film is set to 0.1 to 0.5 ⁇ m.
  • the average film thickness of the TiCN film is preferably 0.15 to 0.4 ⁇ m.
  • the average film thickness of the entire alternating laminated film formed by alternately laminating the TiN film and the TiCN film described above is less than 2 ⁇ m, the wear resistance of the coated cutting tool of the present invention is lowered, while the average film thickness is 15 ⁇ m. If it exceeds 1, chipping starting from peeling of the film tends to occur. For this reason, the average film thickness of the entire alternate laminated film is preferably 2 to 15 ⁇ m.
  • the number of TiN films and TiCN films in the alternately laminated film is usually 4 to 120 layers, preferably 10 to 100 layers, from the viewpoint of wear resistance of the coated cutting tool of the present invention.
  • the number of stacked layers indicates how many layers are present when the TiN film is counted as one layer and the TiCN film is counted as one layer.
  • either the TiN film or the TiCN film may be in contact with the base material.
  • the TiN film is preferably in contact with the substrate.
  • an upper film is formed on the lower film.
  • either the TiN film or the TiCN film may be in contact with the upper film. From the viewpoint of adhesion, it is preferable that the TiCN film is in contact with the upper film.
  • the hardness of the alternating laminated film exceeds 40 GPa, the toughness of the alternating laminated film is lowered, and there is a tendency that chipping starting from the peeling of the alternating laminated film tends to occur.
  • the hardness of the alternately laminated film is low and less than 28 GPa, the wear resistance of the coated cutting tool of the present invention tends to be lowered. Therefore, the hardness of the alternately laminated film is preferably 28 GPa to 40 GPa.
  • the hardness of the alternating laminated film can be adjusted by the average film thickness of the TiN film and the TiCN film of the alternating laminated film. Specifically, the hardness of the alternately laminated film can be increased by reducing the average film thickness of each of the TiN film and the TiCN film. Note that the hardness of the alternating laminated film is such that the surface of the alternating laminated film obtained by removing the film (upper film etc.) coated on the surface side of the alternating laminated film by polishing in the coated cutting tool according to the present invention It can be measured by applying an indenter.
  • the thermal expansion coefficient of the alternating laminated film is larger than the thermal expansion coefficient of the cemented carbide base material, tensile residual stress is generated in the alternating laminated film when the coated cutting tool of the present invention is manufactured. Furthermore, since TiN and TiCN have different thermal expansion coefficients, the tensile residual stress of the TiN film and the tensile residual stress of the TiCN film are different.
  • the tensile residual stress of the TiCN film of the alternately laminated film of the present invention is preferably 400 MPa or less.
  • the tensile residual stress of the TiCN film is usually 100 MPa to 600 MPa.
  • the tensile residual stress of the TiCN film of the alternately laminated film can be measured by a conventionally known sin 2 ⁇ method of X-ray diffraction measurement. Further, the Young's modulus of the TiCN film necessary for calculating the tensile residual stress by the sin 2 ⁇ method is measured with a dynamic hardness meter or the like. The PoCN ratio of the TiCN film is 0.2. Note that a TiCN film not included in the alternating laminated film is formed on the side closer to the surface opposite to the base material in the coated cutting tool of the present invention than the alternating laminated film, and the TiCN film in the alternating laminated film is pulled. If the residual stress cannot be measured, the TiCN film not included in the alternate laminated film may be removed by polishing or the like.
  • an TiN film having an average film thickness of 10 to 300 nm and an TiCN film having an average film thickness of 0.1 to 0.5 ⁇ m are alternately stacked. What is necessary is just composition.
  • ⁇ Upper membrane> An upper film is formed on the surface of the lower film constituting the coated cutting tool of the present invention on the side opposite to the surface in contact with the cemented carbide substrate. Since the upper film of the present invention has an aluminum oxide film, the crater wear resistance of the coated cutting tool is improved.
  • the average film thickness of the upper film is set to 1 to 10 ⁇ m.
  • the crystal type of the aluminum oxide film in the upper film is not particularly limited such as ⁇ -type, ⁇ -type, and ⁇ -type, but is preferably ⁇ -type that is stable at high temperatures.
  • ⁇ -type such as high-speed cutting of carbon steel or alloy steel
  • ⁇ -type aluminum oxide film
  • chipping and chipping hardly occur.
  • the average thickness of the aluminum oxide film is preferably 0.5 to 10 ⁇ m, and more preferably 0.5 to 8 ⁇ m.
  • the coated cutting tool of the present invention comprises Ti carbide, Ti carbonate, Ti carbonitride, carbonate containing Ti and Al, and carbonitride oxidation containing Ti and Al as the layers constituting the upper film. It is preferable that an intermediate film made of at least one metal compound selected from the group consisting of materials is provided, and the intermediate film is in contact with the lower film.
  • the intermediate film having such a structure When the intermediate film having such a structure is present, the adhesion between the lower film and the upper film is improved.
  • the average film thickness of the intermediate film is usually 0.1 to 2 ⁇ m, more preferably 0.3 to 1.0 ⁇ m.
  • the intermediate film may be a plurality of laminated films made of the various metal compounds mentioned above.
  • the intermediate film include a film made of TiC, TiCO, TiCNO, TiAlCO, or TiAlCNO.
  • a film made of oxycarbonitride containing Ti and Al is more preferable.
  • TiAlCNO can be cited as an intermediate film made of oxycarbonitride containing Ti and Al.
  • the aluminum oxide film is more preferable because the adhesion between the film and the lower film is improved.
  • the surface film may be a laminated film of a film made of Ti carbonitride and a film made of Ti nitride. Moreover, the formation method of this surface film is well-known, and various well-known conditions of chemical vapor deposition are employable. The average film thickness of such a surface film is usually 0.1 to 5 ⁇ m.
  • the TiN film constituting the alternate laminated film of the lower film has a raw material gas composition of TiCl 4 : 5.0 to 10.0 mol%, N 2 : 20 to 60 mol%, H 2 : remaining, temperature: 850 to 920 ° C., It can be formed by chemical vapor deposition with a pressure of 100 to 350 hPa.
  • the TiCN film constituting the alternately laminated film has a raw material gas composition of TiCl 4 : 10 to 15 mol%, CH 3 CN: 1 to 3 mol%, N 2 : 0 to 20 mol%, H 2 : remaining, temperature: 850 It can be formed by a chemical vapor deposition method at ⁇ 920 ° C. and pressure: 60 ⁇ 100 hPa.
  • the ⁇ -type aluminum oxide film in the upper film has a raw material gas composition of AlCl 3 : 2.1 to 5.0 mol%, CO 2 : 2.5 to 4.0 mol%, HCl: 2.0 to 3.0 mol%, It can be formed by chemical vapor deposition using H 2 S: 0.28 to 0.45 mol%, H 2 : remaining, temperature: 900 to 1000 ° C., pressure: 60 to 80 hPa.
  • the ⁇ -type aluminum oxide film has a raw material gas composition of AlCl 3 : 2.0 to 5.0 mol%, CO 2 : 4.2 to 6.0 mol%, CO: 3.0 to 6.0 mol%, HCl: 3.5 to 5.0 mol%, H 2 S: 0.3 to 0.5 mol%, H 2 : remaining, temperature: 900 to 1020 ° C., pressure: 60 to 80 hPa, formed by chemical vapor deposition. it can.
  • a TiAlCNO film, a TiC film, a TiCO film, a TiCNO film, and a TiAlCO film, which are examples of the intermediate film, can be formed as follows.
  • the TiAlCNO film has a raw material gas composition of TiCl 4 : 3.0 to 5.0 mol%, AlCl 3 : 1.0 to 2.0 mol%, CO: 0.4 to 1.0 mol%, N 2 : 30 to 40 mol%. , H 2 : the remainder, temperature: 975 to 1025 ° C., pressure: 90 to 110 hPa.
  • the TiC film has a raw material gas composition of TiCl 4 : 1.0 to 3.0 mol%, CH 4 : 4.0 to 6.0 mol%, H 2 : remaining, temperature: 990 to 1030 ° C., pressure: 50 to It can be formed by a chemical vapor deposition method of 100 hPa.
  • the TiCO film has a raw material gas composition of TiCl 4 : 1.2 to 3.2 mol%, CO: 3.0 to 5.0 mol%, H 2 : remaining, temperature: 960 to 1025 ° C., pressure: 170 to 210 hPa. It can be formed by the chemical vapor deposition method.
  • the TiAlCO film has a raw material gas composition of TiCl 4 : 0.5 to 1.5 mol%, AlCl 3 : 3.0 to 5.0 mol%, CO: 2.0 to 4.0 mol%, H 2 : remaining, It can be formed by a chemical vapor deposition method at a temperature of 975 to 1025 ° C. and a pressure of 60 to 100 hPa.
  • the surface of the coated cutting tool more specifically, the surface in contact with the lower film of the upper film in the tool is adjusted by adjusting the surface roughness of the cemented carbide substrate constituting the coated cutting tool of the present invention and the conditions for forming the film. It is possible to adjust the arithmetic average roughness Ra of the surface on the opposite side. Thereby, welding of the work material to a covering cutting tool can be controlled.
  • the arithmetic average roughness Ra of the surface of the coated cutting tool is usually 0.03 to 0.5 ⁇ m, preferably 0.03 to 0.3 ⁇ m.
  • the surface of the coated cutting tool is subjected to a surface treatment such as a grinding treatment with a grindstone or a polishing treatment with a wet blast to adjust the arithmetic average roughness Ra of the surface of the coated cutting tool to 0.03 to 0.3 ⁇ m. It is also preferable to do this.
  • the arithmetic average roughness Ra is measured according to JIS B0601 (2001).
  • a WC— (Ti, W, Ta, Nb) (C, N) —Co cemented carbide was obtained by sintering a mixed powder comprising Co powder having an average particle size of 1.5 ⁇ m: 7% by weight.
  • the cemented carbide was processed into an ISO standard CNMG120212-shaped insert to obtain a cemented carbide substrate.
  • a de- ⁇ layer composed of WC and Co was formed near the surface of the cemented carbide substrate.
  • the average thickness of the de- ⁇ layer on the flank face of the cemented carbide substrate was 15 ⁇ m.
  • a film having a film configuration shown in Table 1 below was formed on this cemented carbide substrate by chemical vapor deposition (excluding comparative product 10).
  • the TiN film in the alternately laminated film is in contact with the cemented carbide substrate, the TiCN film in the alternately laminated film is in contact with the intermediate film, the intermediate film is in contact with the aluminum oxide film, and the aluminum oxide A TiCN film and / or a TiN film as a surface film are laminated in this order on the surface of the film opposite to the surface in contact with the intermediate film.
  • the number of laminated layers in the alternately laminated film represents how many layers are formed in total when counting one TiN film and one TiCN film.
  • the alternately laminated TiN films were formed under the conditions that the raw material gas composition was TiCl 4 : 9.0 mol%, N 2 : 40 mol%, H 2 : remaining, temperature: 900 ° C., and pressure: 160 hPa.
  • TiCN film of alternate lamination film a raw material gas composition TiCl 4: 10.8mol%, CH 3 CN: 1.3mol%, N 2: 13.5mol%, H 2: the remainder, temperature: 900 ° C., pressure: The film was formed under the condition of 90 hPa.
  • TiN films and TiCN films were alternately laminated until the predetermined number of layers was reached under these coating conditions. Note that the lower film of the invention product and the comparative product is composed only of alternating laminated films.
  • the TiAlCNO film of the intermediate film has a raw material gas composition of TiCl 4 : 4.0 mol%, AlCl 3 : 1.2 mol%, CO: 0.6 mol%, N 2 : 34 mol%, H 2 : remaining, temperature: 1000 ° C. And pressure: 100 hPa.
  • the ⁇ -type aluminum oxide film of the upper film has a raw material gas composition of AlCl 3 : 2.3 mol%, CO 2 : 3.6 mol%, HCl: 2.0 mol%, H 2 S: 0.3 mol%, H 2 : remaining And a temperature: 1000 ° C. and a pressure: 70 hPa.
  • the upper film of ⁇ -type aluminum oxide film (Invention 8) has a raw material gas composition of AlCl 3 : 2.5 mol%, CO 2 : 4.5 mol%, CO: 4.4 mol%, HCl: 4.0 mol%, H 2 S: 0.4 mol%, H 2 : The rest, temperature: 1000 ° C., pressure: 70 hPa.
  • the upper TiCN film is composed of TiCl 4 : 7.3 mol%, N 2 : 11.6 mol%, CH 3 CN: 1.2 mol%, H 2 : remaining, temperature: 1000 ° C., pressure: 90 hPa.
  • the film was formed under the following conditions.
  • the upper TiN film was formed under the conditions that the source gas composition was TiCl 4 : 9.0 mol%, N 2 : 40 mol%, H 2 : remaining, temperature: 1000 ° C., and pressure: 160 hPa.
  • Comparative product 10 a TiAlN film was formed by physical vapor deposition, but the cutting performance could not be evaluated because the TiAlN film was peeled off from the cemented carbide substrate before the cutting test was performed with the cutting edge of the coated cutting tool. Further, the measurement of the arithmetic average roughness Ra and the like of the sample surface shown below was not performed. The reason why the TiAlN film naturally peeled before the cutting test is considered to be that the adhesion strength between the TiAlN film and the substrate was not sufficient and the compressive residual stress of the TiAlN film was very high.
  • the tensile residual stress of the TiCN film in the alternately laminated film was measured by the sin 2 ⁇ method using an X-ray diffractometer (RINT-TTRIII) manufactured by RIGAKU.
  • the composition of the coating was measured with an energy dispersive X-ray analyzer attached to a transmission electron microscope. Moreover, when the average film thickness (average value of 5 places) of each film was measured from the cross section of the film using a transmission electron microscope, all showed the same value as the target film thickness (value shown in Table 1). . Furthermore, when the crystal form of the aluminum oxide film was examined using an X-ray diffractometer, the target crystal form (shown in Table 1) was obtained in all cases.
  • flank wear width was measured to check for chipping.
  • the cutting test was performed twice. Table 3 below shows the average flank wear width of the sample and the number of samples with chipping.
  • the inventive product (the coated cutting tool of the present invention) is superior in wear resistance and chipping resistance to the comparative product.
  • the comparative product has an average value of the flank wear width of 0.25 mm or more, and is less wear resistant than the invention product.
  • the comparative products 3 and 6 to 9 in which chipping occurred have an average value of the flank wear width of 0.54 mm or more, and it can be seen that the wear resistance is particularly low.
  • the coated cutting tool of the present invention When the coated cutting tool of the present invention is used for cutting, the tool cutting edge position is prevented from retreating due to chipping or wear in the cutting apparatus to which the tool is attached. Therefore, according to the present invention, it is possible to reduce the change in the machining dimension of the work material and the number of times of correction work of the tool edge position that has been frequently performed in the past in order to suppress the change, thereby improving machining productivity. Leads to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 本発明は、摩耗やチッピングによる工具刃先位置の後退が生じにくい、耐摩耗性および耐チッピング性に優れた被覆切削工具の提供を目的とする。 本発明の被覆切削工具は、超硬合金基材と、該基材の表面に化学蒸着法によって形成された被膜とを備える被覆切削工具であって、前記被膜の平均膜厚は3~20μmであり、該被膜は、前記基材の表面に形成された平均膜厚2~15μmの下部膜と、該下部膜の前記基材と接する面とは反対側の表面に形成された平均膜厚1~10μmの上部膜とから構成され、前記下部膜は、平均膜厚10~300nmのTiN膜と平均膜厚0.1~0.5μmのTiCN膜とを交互に積層した交互積層膜を有し、前記上部膜は酸化アルミニウム膜を有する被覆切削工具である。

Description

被覆切削工具
 本発明は、耐チッピング性及び耐摩耗性に優れ、例えば鋼や鋳鉄などの連続切削は勿論のこと、これらのフライス切削や断続切削に用いた場合にも耐摩耗性に優れた被覆切削工具に関する。
 被覆切削工具の従来技術としては、炭化タングステン基超硬合金基体の表面に、平均層厚が3~10μmであり、粒状結晶組織を有する窒化チタン層と炭窒化チタン層の交互2層以上で構成された硬質被覆層を有し、前記炭窒化チタン層の少なくとも1層が縦長成長結晶組織である表面被覆炭化タングステン基超硬合金製切削工具が挙げられる(例えば、特許文献1参照。)。
 また、WC基超硬合金基体の表面に、化学蒸着法を用いてTiN及びTiCNの交互積層からなる多層被覆層を1~5μmの層厚で形成してなる表面被覆超硬合金製切削工具も、被覆切削工具の従来技術として挙げられる(例えば、特許文献2参照。)。
特開平7-136808号公報 特公平4-033865号公報
 近年機械加工の現場では、加工後の被削材の品質、特に加工寸法精度の向上に対する要求が高まってきている。さらに被削材の高硬度化が年々進んでおり、上記の特許文献1または特許文献2に記載された従来の切削工具では、当該工具が取り付けられた切削装置において、逃げ面部の摩耗やチッピングによる工具刃先位置の後退が生じやすい。このため、短い加工時間で被削材の加工寸法が規定の範囲を超えるようになる傾向にあった。
 加工現場では被削材の加工寸法の逸脱を是正するため、工具刃先位置の補正を頻繁に行っていた。しかし、工具刃先位置の補正は加工効率を落とすため、従来よりも工具刃先位置の後退が生じにくい切削工具が加工現場から求められていた。
 そこで、本発明は摩耗やチッピングによる工具刃先位置の後退が生じにくい、耐摩耗性および耐チッピング性に優れた被覆切削工具の提供を目的とする。
 本発明者は、被覆切削工具の摩耗やチッピングによる工具刃先位置の後退を低減すべく研究開発を行った結果、超硬合金基材の表面に、化学蒸着法によって平均膜厚10~300nmのTiN膜と平均膜厚0.1~0.5μmのTiCN膜とからなる交互積層膜を有する下部膜を形成し、さらに当該下部膜の表面に、酸化アルミニウム膜を有する上部膜を形成して得られた被覆切削工具は、耐摩耗性および耐チッピング性に優れることを見出した。
 この被覆切削工具を使用すれば、摩耗やチッピングによる工具刃先位置の後退が抑制され、それにより被削材の加工寸法の変化が抑制される。そのため、前記加工寸法の変化を抑制するために行われていた工具刃先位置の補正作業の回数が低減される。
 本発明の要旨は次のとおりである。
(1)超硬合金基材と、該基材の表面に化学蒸着法によって形成された被膜とを備える被覆切削工具であって、前記被膜の平均膜厚は3~20μmであり、該被膜は、前記基材の表面に形成された平均膜厚2~15μmの下部膜と、該下部膜の前記基材と接する面とは反対側の表面に形成された平均膜厚1~10μmの上部膜とから構成され、前記下部膜は、平均膜厚10~300nmのTiN膜と平均膜厚0.1~0.5μmのTiCN膜とを交互に積層した交互積層膜を有し、前記上部膜は酸化アルミニウム膜を有する被覆切削工具。
(2)前記上部膜が、Tiの炭化物、Tiの炭酸化物、Tiの炭窒酸化物、TiとAlとを含む炭酸化物及びTiとAlとを含む炭窒酸化物からなる群より選ばれる少なくとも1種の金属化合物からなる中間膜を備え、該中間膜が前記下部膜に接している(1)に記載の被覆切削工具。
(3)前記交互積層膜の硬度が28GPa~40GPaである(1)または(2)に記載の被覆切削工具。
(4)前記交互積層膜中のTiCN膜のX線回折測定のsinΨ法により測定した引張残留応力が400MPa以下である(1)~(3)のいずれかに記載の被覆切削工具。
(5)前記酸化アルミニウム膜がα型酸化アルミニウム膜である(1)~(4)のいずれかに記載の被覆切削工具。
(6)前記被覆切削工具において、前記上部膜の前記下部膜と接する面と反対側の表面の算術平均粗さRaが、0.03~0.3μmである(1)~(5)のいずれかに記載の被覆切削工具。
(7)前記被膜の平均膜厚が3.5~18μmである(1)~(6)のいずれかに記載の被覆切削工具。
(8)前記下部膜の平均膜厚が2~13μmである(1)~(7)のいずれかに記載の被覆切削工具。
(9)前記交互積層膜中のTiN膜の平均膜厚が10~250nmである(1)~(8)のいずれかに記載の被覆切削工具。
(10)前記交互積層膜中のTiCN膜の平均膜厚が0.15~0.4μmである(1)~(9)のいずれかに記載の被覆切削工具。
(11)前記交互積層膜の平均膜厚が2~15μmである(1)~(10)のいずれかに記載の被覆切削工具。
(12)前記交互積層膜におけるTiN膜及びTiCN膜の積層数が4~120層である(1)~(11)のいずれかに記載の被覆切削工具。
(13)前記中間膜の平均膜厚が0.1~2μmである(2)~(12)のいずれかに記載の被覆切削工具。
(14)前記中間膜が、TiC、TiCO、TiCNO、TiAlCO又はTiAlCNOからなる膜である(2)~(13)のいずれかに記載の被覆切削工具。
 本発明の被覆切削工具は優れた耐摩耗性および耐チッピング性を示す。本発明の被覆切削工具を使用すると、当該工具を取り付けた切削装置において、摩耗やチッピングによる工具刃先位置の後退が抑制され、被削材の加工寸法の変化が生じにくく、工具刃先位置の補正回数を低減することができ、種々の加工製品の生産性向上につながる。
 [被覆切削工具]
 本発明の被覆切削工具は、超硬合金基材と、化学蒸着法によって当該超硬合金基材の表面に形成された被膜とを備える。
 〔超硬合金基材〕
 前記超硬合金基材は、例えば、WCおよび、Ti、Zr、Hf、V、Nb、Ta、Cr、MoもしくはWの炭化物、窒化物、炭窒化物ならびにこれらの相互固溶体からなる群より選ばれる少なくとも1種からなる硬質相形成粉末と、Coの結合相形成粉末との混合粉末を焼結して得られる超硬合金である。
 このようにして得られた超硬合金は、WCの硬質相とCoを主成分とする結合相、または、WCの硬質相と、Ti、Zr、Hf、V、Nb、Ta、Cr、MoもしくはWの炭化物、窒化物、炭窒化物およびこれらの相互固溶体からなる群より選ばれる少なくとも1種からなる硬質相と、Coを主成分とする結合相とで構成される。
 また、WCの硬質相と、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびWの中から選ばれた2種以上の金属元素を含む炭化物、窒化物、炭窒化物およびこれらの相互固溶体からなる群より選ばれる少なくとも1種からなる硬質相(β相)と、Coを主成分とする結合相とで構成される超硬合金基材の表面近傍に、WCの硬質相とCoを主成分とする結合相とからなる脱β層が形成されると、本発明の被覆切削工具は優れた靱性を発揮し、偏摩耗、欠損等の発生もなく長期の使用に亘って優れた耐摩耗性を発揮する。
 当該脱β層の平均厚みは、1μm未満であると本発明の被覆切削工具の耐欠損性が低下する傾向が見られ、30μmを超えると被覆切削工具の耐塑性変形性が低下する傾向が見られる。そのため、本発明においては、脱β層の平均厚みを1~30μmとすると好ましく、その中でも耐欠損性を向上させる観点から、脱β層の平均厚みは、5~25μmであることがさらに好ましい。
 また、以上説明した超硬合金基材の厚みは特に制限されないが、通常1~120mmである。
 〔被膜〕
 本発明の被覆切削工具を構成する被膜は化学蒸着法によって形成される。化学蒸着法によって形成すると、前記基材と被膜との密着強度を高くすることができる。これは、化学蒸着法の温度が高く、前記基材と被膜との界面で超硬合金基材成分の拡散が生じるためと考えられる。そのため前記被膜を化学蒸着法によって形成すると、物理蒸着法で形成した場合に比べて耐剥離性および耐チッピング性に優れた被覆切削工具が得られる。
 本発明の被覆切削工具を構成する被膜の平均膜厚は、3μm未満であると被覆切削工具の耐摩耗性が低下し、一方20μmを超えると刃先がチッピングしやすくなる。そのため本発明においては、被膜の平均膜厚を3~20μmとする。
 なお、本明細書において平均膜厚は、透過型電子顕微鏡を用いて膜の断面から、任意の5ヶ所の厚みを測定し、その平均値として求められる。以下同様である。
 また、本発明の被覆切削工具において優れた耐摩耗性を達成し、チッピングを抑制する観点からは、前記被膜の平均膜厚は3.5~18μmであることが好ましい。
 <下部膜>
 前記被膜は下部膜と上部膜とから構成されるが、該下部膜は超硬合金基材の表面に化学蒸着法によって形成される。前記下部膜の平均膜厚は、2μm未満であると被覆切削工具の耐摩耗性が低下し、15μmを超えると被膜の剥離を起点としたチッピングが発生しやすくなる。そのため本発明においては、前記下部膜の平均膜厚を2~15μmとする。
 本発明の被覆切削工具において優れた耐摩耗性を達成し、チッピングを抑制する観点からは、前記下部膜の平均膜厚は2~13μmであることが好ましい。
 (交互積層膜)
 このような下部膜は、平均膜厚10~300nmのTiN膜と平均膜厚0.1~0.5μmのTiCN膜とを交互に積層した交互積層膜を有する。TiN膜は靭性に優れ、TiCN膜は耐摩耗性に優れるので、これらの交互積層膜を使用することで、本発明の被覆切削工具の靭性及び耐摩耗性の両方を向上させることができる。
 前記交互積層膜において、化学蒸着法によっては平均膜厚10nm未満のTiN膜を形成することは非常に困難であり、一方TiN膜の平均膜厚が300nmを超えると被覆切削工具の耐摩耗性が低下する。このことから、交互積層膜のTiN膜の平均膜厚を10~300nmとする。なお、被覆切削工具の耐摩耗性の観点から、TiN膜の平均膜厚は好ましくは10~250nmである。
 次に、前記交互積層膜においてTiCN膜の平均膜厚は、0.1μm未満であると本発明の被覆切削工具の耐摩耗性が低下し、一方平均膜厚が0.5μmを超えると、交互積層膜の剥離を起点としたチッピングが発生しやすくなる。このことから、前記交互積層膜のTiCN膜の平均膜厚を0.1~0.5μmとする。なお、被覆切削工具において優れた耐摩耗性を達成し、チッピングを抑制する観点からは、TiCN膜の平均膜厚は、好ましくは0.15~0.4μmである。
 以上説明したTiN膜及びTiCN膜が交互に積層されてなる交互積層膜全体の平均膜厚は、2μm未満であると本発明の被覆切削工具の耐摩耗性が低下し、一方平均膜厚が15μmを超えると被膜の剥離を起点としたチッピングが発生しやすくなる。そのため前記交互積層膜全体の平均膜厚は2~15μmであることが好ましい。
 さらに、前記交互積層膜におけるTiN膜及びTiCN膜の積層数は、本発明の被覆切削工具の耐摩耗性の観点から通常4~120層、好ましくは10~100層である。ここで積層数は、TiN膜を1層、TiCN膜を1層と数えたとき、合計で何層存在するかを表す。
 交互積層膜が超硬合金基材と接している場合、TiN膜とTiCN膜のいずれが前記基材と接していてもよい。なお、密着性の観点からは、TiN膜が前記基材と接していることが好ましい。
 また後述する通り、下部膜の上には上部膜が形成されるが、交互積層膜がこの上部膜と接している場合、TiN膜とTiCN膜のいずれが前記上部膜と接していてもよい。なお、密着性の観点からは、TiCN膜が前記上部膜と接していることが好ましい。
 交互積層膜の硬度が40GPaを超えると交互積層膜の靭性が低下し、交互積層膜の剥離を起点としたチッピングが発生しやすくなる傾向が見られる。逆に交互積層膜の硬度が低く28GPa未満であると、本発明の被覆切削工具の耐摩耗性が低下する傾向が見られる。そのため、交互積層膜の硬度は28GPa~40GPaであることが好ましい。
 交互積層膜の硬度は、交互積層膜のTiN膜とTiCN膜の平均膜厚により調整できる。具体的には、TiN膜とTiCN膜のそれぞれの膜の平均膜厚を薄くすることで、交互積層膜の硬度を高くすることができる。なお交互積層膜の硬度は、本発明の被覆切削工具において、交互積層膜よりも表面側に被覆された膜(上部膜等)を研磨により除去して得られた交互積層膜の表面に、ダイヤモンド圧子を印加して測定することができる。
 超硬合金基材の熱膨張率よりも交互積層膜の熱膨張率が大きいので、本発明の被覆切削工具を製造した時点において、交互積層膜には引張残留応力が生じる。さらに、TiNとTiCNは熱膨張率が異なるので、TiN膜の引張残留応力とTiCN膜の引張残留応力は異なる。
 そこで、平均膜厚が厚く残留応力の測定が容易な交互積層膜のTiCN膜の残留応力を測定したところ、TiCN膜の引張残留応力が400MPaを超えると、耐チッピング性が低下する傾向が見られた。このことから、本発明の交互積層膜のTiCN膜の引張残留応力は400MPa以下であることが好ましい。また、TiCN膜の引張残留応力は通常100MPa~600MPaである。
 なお交互積層膜のTiCN膜の引張残留応力は、従来公知のX線回折測定のsinΨ法により測定することができる。またsinΨ法で引張残留応力を算出するために必要なTiCN膜のヤング率はダイナミック硬度計等で測定する。またTiCN膜のポアソン比は0.2とする。なお、交互積層膜よりも本発明の被覆切削工具における基材と反対側の表面に近い側に、交互積層膜に含まれないTiCN膜が形成されていて、交互積層膜中のTiCN膜の引張残留応力が測定できない場合は、その交互積層膜に含まれないTiCN膜を研磨などにより除去するとよい。
 なお、TiCN膜の引張残留応力を400MPa以下にするためには、平均膜厚10~300nmのTiN膜と平均膜厚0.1~0.5μmのTiCN膜とを交互に積層した交互積層膜の構成にすればよい。
 <上部膜>
 本発明の被覆切削工具を構成する下部膜の、超硬合金基材と接する面と反対側の表面には、上部膜が形成されている。本発明の上部膜は酸化アルミニウム膜を有するので、被覆切削工具の耐クレーター摩耗性が向上する。
 前記上部膜の平均膜厚は、1μm未満であると本発明の被覆切削工具のすくい面における耐クレーター摩耗性が向上せず、一方平均膜厚が10μmを超えると刃先が欠損しやすくなる。このことから、上部膜の平均膜厚を1~10μmとする。
 なお上部膜中の酸化アルミニウム膜の結晶型はα型やκ型やγ型など特に制限されないが、高温で安定なα型であることが好ましい。特に炭素鋼や合金鋼の高速切削など刃先が高温になる場合において、酸化アルミニウム膜がα型酸化アルミニウム膜であると欠損やチッピングが起こりにくい。
 このような酸化アルミニウム膜の平均膜厚は、0.5μm未満になると被覆切削工具のすくい面における耐クレーター摩耗性が向上せず、一方平均膜厚が10μmを超えると刃先が欠損しやすくなる。このことから、酸化アルミニウム膜の平均膜厚は0.5~10μmであることが好ましく、0.5~8μmであることがより好ましい。
 (中間膜)
 本発明の被覆切削工具は、上部膜を構成する層として、Tiの炭化物、Tiの炭酸化物、Tiの炭窒酸化物、TiとAlとを含む炭酸化物及びTiとAlとを含む炭窒酸化物からなる群より選ばれる少なくとも1種の金属化合物からなる中間膜を備え、当該中間膜が上記下部膜に接していることが好ましい。
 このような構成の中間膜が存在すると、下部膜と上部膜との密着性が向上する。なお、中間膜の平均膜厚は通常0.1~2μmであり、さらに好ましくは、0.3~1.0μmである。該中間膜は以上挙げた種々の金属化合物からなる膜の複数の積層膜であってもよい。
 前記中間膜として具体的には、TiC、TiCO、TiCNO、TiAlCO又はTiAlCNOからなる膜などを挙げることができる。これらの中でもTiとAlとを含む炭窒酸化物からなる膜がさらに好ましい。TiとAlとを含む炭窒酸化物からなる中間膜として具体的には、TiAlCNOを挙げることができる。
 さらに、下部膜の超硬合金基材と接する面と反対側の表面に中間膜を形成し、その中間膜の下部膜と接する面と反対側の表面に酸化アルミニウム膜を形成すると、酸化アルミニウム膜と下部膜との密着性が向上するのでさらに好ましい。
 (表面膜)
 また、被覆切削工具の使用コーナーの識別を容易にするために、酸化アルミニウム膜の中間膜と接する面と反対側の表面に、Tiの炭窒化物及び窒化物からなる群より選ばれる少なくとも1種からなる表面膜を形成すると、さらに好ましい。
 なお、当該表面膜は、Tiの炭窒化物からなる膜及びTiの窒化物からなる膜の複数の積層膜であってもよい。また、この表面膜の形成方法は公知であり、種々の公知の化学蒸着の条件を採用することができる。このような表面膜の平均膜厚は、通常0.1~5μmである。
 〔被膜の製造方法〕
 本発明の被覆切削工具における被膜を構成する各膜の製造方法として、例えば、以下の方法を挙げることができる。
 下部膜の交互積層膜を構成するTiN膜は、原料ガス組成をTiCl:5.0~10.0mol%、N:20~60mol%、H:残りとし、温度:850~920℃、圧力:100~350hPaとする化学蒸着法で形成することができる。
 また、交互積層膜を構成するTiCN膜は、原料ガス組成をTiCl:10~15mol%、CHCN:1~3mol%、N:0~20mol%、H:残りとし、温度:850~920℃、圧力:60~100hPaとする化学蒸着法で形成することができる。
 上部膜中のα型酸化アルミニウム膜は、原料ガス組成をAlCl:2.1~5.0mol%、CO:2.5~4.0mol%、HCl:2.0~3.0mol%、HS:0.28~0.45mol%、H:残りとし、温度:900~1000℃、圧力:60~80hPaとする化学蒸着法で形成することができる。
 なお、κ型酸化アルミニウム膜は、原料ガス組成をAlCl:2.0~5.0mol%、CO:4.2~6.0mol%、CO:3.0~6.0mol%、HCl:3.5~5.0mol%、HS:0.3~0.5mol%、H:残りとし、温度:900~1020℃、圧力:60~80hPaとする化学蒸着法で形成することができる。
 中間膜として挙げられるTiAlCNO膜、TiC膜、TiCO膜、TiCNO膜及びTiAlCO膜は、以下のようにして形成することができる。
 TiAlCNO膜は、原料ガス組成をTiCl:3.0~5.0mol%、AlCl:1.0~2.0mol%、CO:0.4~1.0mol%、N:30~40mol%、H:残りとし、温度:975~1025℃、圧力:90~110hPaとする化学蒸着法で形成することができる。
 前記TiC膜は、原料ガス組成をTiCl:1.0~3.0mol%、CH:4.0~6.0mol%、H:残りとし、温度:990~1030℃、圧力:50~100hPaとする化学蒸着法で形成することができる。
 前記TiCO膜は、原料ガス組成をTiCl:1.2~3.2mol%、CO:3.0~5.0mol%、H:残りとし、温度:960~1025℃、圧力:170~210hPaとする化学蒸着法で形成することができる。
 前記TiCNO膜は、原料ガス組成をTiCl:1.0~3.0mol%、CO:2.0~4.0mol%、N:4~6mol%、H:残りとし、温度:960~1025℃、圧力:60~100hPaとする化学蒸着法で形成することができる。
 前記TiAlCO膜は、原料ガス組成をTiCl:0.5~1.5mol%、AlCl:3.0~5.0mol%、CO:2.0~4.0mol%、H:残りとし、温度:975~1025℃、圧力:60~100hPaとする化学蒸着法で形成することができる。
 〔被覆切削工具表面の表面粗さ〕
 本発明の被覆切削工具を構成する超硬合金基材の表面粗さと被膜の形成条件とを調整して、被覆切削工具の表面、より具体的には当該工具における上部膜の下部膜と接する面と反対側の表面の算術平均粗さRaを調整することができる。これにより、被覆切削工具への被削材の溶着を抑制することができる
 被覆切削工具の表面の算術平均粗さRaは通常0.03~0.5μmであるが、好ましくは0.03~0.3μmである。
 また、前記被覆切削工具の表面に対して砥石による研磨処理あるいはウエットブラストによる研磨処理等の表面処理を施して、被覆切削工具の表面の算術平均粗さRaを0.03~0.3μmに調整するのも好ましい。なお、本明細書において算術平均粗さRaは、JIS B0601(2001)に準拠して測定したものである。
 以下、実施例により本発明についてより詳細に説明する。
 [被覆切削工具の製造]
 平均粒径4.5μmのWC粉:89重量%と、平均粒径1.5μmのTiCN粉:2重量%と、平均粒径1.5μmの(Ta,Nb)C粉:2重量%と、平均粒径1.5μmのCo粉:7重量%とからなる混合粉末を焼結してWC-(Ti,W,Ta,Nb)(C,N)-Co系超硬合金を得た。
 その超硬合金をISO規格CNMG120412形状のインサートに加工して、超硬合金基材を得た。なお、この超硬合金基材の表面近傍には、WCとCoとからなる脱β層が形成されていた。前記超硬合金基材の逃げ面における脱β層の平均厚みは15μmであった。この超硬合金基材上に化学蒸着法(比較品10を除く)で下記表1に示す膜構成の被膜を形成した。
Figure JPOXMLDOC01-appb-T000001
*膜厚は全て平均膜厚である。
*得られた被膜において、交互積層膜中のTiN膜が超硬合金基材と接し、前記交互積層膜中のTiCN膜が中間膜と接し、該中間膜は酸化アルミニウム膜と接し、該酸化アルミニウム膜の中間膜と接する面と反対側の面に、表面膜であるTiCN膜および/またはTiN膜がこの順に積層されている。
 表1において交互積層膜における積層数は、TiN膜を1層、TiCN膜を1層と数えたとき、合計で何層形成されているかを表している。
 交互積層膜のTiN膜は、原料ガス組成をTiCl:9.0mol%、N:40mol%、H:残りとし、温度:900℃、圧力:160hPaとする条件で形成した。
 交互積層膜のTiCN膜は、原料ガス組成をTiCl:10.8mol%、CHCN:1.3mol%、N:13.5mol%、H:残りとし、温度:900℃、圧力:90hPaとする条件で形成した。
 これらの被覆条件で所定の積層数になるまでTiN膜とTiCN膜とを交互に積層した。なお、発明品、比較品ともに下部膜は交互積層膜のみからなる。
 中間膜のTiAlCNO膜は、原料ガス組成をTiCl:4.0mol%、AlCl:1.2mol%、CO:0.6mol%、N:34mol%、H:残りとし、温度:1000℃、圧力:100hPaとする条件で形成した。
 上部膜のα型酸化アルミニウム膜は、原料ガス組成をAlCl:2.3mol%、CO:3.6mol%、HCl:2.0mol%、HS:0.3mol%、H:残りとし、温度:1000℃、圧力:70hPaとする条件で形成した。
 上部膜のκ型酸化アルミニウム膜(発明品8)は、原料ガス組成をAlCl:2.5mol%、CO:4.5mol%、CO:4.4mol%、HCl:4.0mol%、HS:0.4mol%、H:残りとし、温度:1000℃、圧力:70hPaとする条件で形成した。
 上部膜のTiCN膜は、原料ガス組成をTiCl:7.3mol%、N:11.6mol%、CHCN:1.2mol%、H:残りとし、温度:1000℃、圧力:90hPaとする条件で形成した。
 上部膜のTiN膜は、原料ガス組成をTiCl:9.0mol%、N:40mol%、H:残りとし、温度:1000℃、圧力:160hPaとする条件で形成した。
 比較品10では、物理蒸着法によりTiAlN膜を形成したが、被覆切削工具の刃先で切削試験を行う前にTiAlN膜が超硬合金基材から剥離したため、切削性能を評価できなかった。また以下に示す試料表面の算術平均粗さRa等の測定も行わなかった。切削試験前にTiAlN膜が自然に剥離したのは、TiAlN膜と基材との密着強度が十分でなく、TiAlN膜の圧縮残留応力が非常に高かったためと考えられる。
 [特性測定]
 以上の化学蒸着法で得られた被覆切削工具試料表面(上部膜の下部膜と接する面と反対側の表面)の算術平均粗さRaを、Mitutoyo製の表面性状測定機(SURFPAK-SV)を用いて測定した。
 更に試料表面の上部膜をダイヤモンドラップ研磨で除去して、表面に現れた交互積層膜の硬度をダイナミック硬度計(MTS社製ナノインデンター)を用いて測定した。
 さらに交互積層膜中のTiCN膜の引張残留応力を、RIGAKU製のX線回折装置(RINT-TTRIII)を用いてsinΨ法によって測定した。
 これらの測定結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 発明品1~11及び比較品1~9の被覆切削工具について、被膜の組成を透過電子顕微鏡付属のエネルギー分散型X線分析装置により測定した。また、透過型電子顕微鏡を用いて被膜の断面から各膜の平均膜厚(5ヶ所の平均値)を測定したところ、いずれも目標膜厚(表1に示した値)と同じ値を示した。さらに、X線回折装置を用いて酸化アルミニウム膜の結晶型を調べたところ、いずれも目的とする結晶型(表1に示したもの)が得られていた。
 [切削試験]
 切削試験として、1試料当たり2個のサンプルを用意し、直径120mm×長さ400mmの円柱状のS53C(硬さ:H270)を被削材として使用して、下記の切削条件で端面切削を行った。
 <切削条件>
切削速度:200m/min、
切込み:2mm、
送り:0.3mm/rev、
切削雰囲気:湿式(水溶性エマルジョン使用)、
1回の切削時間:15min、
試験回数:2回
 切削試験終了後に逃げ面摩耗幅を測定し、チッピングの有無を確認した。切削試験は2回行った。下記表3に、試料の逃げ面摩耗幅の平均値とチッピングが生じたサンプル数を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示した結果から、発明品(本発明の被覆切削工具)は比較品に対して耐摩耗性および耐チッピング性に優れることが分かる。比較品は逃げ面摩耗幅の平均値が0.25mm以上であり発明品よりも耐摩耗性が低い。その中でも、チッピングが生じた比較品3及び6~9は、逃げ面摩耗幅の平均値が0.54mm以上であり、特に耐摩耗性が低いことが分かる。
 一方、発明品ではチッピングが見られず、逃げ面摩耗幅の平均値は0.20mm以下であることから、本発明の被覆切削工具は耐チッピング性および耐摩耗性に優れることが分かる。
 本発明の被覆切削工具を切削加工に用いると、当該工具を取り付けた切削装置において、チッピングや摩耗による工具刃先位置の後退が抑制される。そのため本発明によれば、被削材の加工寸法の変化と、それを抑制するために従来頻繁に行われていた工具刃先位置の補正作業の回数を低減することができ、加工生産性の向上につながる。

Claims (14)

  1.  超硬合金基材と、該基材の表面に化学蒸着法によって形成された被膜とを備える被覆切削工具であって、
     前記被膜の平均膜厚は3~20μmであり、該被膜は、前記基材の表面に形成された平均膜厚2~15μmの下部膜と、該下部膜の前記基材と接する面とは反対側の表面に形成された平均膜厚1~10μmの上部膜とから構成され、
     前記下部膜は、平均膜厚10~300nmのTiN膜と平均膜厚0.1~0.5μmのTiCN膜とを交互に積層した交互積層膜を有し、
     前記上部膜は酸化アルミニウム膜を有する被覆切削工具。
  2.  前記上部膜が、Tiの炭化物、Tiの炭酸化物、Tiの炭窒酸化物、TiとAlとを含む炭酸化物及びTiとAlとを含む炭窒酸化物からなる群より選ばれる少なくとも1種の金属化合物からなる中間膜を備え、
     該中間膜が前記下部膜に接している請求項1に記載の被覆切削工具。
  3.  前記交互積層膜の硬度が28GPa~40GPaである請求項1または2に記載の被覆切削工具。
  4.  前記交互積層膜中のTiCN膜のX線回折測定のsinΨ法により測定した引張残留応力が400MPa以下である請求項1~3のいずれか1項に記載の被覆切削工具。
  5.  前記酸化アルミニウム膜がα型酸化アルミニウム膜である請求項1~4のいずれか1項に記載の被覆切削工具。
  6.  前記被覆切削工具において、前記上部膜の前記下部膜と接する面と反対側の表面の算術平均粗さRaが、0.03~0.3μmである請求項1~5のいずれか1項に記載の被覆切削工具。
  7.  前記被膜の平均膜厚が3.5~18μmである請求項1~6のいずれか1項に記載の被覆切削工具。
  8.  前記下部膜の平均膜厚が2~13μmである請求項1~7のいずれか1項に記載の被覆切削工具。
  9.  前記交互積層膜中のTiN膜の平均膜厚が10~250nmである請求項1~8のいずれか1項に記載の被覆切削工具。
  10.  前記交互積層膜中のTiCN膜の平均膜厚が0.15~0.4μmである請求項1~9のいずれか1項に記載の被覆切削工具。
  11.  前記交互積層膜の平均膜厚が2~15μmである請求項1~10のいずれか1項に記載の被覆切削工具。
  12.  前記交互積層膜におけるTiN膜及びTiCN膜の積層数が4~120層である請求項1~11のいずれか1項に記載の被覆切削工具。
  13.  前記中間膜の平均膜厚が0.1~2μmである請求項2~12のいずれか1項に記載の被覆切削工具。
  14.  前記中間膜が、TiC、TiCO、TiCNO、TiAlCO又はTiAlCNOからなる膜である請求項2~13のいずれか1項に記載の被覆切削工具。
PCT/JP2012/060651 2011-04-20 2012-04-20 被覆切削工具 WO2012144574A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/112,492 US9199311B2 (en) 2011-04-20 2012-04-20 Coated cutting tool
JP2013511042A JP5679048B2 (ja) 2011-04-20 2012-04-20 被覆切削工具
EP12774455.5A EP2700460B1 (en) 2011-04-20 2012-04-20 Coated cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011093560 2011-04-20
JP2011-093560 2011-04-20

Publications (1)

Publication Number Publication Date
WO2012144574A1 true WO2012144574A1 (ja) 2012-10-26

Family

ID=47041678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060651 WO2012144574A1 (ja) 2011-04-20 2012-04-20 被覆切削工具

Country Status (4)

Country Link
US (1) US9199311B2 (ja)
EP (1) EP2700460B1 (ja)
JP (1) JP5679048B2 (ja)
WO (1) WO2012144574A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104545A (ja) * 2012-11-28 2014-06-09 Kyocera Corp 被覆工具
WO2015098393A1 (ja) * 2013-12-26 2015-07-02 住友電工ハードメタル株式会社 切削工具
CN104884200A (zh) * 2012-12-28 2015-09-02 住友电工硬质合金株式会社 表面被覆部件及其制造方法
JP2015168047A (ja) * 2014-03-11 2015-09-28 三菱日立ツール株式会社 被覆切削工具およびNi基超耐熱合金の切削方法
JPWO2015147241A1 (ja) * 2014-03-27 2017-04-13 株式会社タンガロイ 被覆工具

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106163708B (zh) 2014-04-10 2018-03-30 株式会社泰珂洛 包覆工具
EP3056587B1 (de) * 2015-02-13 2020-11-18 Walter AG VHM-Schaftfräser mit TiAlN-ZrN-Beschichtung
WO2023242370A1 (en) * 2022-06-15 2023-12-21 Oerlikon Surface Solutions Ag, Pfäffikon Forming tools coated with kappa-alumina

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433865B2 (ja) 1985-08-21 1992-06-04 Hitachi Tool
JPH07136808A (ja) 1993-10-08 1995-05-30 Mitsubishi Materials Corp 耐チッピング性に優れた表面被覆炭化タングステン基超硬合金製切削工具
JPH09117806A (ja) * 1995-10-27 1997-05-06 Nachi Fujikoshi Corp 複合多層被覆工具
JPH10180506A (ja) * 1996-12-27 1998-07-07 Kyocera Corp 被覆超硬工具
JP2007245269A (ja) * 2006-03-15 2007-09-27 Mitsubishi Materials Corp 硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ
JP2010253594A (ja) * 2009-04-23 2010-11-11 Kyocera Corp 表面被覆工具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075181A (en) * 1989-05-05 1991-12-24 Kennametal Inc. High hardness/high compressive stress multilayer coated tool
JP3220135B2 (ja) 1990-05-30 2001-10-22 キヤノン株式会社 画像処理装置
JP2985300B2 (ja) * 1990-12-25 1999-11-29 三菱マテリアル株式会社 硬質層被覆サーメット
DE69319531T2 (de) * 1992-10-12 1999-04-15 Sumitomo Electric Industries Ultradünnes Filmlaminat
DE69431032T2 (de) * 1993-05-31 2003-01-30 Sumitomo Electric Industries Beschichtetes schneidwerkzeug und verfahren zu dessen herstellung
JPH09177806A (ja) 1995-12-22 1997-07-11 Sanwa Kizai Co Ltd 作業軸のオス・メス型継手装置
JP3418066B2 (ja) * 1996-07-03 2003-06-16 日立金属株式会社 アルミナ被覆工具とその製造方法
JP3282592B2 (ja) * 1997-09-18 2002-05-13 三菱マテリアル株式会社 高速切削ですぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP3282600B2 (ja) * 1998-12-21 2002-05-13 三菱マテリアル株式会社 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆超硬合金製切削工具
WO2000052225A1 (en) * 1999-03-02 2000-09-08 Kennametal Inc. A tool having a multilayer coating comprising multiple mtcvd layers
DE10016958A1 (de) * 2000-04-06 2001-10-18 Widia Gmbh Verfahren zur Herstellung von Multilagenschichten auf Substratkörpern und Verbundwerkstoff, bestehend aus einem beschichteten Substratkörper
US20100255337A1 (en) * 2008-11-24 2010-10-07 Langhorn Jason B Multilayer Coatings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433865B2 (ja) 1985-08-21 1992-06-04 Hitachi Tool
JPH07136808A (ja) 1993-10-08 1995-05-30 Mitsubishi Materials Corp 耐チッピング性に優れた表面被覆炭化タングステン基超硬合金製切削工具
JPH09117806A (ja) * 1995-10-27 1997-05-06 Nachi Fujikoshi Corp 複合多層被覆工具
JPH10180506A (ja) * 1996-12-27 1998-07-07 Kyocera Corp 被覆超硬工具
JP2007245269A (ja) * 2006-03-15 2007-09-27 Mitsubishi Materials Corp 硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ
JP2010253594A (ja) * 2009-04-23 2010-11-11 Kyocera Corp 表面被覆工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700460A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104545A (ja) * 2012-11-28 2014-06-09 Kyocera Corp 被覆工具
CN104884200A (zh) * 2012-12-28 2015-09-02 住友电工硬质合金株式会社 表面被覆部件及其制造方法
EP2939769A4 (en) * 2012-12-28 2016-08-03 Sumitomo Elec Hardmetal Corp SURFACE COATING ELEMENT AND METHOD FOR MANUFACTURING THE SAME
US9777367B2 (en) 2012-12-28 2017-10-03 Sumitomo Electric Hardmetal Corp. Surface coated member and method for manufacturing same
WO2015098393A1 (ja) * 2013-12-26 2015-07-02 住友電工ハードメタル株式会社 切削工具
JP2015123530A (ja) * 2013-12-26 2015-07-06 住友電工ハードメタル株式会社 切削工具
US9884790B2 (en) 2013-12-26 2018-02-06 Sumitomo Electric Hardmetal Corp. Cutting tool
JP2015168047A (ja) * 2014-03-11 2015-09-28 三菱日立ツール株式会社 被覆切削工具およびNi基超耐熱合金の切削方法
JPWO2015147241A1 (ja) * 2014-03-27 2017-04-13 株式会社タンガロイ 被覆工具

Also Published As

Publication number Publication date
EP2700460A1 (en) 2014-02-26
US20140044946A1 (en) 2014-02-13
EP2700460A4 (en) 2014-11-19
JP5679048B2 (ja) 2015-03-04
JPWO2012144574A1 (ja) 2014-07-28
EP2700460B1 (en) 2018-11-07
US9199311B2 (en) 2015-12-01

Similar Documents

Publication Publication Date Title
JP5679048B2 (ja) 被覆切削工具
JP5715570B2 (ja) 被覆工具
JP6677932B2 (ja) 強断続切削加工においてすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP5866650B2 (ja) 表面被覆切削工具
JP4739236B2 (ja) 表面被覆切削工具
JP4739235B2 (ja) 表面被覆切削工具
EP2085500B1 (en) Surface-coated cutting tool with hard coating layer having excellent abrasion resistance
US9993878B2 (en) Coated cutting tool
JP6727553B2 (ja) 被覆切削工具
EP2772330A1 (en) Diamond-coated tool
US10370758B2 (en) Coated tool
KR20130025381A (ko) 표면 피복 절삭 공구
JP6164399B2 (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
WO2011052767A1 (ja) 耐チッピング性にすぐれた表面被覆切削工具
US10744568B2 (en) Coated tool
JP2020006487A (ja) 硬質被覆層が優れた耐チッピング性を発揮する表面切削工具
JP6296058B2 (ja) 被覆切削工具
JP5569740B2 (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP5896326B2 (ja) 表面被覆切削工具およびその製造方法
US10369632B2 (en) Coated tool
JP5569739B2 (ja) 耐チッピング性にすぐれた表面被覆切削工具
JP2019166584A (ja) 硬質被覆層が優れた耐摩耗性を発揮する表面被覆切削工具
JP2010274330A (ja) 表面被覆切削工具
JP7141022B2 (ja) 表面被覆切削工具
JP2023148467A (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511042

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14112492

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012774455

Country of ref document: EP