WO2012144564A1 - 吸水性樹脂、吸収体及び吸収性物品 - Google Patents

吸水性樹脂、吸収体及び吸収性物品 Download PDF

Info

Publication number
WO2012144564A1
WO2012144564A1 PCT/JP2012/060627 JP2012060627W WO2012144564A1 WO 2012144564 A1 WO2012144564 A1 WO 2012144564A1 JP 2012060627 W JP2012060627 W JP 2012060627W WO 2012144564 A1 WO2012144564 A1 WO 2012144564A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gel
gel strength
absorbent
absorbent resin
Prior art date
Application number
PCT/JP2012/060627
Other languages
English (en)
French (fr)
Inventor
公彦 近藤
隆介 楳座
嘉津義 高松
潤一 鷹取
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to US14/110,280 priority Critical patent/US20140031203A1/en
Priority to CN201280019586.5A priority patent/CN103502287A/zh
Priority to JP2013511037A priority patent/JPWO2012144564A1/ja
Priority to EP12774301.1A priority patent/EP2700663A4/en
Publication of WO2012144564A1 publication Critical patent/WO2012144564A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/38Amides
    • C08F222/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide

Definitions

  • the present invention relates to a water-absorbent resin, and an absorbent body and an absorbent article using the same. More specifically, the present invention relates to a water-absorbent resin that has high water retention ability and high gel strength characteristics and can be suitably used for sanitary materials, and an absorbent body and absorbent article using the same.
  • water-absorbent resins have been widely used in various fields such as sanitary materials such as disposable diapers and sanitary products, agricultural and horticultural materials such as water retention agents and soil conditioners, and industrial materials such as water-stopping agents and anti-condensation agents. .
  • sanitary materials such as disposable diapers and sanitary products
  • agricultural and horticultural materials such as water retention agents and soil conditioners
  • industrial materials such as water-stopping agents and anti-condensation agents.
  • these fields are often used for sanitary materials such as disposable diapers and sanitary products.
  • water-absorbing resin examples include a hydrolyzate of starch-acrylonitrile graft copolymer, a neutralized product of starch-acrylic acid graft polymer, a saponified product of vinyl acetate-acrylic acid ester copolymer, and acrylic acid.
  • a crosslinked product of a partially neutralized polymer is known.
  • sanitary materials such as disposable diapers and sanitary napkins have a tendency to make the absorber thinner in order to increase comfort during use.
  • sanitary materials such as disposable diapers and sanitary napkins have a tendency to make the absorber thinner in order to increase comfort during use.
  • there are a method for increasing the ratio of the water-absorbent resin in the absorber a method for increasing the water retention capacity of the water-absorbent resin, and the like.
  • the gel strength of the water absorbent resin is high.
  • Patent Document 1 a method of performing reverse phase suspension polymerization using a specific amount of a specific surfactant
  • Patent Document 2 a method of performing reverse phase suspension polymerization in two or more stages
  • Patent Document 3 ⁇ - A method of carrying out a crosslinking reaction by adding a crosslinking agent to a water-absorbing resin obtained by reverse-phase suspension polymerization in the presence of 1,3-glucans
  • Patent Document 4 A method of carrying out reverse phase suspension polymerization using a specific amount of a persulfate as a polymerization initiator (see Patent Document 4), aqueous polymerization in the presence of phosphorous acid and / or a salt thereof to form a water absorbent resin precursor
  • Patent Document 5 A method of mixing and heating the water-absorbent resin precursor and the surface cross-linking agent after obtaining.
  • the water-absorbing resin obtained by these methods has problems such as a decrease in gel strength when it has a high water retention capacity, and can sufficiently satisfy the performance required as an absorber. It wasn't.
  • the present invention has been made in view of the current state of the prior art described above, and its main purpose is to have a high gel strength capable of preventing a decrease in liquid permeation rate by suppressing the gel blocking phenomenon that occurs during water absorption. And providing a novel water-absorbent resin that can be suitably used for sanitary materials and the like, and an absorbent body and an absorbent article using the same.
  • the inventor has conducted intensive research to achieve the above-described purpose. As a result, when producing a water-absorbent resin by polymerizing water-soluble ethylenically unsaturated monomers, by optimizing the production conditions, a novel and unprecedented that combines high water retention and high gel strength. It has been found that a water-absorbing resin can be obtained, and the present invention has been completed here.
  • the present invention provides the following water-absorbing resin, and an absorbent body and an absorbent article using the same.
  • Item 1 Water-absorbent resin that satisfies the following conditions (1) and (2): (1) The physiological saline water retention capacity is 40 g / g or more, (2) The total gel strength represented by the sum of the gel strength a at 30 times swelling, the gel strength b at 40 times swelling, and the gel strength c at 50 times swelling is 5500 Pa or more, However, the gel strength a at 30 times swelling is the gel strength when the gel is swelled by adding physiological saline so that the total mass of the gel and physiological saline is 30 times the mass of the gel, The gel strength b at 40 times swelling is the gel strength when the saline is added to the gel and swollen so that the total mass of the gel and physiological saline is 40 times the mass of the gel, 50 times The gel strength c at the time of swelling is the gel strength when the saline is added to the gel and s
  • Item 2 An absorbent comprising the water-absorbent resin according to Item 1 and a hydrophilic fiber.
  • Item 3. An absorbent article obtained by holding the absorbent body according to Item 2 between a liquid-permeable sheet and a liquid-impermeable sheet.
  • the water-absorbent resin of the present invention has a high water retention capacity, and the physiological saline water retention capacity is 40 g / g or more, preferably 40 to 60 g / g, more preferably 43 to 55 g / g. is there. If the saline retention capacity is lower than the above range, when the absorbent body or absorbent article is produced, the absorption capacity of the absorbent body becomes low, so a large amount of liquid cannot be absorbed, and liquid leakage or reversal occurs. , The wearing feeling of the absorbent article tends to deteriorate.
  • physiological saline water retention capacity of the water absorbent resin is a value when measured according to the measurement method described in “Physical saline water retention capacity of the water absorbent resin” described later.
  • the water-absorbent resin of the present invention has a total gel strength of 5500 Pa or more, preferably 5500 to 10,000 Pa, more preferably 6000 to 9000 Pa.
  • the total gel strength is a gel strength at 30 times swelling when measured according to the measurement method described in “Gel strength of water-absorbent resin” described later, b is a gel strength at 40 times swelling, and 50
  • the gel strength a at 30 times swelling is the gel strength when the saline is added to the gel and swollen so that the total mass of the gel and saline is 30 times the mass of the gel.
  • the gel strength b at 40 times swelling is the gel strength when the saline is added to the gel and swollen so that the total mass of the gel and saline is 40 times the mass of the gel, 50
  • the gel strength c at the time of double swelling is the gel strength when the saline is added to the gel and swollen so that the total mass of the gel and physiological saline is 50 times the mass of the gel.
  • ⁇ Liquid permeation rate is important in addition to reversal and liquid leakage as the performance of the absorber under load.
  • As a factor governing the permeation rate there is a gel blocking phenomenon of the water absorbent resin in the absorbent body. This gel blocking phenomenon is related to the gel strength. The stronger the gel strength, the lower the degree of gel blocking and the better the liquid permeation rate. Therefore, a resin having a strong gel strength is preferred.
  • gel strength is in a reciprocal relationship with the swelling ratio of the water-absorbent resin, and increasing the swelling ratio decreases the gel strength.
  • the swelling factor that affects the liquid penetration rate in the absorbent is considered to be 30 to 50 times. That is, if it is less than 30 times, the amount of absorption is small and gel blocking does not occur. On the other hand, if it exceeds 50 times, gel blocking is likely to occur and it is not realistic to use a normal absorber. Therefore, the performance as an absorber can be determined by obtaining the total gel strength in the range of 30 to 50 times that absorbs and swells in the absorber.
  • the swelling ratio is a ratio of the total mass of the water absorbent resin and the absorbed liquid to the mass of the water absorbent resin.
  • the total gel strength of the water-absorbent resin obtained by such a method is less than 5500 Pa, the gel strength is insufficient, and in the absorbent body and the absorbent article, liquid passage inhibition is caused by gel blocking during liquid absorption under load. The liquid penetration rate deteriorates.
  • the median particle diameter of the water absorbent resin of the present invention is preferably 200 to 600 ⁇ m, more preferably 250 to 550 ⁇ m, and still more preferably 300 to 500 ⁇ m.
  • the median particle diameter of the water absorbent resin is a value when measured according to the measurement method described in “Medium particle diameter of water absorbent resin” described later.
  • the method for obtaining the water-absorbent resin of the present invention is not particularly limited, and can be produced, for example, by a reverse phase suspension polymerization method or an aqueous solution polymerization method.
  • a radical polymerization initiator and, if necessary, a crosslinking agent and a chain transfer agent are added and mixed in a petroleum hydrocarbon dispersion medium in the presence of a dispersion stabilizer, and a water-soluble ethylenic solvent is added.
  • Polymerization is carried out by heating the saturated monomer.
  • Raw material compound (i) Water-soluble ethylenically unsaturated monomer
  • the water-soluble ethylenically unsaturated monomer used as a raw material include (meth) acrylic acid (in this specification, “acrylic” and “ Methacryl ”is collectively referred to as“ (meth) acryl ”(the same applies hereinafter), its salt; 2- (meth) acrylamide-2-methylpropanesulfonic acid, its salt; (meth) acrylamide, N, N-dimethyl ( Nonionic monomers such as (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) acrylamide, polyethylene glycol mono (meth) acrylate; N, N-diethylaminoethyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylamide An amino group-containing unsatur
  • (meth) acrylic acid, its salt, (meth) acrylamide, N, N-dimethylacrylamide and the like are preferable, and (meth) acrylic acid, its salt, acrylamide and the like are more preferable.
  • the water-soluble ethylenically unsaturated monomer may be used in the form of an aqueous solution in order to increase the dispersion efficiency in the petroleum hydrocarbon dispersion medium during reverse phase suspension polymerization.
  • concentration of the above-mentioned monomer in such an aqueous solution is not particularly limited, but is usually 20% by mass or more and a saturated concentration or less, preferably 25 to 70% by mass, and more preferably 30 to 55% by mass.
  • the acid group is neutralized with an alkaline neutralizing agent. It may be summed up.
  • an alkaline neutralizer an aqueous solution of sodium hydroxide, potassium hydroxide, ammonia or the like can be used. These alkaline neutralizing agents may be used alone or in combination of two or more.
  • the degree of neutralization of all the water-soluble ethylenically unsaturated monomers with an alkaline neutralizer increases the water absorption capacity by increasing the osmotic pressure of the resulting water-absorbent resin, and the presence of excess alkaline neutralizer Therefore, the range of 10 to 100% by mole is preferable, and the range of 30 to 80% by mole is more preferable in order not to cause a problem in safety and the like.
  • Petroleum hydrocarbon dispersion medium examples include n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, aliphatic hydrocarbons such as n-octane; cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, trans-1,3-dimethylcyclo Alicyclic hydrocarbons such as pentane; aromatic hydrocarbons such as benzene, toluene and xylene can be used.
  • These petroleum hydrocarbon dispersion media may be used alone or in combination of two or more.
  • the mixed hydrocarbon dispersion medium in which two or more petroleum hydrocarbon dispersion media are mixed for example, Exol heptane (manufactured by ExxonMobil Corp., n-heptane as a main component, 2-methylhexane, 3-methylhexane, Mixed hydrocarbon dispersion medium containing methylcyclohexane).
  • Exol heptane manufactured by ExxonMobil Corp.
  • n-heptane as a main component
  • 2-methylhexane 3-methylhexane
  • Mixed hydrocarbon dispersion medium containing methylcyclohexane mixed hydrocarbon dispersion medium containing methylcyclohexane.
  • n-hexane, n-heptane, cyclohexane, exol heptane, etc. are suitable because they are easily available industrially, have stable quality, and are
  • the amount of the petroleum hydrocarbon dispersion medium is usually 50 to 600 parts by mass with respect to 100 parts by mass of the water-soluble ethylenically unsaturated monomer from the viewpoint of easily removing the heat of polymerization and controlling the polymerization temperature. 80 to 550 parts by mass is more preferable.
  • a surfactant may be used.
  • nonionic surfactants such as sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, sorbitol fatty acid ester, polyoxyethylene alkylphenyl ether; fatty acid salt, alkylbenzene sulfonate, alkylmethyl taurate, polyoxy
  • Anionic surfactants such as ethylene alkylphenyl ether sulfate and polyoxyethylene alkyl ether sulfonate can be used.
  • surfactants sorbitan fatty acid ester, polyglycerin fatty acid ester and sucrose fatty acid ester are preferable from the viewpoint of dispersion stability of the monomer. These surfactants may be used alone or in combination of two or more.
  • the amount of the surfactant used is a water-soluble ethylenic solvent in order to maintain a good dispersion state of the water-soluble ethylenically unsaturated monomer in the petroleum hydrocarbon dispersion medium and to obtain a dispersion effect commensurate with the amount used.
  • the amount is 0.1 to 5 parts by mass, preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the saturated monomer.
  • a polymeric dispersant may be used in combination with a surfactant.
  • the polymer dispersant used include ethyl cellulose, ethyl hydroxyethyl cellulose, polyethylene oxide, maleic anhydride-modified polyethylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified polybutadiene, maleic anhydride-EPDM (ethylene / Propylene / diene / methylene copolymer) and the like.
  • the amount of the polymeric dispersant used is a water-soluble ethylenically unsaturated monomer 100 in order to maintain a good dispersion state of the monomer in the petroleum hydrocarbon dispersion medium and to obtain a dispersion effect commensurate with the amount used.
  • the amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass with respect to parts by mass.
  • radical polymerization initiator examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, Peroxides such as t-butylcumyl peroxide, t-butylperoxyacetate, t-butylperoxyisobutyrate, t-butylperoxypivalate, hydrogen peroxide; 2,2′-azobis (2- Amidinopropane) dihydrochloride, 2,2′-azobis [2- (N-phenylamidino) propane] dihydrochloride, 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride, 2, , 2′-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin
  • radical polymerization initiators 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazoline-2 -Yl] propane ⁇ dihydrochloride and 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate have high water retention and high gel strength From the viewpoint of obtaining a functional resin.
  • These radical polymerization initiators may be used alone or in combination of two or more.
  • the amount of radical polymerization initiator used is usually preferably 0.00005 to 0.0002 mol, more preferably 0.00006 to 0.00019 mol, per mol of water-soluble ethylenically unsaturated monomer. If the amount used is too small, it takes a long time for the polymerization reaction, which is not preferable. On the other hand, when the amount used is too large, an abrupt polymerization reaction occurs, which is not preferable.
  • the radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, and L-ascorbic acid.
  • crosslinking agent for example, (poly) ethylene glycol [“(poly)” means with or without the prefix “poly”. The same shall apply hereinafter), (poly) propylene glycol, 1,4-butanediol, trimethylolpropane, diols such as (poly) glycerin, polyols such as triol, and (meth) acrylic acid, maleic acid, fumaric acid, etc.
  • Unsaturated polyesters obtained by reacting with acids bisacrylamides such as N, N-methylenebisacrylamide; di- or tri (meth) acrylates obtained by reacting polyepoxides with (meth) acrylic acid ;
  • diglycidyl ether compounds such as (poly) ethylene glycol diglycidyl ether, (poly) propylene glycol diglycidyl ether, and (poly) glycerin diglycidyl ether;
  • Epihalohydrin compounds such as epicalumiol, ethylene glycol diglycidyl ether, (poly) prop
  • the amount of the internal cross-linking agent used is 0.000001 to 0.001 mol per 1 mol of the water-soluble ethylenically unsaturated monomer from the viewpoint of sufficiently increasing the water-holding ability and gel strength of the resulting water-absorbent resin. Is preferred.
  • Chain transfer agent In the present invention, the polymerization reaction is preferably carried out in the presence of a chain transfer agent.
  • the chain transfer agent is not particularly limited, but examples thereof include thiols such as ethanethiol, propanethiol, and dodecanethiol; thioglycolic acid, thiomalic acid, dimethyldithiocarbamic acid, diethyldithiocarbamic acid, and salts thereof.
  • Thiol acids; secondary alcohols such as isopropanol; phosphorus compounds and the like can be used.
  • phosphorous compounds include orthophosphoric acid salts such as disodium phosphite, dipotassium phosphite, diammonium phosphite; sodium hydrogen phosphite, hydrogen phosphite Acidic salts of phosphorous acid such as potassium and ammonium hydrogen phosphite; Phosphite compounds such as phosphorous acid; Positive salts of phosphoric acid such as sodium phosphate, potassium phosphate and ammonium phosphate; Sodium dihydrogen phosphate , Acidic salts of phosphoric acid such as potassium dihydrogen phosphate, ammonium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, diammonium hydrogen phosphate; phosphoric acid compounds such as phosphoric acid; hypophosphorous acid Hypophosphites such as sodium, potassium hypophosphite and ammonium hypophosphite, hypophosphorous compounds such as hypophosphorous acid; pyrophosphoric acid salts such as
  • chain transfer agents may be used alone or in combination of two or more.
  • chain transfer agents a water-absorbing resin having a high effect of being added and having high water retention ability and high gel strength is obtained, so that thiomalic acid, isopropanol, phosphorous acid compound, phosphoric acid compound and the following Phosphorous acid compounds are preferred, especially disodium phosphite, sodium dihydrogen phosphate and sodium hypophosphite.
  • the amount of the chain transfer agent used is preferably 0.00001 to 0.0002 mol, more preferably 0.00002 to 0.00019 mol, per mol of the water-soluble ethylenically unsaturated monomer used. If the amount of chain transfer agent used is too small, a water-absorbing resin with high water retention ability and high gel strength tends not to be obtained, and if the amount used is too large, an effect commensurate with the added amount tends not to be obtained. It is in.
  • a water-soluble ethylene-based solvent is obtained by the reversed phase suspension polymerization method using the radical polymerization initiator described above.
  • a saturated monomer may be polymerized.
  • water in an amount of 10 to 200 parts by mass may be used with respect to 100 parts by mass of the petroleum hydrocarbon solvent.
  • the amount of water used is preferably 10 parts by mass or more from the viewpoint of improving the dispersion state of the water-soluble ethylenically unsaturated monomer, and 200 parts by mass from the viewpoint of economically favorable industrial production. The following is preferred.
  • the reaction temperature of the polymerization reaction varies depending on the radical polymerization initiator to be used, but if the reaction temperature is too low, such as less than 20 ° C., the polymerization time becomes longer, which is not preferable.
  • the upper limit of the reaction temperature is preferably 110 ° C. From such a viewpoint, the reaction temperature is usually 20 to 110 ° C., preferably 40 to 80 ° C.
  • the reaction time is usually preferably 0.5 to 4 hours.
  • the reverse-phase suspension polymerization may be performed in one stage, or may be performed in multiple stages of two or more stages.
  • the number of stages is preferably 2 to 3 stages from the viewpoint of increasing productivity.
  • the reaction mixture obtained by the first stage polymerization reaction is added with water-soluble ethylenic polymer. What is necessary is just to add and mix an unsaturated monomer and to carry out the reverse phase suspension polymerization of the second and subsequent stages in the same manner as in the first stage.
  • a radical polymerization initiator, an internal crosslinking agent, a chain transfer agent, etc. are added to each stage after the second stage. Based on the amount of the water-soluble ethylenically unsaturated monomer added during reverse phase suspension polymerization in The reverse phase suspension polymerization may be performed under the same conditions as described above.
  • the post-crosslinking agent may be any one that can react with the carboxyl group of the water-absorbent resin.
  • Representative examples of post-crosslinking agents include (poly) ethylene glycol, (poly) propylene glycol, 1,4-butanediol, trimethylolpropane, polyols such as (poly) glycerin; (poly) ethylene glycol diglycidyl ether, Diglycidyl ether compounds such as (poly) propylene glycol diglycidyl ether and (poly) glycerin diglycidyl ether; epihalohydrin compounds such as epichlorohydrin, epibromhydrin and ⁇ -methylepichlorohydrin; 2,4-tolylene diisocyanate, hexamethylene diisocyanate And compounds having two or more reactive functional groups such as isocyanate compounds. These may be used alone or in combination of two or more. Further, the post-crosslinking agent may be used by
  • the amount of the post-crosslinking agent varies depending on the type of the post-crosslinking agent and cannot be determined in general. However, if the amount of the post-crosslinking agent used is too small, the surface cross-linking density of the water-absorbent resin becomes insufficient. On the other hand, when the amount of the post-crosslinking agent used is too large, the water-holding ability of the water-absorbent resin tends to decrease. For this reason, the amount of the post-crosslinking agent used is generally 0.00001 to 0.01 mol, preferably 0.00005 to 0, based on 1 mol of the total amount of the water-soluble ethylenically unsaturated monomer used in the polymerization. 0.005 mol, more preferably 0.0001 to 0.002 mol.
  • the addition time of the post-crosslinking agent is not particularly limited as long as it is after the completion of the polymerization, but it is 1 to 400 parts by mass with respect to 100 parts by mass of the total amount of the water-soluble ethylenically unsaturated monomer used for obtaining the water absorbent resin. It is preferably added in the presence of water in the range of 5 parts by weight, more preferably in the presence of water in the range of 5 to 200 parts by weight, most preferably in the presence of water in the range of 10 to 100 parts by weight. preferable.
  • water or a hydrophilic organic solvent may be used as a solvent as necessary.
  • the hydrophilic organic solvent include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dioxane and tetrahydrofuran; N, N -Amides such as dimethylformamide, and sulfoxides such as dimethyl sulfoxide.
  • These hydrophilic organic solvents may be used alone or in combination of two or more. These hydrophilic organic solvents may be used as a mixed solvent with water.
  • the reaction temperature in the post-crosslinking reaction is preferably 50 to 250 ° C., more preferably 60 to 180 ° C., still more preferably 60 to 140 ° C., and particularly preferably 70 to 120 ° C.
  • the post-crosslinking reaction time varies depending on the reaction temperature, the type and amount of the post-crosslinking agent, and cannot be determined unconditionally, but is usually 1 to 300 minutes, preferably 5 to 200 minutes.
  • a drying process may be performed under a normal pressure and may be performed under reduced pressure. Moreover, in order to improve drying efficiency, you may carry out under airflow, such as nitrogen.
  • the drying temperature is preferably 70 to 250 ° C, more preferably 80 to 180 ° C, still more preferably 80 to 140 ° C, and particularly preferably 90 to 130 ° C.
  • the drying temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C.
  • the absorbent body of the present invention comprises the above-described water-absorbent resin of the present invention and hydrophilic fibers.
  • the structure of the absorber include a mixing structure in which a water-absorbing resin and a hydrophilic fiber are uniformly blended, a sandwich structure in which a water-absorbing resin is held between layered hydrophilic fibers, and a water-absorbing resin and a hydrophilic fiber.
  • the present invention is not limited to such an example.
  • hydrophilic fibers examples include cellulose fibers such as cotton-like pulp, mechanical pulp, chemical pulp, and semi-chemical pulp obtained from wood, artificial cellulose fibers such as rayon and acetate, polyamides that have been subjected to hydrophilic treatment, polyesters, polyolefins, and the like. Although the fiber etc. which consist of these synthetic resins are mentioned, this invention is not limited only to this illustration.
  • the absorbent body of the present invention is added with other components, for example, an adhesive binder such as a heat-fusable synthetic fiber, a hot melt adhesive, and an adhesive emulsion for improving the shape retention of the absorbent body. May be.
  • an adhesive binder such as a heat-fusable synthetic fiber, a hot melt adhesive, and an adhesive emulsion for improving the shape retention of the absorbent body. May be.
  • the content of the water-absorbent resin in the absorbent body of the present invention is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, and further preferably 15 to 60% by mass.
  • the content of the water-absorbent resin is too small, the absorption capacity of the absorber is lowered, which tends to increase liquid leakage and reversion.
  • there is too much content of a water absorbing resin there exists a tendency for an absorber to become high cost or the touch of an absorber becomes hard.
  • liquid permeable sheet top sheet
  • liquid impermeable sheet back sheet
  • liquid permeable sheet for example, a nonwoven fabric made of polyethylene, polypropylene, polyester, polyamide or the like, a porous synthetic resin sheet or the like can be used.
  • liquid impermeable sheet for example, polyethylene, polypropylene, polychlorinated resin
  • a film made of a synthetic resin such as vinyl, a film made of a composite material of these synthetic resins and a non-woven fabric, or the like can be used, but the present invention is not limited to such examples.
  • the type of absorbent article is not particularly limited, but typical examples include sanitary materials such as paper diapers, sanitary napkins, incontinence pads, urine absorbent materials for pets, and civil engineering and building materials such as packing materials. And food freshness-keeping materials such as drip absorbents and cryogens, and agricultural and horticultural articles such as soil water-retaining materials.
  • the water-absorbent resin of the present invention has high water retention ability and high gel strength characteristics. Therefore, by using the water absorbent resin of the present invention, it is possible to obtain an absorbent body excellent in performance such as a liquid permeation rate and various absorbent articles using the same.
  • the absorbent resin of the present invention can be suitably used for sanitary materials such as disposable diapers.
  • the physiological saline water retention ability, the median particle diameter, and the gel strength were evaluated by the method shown below.
  • the cotton bag was dehydrated using g-122) for 1 minute, and the weight Wa (g) of the cotton bag containing the swollen gel after dehydration was measured. The same operation was performed without adding the water-absorbent resin, the empty mass Wb (g) when the cotton bag was wet was measured, and the water retention capacity was calculated from the following equation.
  • Saline retention capacity (g / g) [Wa ⁇ Wb] (g) / mass of water absorbent resin (g) ⁇ Medium particle size of water absorbent resin>
  • a lubricant 0.25 g of amorphous silica (Degussa Japan Co., Ltd., Sipernat 200) was mixed with 50 g of the water absorbent resin.
  • the above-mentioned water-absorbing resin was put into the uppermost sieve of the combination in the order of the trays, and classified by shaking for 20 minutes using a low-tap shaker.
  • the mass of the water-absorbent resin remaining on each sieve is calculated as a percentage by mass with respect to the total amount, and the mass of the water-absorbent resin remaining on the sieve opening and the sieve is calculated by integrating in order from the larger particle size.
  • the relationship between percentage and integrated value was plotted on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle diameter corresponding to an integrated mass percentage of 50 mass% was defined as the median particle diameter.
  • ⁇ Gel strength of water-absorbent resin> The gel strength of the water-absorbent resin of the present invention was measured using an apparatus Y (for example, Neo Card Meter manufactured by Iio Electric Co., Ltd., product number: M-303) having the measurement principle as shown in FIG. 1 under the following conditions. Value.
  • the apparatus Y includes a support unit 1, a movable base plate 2 for mounting a measurement sample (gel) 6, a drive unit 3 for driving the movable base plate 2, and a measurement unit 4.
  • a gantry 12 is fixed to an upper portion of a support 11 that is erected on the support 10.
  • the movable base plate 2 is attached to the column 11 so as to move up and down.
  • a pulse motor 30 is mounted on the gantry 12, and the movable base plate 2 is moved up and down via the wire 32 by rotating the pulley 31.
  • a pressure sensitive shaft 43 with a disk is attached to a load cell 40 for measuring strain caused by deformation through a precision spring 41 and a connecting shaft 42. Depending on the measurement conditions, the diameter of the disk can be changed.
  • a weight 5 can be mounted on the pressure-sensitive shaft 43 with a disk.
  • the operating principle of the device Y is as follows.
  • a precision spring 41 is fixed to the upper load cell 40 (stress detector), and a pressure-sensitive shaft 43 with a disk is connected to the lower side, and a predetermined weight 5 is placed thereon and suspended vertically.
  • the movable base plate 2 on which the measurement sample 6 is placed rises at a constant speed by the rotation of the pulse motor 30.
  • a constant speed load is applied to the sample 6 through the spring 41, the strain caused by the deformation is measured by the load cell 40, and the hardness is measured and calculated.
  • the hardness value of the gel using apparatus Y (neo card meter manufactured by Iio Electric Co., Ltd., product number: M-303, pressure sensitive disk 16 mm ⁇ , load 100 g, speed 7 sec / inch, viscous mode setting) was measured.
  • the gel strength a was calculated from the obtained hardness value (dyne / cm2) by the following formula (0.1: unit correction coefficient (dyne / cm2 ⁇ Pa)).
  • the index represented by the sum of the gel strengths a, b, and c was defined as the total gel strength.
  • Total gel strength (Pa) gel strength a + gel strength b + gel strength c
  • a 2 L round bottom cylindrical separable flask having an inner diameter of 110 mm and equipped with a stirrer, a two-stage paddle blade, a reflux condenser, a dropping funnel and a nitrogen gas introduction tube was prepared.
  • n-heptane 290 g was taken into this flask, 0.74 g of sucrose stearate (Mitsubishi Chemical Foods, Ltd., Ryoto Sugar Ester S-370), maleic anhydride modified ethylene / propylene copolymer (Mitsui Chemicals, Inc.) ), High wax 1105A) 0.74 g was added, the temperature was raised to 80 ° C. with stirring to dissolve the surfactant, and then cooled to 50 ° C.
  • sucrose stearate Mitsubishi Chemical Foods, Ltd., Ryoto Sugar Ester S-370
  • maleic anhydride modified ethylene / propylene copolymer Mitsubishi Chemicals, Inc.
  • the flask After adding the total amount of the first stage monomer aqueous solution to the separable flask and sufficiently replacing the system with nitrogen, the flask was immersed in a 70 ° C. water bath and heated. The first stage polymerization was carried out for 30 minutes to obtain a first stage reaction mixture.
  • the first-stage reaction mixture was cooled to 28 ° C., and the second-stage monomer aqueous solution at the same temperature was added to the system and absorbed for 30 minutes. At the same time, the system was sufficiently replaced with nitrogen. Thereafter, the flask was again immersed in a 70 ° C. water bath and the temperature was raised, and the second stage polymerization was carried out for 30 minutes.
  • the reaction mixture was heated in an oil bath at 125 ° C., 240 g of water was withdrawn from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water, 4.42 g (0.51 mmol) of a 2% aqueous solution of ethylene glycol diglycidyl ether was added, and a post-crosslinking reaction was performed at 80 ° C. for 2 hours. Thereafter, the temperature of the reaction mixture was raised in an oil bath at 125 ° C., and n-heptane was evaporated and dried to obtain 230.3 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
  • Example 2 In Example 1, the same operation as in Example 1 was carried out except that the amount of water extracted out of the system after the second stage polymerization was changed to 245 g, to obtain 228.7 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
  • Example 3 In Example 1, the same operation as in Example 1 was carried out except that the amount of water extracted out of the system after the second stage polymerization was changed to 250 g, to obtain 226.9 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
  • Example 4 the amount used in the first stage of 2,2′-azobis (2-amidinopropane) dihydrochloride as a radical polymerization initiator was 0.018 g (0.0664 mmol), and the second stage was used. The amount used was changed to 0.025 g (0.0922 mmol), and the amount used for the first stage of sodium hypophosphite monohydrate as the chain transfer agent was 3.8 mg (0.0359 mmol), Except having changed the usage-amount of the 2nd step into 5.3 mg (0.0500 mmol), operation similar to Example 2 was performed and 230.7 g of water-absorbing resins were obtained. Table 1 shows the measurement results of each performance.
  • Example 5 In Example 2, the amount used in the first stage of 2,2′-azobis (2-amidinopropane) dihydrochloride as a radical polymerization initiator was 0.051 g (0.188 mmol), Except having changed the usage-amount into 0.072 g (0.265 mmol), operation similar to Example 2 was performed and 229.1 g of water-absorbing resins were obtained. Table 1 shows the measurement results of each performance.
  • Example 6 the use amount of the first stage of 2,2′-azobis (2-amidinopropane) dihydrochloride as a radical polymerization initiator was 0.044 g (0.162 mmol), and the second stage was used. The amount used was changed to 0.061 g (0.225 mmol), the amount used in the first stage of sodium hypophosphite monohydrate as the chain transfer agent was 0.015 g (0.142 mmol), Except having changed the usage-amount of the 2nd step into 0.021 g (0.198 mmol), operation similar to Example 2 was performed and 228.2 g of water-absorbing resins were obtained. Table 1 shows the measurement results of each performance.
  • Example 7 In Example 1, 0.044 g (0.162 mmol) of the first stage of 2,2′-azobis (2-amidinopropane) dihydrochloride, which is a radical polymerization initiator, was used in the second stage. The amount used was changed to 0.061 g (0.225 mmol), the amount used in the first stage of sodium hypophosphite monohydrate as the chain transfer agent was 0.020 g (0.189 mmol), Except having changed the usage-amount of the 2nd step into 0.028 g (0.264 mmol), operation similar to Example 1 was performed and 230.2 g of water-absorbing resins were obtained. Table 1 shows the measurement results of each performance.
  • the flask After adding the total amount of the first stage monomer aqueous solution to the separable flask and sufficiently replacing the system with nitrogen, the flask was immersed in a 70 ° C. water bath and heated. The first stage polymerization was carried out for 30 minutes to obtain a first stage reaction mixture.
  • the first-stage reaction mixture was cooled to 28 ° C., and the second-stage monomer aqueous solution at the same temperature was added to the system and absorbed for 30 minutes. At the same time, the system was sufficiently replaced with nitrogen. Thereafter, the flask was again immersed in a 70 ° C. water bath and the temperature was raised, and the second stage polymerization was carried out for 30 minutes.
  • the reaction mixture was heated in an oil bath at 125 ° C., 240 g of water was withdrawn from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water, 4.42 g (0.51 mmol) of a 2% aqueous solution of ethylene glycol diglycidyl ether was added, and a post-crosslinking reaction was performed at 80 ° C. for 2 hours. Thereafter, the temperature of the reaction mixture was raised in an oil bath at 125 ° C., and n-heptane was evaporated and dried to obtain 229.3 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
  • Comparative Example 2 In Comparative Example 1, the same operation as in Comparative Example 1 was carried out except that the amount of water extracted out of the system after the second stage polymerization was changed to 250 g, to obtain 227.7 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
  • Comparative Example 3 In Comparative Example 1, the same operation as in Comparative Example 1 was carried out except that the amount of water extracted outside the system after the second stage polymerization was changed to 258 g, to obtain 227.5 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
  • Example 4 the amount used in the first stage of 2,2′-azobis (2-amidinopropane) dihydrochloride as a radical polymerization initiator was 0.012 g (0.0442 mmol), and the second stage was used. Except having changed the usage-amount into 0.017g (0.0627 mmol), operation similar to Example 2 was performed and 229.5g of water absorbing resins were obtained. Table 1 shows the measurement results of each performance.
  • Example 5 In Example 3, the amount of sodium hypophosphite monohydrate, the chain transfer agent, used in the first stage was 1.0 mg (0.00943 mmol), and the amount used in the second stage was 1.4 mg ( Except for the change to 0.0132 mmol), the same operation as in Example 3 was performed to obtain 225.2 g of a water absorbent resin. Table 1 shows the measurement results of each performance.
  • Example 6 the usage amount of the first stage of 2,2′-azobis (2-amidinopropane) dihydrochloride as a radical polymerization initiator was 0.060 g (0.221 mmol), and the second stage was used. The amount of water used was changed to 0.084 g (0.310 mmol), and the same operation as in Example 3 was performed except that sodium hypophosphite monohydrate as a chain transfer agent was not used. 226.4 g was obtained. Table 1 shows the measurement results of each performance.
  • a polyethylene air-through porous liquid permeable sheet having the same size as the absorber and having a basis weight of 22 g / m 2 is arranged on the upper surface of the absorber, and the polyethylene liquid impervious sheet having the same size and the same basis weight. was placed on the lower surface of the absorbent body, and the absorbent body was sandwiched to obtain an absorbent article.
  • an absorbent article was placed on a horizontal table. At the center of the absorbent article is placed a measuring instrument equipped with a 10 cm x 10 cm, 2 kg weight cylinder for liquid injection with an inner diameter of 3 cm, and 50 mL of artificial urine is put into the cylinder at once and a stopwatch. was used to measure the time until the artificial urine completely disappeared from the cylinder, and was defined as the first permeation time (seconds).
  • remove the cylinder store the absorbent article as it is, and perform the same operation using the measuring instrument at the same position as the first time 30 minutes and 60 minutes after the start of the first artificial urine injection. And the second and third permeation times (seconds) were measured.
  • the total time for the first to third times was defined as the total penetration time. It can be said that the shorter the permeation time, the better the absorbent article.
  • the total penetration time is preferably 300 seconds or less.
  • (D) Amount of reversal 10 cm square filter paper whose mass (Wc (g), about 50 g) has been measured in advance in the vicinity of the artificial urine charging position on the absorbent article after 60 minutes have elapsed from the end of the permeation time measurement. And a 5 kg weight having a bottom of 10 cm ⁇ 10 cm was placed thereon. After loading for 5 minutes, the mass of the filter paper (Wd (g)) was measured, and the increased mass was taken as the reversal amount (g). It can be said that the smaller the amount of reversion, the better the absorbent article. For example, the return amount is preferably 8 g or less.
  • the water-absorbent resins obtained in Examples 1 to 7 have high total gel strength in the region of high physiological saline water retention capacity. Moreover, it turns out that the absorbent article obtained by each Example exhibits the performance which was excellent in both the return amount and the total penetration time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、吸水時に生じるゲルブロッキング現象を抑制して液浸透速度の低下を防ぐことができる高いゲル強度を有し、且つ優れた保水能を同時に保持した、衛生材料等に好適に使用できる新規な吸水性樹脂、並びにそれを用いた吸収体および吸収性物品を提供する。 本発明の吸水性樹脂は、下記(1)及び(2)の条件を満足するものである: (1)生理食塩水保水能が40g/g以上であること、 (2)30倍膨潤時のゲル強度a、40倍膨潤時のゲル強度b、及び50倍膨潤時のゲル強度cの総和で表される総ゲル強度が5500Pa以上であること。

Description

吸水性樹脂、吸収体及び吸収性物品
 本発明は、吸水性樹脂、並びにそれを用いた吸収体及び吸収性物品に関する。更に詳しくは、高い保水能と高いゲル強度特性を持ち、衛生材料等に好適に使用できる吸水性樹脂、並びにそれを用いた吸収体および吸収性物品に関する。
 吸水性樹脂は、近年、紙おむつや生理用品等の衛生材料、保水剤や土壌改良剤等の農園芸材料、止水剤や結露防止剤等の工業資材等、種々の分野で広く使用されている。これらの分野の中でも、特に紙おむつや生理用品等の衛生材料に使用されることが多い。
 このような吸水性樹脂としては、例えば、澱粉-アクリロニトリルグラフト共重合体の加水分解物、澱粉-アクリル酸グラフト重合体の中和物、酢酸ビニル-アクリル酸エステル共重合体のケン化物、アクリル酸部分中和物重合体の架橋物等が知られている。
 近年、紙おむつ、生理用ナプキン等の衛生材料においては、使用時の快適性を高めるために吸収体を薄型化する傾向にある。吸収体を薄型化するには、吸収体中の吸水性樹脂の比率を増やす方法、吸水性樹脂の保水能を高める方法等が挙げられる。
 吸収体中の吸水性樹脂の比率を増やす方法では、実際に吸収体に使用された際の液体の分配や拡散を考えた場合、多量の吸水性樹脂が液体の吸収によって柔らかいゲル状になると、表層付近に存在する吸水性樹脂が液体を吸収し、表層付近で柔らかいゲルがさらに密になることで、吸収体内部への液体の浸透が妨げられ、内部の吸水性樹脂が効率良く液体を吸収できなくなる、いわゆる「ゲルブロッキング現象」が発生し、液拡散性が格段に低下し、吸収体の液浸透速度が遅くなるという欠点がある。したがって、吸水性樹脂のゲルブロッキング現象を抑制するためには、吸水性樹脂のゲル強度が高いことが要求されている。しかしながら、吸水性製樹脂のゲル強度を高くするためには、一般に吸水性樹脂の架橋密度を上げる必要があり、その結果、吸水性樹脂の保水能が低下する。
 一方、吸水性樹脂の保水能を高める方法としては、吸水性樹脂の架橋密度を下げる方法があるが、その結果吸水性樹脂のゲル強度が低下する。そのような吸水性樹脂を吸収体に使用した場合、吸水性樹脂のゲル強度の不足による体液の漏れが生じ、着用者の快適性が損なわれる。
 この様な吸収体の課題を解決するために、吸水性樹脂の特性を改良する目的で、いくつかの製造方法が提案されている。例えば、特定の界面活性剤を特定量用いて逆相懸濁重合を行う方法(特許文献1参照)、逆相懸濁重合を2段以上の多段で行う方法(特許文献2参照)、β-1,3-グルカン類の共存下に、逆相懸濁重合して吸水性樹脂を得、さらに得られた吸水性樹脂に架橋剤を添加することにより架橋反応を行う方法(特許文献3参照)、重合開始剤の過硫酸塩を特定量用いて逆相懸濁重合を行う方法(特許文献4参照)、亜リン酸および/またはその塩の存在下で水溶液重合させて吸水性樹脂前駆体を得た後、該吸水性樹脂前駆体と表面架橋剤を混合して加熱する方法(特許文献5参照)等が知られている。
 しかしながら、これらの方法で得られた吸水性樹脂については、高い保水能を得た場合には、ゲル強度が低下するなどの問題点があり、吸収体として要求される性能を十分に満足できるものではなかった。
特開平6-345819号公報 特開平3-227301号公報 特開平8-120013号公報 特開平6-287233号公報 特開平9-124710号公報
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、吸水時に生じるゲルブロッキング現象を抑制して液浸透速度の低下を防ぐことができる高いゲル強度を有し、且つ優れた保水能を同時に保持した、衛生材料等に好適に使用できる新規な吸水性樹脂、並びにそれを用いた吸収体および吸収性物品を提供することである。
 本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、水溶性エチレン性不飽和単量体を重合して吸水性樹脂を製造する際に、製造条件を最適化することによって、高い保水能と高いゲル強度を兼ね備えた従来にはない新規な吸水性樹脂が得られることを見出し、ここに本発明を完成するに至った。
 即ち、本発明は、下記の吸水性樹脂、並びにそれを用いた吸収体および吸収性物品を提供するものである。
項1. 下記(1)及び(2)の条件を満足する吸水性樹脂:
(1)生理食塩水保水能が40g/g以上であること、
(2)30倍膨潤時のゲル強度a、40倍膨潤時のゲル強度b、及び50倍膨潤時のゲル強度cの総和で表される総ゲル強度が5500Pa以上であること、
但し、30倍膨潤時のゲル強度aとは、ゲルと生理食塩水の合計質量がゲルの質量の30倍となるようにゲルに生理食塩水を加えて膨潤させた際のゲル強度であり、40倍膨潤時のゲル強度bとは、ゲルと生理食塩水の合計質量がゲルの質量の40倍となるようにゲルに生理食塩水を加えて膨潤させた際のゲル強度であり、50倍膨潤時のゲル強度cとは、ゲルと生理食塩水の合計質量が、ゲルの質量の50倍となるようにゲルに生理食塩水を加えて膨潤させた際のゲル強度である。
項2. 上記項1記載の吸水性樹脂と親水性繊維を含む吸収体。
項3. 上記項2記載の吸収体を、液体透過性シートと液体不透過性シートとの間に保持してなる吸収性物品。
 以下、本発明の吸水性樹脂及びその製造方法について具体的に説明する。
 吸水性樹脂
 本発明の吸水性樹脂は高い保水能を有するものであり、生理食塩水保水能が、40g/g以上であり、好ましくは40~60g/g、より好ましくは43~55g/gである。上記した範囲より生理食塩水保水能が低いと、吸収体や吸収性物品を作製したときに、吸収体の吸収容量が低くなるため、大量の液体を吸収しきれず、液モレや逆戻りなどが生じ、吸収性物品の装着感が悪くなる傾向がある。
 なお、吸水性樹脂の生理食塩水保水能は、後述する「吸水性樹脂の生理食塩水保水能」に記載されている測定方法にしたがって測定したときの値である。
 また、本発明の吸水性樹脂は、総ゲル強度が、5500Pa以上であり、好ましくは5500~10000Pa、より好ましくは6000~9000Paである。総ゲル強度とは、後述する「吸水性樹脂のゲル強度」に記載されている測定方法にしたがって測定したときの30倍膨潤時のゲル強度をa、40倍膨潤時のゲル強度をb、50倍膨潤時のゲル強度をcとした場合に、a,b,cの総和で表される値であり、総ゲル強度(Pa)=a+b+cとなる。ここで、30倍膨潤時のゲル強度aとは、ゲルと生理食塩水の合計質量がゲルの質量の30倍となるようにゲルに生理食塩水を加えて膨潤させた際のゲル強度であり、40倍膨潤時のゲル強度bとは、ゲルと生理食塩水の合計質量がゲルの質量の40倍となるようにゲルに生理食塩水を加えて膨潤させた際のゲル強度であり、50倍膨潤時のゲル強度cとは、ゲルと生理食塩水の合計質量が、ゲルの質量の50倍となるようにゲルに生理食塩水を加えて膨潤させた際のゲル強度である。
 荷重下における吸収体の性能として、逆戻りや液モレの他に液浸透速度が重要となる。浸透速度を支配する因子として吸収体内での吸水性樹脂のゲルブロッキング現象が挙げられる。このゲルブロッキング現象はゲル強度と関係しており、ゲル強度が強いほどゲルブロッキングの程度が低く液浸透速度も良好である。したがって、ゲル強度の強い樹脂が好ましい。
 一般的にゲル強度は吸水性樹脂の膨潤倍率と相反関係にあり、膨潤倍率を高めるとゲル強度は低下する。吸収体内で液浸透速度に影響を及ぼす膨潤倍率は30~50倍であると考えられる。つまり30倍未満であると吸収量が少ないためゲルブロッキングが発生しない。また50倍を超えるとゲルブロッキングが発生しやすく通常の吸収体使用では現実的ではない。したがって、吸収体内で吸液し、膨潤する30~50倍の範囲におけるゲル強度の総和を求めることによって、吸収体としての性能を判断することが出来る。ここで、膨潤倍率とは、吸水性樹脂の質量に対する吸水性樹脂と吸収した液体の合計質量の比率である。
 この様な方法で求めた吸水性樹脂の総ゲル強度が5500Pa未満の場合、ゲル強度が不十分なため吸収体および吸収性物品において、荷重下における吸液中、ゲルブロッキングによる通液阻害を起こし液浸透速度が悪化する。
 本発明の吸水性樹脂の中位粒子径としては、200~600μmが好ましく、250~550μmがより好ましく、300~500μmが更に好ましい。吸水性樹脂の中位粒子径は、後述する「吸水性樹脂の中位粒子径」に記載されている測定方法にしたがって測定したときの値である。
 吸水性樹脂の製造方法
 本発明の吸水性樹脂を得るための方法は特に限定されず、例えば、逆相懸濁重合法、水溶液重合法等によって製造することができる。
 以下に、本発明の吸水性樹脂を逆相懸濁重合法によって製造する方法についてより詳しく説明する。
 逆相懸濁重合法では、石油系炭化水素分散媒中において、分散安定剤の存在下、ラジカル重合開始剤、および必要に応じて架橋剤及び連鎖移動剤を添加混合し、水溶性エチレン性不飽和単量体を加熱することにより重合が行われる。
 (1)原料化合物
(i)水溶性エチレン性不飽和単量体
 原料として用いる水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸(本明細書においては「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。以下同様)、その塩;2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、その塩;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体、その4級化物等を用いることができる。水溶性エチレン性不飽和単量体としては、これらの化合物から選ばれる少なくとも一種を用いることができる。
 特に、(メタ)アクリル酸、その塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミド等が好ましく、(メタ)アクリル酸、その塩、アクリルアミド等がより好ましい。
 水溶性エチレン性不飽和単量体は、逆相懸濁重合する際に、石油系炭化水素分散媒中での分散効率を上昇させるために水溶液にして用いてもよい。このような水溶液中における上記の単量体の濃度は特に限定はされないが、通常20質量%以上飽和濃度以下とすればよく、25~70質量%が好ましく、30~55質量%がさらに好ましい。
 水溶性エチレン性不飽和単量体が、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、その酸基をアルカリ性中和剤によって中和しておいてもよい。このようなアルカリ性中和剤としては、水酸化ナトリウム、水酸化カリウム、アンモニア等の水溶液を用いることができる。これらのアルカリ性中和剤は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 アルカリ性中和剤による水溶性エチレン性不飽和単量体の全酸基における中和度は、得られる吸水性樹脂の浸透圧を高めることで吸水能力を高め、かつ余剰のアルカリ性中和剤の存在により、安全性等に問題が生じないようにするために、10~100モル%の範囲が好ましく、30~80モル%の範囲がより好ましい。
 (ii)石油系炭化水素分散媒
 石油系炭化水素分散媒としては、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等を用いることができる。これらの石油系炭化水素分散媒は、単独で用いてもよいし、2種以上を併用してもよい。2種以上の石油系炭化水素分散媒が混合された混合炭化水素分散媒としては、例えば、エクソールヘプタン(エクソンモービル社製、主成分としてn-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、メチルシクロヘキサンを含む混合炭化水素分散媒)が挙げられる。これらの石油系炭化水素分散媒のなかでも、工業的に入手が容易であり、品質が安定しており、かつ安価であるため、n-ヘキサン、n-ヘプタン、シクロヘキサン、エクソールヘプタン等が好適に用いられる。
 石油系炭化水素分散媒の量は、重合熱を除去し、重合温度を制御しやすくする観点から、通常、水溶性エチレン性不飽和単量体100質量部に対して、50~600質量部が好ましく、80~550質量部がより好ましい。
 (iii)分散安定剤
 分散安定剤としては、界面活性剤を用いればよい。例えば、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル等のノニオン系界面活性剤;脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩等のアニオン系界面活性剤等を用いることができる。
 前記界面活性剤のなかでも、単量体の分散安定性の面から、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル及びショ糖脂肪酸エステルが好ましい。これらの界面活性剤は、単独で使用してもよいし、2種以上を併用してもよい。
 界面活性剤の使用量は、石油系炭化水素分散媒中における、水溶性エチレン性不飽和単量体の分散状態を良好に保ち、かつ使用量に見合う分散効果を得るため、水溶性エチレン性不飽和単量体100質量部に対して、0.1~5質量部、好ましくは0.2~3質量部とされる。
 また分散安定剤として、界面活性剤とともに高分子系分散剤を併用してもよい。使用される高分子系分散剤としては、例えば、エチルセルロース、エチルヒドロキシエチルセルロース、ポリエチレンオキサイド、無水マレイン化ポリエチレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン化ポリブタジエン、無水マレイン化EPDM(エチレン/プロピレン/ジエン/メチレン共重合体)等が挙げられる。
 高分子系分散剤の使用量は、石油系炭化水素分散媒中における単量体の分散状態を良好に保ち、かつ使用量に見合う分散効果を得るため、水溶性エチレン性不飽和単量体100質量部に対して0.1~5質量部が好ましく、0.2~3質量部がより好ましい。
 (iv)ラジカル重合開始剤
ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類;メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物類;2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス〔2-(N-フェニルアミジノ)プロパン〕二塩酸塩、2,2’-アゾビス〔2-(N-アリルアミジノ)プロパン〕二塩酸塩、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物、2,2’-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等を用いることができる。
 これらのラジカル重合開始剤の中では、2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}二塩酸塩及び2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]四水和物が、高い保水能を有し、かつゲル強度の高い吸水性樹脂が得られる観点から好ましい。これらのラジカル重合開始剤は、単独で用いてもよいし、2種以上を併用してもよい。
 ラジカル重合開始剤の使用量は、通常、水溶性エチレン性不飽和単量体1モルあたり、0.00005~0.0002モルが好ましく、0.00006~0.00019モルがより好ましい。使用量が少なすぎる場合、重合反応に多大な時間を要するので、好ましくない。一方、使用量が多すぎると、急激な重合反応が起こるので、好ましくない。
 なお、前記ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸等の還元剤を併用して、レドックス重合開始剤として用いることもできる。
 (v)架橋剤
 本発明においては、重合反応を架橋剤(以下、「内部架橋剤」ということがある)の存在下に行うことが好ましい。内部架橋剤としては、例えば、(ポリ)エチレングリコール〔「(ポリ)」とは「ポリ」の接頭語がある場合とない場合を意味する。以下同じ〕、(ポリ)プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、(ポリ)グリセリン等のジオール、トリオール等のポリオール類と(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N-メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジまたはトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N’’-トリアリルイソシアネート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジルエーテル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物等を用いることができる。これらの内部架橋剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。
 内部架橋剤の使用量は、得られる吸水性樹脂の保水能やゲル強度を十分に高める観点から、水溶性エチレン性不飽和単量体1モルにあたり、0.000001~0.001モルとすることが好ましい。
 (vi)連鎖移動剤
本発明では、重合反応を連鎖移動剤の存在下に行うことが好ましい。連鎖移動剤としては、特に限定されるものではないが、例えば、エタンチオール、プロパンチオール、ドデカンチオール等のチオール類;チオグリコール酸、チオリンゴ酸、ジメチルジチオカルバミン酸、ジエチルジチオカルバミン酸、それらの塩等のチオール酸類;イソプロパノール等の第2級アルコール類;リン化合物などを用いることができる。
 これらの連鎖移動剤の内で、リン化合物としては、亜リン酸二ナトリウム、亜リン酸二カリウム、亜リン酸二アンモニウム等の亜リン酸の正塩;亜リン酸水素ナトリウム、亜リン酸水素カリウム、亜リン酸水素アンモニウム等の亜リン酸の酸性塩;亜リン酸等の亜リン酸化合物;リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム等のリン酸の正塩;リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸二水素アンモニウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二アンモニウム等のリン酸の酸性塩;リン酸等のリン酸化合物;次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸アンモニウム等の次亜リン酸塩、次亜リン酸等の次亜リン酸化合物;ピロリン酸、トリポリリン酸、ポリリン酸、それらの塩;リン酸トリメチル、ニトリロトリメチレントリホスホン酸等が挙げられる。また、リン化合物は、その水和物を用いてもよい。
 これらの連鎖移動剤は、それぞれ単独で用いてよく、或いは2種以上を混合して用いてもよい。
 連鎖移動剤の中では、添加することによって発現される効果が高く、高保水能かつゲル強度の高い吸水性樹脂が得られることから、チオリンゴ酸、イソプロパノール、亜リン酸化合物、リン酸化合物および次亜リン酸化合物が好ましく、とりわけ、亜リン酸二ナトリウム、リン酸二水素ナトリウムおよび次亜リン酸ナトリウムが好ましい。
 連鎖移動剤の使用量は、使用する水溶性エチレン性不飽和単量体1モルあたり、0.00001~0.0002モルが好ましく、0.00002~0.00019モルがより好ましい。連鎖移動剤の使用量が少なすぎる場合には高保水能かつ高ゲル強度の吸水性樹脂が得られない傾向にあり、また、使用量が多すぎても添加量に見合う効果が得られない傾向にある。
 (2)逆相懸濁重合方法
 本発明では、上記した分散安定剤を含む石油系炭化水素分散媒中で、上記したラジカル重合開始剤を用いて逆相懸濁重合法によって水溶性エチレン系不飽和単量体を重合させればよい。この際、高いゲル強度と優れた保水能を兼ね備えた吸水性樹脂を得るためには、上記した条件に基づいて、内部架橋剤、連鎖移動剤などの存在下に重合反応を行うことが好ましい。
 本発明では、上記の石油系炭化水素溶媒100質量部に対して、10~200質量部となる量の水を用いればよい。水の使用量は、水溶性エチレン性不飽和単量体の分散状態を良好にする観点から、10質量部以上が好ましく、工業的な生産を良好にし、経済的に好ましい観点から、200質量部以下が好ましい。
 重合反応の反応温度は使用するラジカル重合開始剤によって異なるが、反応温度が20℃未満のように低すぎると重合時間が長くなるので好ましくない。一方、重合熱を除去し、円滑な重合反応を行うために、反応温度の上限は110℃とすることが好ましい。このような観点から、反応温度は、通常、20~110℃とすればよく、40~80℃とすることが好ましい。反応時間は、通常、0.5~4時間が好ましい。
 本発明では、逆相懸濁重合は、1段で行ってもよく、或いは、2段以上の多段で行っても良い。その段数は生産性を高める観点から、2~3段であることが好ましい。
 2段以上の逆相懸濁重合を行う場合には、上記した方法で1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物に水溶性エチレン性不飽和単量体を添加し混合して、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、水溶性エチレン性不飽和単量体の他に、ラジカル重合開始剤、内部架橋剤、連鎖移動剤などを、2段目以降の各段における逆相懸濁重合の際に添加する水溶性エチレン性不飽和単量体の量を基準として、前述した水溶性エチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して、上記した方法と同様の条件で逆相懸濁重合を行えばよい。
 (3)後架橋
 本発明においては、目的とする高いゲル強度と優れた保水能を有する吸水性樹脂を得るためには、水溶性エチレン性不飽和単量体の重合後から乾燥までの工程において、後架橋剤を添加して、後架橋処理を施すことが好ましい。
 後架橋剤は、吸水性樹脂のカルボキシル基と反応し得るものであればよい。後架橋剤の代表例としては、(ポリ)エチレングリコール、(ポリ)プロピレングリコール、1,4-ブタンジオール、トリメチロールプロパン、(ポリ)グリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジルエーテル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物等が挙げられる。これらは、それぞれ単独で用いてもよく、2種以上を混合併用してもよい。また、後架橋剤を水や有機溶媒等に溶解して使用しても良い。
 後架橋剤の量は、後架橋剤の種類により異なるので一概には決定することができないが、後架橋剤の使用量が少なすぎると、吸水性樹脂の表面架橋密度が不十分となってゲル強度が低くなり、一方、後架橋剤の使用量が多すぎると、吸水性樹脂の保水能が低下する傾向がある。このため、後架橋剤の使用量は、通常、重合に使用した水溶性エチレン性不飽和単量体の総量1モルに対して、0.00001~0.01モル、好ましくは0.00005~0.005モル、さらに好ましくは、0.0001~0.002モルとすればよい。
 後架橋剤の添加時期は、重合終了後であればよく特に限定されないが、吸水性樹脂を得るために使用した水溶性エチレン性不飽和単量体の総量100質量部に対し、1~400質量部の範囲の水分存在下に添加することが好ましく、5~200質量部の範囲の水分存在下に添加することがより好ましく、10~100質量部の範囲の水分存在下に添加することが最も好ましい。
 後架橋剤を使用する際には、必要に応じて溶媒として水や親水性有機溶媒を用いてもよい。親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の低級アルコール類;アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類等が挙げられる。これら親水性有機溶媒は、単独で使用してもよいし、2種類以上を併用してもよい。また、これらの親水性有機溶媒は、水との混合溶媒として用いてもよい。
 後架橋反応における反応温度は、50~250℃が好ましく、60~180℃がより好ましく、60~140℃が更に好ましく、70~120℃が特に好ましい。また、後架橋の反応時間は、反応温度、後架橋剤の種類及び量等によって異なるので一概には決定することができないが、通常、1~300分間、好ましくは5~200分間である。
 (4)乾燥
 本発明において、乾燥工程は常圧下で行ってもよく、減圧下で行ってもよい。また、乾燥効率を高めるため、窒素等の気流下で行ってもよい。乾燥工程が常圧の場合、乾燥温度は70~250℃が好ましく、80~180℃がより好ましく、80~140℃が更に好ましく、90~130℃が特に好ましい。また、減圧下の場合、乾燥温度は60~100℃が好ましく、70~90℃がより好ましい。
 吸収体及び吸収性物品
 本発明の吸収体は、上記した本発明の吸水性樹脂と親水性繊維とから構成されるものである。該吸収体の構成としては、例えば、吸水性樹脂と親水性繊維を均一にブレンドしたミキシング構造、層状の親水性繊維の間に吸水性樹脂を保持したサンドイッチ構造、吸水性樹脂と親水性繊維とをティッシュで包んだ構造等が挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 親水性繊維としては、例えば、木材から得られる綿状パルプ、メカニカルパルプ、ケミカルパルプ、セミケミカルパルプ等のセルロース繊維、レーヨン、アセテート等の人工セルロース繊維、親水化処理されたポリアミド、ポリエステル、ポリオレフィン等の合成樹脂からなる繊維等が挙げられるが、本発明は、かかる例示のみに限定されるものではない。
 更に、本発明の吸収体には、他の成分、例えば、吸収体の形態保持性を高めるための熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等の接着性バインダーが添加されていてもよい。
 本発明の吸収体における吸水性樹脂の含有量は、好ましくは5~80質量%であり、より好ましくは10~70質量%であり、さらに好ましくは15~60質量%である。吸水性樹脂の含有量が少なすぎる場合には、吸収体の吸収容量が低くなり、液モレおよび逆戻りの増加につながる傾向がある。また、吸水性樹脂の含有量が多すぎると、吸収体がコスト高になったり、吸収体の感触が硬くなる傾向がある。
 上記した本発明の吸収体を、液体が通過し得る液体透過性シート(トップシート)と、液体が通過し得ない液体不透過性シート(バックシート)との間に保持することによって、吸収性物品とすることができる。液体透過性シートは、身体と接触する側に配され、液体不透過性シートは、身体と接触することがない側に配される。
 液体透過性シートとしては、例えば、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等からなる不織布、多孔質の合成樹脂シート等を用いることができ、液体不透過性シートとしては、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるフィルム、これらの合成樹脂と不織布との複合材料からなるフィルム等を用いることができるが、本発明は、かかる例示のみに限定されるものではない。
 吸収性物品の種類については特に限定されないが、その代表例としては、紙オムツ、生理用ナプキン、失禁パッド等の衛生材料、ペット用の尿吸収材料等をはじめ、パッキング材等の土木建築用資材、ドリップ吸収剤、保冷剤等の食品鮮度保持用材料、土壌用保水材等の農園芸用物品等が挙げられる。
 本発明の吸水性樹脂は、高い保水能と高いゲル強度特性を兼ね備えたものである。従って、本発明の吸水性樹脂を用いることによって、液浸透速度などの性能に優れた吸収体や、これを用いた各種の吸収性物品を得ることができる。特に本発明の吸収性樹脂は、紙おむつ等の衛生材料に好適に使用することができる。
吸収性樹脂のゲル強度を測定する装置の概略構成を示す模式図である。
 以下に、本発明を実施例及び比較例に基づいて更に詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。
 尚、各実施例及び比較例で得られた吸水性樹脂について、生理食塩水保水能、中位粒子径、及びゲル強度を以下に示す方法により評価した。
 <吸水性樹脂の生理食塩水保水能>
500mL容のビーカーに、0.9質量%塩化ナトリウム水溶液(生理食塩水)500gを量り取り、600回転/分で撹拌しながら、吸水性樹脂2.0gを、ママコが発生しないように分散させた。撹拌した状態で30分間放置し、吸水性樹脂を十分に膨潤させた。その後、綿袋(メンブロード60番、横100mm×縦200mm)中に注ぎ込み、綿袋の上部を輪ゴムで縛り、遠心力が167Gとなるよう設定した脱水機(国産遠心機株式会社製、品番:g-122)を用いて綿袋を1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wa(g)を測定した。吸水性樹脂を添加せずに同様の操作を行ない、綿袋の湿潤時の空質量Wb(g)を測定し、以下の式から保水能を算出した。
 生理食塩水保水能(g/g)=[Wa-Wb](g)/吸水性樹脂の質量(g)
 <吸水性樹脂の中位粒子径>
 吸水性樹脂50gに、滑剤として、0.25gの非晶質シリカ(デグサジャパン(株)、Sipernat200)を混合した。
 JIS標準篩を用い、上から目開き850μmの篩、目開き600μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き150μmの篩及び受け皿の順に組み合わせ、組み合わせた最上の篩に、前記吸水性樹脂を入れ、ロータップ式振とう器を用いて20分間振とうさせて分級した。
 分級後、各篩上に残った吸水性樹脂の質量を全量に対する質量百分率として計算し、粒子径の大きい方から順に積算することにより、篩の目開きと篩上に残った吸水性樹脂の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。
 <吸水性樹脂のゲル強度>
 本発明の吸水性樹脂のゲル強度は、下記の条件で、図1に示すような測定原理を有する装置Y(例えば、飯尾電気社製ネオカードメーター、品番:M-303)を用いて測定した値である。
 装置Yは、支持部1、測定試料(ゲル)6を搭載するための可動台板2、可動台板2を駆動するための駆動部3および測定部4から構成される。
 支持部1において、支持台10に立てられた支柱11の上部に架台12が固定されている。支柱11には、上下に移動するように可動台板2が取り付けられている。架台12上にはパルスモーター30が搭載され、プーリー31を回転させることによって、ワイヤー32を介して可動台板2を上下に移動する。
 また、測定部4において、変形により生ずる歪みを計測するためのロードセル40に、精密スプリング41および連継軸42を介してディスク付き感圧軸43が取り付けられている。測定条件により、ディスクの直径は変更することができる。ディスク付き感圧軸43の上部には重り5を搭載することができる。
 装置Yの作動原理は、以下の通りである。
精密スプリング41を、上方のロードセル40(応力検出器)に固定し、下方にはディスク付き感圧軸43を連結して所定の重り5を乗せて垂直に懸吊してある。測定試料6を乗せた可動台板2は、パルスモーター30の回転により一定速度で上昇する。スプリング41を介して試料6に定速荷重を加え、変形により生ずる歪みをロードセル40で計測し、硬さを測定演算するものである。
 100mL容のビーカーに、生理食塩水29.0g(30倍膨潤)を量り取り、マグネチックスターラーバー(8mmφ×30mmのリング無し)を投入し、マグネチックスターラー(iuchi社製:HS-30D)の上に配置した。引き続きマグネチックスターラーバーを600回転/分で回転するように調整した。
 次に、吸水性樹脂1.0gを攪拌中のビーカー内に投入し、回転渦が消えて液面が水平になるまで攪拌を続け、測定試料6となるゲルを調製した。
 1時間後、装置Y(飯尾電気社製ネオカードメーター、品番:M-303、感圧軸のディスク16mmφ、荷重100g、スピード7秒/インチ、粘稠モード設定)を用いてゲルの硬さ値を測定した。得られた硬さ値(dyne/cm2)から、以下の式によってゲル強度aを算出した(0.1:単位補正係数(dyne/cm2→Pa))。
  ゲル強度a(Pa)=[硬さ値]×0.1
 次に、それぞれ生理食塩水39.0g(40倍膨潤)、49.0g(50倍膨潤)に変更した以外は同様の操作を行い、ゲル強度b及びゲル強度cを測定した。
 また、各ゲル強度a、b、cの総和で表される指数を、総ゲル強度とした。
  総ゲル強度(Pa)=ゲル強度a+ゲル強度b+ゲル強度c
 [実施例1]
ドラフトチャンバー内に、攪拌機、2段パドル翼、還流冷却器、滴下ロート及び窒素ガス導入管を備えた内径110mm、2L容の丸底円筒型セパラブルフラスコを準備した。
 このフラスコにn-ヘプタン290gをとり、ショ糖ステアリン酸エステル(三菱化学フーズ(株)、リョートーシュガーエステルS-370)0.74g、無水マレイン酸変性エチレン・プロピレン共重合体(三井化学(株)、ハイワックス1105A)0.74gを添加し、撹拌しつつ80℃まで昇温して界面活性剤を溶解した後、50℃まで冷却した。
 一方、500mL容の三角フラスコに80質量%のアクリル酸水溶液92g(1.02モル)をとり、外部より冷却しつつ、21質量%の水酸化ナトリウム水溶液146.0gを滴下して75モル%の中和を行った後、ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.030g(0.111ミリモル)、内部架橋剤としてN,N’-メチレンビスアクリルアミド0.010g(0.0649ミリモル)、連鎖移動剤として次亜リン酸ナトリウム一水和物5.4mg(0.0509ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。
 前記の第1段目の単量体水溶液の全量を、前記セパブルフラスコに添加して、系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、第1段目の重合を30分間行い、第1段目の反応混合物を得た。
 一方、別の500mL容の三角フラスコに80質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、ラジカル重合開始剤として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.042g(0.155ミリモル)、内部架橋剤としてN,N’-メチレンビスアクリルアミド0.012g(0.0778ミリモル)、次亜リン酸化合物として次亜リン酸ナトリウム一水和物7.6mg(0.0717ミリモル)を加えて溶解して、第2段目の単量体水溶液を調製した。
 前記第1段目の反応混合物を28℃に冷却し、同温度の前記第2段目の単量体水溶液を系内に添加し、30分間吸収させると同時に系内を窒素で十分に置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、第2段目の重合を30分間行った。
 第2段目の重合後、125℃の油浴で反応混合物を昇温し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを還流しながら240gの水を系外へ抜き出した後、エチレングリコールジグリシジルエーテルの2%水溶液4.42g(0.51ミリモル)を添加し、80℃で2時間、後架橋反応を行った。その後、125℃の油浴で反応混合物を昇温し、n-ヘプタンを蒸発させて乾燥することによって、吸水性樹脂230.3gを得た。各性能の測定結果を表1に示す。
 [実施例2]
実施例1において、第2段目の重合後系外へ抜き出した水の量を245gに変更した以外は、実施例1と同様の操作を行い、吸水性樹脂228.7gを得た。各性能の測定結果を表1に示す。
 [実施例3]
実施例1において、第2段目の重合後系外へ抜き出した水の量を250gに変更した以外は、実施例1と同様の操作を行い、吸水性樹脂226.9gを得た。各性能の測定結果を表1に示す。
 [実施例4]
実施例2において、ラジカル重合開始剤である2,2’-アゾビス(2-アミジノプロパン)二塩酸塩の第1段目の使用量を0.018g(0.0664ミリモル)、第2段目の使用量を0.025g(0.0922ミリモル)に変更し、連鎖移動剤である次亜リン酸ナトリウム一水和物の第1段目の使用量を3.8mg(0.0359ミリモル)、第2段目の使用量を5.3mg(0.0500ミリモル)に変更した以外は、実施例2と同様の操作を行い、吸水性樹脂230.7gを得た。各性能の測定結果を表1に示す。
 [実施例5]
実施例2において、ラジカル重合開始剤である2,2’-アゾビス(2-アミジノプロパン)二塩酸塩の第1段目の使用量を0.051g(0.188ミリモル)、第2段目の使用量を0.072g(0.265ミリモル)に変更した以外は、実施例2と同様の操作を行い、吸水性樹脂229.1gを得た。各性能の測定結果を表1に示す。
 [実施例6]
実施例2において、ラジカル重合開始剤である2,2’-アゾビス(2-アミジノプロパン)二塩酸塩の第1段目の使用量を0.044g(0.162ミリモル)、第2段目の使用量を0.061g(0.225ミリモル)に変更し、連鎖移動剤である次亜リン酸ナトリウム一水和物の第1段目の使用量を0.015g(0.142ミリモル)、第2段目の使用量を0.021g(0.198ミリモル)に変更した以外は、実施例2と同様の操作を行い、吸水性樹脂228.2gを得た。各性能の測定結果を表1に示す。
 [実施例7]
実施例1において、ラジカル重合開始剤である2,2’-アゾビス(2-アミジノプロパン)二塩酸塩の第1段目の使用量を0.044g(0.162ミリモル)、第2段目の使用量を0.061g(0.225ミリモル)に変更し、連鎖移動剤である次亜リン酸ナトリウム一水和物の第1段目の使用量を0.020g(0.189ミリモル)、第2段目の使用量を0.028g(0.264ミリモル)に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂230.2gを得た。各性能の測定結果を表1に示す。
 [比較例1]
ドラフトチャンバー内に、攪拌機、2段パドル翼、還流冷却器、滴下ロート及び窒素ガス導入管を備えた内径110mm、2L容の丸底円筒型セパラブルフラスコを準備した。
 このフラスコにn-ヘプタン290gをとり、ショ糖ステアリン酸エステル(三菱化学フーズ(株)、リョートーシュガーエステルS-370)0.74g、無水マレイン酸変性エチレン・プロピレン共重合体(三井化学(株)、ハイワックス1105A)0.74gを添加し、撹拌しつつ80℃まで昇温して界面活性剤を溶解した後、50℃まで冷却した。
 一方、500mL容の三角フラスコに80質量%のアクリル酸水溶液92g(1.02モル)をとり、外部より冷却しつつ、21質量%の水酸化ナトリウム水溶液146.0gを滴下して75モル%の中和を行った後、ラジカル重合開始剤として過硫酸カリウム0.11g(0.41ミリモル)、内部架橋剤としてN,N’-メチレンビスアクリルアミド0.010g(0.0649ミリモル)を加えて溶解し、第1段目の単量体水溶液を調製した。
 前記の第1段目の単量体水溶液の全量を、前記セパブルフラスコに添加して、系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、第1段目の重合を30分間行い、第1段目の反応混合物を得た。
 一方、別の500mL容の三角フラスコに80質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、ラジカル重合開始剤として過硫酸カリウム0.039g(0.144ミリモル)、内部架橋剤としてN,N’-メチレンビスアクリルアミド0.012g(0.0778ミリモル)を加えて溶解して、第2段目の単量体水溶液を調製した。
 前記第1段目の反応混合物を28℃に冷却し、同温度の前記第2段目の単量体水溶液を系内に添加し、30分間吸収させると同時に系内を窒素で十分に置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、第2段目の重合を30分間行った。
 第2段目の重合後、125℃の油浴で反応混合物を昇温し、n-ヘプタンと水との共沸蒸留によりn-ヘプタンを還流しながら240gの水を系外へ抜き出した後、エチレングリコールジグリシジルエーテルの2%水溶液4.42g(0.51ミリモル)を添加し、80℃で2時間、後架橋反応を行った。その後、125℃の油浴で反応混合物を昇温し、n-ヘプタンを蒸発させて乾燥することによって、吸水性樹脂229.3gを得た。各性能の測定結果を表1に示す。
 [比較例2]
比較例1において、第2段目の重合後系外へ抜き出した水の量を250gに変更した以外は、比較例1と同様の操作を行い、吸水性樹脂227.7gを得た。各性能の測定結果を表1に示す。
 [比較例3]
比較例1において、第2段目の重合後系外へ抜き出した水の量を258gに変更した以外は、比較例1と同様の操作を行い、吸水性樹脂227.5gを得た。各性能の測定結果を表1に示す。
 [比較例4]
実施例2において、ラジカル重合開始剤である2,2’-アゾビス(2-アミジノプロパン)二塩酸塩の第1段目の使用量を0.012g(0.0442ミリモル)、第2段目の使用量を0.017g(0.0627ミリモル)に変更した以外は、実施例2と同様の操作を行い、吸水性樹脂229.5gを得た。各性能の測定結果を表1に示す。
 [比較例5]
実施例3において、連鎖移動剤である次亜リン酸ナトリウム一水和物の第1段目の使用量を1.0mg(0.00943ミリモル)、第2段目の使用量を1.4mg(0.0132ミリモル)に変更した以外は、実施例3と同様の操作を行い、吸水性樹脂225.2gを得た。各性能の測定結果を表1に示す。
 [比較例6]
実施例3において、ラジカル重合開始剤である2,2’-アゾビス(2-アミジノプロパン)二塩酸塩の第1段目の使用量を0.060g(0.221ミリモル)、第2段目の使用量を0.084g(0.310ミリモル)に変更し、連鎖移動剤である次亜リン酸ナトリウム一水和物を使用しないこと以外は、実施例3と同様の操作を行い、吸水性樹脂226.4gを得た。各性能の測定結果を表1に示す。
 各実施例および各比較例で得られた吸水性樹脂を用いて、吸収体及び吸収性物品を作成し、以下の方法に基づいて評価した。その結果を表1に示す。
 <吸収性物品性能>
 (a)人工尿の調製
10L容の容器に適量の蒸留水を入れ、塩化ナトリウム60g、塩化カルシウム・二水和物1.8gおよび塩化マグネシウム・六水和物3.6gを添加し、溶解した。次いで、ポリオキシエチレンノニルフェニルエーテル0.02gを添加し、さらに蒸留水を追加して、全体の質量を6000gとした。さらに、少量の青色1号で着色して、人工尿を調製した。
 (b)吸収性物品の作製
 吸水性樹脂10gと粉砕パルプ(レオニア社製レイフロック)10gを用い、空気抄造によって均一混合することにより、42cm×12cmの大きさのシート状の吸収体コアを作製した。次に、吸収体コアの上下を、吸収体コアと同じ大きさで、坪量16g/m2 の2枚のティッシュッペーパーではさんだ状態で、ロールプレスを用いて圧縮し吸収体を作製した。さらに吸収体の上面に、吸収体と同じ大きさで、坪量22g/m2 のポリエチレン製エアスルー型多孔質液体透過性シートを配置し、同じ大きさ、同じ坪量のポリエチレン製液体不透過性シートを吸収体の下面に配置して、吸収体を挟みつけることにより、吸収性物品とした。
 (c)浸透時間
 液浸透速度を評価するために、以下の方法で浸透時間を測定した。浸透時間が短い程、液浸透速度が速いといえる。
 まず、水平の台上に吸収性物品を置いた。吸収性物品の中心部に、10cm×10cm、2kgの重りの中心に内径3cmの液投入用シリンダーを具備した測定器具を置き、50mLの人工尿をそのシリンダー内に一度に投入するとともに、ストップウォッチを用いて、人工尿がシリンダー内から完全に消失するまでの時間を測定し、1回目の浸透時間(秒)とした。次に、前記シリンダーをはずし、吸収性物品をそのままの状態で保存し、1回目の人工尿投入開始から30分後及び60分後にも、1回目と同じ位置に測定器具を用いて同様の操作を行い、2回目及び3回目の浸透時間(秒)を測定した。1回目~3回目の合計時間を合計浸透時間とした。浸透時間が短いほど、吸収性物品として好ましいと言える。例えば、合計浸透時間としては300秒以下が好ましい。
 (d)逆戻り量
 前記浸透時間の測定終了から60分経過後、吸収性物品上の人工尿投入位置付近に、あらかじめ質量(Wc(g)、約50g)を測定しておいた10cm四方の濾紙を置き、その上に底面が10cm×10cmの5kgの重りを載せた。5分間の荷重後、濾紙の質量(Wd(g))を測定し、増加した質量を逆戻り量(g)とした。逆戻り量が小さいほど、吸収性物品として好ましいと言える。例えば、逆戻り量として8g以下が好ましい。
  逆戻り量(g)=Wd-Wc
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~7で得られた吸水性樹脂は高い生理食塩水保水能の領域において総ゲル強度が高いことが分かる。また各実施例で得られた吸収性物品は、逆戻り量、合計浸透時間ともに優れた性能を発揮することが分かる。
 一方、比較例1で得られた吸水性樹脂の場合、吸水性樹脂の総ゲル強度は高いものの生理食塩水保水能が低いため、吸収性物品の逆戻り量が多かった。また比較例2~6で得られた吸水性樹脂については、吸水性樹脂の生理食塩水保水能は高いものの総ゲル強度が低いためにゲルブロッキング現象が生じ、合計浸透時間が長く、吸収性物品の液浸透速度が遅くなった。
Y           ゲル強度測定装置
1           支持部
10         支持台
11         支柱
12          架台
2           可動台板
3           可動台板駆動部
30         パルスモーター
31         プーリー
32         ワイヤー
4           測定部
40         ロードセル
41         精密スプリング
42         連継軸
43         感圧軸
5           重り
6           測定試料(ゲル)

Claims (3)

  1. 下記(1)及び(2)の条件を満足する吸水性樹脂:
    (1)生理食塩水保水能が40g/g以上であること、
    (2)30倍膨潤時のゲル強度a、40倍膨潤時のゲル強度b、及び50倍膨潤時のゲル強度cの総和で表される総ゲル強度が5500Pa以上であること、
    但し、30倍膨潤時のゲル強度aとは、ゲルと生理食塩水の合計質量がゲルの質量の30倍となるようにゲルに生理食塩水を加えて膨潤させた際のゲル強度であり、40倍膨潤時のゲル強度bとは、ゲルと生理食塩水の合計質量がゲルの質量の40倍となるようにゲルに生理食塩水を加えて膨潤させた際のゲル強度であり、50倍膨潤時のゲル強度cとは、ゲルと生理食塩水の合計質量が、ゲルの質量の50倍となるようにゲルに生理食塩水を加えて膨潤させた際のゲル強度である。
  2. 請求項1記載の吸水性樹脂と親水性繊維を含む吸収体。
  3. 請求項2記載の吸収体を、液体透過性シートと液体不透過性シートとの間に保持してなる吸収性物品。
PCT/JP2012/060627 2011-04-21 2012-04-19 吸水性樹脂、吸収体及び吸収性物品 WO2012144564A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/110,280 US20140031203A1 (en) 2011-04-21 2012-04-19 Water-absorbent resin, absorbent body and absorbent article
CN201280019586.5A CN103502287A (zh) 2011-04-21 2012-04-19 吸水性树脂、吸收体和吸收性物品
JP2013511037A JPWO2012144564A1 (ja) 2011-04-21 2012-04-19 吸水性樹脂、吸収体及び吸収性物品
EP12774301.1A EP2700663A4 (en) 2011-04-21 2012-04-19 WATER ABSORBENT RESIN, ABSORBENT BODY AND ABSORBENT ITEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095299 2011-04-21
JP2011-095299 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012144564A1 true WO2012144564A1 (ja) 2012-10-26

Family

ID=47041669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060627 WO2012144564A1 (ja) 2011-04-21 2012-04-19 吸水性樹脂、吸収体及び吸収性物品

Country Status (7)

Country Link
US (1) US20140031203A1 (ja)
EP (1) EP2700663A4 (ja)
JP (1) JPWO2012144564A1 (ja)
CN (1) CN103502287A (ja)
AR (1) AR086179A1 (ja)
TW (1) TW201247249A (ja)
WO (1) WO2012144564A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143734A1 (ja) * 2015-03-10 2016-09-15 Sdpグローバル株式会社 水性液体吸収性樹脂の製造方法
JP2018050833A (ja) * 2016-09-27 2018-04-05 ユニ・チャーム株式会社 吸収性物品
JP2018050835A (ja) * 2016-09-27 2018-04-05 ユニ・チャーム株式会社 吸収性物品
US10323105B2 (en) 2014-07-11 2019-06-18 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and absorbent article
US10525443B2 (en) 2014-07-11 2020-01-07 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and absorbent article
WO2020184395A1 (ja) * 2019-03-08 2020-09-17 住友精化株式会社 吸水性樹脂粒子及びその製造方法、吸収体、吸収性物品、並びに、浸透速度の調整方法
WO2020184393A1 (ja) * 2019-03-08 2020-09-17 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
US11136420B2 (en) 2014-07-11 2021-10-05 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and method of producing water-absorbent resin
CN114249567A (zh) * 2021-12-06 2022-03-29 纳思同(无锡)科技发展有限公司 一种超高性能混凝土及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719079B1 (ja) 2014-07-11 2015-05-13 住友精化株式会社 吸水性樹脂及び吸収性物品
JP7194101B2 (ja) * 2017-03-29 2022-12-21 住友精化株式会社 吸水性樹脂

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227301A (ja) 1990-01-31 1991-10-08 Sumitomo Seika Chem Co Ltd 吸水性樹脂の製造方法
JPH06287233A (ja) 1993-03-31 1994-10-11 Mitsubishi Petrochem Co Ltd 高吸水性ポリマーの製造法
JPH06345819A (ja) 1993-06-08 1994-12-20 Nippon Synthetic Chem Ind Co Ltd:The 高吸水性樹脂の製造法
JPH08120013A (ja) 1994-10-20 1996-05-14 Nippon Synthetic Chem Ind Co Ltd:The 高吸水性樹脂の製造法
JPH09124710A (ja) 1995-11-02 1997-05-13 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
JP2005111474A (ja) * 2003-09-19 2005-04-28 Nippon Shokubai Co Ltd 吸水剤およびその製法
WO2006123561A1 (ja) * 2005-05-16 2006-11-23 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂粒子の製造方法、それにより得られる吸水性樹脂粒子、およびそれを用いた吸収体および吸収性物品
WO2012023433A1 (ja) * 2010-08-19 2012-02-23 住友精化株式会社 吸水性樹脂

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1256640A (en) * 1984-03-05 1989-06-27 Harumasa Yamasaki Absorptive material
CN1232550C (zh) * 2000-04-13 2005-12-21 三洋化成工业株式会社 交联聚合物及其制造方法、吸收性结构物和吸收性制品
JP4880144B2 (ja) * 2001-09-19 2012-02-22 住友精化株式会社 吸収体およびそれを用いた吸収性物品
BRPI0410215A (pt) * 2003-05-13 2006-05-09 Sumitomo Seika Chemicals método para produção de resina absorvedora de água
JP5191105B2 (ja) * 2006-06-27 2013-04-24 住友精化株式会社 吸水性樹脂粒子の製造方法およびそれによって得られる吸水性樹脂粒子
TWI427087B (zh) * 2007-03-16 2014-02-21 Nippon Catalytic Chem Ind 吸水性樹脂的製造方法及其用途
CN101914256B (zh) * 2010-08-06 2012-05-23 西北师范大学 采用植物秸秆制备复合保水剂的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03227301A (ja) 1990-01-31 1991-10-08 Sumitomo Seika Chem Co Ltd 吸水性樹脂の製造方法
JPH06287233A (ja) 1993-03-31 1994-10-11 Mitsubishi Petrochem Co Ltd 高吸水性ポリマーの製造法
JPH06345819A (ja) 1993-06-08 1994-12-20 Nippon Synthetic Chem Ind Co Ltd:The 高吸水性樹脂の製造法
JPH08120013A (ja) 1994-10-20 1996-05-14 Nippon Synthetic Chem Ind Co Ltd:The 高吸水性樹脂の製造法
JPH09124710A (ja) 1995-11-02 1997-05-13 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
JP2005111474A (ja) * 2003-09-19 2005-04-28 Nippon Shokubai Co Ltd 吸水剤およびその製法
WO2006123561A1 (ja) * 2005-05-16 2006-11-23 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂粒子の製造方法、それにより得られる吸水性樹脂粒子、およびそれを用いた吸収体および吸収性物品
WO2012023433A1 (ja) * 2010-08-19 2012-02-23 住友精化株式会社 吸水性樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700663A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10525443B2 (en) 2014-07-11 2020-01-07 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and absorbent article
US11136420B2 (en) 2014-07-11 2021-10-05 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and method of producing water-absorbent resin
US10323105B2 (en) 2014-07-11 2019-06-18 Sumitomo Seika Chemicals Co. Ltd. Water-absorbent resin and absorbent article
JPWO2016143734A1 (ja) * 2015-03-10 2017-12-21 Sdpグローバル株式会社 水性液体吸収性樹脂の製造方法
WO2016143734A1 (ja) * 2015-03-10 2016-09-15 Sdpグローバル株式会社 水性液体吸収性樹脂の製造方法
JP2018050835A (ja) * 2016-09-27 2018-04-05 ユニ・チャーム株式会社 吸収性物品
JP2018050833A (ja) * 2016-09-27 2018-04-05 ユニ・チャーム株式会社 吸収性物品
JP7076177B2 (ja) 2016-09-27 2022-05-27 ユニ・チャーム株式会社 吸収性物品
JP7085795B2 (ja) 2016-09-27 2022-06-17 ユニ・チャーム株式会社 吸収性物品
WO2020184395A1 (ja) * 2019-03-08 2020-09-17 住友精化株式会社 吸水性樹脂粒子及びその製造方法、吸収体、吸収性物品、並びに、浸透速度の調整方法
JPWO2020184395A1 (ja) * 2019-03-08 2020-09-17
WO2020184393A1 (ja) * 2019-03-08 2020-09-17 住友精化株式会社 吸水性樹脂粒子、吸収体及び吸収性物品
JP7443330B2 (ja) 2019-03-08 2024-03-05 住友精化株式会社 吸水性樹脂粒子及びその製造方法、吸収体、吸収性物品、並びに、浸透速度の調整方法
CN114249567A (zh) * 2021-12-06 2022-03-29 纳思同(无锡)科技发展有限公司 一种超高性能混凝土及其制备方法
CN114249567B (zh) * 2021-12-06 2022-08-09 纳思同(无锡)科技发展有限公司 一种超高性能混凝土及其制备方法

Also Published As

Publication number Publication date
TW201247249A (en) 2012-12-01
EP2700663A4 (en) 2015-03-04
EP2700663A1 (en) 2014-02-26
US20140031203A1 (en) 2014-01-30
AR086179A1 (es) 2013-11-27
CN103502287A (zh) 2014-01-08
JPWO2012144564A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012144564A1 (ja) 吸水性樹脂、吸収体及び吸収性物品
KR102567287B1 (ko) 흡수성 수지 입자
US10265226B2 (en) Water-absorbent resin, water-absorbent material, and water-absorbent article
US9925294B2 (en) Water-absorbent resin and absorbent article
EP3153529B1 (en) Water-absorbing resin and absorbent article
JP5719078B1 (ja) 吸水性樹脂の製造方法
EP2607383A1 (en) Water-absorbing resin
JP5885735B2 (ja) 吸水性樹脂の製造方法
WO2016006132A1 (ja) 吸水性樹脂及び吸収性物品
US9982069B2 (en) Water-absorbent resin and absorbent article
WO2018180864A1 (ja) 吸水性樹脂
WO2018159800A1 (ja) 吸水性樹脂及び吸収性物品
WO2018159802A1 (ja) 吸水性樹脂及び吸収性物品
JP7194197B2 (ja) 吸収体及び吸収性物品
US20220008894A1 (en) Water absorbent resin, absorbent body, absorbent article, and production method for water absorbent resin
WO2023190492A1 (ja) 吸水性樹脂組成物の製造方法
WO2022255300A1 (ja) 吸水性樹脂の製造方法、吸水性樹脂、吸収体及び吸収性物品
WO2024071258A1 (ja) 吸水性樹脂粒子の製造方法
WO2022210678A1 (ja) 吸水性樹脂、吸収体及び吸収性物品
WO2022255302A1 (ja) 吸水シート及び吸収性物品
WO2020095811A1 (ja) 吸水性樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774301

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511037

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012774301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14110280

Country of ref document: US

Ref document number: 2012774301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE