WO2012144474A1 - 制御装置、電力制御システム、及び電力制御方法 - Google Patents
制御装置、電力制御システム、及び電力制御方法 Download PDFInfo
- Publication number
- WO2012144474A1 WO2012144474A1 PCT/JP2012/060295 JP2012060295W WO2012144474A1 WO 2012144474 A1 WO2012144474 A1 WO 2012144474A1 JP 2012060295 W JP2012060295 W JP 2012060295W WO 2012144474 A1 WO2012144474 A1 WO 2012144474A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- schedule
- load
- during
- power supply
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/466—Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/062—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
- H02J2310/12—The local stationary network supplying a household or a building
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/70—Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the present invention relates to a control device, a power control system, and a power control method which are provided in a consumer having a power supply means capable of independent operation and at least one load and control the power supply means and the load.
- a power conditioner provided in a consumer converts power generated by power generation of a power generation device such as a solar battery (PV) and / or discharge of a storage battery into alternating current and outputs the alternating current to a load and a power system.
- a power generation device such as a solar battery (PV) and / or discharge of a storage battery
- PV solar battery
- Such power conditioners can execute “self-sustaining operation” of supplying power obtained by power generation of the power generation device and / or discharge of the storage battery to the load without receiving power supply from the power system. .
- Such self-sustained operation can supply power to the load even during a power failure.
- HEMS Home Energy Management System
- BEMS Building Energy
- a consumer is provided with a control device that controls power supply means (power generation device, storage battery, power conditioner, etc.) and a load.
- power supply means power generation device, storage battery, power conditioner, etc.
- an object of the present invention is to provide a control device, a power control system, and a power control method that can appropriately determine an operation schedule of a load during the independent operation.
- the present invention has the following features.
- the feature of the control device according to the present invention is provided in a consumer having power supply means (for example, PV100, storage battery 200, PCS400, distribution board 500) capable of independent operation and at least one load (load 300), A control device (for example, HEMS700) for controlling the power supply means and the load, and an operation schedule determination unit (operation schedule determination unit) that determines a schedule during independent operation that is an operation schedule of the load during autonomous operation 712), and the operation schedule determination unit determines the schedule during the independent operation based on a period during which the autonomous operation is performed, a power supply status of the power supply means, and a status of the load.
- power supply means for example, PV100, storage battery 200, PCS400, distribution board 500
- a control device for example, HEMS700
- an operation schedule determination unit operation schedule determination unit that determines a schedule during independent operation that is an operation schedule of the load during autonomous operation 712
- the operation schedule determination unit determines the schedule during the independent operation based on a period during which the autonomous operation is performed, a power
- the operation schedule determination unit determines the schedule during the independent operation at the start of the autonomous operation or during the autonomous operation.
- the operation schedule determination unit is configured to execute the self-sustained operation, the power supply status of the power supply means before determining the self-sustained operation schedule, and before determining the self-supporting operation schedule.
- the self-sustained operation schedule is determined based on the load status.
- the information processing device further includes an acquisition unit (information acquisition unit 711) that acquires a setting of power supply priority for the load, and the operation schedule determination unit determines the schedule during independent operation further based on the setting. To do.
- the power generation control unit further includes a power saving control unit (power saving control unit 715A) that performs power saving control for reducing each power consumption of the load during the independent operation
- the operation schedule determination unit includes: Based on the power saving control, the self-sustaining operation schedule is determined.
- the operation schedule determination unit further includes a power leveling control unit (power leveling control unit 715B) that performs power leveling control for leveling the total power consumption of the load during the independent operation. Determines the schedule during the independent operation further based on the power leveling control.
- power leveling control unit 715B power leveling control unit 715B
- the determination is made based on at least one of a power supply status of the power supply means during the autonomous operation, a load status during the autonomous operation, or a user status during the autonomous operation.
- An operation schedule change unit (operation schedule change unit 714) that changes at least a part of the schedule during independent operation is further provided.
- the power control system according to the present invention is characterized in that it is provided to a customer having power supply means (for example, PV100, storage battery 200, PCS400, distribution board 500) capable of independent operation and at least one load (load 300).
- a power control system having a control device (for example, HEMS 700) for controlling the power supply means and the load, and determining an operation schedule for determining a self-sustained operation schedule that is an operation schedule of the load during the self-sustained operation Unit (operation schedule determination unit 712), and the operation schedule determination unit is performing the independent operation based on a period of executing the independent operation, a power supply status of the power supply means, and a status of the load.
- the gist is to determine the schedule.
- the power control method is characterized in that a control device for controlling the power supply means and the load is provided in a consumer having a power supply means capable of independent operation and at least one load.
- a determination step of determining a schedule during independent operation that is an operation schedule of the load during operation, wherein in the determination step, a period during which the autonomous operation is performed, a power supply status of the power supply means, and a status of the load Based on the above, the gist is to determine the schedule during the independent operation.
- FIG. 1 is an overall configuration diagram of a power control system according to an embodiment of the present invention. It is a figure which shows the detailed structural example 1 of PCS and an electricity distribution panel which concern on embodiment of this invention. It is a figure which shows the detailed structural example 2 of PCS and an electricity distribution panel which concern on embodiment of this invention. It is a block diagram of HEMS which concerns on embodiment of this invention. It is a functional block diagram of the processing part of HEMS concerning the embodiment of the present invention. It is a flowchart of the independent operation control flow by HEMS which concerns on embodiment of this invention. It is a flowchart of the independent operation control flow by HEMS which concerns on other embodiment.
- FIG. 1 is an overall configuration diagram of a power control system according to the present embodiment.
- power lines are indicated by bold lines
- control signal lines are indicated by broken lines.
- the control signal line is not limited to a wired line but may be wireless.
- the power control system provides a solar cell (PV) 100, a storage battery 200, and a power conditioner (PCS) to consumers who receive the supply of AC power from the power system 1 of an electric power company.
- PV solar cell
- PCS power conditioner
- 400, distribution board 500, smart meter 600, and HEMS 700 are provided.
- PV100 receives sunlight and generates power, and outputs DC power obtained by power generation to PCS400 via a power line provided between PCS400.
- the PV 100 includes one or more panels.
- PV100 may be constituted using a plurality of strings constituted by a plurality of panels.
- the storage battery 200 stores electric power, and outputs DC power obtained by discharging to the PCS 400 via a power line provided between the PCS 400 and charges the DC power from the PCS 400.
- the storage battery 200 outputs information indicating the stored power to the PCS 400 via a control signal line provided between the storage battery 200 and the control signal for charging / discharging.
- the load 300 is supplied with AC power via a power line provided between the load panel 500 and the load 300 operates by consuming the supplied AC power.
- the load 300 may be one or plural.
- the load 300 is not limited to lighting, or home appliances such as an air conditioner, a refrigerator, and a television, but may include a heat accumulator or the like.
- the load 300 is configured to be communicable with the HEMS 700, and is configured to shift to the power saving mode in accordance with a control command from the HEMS 700.
- PCS 400 has a function of converting DC power obtained by power generation of PV 100 and discharging of storage battery 200 into AC, and a function of converting AC power from power system 1 into DC and outputting it.
- a PCS 400 may be referred to as a hybrid PCS.
- the PCS 400 inputs / outputs AC power to / from the distribution board 500 via a power line provided between the PCS 400 and the distribution board 500. Further, the PCS 400 outputs DC power for charging the storage battery 200 to the storage battery 200 via a power line provided between the PCS 400 and the storage battery 200.
- the PCS 400 includes a DC / DC converter 410, a DC / AC converter 420, a controller 430, and a stand-alone operation outlet 440. However, the PCS 400 may not have the independent operation outlet 440.
- DC / DC converter 410 DC / DC converts DC power obtained by the power generation of PV 100, and outputs DC power to storage battery 200 and / or DC / AC converter 420 under the control of controller 430.
- the DC / AC converter 420 converts the DC power output from the DC / DC converter 410 and / or the DC power obtained by the discharge of the storage battery 200 into AC under the control of the controller 430, and distributes the power. Output to 500.
- the DC / AC converter 420 outputs AC power to the stand-alone operation outlet 440 under the control of the controller 430.
- the DC / AC converter 420 converts the AC power input from the distribution board 500 into DC and outputs it to the storage battery 200 under the control of the controller 430.
- the controller 430 controls various functions of the PCS 400, and is configured using a CPU and a memory. In addition, the controller 430 transmits and receives various control signals to and from the HEMS 700. Specifically, the controller 430 includes a measured value of power (hereinafter, generated power) obtained by the power generation of the PV 100, a measured value of power stored in the storage battery 200 (hereinafter, stored power), and a stand-alone operation outlet 440. And the measured values of the power supplied by the HEMS 700 are notified to the HEMS 700. Further, the controller 430 controls charging / discharging of the storage battery 200 or adjusts the generated power according to the control command received from the HEMS 700.
- the controller 430 may be connected to a user interface unit that receives input from the user.
- the stand-alone operation outlet 440 is for supplying power to the load during the stand-alone operation.
- the stand-alone operation outlet 440 is not limited to being provided in the PCS 400 but may be provided apart from the PCS 400 via the power line.
- Distribution board 500 distributes power under the control of controller 430 of PCS 400 and / or HEMS 700.
- the distribution board 500 receives the insufficient AC power from the power system 1, and receives the AC power output from the PCS 400 and the power system 1.
- AC power is supplied to the load 300.
- the distribution board 500 transmits the excess AC power to the power system 1 (power sale).
- connection operation The operation state in which both the power from the PCS 400 and the power from the power system 1 are supplied to the load 300 is referred to as “interconnection operation”, and the operation state in which only the power from the PCS 400 is supplied to the load 300 is “independent operation”. It is called “driving”.
- Distribution board 500 performs disconnection from power system 1 at the time of a power failure of power system 1 (hereinafter, simply referred to as “power failure”), and shifts from the grid operation to the independent operation.
- the load 300 is supplied with the generated power from the PV 100 and the discharged power from the storage battery 200 via the PCS 400 and the distribution board 500. That is, in this embodiment, PV100, the storage battery 200, PCS400, and the distribution board 500 comprise the electric power supply means which can be operated independently.
- the smart meter 600 is provided on a power line between the power system 1 and the distribution board 500, measures the power purchase power input / output to / from the power system 1, and notifies the measured value to the HEMS 700.
- the smart meter 600 communicates with the external network 2 to transmit a measured value of purchased power for power sale to the external network 2 or to receive electricity rate information and the like.
- the HEMS 700 is for performing power management in the consumer, and transmits various control commands to the PCS 400 and the distribution board 500 to control each device in the consumer and various measurement values. It has a function of collecting and monitoring / displaying the state of each device in the consumer. Further, the HEMS 700 determines an operation schedule of the load 300 and performs control according to the determined operation schedule. In the present embodiment, the HEMS 700 corresponds to a control device that controls the power supply means (such as the PV 100, the storage battery 200, and the PCS 400) and the load 300. Note that the HEMS 700 may acquire information used for control from the external network 2 by communicating with the external network 2.
- FIG. 2 is a diagram illustrating a detailed configuration example 1 of the PCS 400 and the distribution board 500.
- the PCS 400 includes a display unit 450 and a speaker 460 in addition to the DC / DC converter 410, the DC / AC converter 420, and the controller 430.
- the display unit 450 displays that a power failure is occurring under the control of the controller 430.
- the speaker 460 outputs a sound indicating that a power failure is occurring under the control of the controller 430.
- the distribution board 500 has a function of disconnecting from the power system 1 and a function of switching the presence / absence of power supply for each outlet 801 to 804 during the independent operation.
- the distribution board 500 includes a service breaker 501, a main breaker 502, power switches 503 to 508, and a power consumption sensor CT.
- the service breaker 501, the main breaker 502, and the power switches 503 to 508 are turned on / off under the control of the controller 430 of the PCS 400.
- the power sensor CT measures the power consumed by a load (for example, lighting or refrigerator) connected to the outlets 801 to 804 and notifies the controller 430 of the measured value.
- the controller 430 When power is obtained from the power system 1, the controller 430 turns on each of the service breaker 501 and the main breaker 502 in accordance with a control command from the HEMS 700, for example. As a result, power can be supplied to the loads connected to the outlets 801 to 804.
- the controller 430 sets the main breaker 502 to an off (disconnection) state with the service breaker 501 turned on in response to a control command from the HEMS 700, for example. To do.
- AC power output from the PCS 400 can be supplied to loads connected to the outlets 801 and 802, but power cannot be supplied to loads connected to the outlets 803 and 804. It becomes a state.
- FIG. 3 is a diagram illustrating a detailed configuration example 2 of the PCS 400 and the distribution board 500.
- the PCS 400 according to this configuration example is the same as the configuration example 1 in that it includes a DC / DC converter 410, a bidirectional DC / AC converter 420, and a controller 430.
- And 402 are different from the configuration example 1.
- the distribution board 500 according to this configuration example is the same as the configuration example 1 in that it includes a service breaker 501 and a main breaker 502, but the controller 520 and power switches 511 to 503 provided for the outlets 801 to 805 are provided.
- 515 is different from Configuration Example 1 in that it includes 515.
- a power consumption sensor S is provided for each of the outlets 801 to 805, and the controller 520 collects each measured value and notifies the controller 430 of the PCS 400.
- the signal line connection between the controller 520 and the power consumption sensor S is omitted.
- the controller 430 When power is obtained from the power system 1, the controller 430 turns on each of the power switch 401, the service breaker 501, and the main breaker 502 according to a control command from the HEMS 700, for example. Is controlled to be turned off, and each of the power switches 511 to 515 is controlled to be switched to the power system 1 side. As a result, power can be supplied to the loads connected to the outlets 801 to 805.
- the controller 430 turns off the power switch 401, the service breaker 501, and the main breaker 502 according to a control command from the HEMS 700, for example. Control to turn on.
- the power switches 401 and 402 in the PCS 400 as in the present embodiment, it is possible to control the power to the load during the independent operation in the PCS 400.
- the controller 520 controls the power switches 511 to 515 to be sequentially turned on (cyclically) as shown in the lower part of FIG. 3 in accordance with an instruction from the controller 430, for example. That is, the outlets 801 to 805 are controlled so as to sequentially (cyclically) allocate the time during which power can be supplied. This prevents power from being supplied to two or more loads simultaneously in a plurality of loads connected to each of the outlets 801 to 805, so that power consumption is dispersed in time (leveled). )be able to.
- power leveling control Such control is referred to as “power leveling control”.
- the time interval to be allocated may be a unit of several minutes to several tens of minutes, and a load that needs to be continuously supplied may be supplied continuously.
- FIG. 4 is a configuration diagram of the HEMS 700.
- the HEMS 700 includes a processing unit 710, a storage unit 720, a local communication I / F unit 730, a wide area communication I / F unit 740, and a user I / F unit 750.
- the processing unit 710, the storage unit 720, the local communication I / F unit 730, the wide area communication I / F unit 740, and the user I / F unit 750 exchange information via a bus line or a LAN.
- the processing unit 710 is configured by a CPU, for example, and controls various functions of the HEMS 700 by executing a control program stored in the storage unit 720. Further, the processing unit 710 performs a self-sustained operation control described later. The functional block configuration of the processing unit 710 will be described later.
- the storage unit 720 includes, for example, a RAM or a nonvolatile memory, and stores various types of information used for controlling the HEMS 700 and the like.
- the on-premises communication I / F unit 730 is a communication I / F for communicating with each device in the customer.
- the local communication I / F unit 730 performs communication using, for example, Zigbee (registered trademark) or Ethernet (registered trademark).
- the wide area communication I / F unit 740 is a communication I / F for performing communication with the external network 2.
- the user I / F unit 750 includes an input unit that receives input from the user and a display unit that performs various displays.
- FIG. 5 is a functional block diagram of the processing unit 710.
- the processing unit 710 includes an information acquisition unit 711, an operation schedule determination unit 712, an operation schedule change unit 714, and a control command generation unit 715.
- the information acquisition unit 711 uses the local communication I / F unit 730 and / or the wide-area communication I / F unit 740 to determine various types of information for determining a schedule during the independent operation that is the operation schedule of the load 300 during the independent operation. (Details will be described later).
- the operation schedule determination unit 712 determines a schedule during independent operation based on the information acquired by the information acquisition unit 711.
- the operation schedule determination unit 712 stores information on the determined independent operation schedule in the operation schedule storage unit 721 provided in the storage unit 720.
- the operation schedule changing unit 714 changes the schedule during the independent operation stored in the operation schedule storage unit 721 based on the information newly acquired by the information acquisition unit 711, and the operation before the change according to the changed operation schedule. Update the schedule.
- the control command generation unit 715 generates a control command according to the operation schedule stored in the operation schedule storage unit 721, and transmits the generated control command to equipment in the customer via the local communication I / F unit 730.
- control command generation unit 715 includes a power saving control unit 715A and a power leveling control unit 715B.
- the power saving control unit 715A generates a power saving control command for instructing “power saving control” for causing the load 300 to operate in the power saving mode at the start of independent operation, and the generated power saving control command is transmitted to the local communication.
- the data is transmitted to the load 300 via the I / F unit 730.
- the power leveling control unit 715B generates a power leveling control command for instructing the power leveling control described above at the start of independent operation, and the generated power leveling control command is used as the local area communication I / F unit 730. To the distribution board 500 via
- FIG. 6 is a flowchart of a self-sustained operation control flow by the HEMS 700. This flow is started in response to detection of a power failure or switching operation to independent operation by a user.
- step S ⁇ b> 11 the information acquisition unit 711 acquires scheduled power outage period information, power storage information, power generation information, and power consumption information.
- the scheduled power outage period information is information indicating the scheduled power outage period determined by the planned power outage (rotary power outage). For example, the date corresponding to the scheduled power outage period, the start time of the planned outage period, and the end of the planned outage period Including time.
- the information acquisition unit 711 acquires the scheduled power outage period information from the external network 2 via the wide area communication I / F unit 740 or acquires the scheduled power outage period information based on the user input to the user I / F unit 750.
- the user I / F unit for example, the input unit 470 shown in FIG. 2
- the scheduled power outage period information is acquired based on the user input to the user I / F unit 750 of the PCS 400. May be.
- the smart meter 600 can acquire the scheduled power outage period information from the external network 2
- the scheduled power outage period information may be acquired from the smart meter 600 via the local communication I / F unit 730.
- the scheduled power outage period indicated by the information about the planned power outage period described above corresponds to a period during which the autonomous operation is performed.
- the storage information is information indicating the stored power of the storage battery 200 before the power failure (immediately before the power failure).
- the information acquisition unit 711 acquires power storage information from the PCS 400 via the local area communication I / F unit 730.
- the power generation information is information indicating the generated power of the PV 100 before the power failure (immediately before the power failure).
- the information acquisition unit 711 acquires power generation information from the PCS 400 via the local area communication I / F unit 730. Alternatively, the information acquisition unit 711 acquires the generated power indicating the predicted generated power of the PV 100 during the independent operation based on information useful for obtaining the predicted generated power of the PV 100 in the future (during the independent operation).
- information useful for obtaining the predicted generated power is, for example, the following information.
- Weather forecast and weather sensor From this information, it is possible to estimate the amount of solar radiation that affects PV100's power generation, and to predict future generated power.
- the information acquisition unit 711 acquires weather prediction information and weather sensor information from the external network 2 via the wide area communication I / F unit 740.
- the information acquisition unit 711 acquires information on the current date and current time from the external network 2 via the internal timer of the HEMS 700 or the wide area communication I / F unit 740.
- ⁇ Estimation from the amount of power generated at the start of a power outage For example, it is possible to predict the future generated power depending on whether the power generated at the time of a power outage (when shifting to independent operation) is increasing or decreasing.
- Past power generation result data For example, the power generation in the future can be predicted by storing the generated power in the storage unit 720 for each environmental condition and searching for the past generated power that matches the current environmental condition.
- the above-described power storage information and power generation information correspond to the power supply status of the power supply means.
- the power consumption information is information indicating the total power consumption of the load 300 before the power failure (immediately before the power failure).
- the total power consumption of the load 300 can be measured by, for example, the distribution board 500 or the outlet to which the load 300 is connected, and the information acquisition unit 711 acquires the power consumption information via the local communication I / F unit 730. To do. Or as shown in FIG. 2, when the load which should supply electric power during independent operation is limited, what is necessary is just to acquire the power consumption information about the said load.
- information on the load may be acquired manually or automatically, and power consumption information on the load may be obtained from the acquired information.
- the schedule during the independent operation For example, it is determined how much the total power consumption of the load 300 can be covered by the total power that can be supplied to the load 300 during a power failure (during independent operation), A schedule for determining whether to supply power to the load 300 at such timing is determined.
- the information acquisition unit 711 can more appropriately determine the schedule during independent operation by acquiring the load priority order information, the power saving mode information, the power leveling information, and the startup power information.
- the load priority information is information in which the power supply priority for the load 300 is set.
- the information acquisition unit 711 acquires load priority information based on a user input to the user I / F unit 750.
- the load priority order information at a predetermined priority order may be stored in the storage unit 720 and the load priority order information may be acquired from the storage unit 720.
- a predetermined priority for example, when a gas power generation device is provided in a consumer, the gas power generation device is set to the highest priority, and the HEMS 700 and the emergency light are set to the next highest priority. .
- the power saving mode information is information indicating information on the power saving mode for each load 300 (for example, the type of the power saving mode and the power consumption in the power saving mode).
- the power leveling information is information related to power leveling control as shown in FIG. 3 (for example, information on the load 300 to be subjected to power leveling control).
- the activation power information is information indicating the activation power for each load 300. For example, in the event of a power outage, intermittent operation as a power saving mode is performed and the refrigerator temperature rises. It is assumed that the power consumption will be less if the time is continued. Therefore, it is preferable to determine the schedule in consideration of the startup power information (and the internal temperature of the refrigerator if it can be acquired).
- the operation schedule determination unit 712 includes the scheduled power outage period information acquired by the information acquisition unit 711, power storage information, power generation information, power consumption information, load priority information, power saving mode information, power leveling information, and Based on the starting power information, the schedule during the independent operation is determined. For example, it is determined how much the total power consumption that can be applied to power saving control and power leveling control can be covered by the total power that can be supplied to the load 300 during a power failure (during independent operation) In consideration of the priority of the load 300 and the start-up power, a schedule is determined as to which load power is supplied at what timing in the scheduled power outage period (independent operation period).
- Table 1 shows a load self-sustained operation schedule determined based on power storage information and power generation information after inputting a scheduled power outage period of 2 hours.
- a schedule may be established so that the load power consumption does not exceed the power generation amount of the storage battery and the solar battery.
- the “power leveling control” described in FIG. 3 may be performed.
- the operation schedule storage unit 721 stores the independent operation schedule determined by the operation schedule storage unit 721.
- step S ⁇ b> 13 the control command generation unit 715 generates a switching command to autonomous operation, and transmits the generated switching command to the PCS 400 and the distribution board 500 via the local area communication I / F unit 730.
- the distribution board 500 may automatically perform the switching to the independent operation, or the user may manually perform the switching to the independent operation by connecting the load 300 to the outlet 440 for the autonomous operation.
- step S14 the control command generation unit 715 sends a control command according to the schedule information during the independent operation stored in the operation schedule storage unit 721 via the local communication I / F unit 730, the load 300, the PCS 400, Transmit to distribution board 500.
- step S19 When the self-sustaining operation is terminated due to the elapse of the scheduled power failure period, the system is switched to grid interconnection (step S19), and this flow is terminated.
- step S16 the information acquisition unit 711 acquires power storage information, power generation information, and load priority information again.
- the reason why the storage information and the power generation information are acquired again is to change the schedule during the independent operation when there is an error between the current stored power and the current generated power with respect to the initial prediction.
- the reason why the load priority information is acquired again is to allow an unscheduled load interruption, such as when the mobile phone needs to be charged.
- the information acquisition part 711 may acquire human sensor information, when the human sensor is provided in the consumer. For example, it is conceivable that a human sensor is provided in each room, and the operation schedule of lighting, air conditioners, and the like is changed depending on whether or not the user is present in the room.
- Table 2 shows the changes in the independent operation schedule when the power generation information is obtained again after one hour has elapsed after operating according to the independent operation schedule shown in Table 1 and the mobile phone is suddenly charged.
- step S ⁇ b> 17 the driving schedule changing unit 714 is based on the power storage information, the power generation information, the load priority information, and the human sensor information acquired by the information acquiring unit 711. Determine whether to change the medium schedule.
- step S17 If it is determined that the schedule during the independent operation is not changed (step S17; NO), the process returns to step S14.
- step S18 the operation schedule changing unit 714 changes the schedule during the independent operation stored in the operation schedule storage unit 721, and then performs the process. Return to step S14.
- the operation schedule determination unit 712 determines the schedule during the independent operation based on the period for executing the independent operation, the power supply status of the power generation device and the storage battery 200, and the status of the load 300.
- the operation schedule of the load 300 during a power failure (that is, during the independent operation) can be appropriately determined.
- the operation schedule determination unit 712 determines the operation schedule of the load 300 during a power failure (that is, during the independent operation) at an appropriate timing by determining the schedule during the independent operation at the start of the independent operation. it can.
- the operation schedule determination unit 712 determines the period during which the independent operation is performed, the power supply status of the power generation apparatus and the storage battery 200 before determining the schedule during the independent operation, and the schedule during the independent operation. By determining the schedule during independent operation based on the status of the load 300, the schedule during independent operation according to the latest situation can be determined.
- the operation schedule determination unit 712 can supply power to the load 300 with an appropriate priority by determining the schedule during the independent operation based further on the setting of the power supply priority for the load 300.
- the operation schedule determination unit 712 can appropriately determine the schedule during the independent operation in consideration of the power saving control during the independent operation by determining the schedule during the independent operation based further on the power saving control. .
- the operation schedule determination unit 712 appropriately determines the schedule during the independent operation in consideration of the power leveling control during the independent operation by determining the schedule during the independent operation based further on the electric power leveling control. Can be determined.
- the operation schedule changing unit 714 is based on at least one of the power supply status of the power generator and the storage battery 200 during the autonomous operation, the status of the load 300 during the autonomous operation, or the status of the user during the autonomous operation. By changing at least a part of the determined independent operation schedule, the independent operation schedule can be appropriately changed during the independent operation.
- the HEMS 700 for performing power management in units of houses has been described as an example.
- BEMS for performing power management in units of buildings may be used.
- the configuration of the HEMS 700 illustrated in FIG. 5 may be provided in the controller 430 of the PCS 400, and at least a part of the processing flow illustrated in FIG. 6 may be executed by the controller 430 of the PCS 400. That is, the PCS 400 may be a control device according to the present invention.
- the schedule during the independent operation is determined before switching to the independent operation.
- the schedule during the independent operation may be determined after switching to the independent operation. .
- various information is acquired in step S ⁇ b> 22, and a schedule during independent operation is determined in step S ⁇ b> 23.
- the subsequent processing is the same as in FIG.
- control device As described above, the control device, the power control system, and the power control method according to the present invention are useful in the electric power field because the operation schedule of the load during the independent operation can be appropriately determined.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
自立運転可能な電力供給手段(PV100、蓄電池200、及びPCS400等)と少なくとも1つの負荷300とを有する需要家に設けられ、前記電力供給手段と負荷300とを制御するためのHEMS700は、自立運転を実行する期間と、前記電力供給手段の電力供給状況と、負荷300の状況とに基づいて、自立運転中の負荷300の運転スケジュールである自立運転中スケジュールを決定する。
Description
本発明は、自立運転可能な電力供給手段と少なくとも1つの負荷とを有する需要家に設けられ、当該電力供給手段と当該負荷とを制御する制御装置、電力制御システム、及び電力制御方法に関する。
需要家に設けられるパワーコンディショナは、太陽電池(PV)等の発電装置の発電及び/又は蓄電池の放電により得られた電力を交流に変換して負荷及び電力系統に対して出力するものである。
このようなパワーコンディショナは、電力系統からの電力の供給を受けずに、発電装置の発電及び/又は蓄電池の放電により得られた電力を負荷に供給する「自立運転」を実行できるものが多い。このような自立運転によって、停電時においても、負荷に電力を供給できる。
また、近年、地球環境保護の観点から省電力に対する関心が高まっており、住宅単位で電力管理を行うためのHEMS(Home Energy Managemant System)や、ビル単位で電力管理を行うためのBEMS(Building Energy Managemant System)といった電力管理システムが注目されている。
このような電力管理システムにおいては、電力供給手段(発電装置、蓄電池、パワーコンディショナ等)と負荷とを制御する制御装置が需要家に設けられる。
また、このような制御装置を用いて更なる省電力を実現するために、負荷の運転スケジュールを決定して、当該運転スケジュールに従って当該負荷を制御する自動制御技術を導入することが提案されている(例えば、特許文献1参照)。
ところで、最近、大規模な地震の発生に起因する電力系統の電力供給能力の低下により、停電の発生が相次いでいる。また、電力系統全体の停電を回避するために、計画的に需要家のグループ毎(地域毎)に順次停電を行う「計画停電(輪番停電)」という制度が開始されている。
しかしながら、従来提案されている自動制御技術は、このような制度に対応したものではないため、停電中(すなわち、自立運転中)の負荷の運転スケジュールを適切に決定できない問題があった。
そこで、本発明は、自立運転中の負荷の運転スケジュールを適切に決定できる制御装置、電力制御システム、及び電力制御方法を提供することを目的とする。
上述した課題を解決するために、本発明は以下のような特徴を有している。
本発明に係る制御装置の特徴は、自立運転可能な電力供給手段(例えば、PV100、蓄電池200、PCS400、分電盤500)と少なくとも1つの負荷(負荷300)とを有する需要家に設けられ、前記電力供給手段と前記負荷とを制御するための制御装置(例えばHEMS700)であって、自立運転中の前記負荷の運転スケジュールである自立運転中スケジュールを決定する運転スケジュール決定部(運転スケジュール決定部712)を備え、前記運転スケジュール決定部は、前記自立運転を実行する期間と、前記電力供給手段の電力供給状況と、前記負荷の状況とに基づいて、前記自立運転中スケジュールを決定することを要旨とする。
上述した特徴において、前記運転スケジュール決定部は、前記自立運転開始時又は前記自立運転中に、前記自立運転中スケジュールを決定する。
上述した特徴において、前記運転スケジュール決定部は、前記自立運転を実行する期間と、前記自立運転中スケジュールを決定する以前の前記電力供給手段の電力供給状況と、前記自立運転中スケジュールを決定する以前の前記負荷の状況とに基づいて、前記自立運転中スケジュールを決定する。
上述した特徴において、前記負荷に対する電力供給優先順位の設定を取得する取得部(情報取得部711)を更に備え、前記運転スケジュール決定部は、前記設定に更に基づいて、前記自立運転中スケジュールを決定する。
上述した特徴において、前記自立運転中に前記負荷のそれぞれの消費電力を削減するための省電力制御を行う省電力制御部(省電力制御部715A)を更に備え、前記運転スケジュール決定部は、前記省電力制御に更に基づいて、前記自立運転中スケジュールを決定する。
上述した特徴において、前記自立運転中に前記負荷の総消費電力を平準化するための電力平準化制御を行う電力平準化制御部(電力平準化制御部715B)を更に備え、前記運転スケジュール決定部は、前記電力平準化制御に更に基づいて、前記自立運転中スケジュールを決定する。
上述した特徴において、前記自立運転中の前記電力供給手段の電力供給状況、前記自立運転中の前記負荷の状況、又は前記自立運転中のユーザの状況の少なくとも1つに基づいて、前記決定された自立運転中スケジュールの少なくとも一部を変更する運転スケジュール変更部(運転スケジュール変更部714)を更に備える。
本発明に係る電力制御システムの特徴は、自立運転可能な電力供給手段(例えば、PV100、蓄電池200、PCS400、分電盤500)と少なくとも1つの負荷(負荷300)とを有する需要家に設けられ、前記電力供給手段と前記負荷とを制御するための制御装置(例えばHEMS700)を有する電力制御システムであって、自立運転中の前記負荷の運転スケジュールである自立運転中スケジュールを決定する運転スケジュール決定部(運転スケジュール決定部712)を備え、前記運転スケジュール決定部は、前記自立運転を実行する期間と、前記電力供給手段の電力供給状況と、前記負荷の状況とに基づいて、前記自立運転中スケジュールを決定することを要旨とする。
本発明に係る電力制御方法の特徴は、自立運転可能な電力供給手段と少なくとも1つの負荷とを有する需要家に設けられ、前記電力供給手段と前記負荷とを制御するための制御装置が、自立運転中の前記負荷の運転スケジュールである自立運転中スケジュールを決定する決定ステップを含み、前記決定ステップにおいて、前記自立運転を実行する期間と、前記電力供給手段の電力供給状況と、前記負荷の状況とに基づいて、前記自立運転中スケジュールを決定することを要旨とする。
図面を参照して、本発明の実施形態を説明する。以下の実施形態における図面において、同一又は類似の部分には同一又は類似の符号を付す。
図1は、本実施形態に係る電力制御システムの全体構成図である。以下の図面において、電力ラインは太線で示し、制御信号ラインは破線で示している。なお、制御信号ラインは有線に限らず無線であってもよい。
図1に示すように、本実施形態に係る電力制御システムは、電力会社の電力系統1からAC電力の供給を受ける需要家に、太陽電池(PV)100、蓄電池200、パワーコンディショナ(PCS)400、分電盤500、スマートメータ600、及びHEMS700が設けられる。
PV100は、太陽光を受けて発電し、PCS400との間に設けられた電力ラインを介して、発電により得られたDC電力をPCS400に出力する。なお、PV100は、1又は複数のパネルにより構成される。また、PV100は、複数のパネルにより構成されたストリングを複数用いて構成されていてもよい。
蓄電池200は、電力を蓄えるものであり、PCS400との間に設けられた電力ラインを介して、放電により得られたDC電力をPCS400に出力すると共に、PCS400からのDC電力を充電する。また、蓄電池200は、PCS400との間に設けられた制御信号ラインを介して、蓄えている電力を示す情報をPCS400に出力すると共に、充放電を行うための制御信号が入力される。
負荷300は、分電盤500との間に設けられた電力ラインを介してAC電力が供給され、供給されたAC電力を消費して動作する。負荷300は、1つであってもよく、複数であってもよい。負荷300には、照明、あるいはエアコンや冷蔵庫、テレビ等の家電機器に限らず、蓄熱器等が含まれていることがある。また、負荷300は、HEMS700と通信可能に構成され、HEMS700からの制御コマンドに応じて省電力モードに移行するように構成される。
PCS400は、PV100の発電及び蓄電池200の放電により得られるDC電力をACに変換して出力する機能と、電力系統1からのAC電力をDCに変換して出力する機能とを有する。このようなPCS400は、ハイブリッドPCSと称されることがある。PCS400は、分電盤500との間に設けられた電力ラインを介して、AC電力を分電盤500と入出力する。また、PCS400は、蓄電池200との間に設けられた電力ラインを介して、蓄電池200を充電するためのDC電力を蓄電池200に出力する。
PCS400は、DC/DC変換器410、DC/AC変換器420、コントローラ430、及び自立運転用コンセント440を有する。ただし、PCS400は、自立運転用コンセント440を有していなくてもよい。
DC/DC変換器410は、PV100の発電により得られたDC電力をDC/DC変換し、コントローラ430の制御下で、DC電力を蓄電池200及び/又はDC/AC変換器420に出力する。
DC/AC変換器420は、コントローラ430の制御下で、DC/DC変換器410が出力するDC電力、及び/又は、蓄電池200の放電により得られたDC電力をACに変換して分電盤500に出力する。また、自立運転用コンセント440に負荷が接続されている場合、DC/AC変換器420は、コントローラ430の制御下で、AC電力を自立運転用コンセント440に出力する。さらに、DC/AC変換器420は、コントローラ430の制御下で、分電盤500から入力されるAC電力をDCに変換して蓄電池200に出力する。
コントローラ430は、PCS400の各種機能を制御するものであり、CPUやメモリを用いて構成される。また、コントローラ430は、HEMS700との間で各種の制御信号を送受信する。詳細には、コントローラ430は、PV100の発電により得られた電力(以下、発電電力)の計測値と、蓄電池200が蓄えている電力(以下、蓄電電力)の計測値と、自立運転用コンセント440が供給している電力の計測値とを取得し、これらの計測値をHEMS700に通知する。また、コントローラ430は、HEMS700から受信した制御コマンドに従って、蓄電池200の充放電を制御したり、発電電力を調整したりする。なお、コントローラ430には、ユーザからの入力を受け付けるユーザインターフェイス部が接続されていてもよい。
自立運転用コンセント440は、自立運転中に負荷への電力供給を行うためのものである。ただし、自立運転用コンセント440は、PCS400に設けられている場合に限らず、電力ラインを介してPCS400から離間して設けられていることもある。
分電盤500は、PCS400のコントローラ430及び/又はHEMS700の制御下で、電力の分配を行う。分電盤500は、PCS400が出力するAC電力が負荷300の消費電力未満であるときには、不足分のAC電力を電力系統1から受電して、PCS400が出力するAC電力と電力系統1から受電したAC電力とを負荷300に供給する。また、分電盤500は、PCS400が出力するAC電力が負荷300の消費電力を超えるときには、超過分のAC電力を電力系統1に送電(売電)する。
なお、PCS400からの電力及び電力系統1からの電力の両電力を負荷300に供給する運転状態は「連系運転」と称され、PCS400からの電力のみを負荷300に供給する運転状態は「自立運転」と称される。分電盤500は、電力系統1の停電(以下、単に「停電」という)時において、電力系統1からの解列を行って、連系運転から自立運転に移行する。
なお、連系運転から自立運転への切り替えには、自立運転用コンセント440へ負荷300を差し替える方法と、分電盤500が自動切り替えを行う方法とがある。以下においては、分電盤500が自動切り替えを行うケースを主として説明する。
自立運転時においては、負荷300は、PV100からの発電電力及び蓄電池200からの放電電力が、PCS400及び分電盤500を介して供給される。すなわち、本実施形態において、PV100、蓄電池200、PCS400、及び分電盤500は、自立運転可能な電力供給手段を構成する。
スマートメータ600は、電力系統1と分電盤500との間の電力ライン上に設けられており、電力系統1と入出力する売電買電電力を計測し、計測値をHEMS700に通知する。また、スマートメータ600は、外部ネットワーク2との通信を行って、売電買電電力の計測値を外部ネットワーク2に送信したり、電気料金情報等を受信したりする。
HEMS700は、需要家内の電力管理を行うためのものであり、PCS400や分電盤500に対して各種の制御コマンドを送信することにより需要家内の各機器を制御する機能と、各種の計測値を収集して需要家内の各機器の状態を監視・表示する機能とを有する。また、HEMS700は、負荷300の運転スケジュールを決定し、決定した運転スケジュールに従った制御を行う。本実施形態において、HEMS700は、電力供給手段(PV100、蓄電池200、及びPCS400等)と負荷300とを制御する制御装置に相当する。なお、HEMS700は、外部ネットワーク2との通信を行うことにより、制御に用いる情報を外部ネットワーク2から取得してもよい。
次に、PCS400及び分電盤500の詳細構成について説明する。図2は、PCS400及び分電盤500の詳細構成例1を示す図である。
図2に示すように、本構成例に係るPCS400は、DC/DC変換器410、DC/AC変換器420、及びコントローラ430に加え、表示部450及びスピーカ460を有する。停電時において表示部450は、コントローラ430の制御下で、停電中である旨の表示を行う。また、停電時においてスピーカ460は、コントローラ430の制御下で、停電中である旨の音声出力を行う。さらには、後述する停電予定期間の入力や負荷優先順位等の指定が可能な入力部470を備えるようにしてもよい。
また、本構成例に係る分電盤500は、電力系統1からの解列を行う機能と、自立運転中に電力供給の有無をコンセント801~804毎に切り替える機能とを有する。詳細には、分電盤500は、サービスブレーカ501、主幹ブレーカ502、電力スイッチ503~508、及び消費電力センサCTを有する。
サービスブレーカ501、主幹ブレーカ502、及び電力スイッチ503~508は、PCS400のコントローラ430の制御下でオン/オフする。電力センサCTは、コンセント801乃至804に接続された負荷(例えば照明、冷蔵庫)が消費する電力を計測し、計測値をコントローラ430に通知する。
電力系統1から電力が得られている場合には、コントローラ430は、例えばHEMS700からの制御コマンドに応じて、サービスブレーカ501及び主幹ブレーカ502のそれぞれをオン状態にする。これにより、コンセント801~804に接続された負荷に対して電力供給可能な状態になる。
これに対し、停電により自立運転に移行した場合には、コントローラ430は、例えばHEMS700からの制御コマンドに応じて、サービスブレーカ501をオン状態にしたまま、主幹ブレーカ502をオフ(解列)状態にする。これにより、これにより、コンセント801及び802に接続された負荷に対してはPCS400が出力するAC電力を供給可能な状態になるものの、コンセント803及び804に接続された負荷に対しては電力供給不能な状態になる。
従って、優先順位の高い負荷をコンセント801及び802に接続することによって、自立運転中に、これら優先順位の高い負荷に対して電力を供給できる。
図3は、PCS400及び分電盤500の詳細構成例2を示す図である。
図3に示すように、本構成例に係るPCS400は、DC/DC変換器410、双方向DC/AC変換器420、及びコントローラ430を有する点は構成例1と同様であるが、電力スイッチ401及び402を有する点で構成例1とは異なる。また、本構成例に係る分電盤500は、サービスブレーカ501及び主幹ブレーカ502を有する点は構成例1と同様であるが、コントローラ520と、コンセント801~805毎に設けられた電力スイッチ511~515とを有する点で構成例1とは異なる。さらに、本構成例では、コンセント801~805毎に消費電力センサSが設けられており、コントローラ520が各計測値を収集してPCS400のコントローラ430に通知する。なお、図3ではコントローラ520と消費電力センサSとの信号線の接続を省略して図示している。
電力系統1から電力が得られている場合には、コントローラ430は、例えばHEMS700からの制御コマンドに応じて、電力スイッチ401、サービスブレーカ501、及び主幹ブレーカ502のそれぞれをオン状態にし、電力スイッチ402をオフ状態にするよう制御し、電力スイッチ511~515のそれぞれを電力系統1側に切り替えるよう制御する。これにより、コンセント801~805に接続された負荷に対して電力供給可能な状態になる。
これに対し、停電により自立運転に移行した場合には、コントローラ430は、例えばHEMS700からの制御コマンドに応じて、電力スイッチ401、サービスブレーカ501、及び主幹ブレーカ502をオフ状態にし、電力スイッチ402をオン状態にするよう制御する。本実施の形態のように電力スイッチ401、402をPCS400内に持つことにより、自立運転時の負荷への電力制御をPCS400内で行うことができるようになる。
また、コントローラ520は、例えばコントローラ430からの指示に応じて、図3の下方に示すように電力スイッチ511~515を順次(循環的に)オン状態に切り替えるよう制御する。すなわち、コンセント801~805において、電力供給可能とする時間を順次(循環的に)割り当てるよう制御する。これにより、コンセント801~805毎に接続された複数の負荷において、2つ以上の負荷に対して同時に電力が供給されることが防止されるため、消費電力を時間的に分散させる(平準化させる)ことができる。以下においては、このような制御を「電力平準化制御」と称する。なお、割り当てる時間間隔は、数分から数十分単位であればよく、継続して電力供給が必要な負荷は継続的に供給するようにすればよい。
次に、HEMS700の詳細構成について説明する。図4は、HEMS700の構成図である。
図4に示すように、HEMS700は、処理部710、記憶部720、構内通信I/F部730、広域通信I/F部740、及びユーザI/F部750を有する。処理部710、記憶部720、構内通信I/F部730、広域通信I/F部740、及びユーザI/F部750は、バスライン又はLANを介して情報をやり取りする。
処理部710は、例えばCPUにより構成されており、記憶部720に記憶されている制御プログラムを実行することで、HEMS700の各種機能を制御する。また、処理部710は、後述する自立運転制御を行う。処理部710の機能ブロック構成については後述する。
記憶部720は、例えばRAMや不揮発メモリにより構成されており、HEMS700の制御等に用いられる各種の情報を記憶する。
構内通信I/F部730は、需要家内の各機器との通信を行うための通信I/Fである。構内通信I/F部730は、例えばZigbee(登録商標)又はイーサネット(登録商標)等による通信を行う。
広域通信I/F部740は、外部ネットワーク2との通信を行うための通信I/Fである。
ユーザI/F部750は、ユーザからの入力を受け付ける入力部や、各種の表示を行う表示部を含んで構成されている。
図5は、処理部710の機能ブロック図である。
図5に示すように、処理部710は、情報取得部711、運転スケジュール決定部712、運転スケジュール変更部714、及び制御コマンド生成部715を有する。
情報取得部711は、構内通信I/F部730及び/又は広域通信I/F部740を介して、自立運転中の負荷300の運転スケジュールである自立運転中スケジュールを決定するための各種の情報(詳細については後述)を取得する。
運転スケジュール決定部712は、情報取得部711によって取得された情報に基づいて自立運転中スケジュールを決定する。運転スケジュール決定部712は、決定した自立運転中スケジュールの情報を、記憶部720に設けられた運転スケジュール記憶部721に格納する。
運転スケジュール変更部714は、情報取得部711によって新たに取得された情報に基づいて、運転スケジュール記憶部721に格納されている自立運転中スケジュールを変更し、変更後の運転スケジュールによって変更前の運転スケジュールを更新する。
制御コマンド生成部715は、運転スケジュール記憶部721に格納されている運転スケジュールに従って制御コマンドを生成し、生成した制御コマンドを、構内通信I/F部730を介して需要家内の機器に送信する。
また、制御コマンド生成部715は、省電力制御部715A及び電力平準化制御部715Bを有する。
省電力制御部715Aは、自立運転開始時において、負荷300を省電力モードで動作させる「省電力制御」を指示するための省電力制御コマンドを生成し、生成した省電力制御コマンドを、構内通信I/F部730を介して負荷300に送信する。
電力平準化制御部715Bは、自立運転開始時において、上述した電力平準化制御を指示するための電力平準化制御コマンドを生成し、生成した電力平準化制御コマンドを、構内通信I/F部730を介して分電盤500に送信する。
次に、HEMS700による自立運転制御フローを説明する。図6は、HEMS700による自立運転制御フローのフローチャートである。本フローは、停電の検出、又は、ユーザによる自立運転への切り替え操作を契機として開始される。
図6に示すように、ステップS11において、情報取得部711は、停電予定期間情報、蓄電情報、発電情報、及び消費電力情報を取得する。
停電予定期間情報は、計画停電(輪番停電)により定められた停電予定期間を示す情報であり、例えば停電予定期間に該当する日付と、当該停電予定期間の開始時刻と、当該停電予定期間の終了時刻とを含む。情報取得部711は、広域通信I/F部740を介して外部ネットワーク2から停電予定期間情報を取得する、又は、ユーザI/F部750に対するユーザ入力に基づいて停電予定期間情報を取得する。あるいは、PCS400にユーザI/F部(例えば、図2で示す入力部470)が設けられている場合には、PCS400のユーザI/F部750に対するユーザ入力に基づいて停電予定期間情報を取得してもよい。スマートメータ600が外部ネットワーク2から停電予定期間情報を取得できる場合には、構内通信I/F部730を介してスマートメータ600から停電予定期間情報を取得してもよい。
本実施形態において、上述した停電予定期間情報によって示される停電予定期間は、自立運転を実行する期間に相当する。
蓄電情報は、停電前(停電直前)の蓄電池200の蓄電電力を示す情報である。情報取得部711は、構内通信I/F部730を介してPCS400から蓄電情報を取得する。
発電情報は、停電前(停電直前)のPV100の発電電力を示す情報である。情報取得部711は、構内通信I/F部730を介してPCS400から発電情報を取得する。あるいは、情報取得部711は、将来の(自立運転中の)PV100の予想発電電力を得るために有益な情報に基づいて、自立運転中のPV100の予想発電電力を示す発電電力を取得する。ここで、予想発電電力を得るために有益な情報とは、例えば以下の情報である。
・天候予測や気象センサ:これらの情報から、PV100の発電に影響を与える日射量等を推定し、今後の発電電力を予測できる。情報取得部711は、天候予測情報や気象センサ情報を広域通信I/F部740を介して外部ネットワーク2から取得する。
・時計やカレンダ機能:これらの情報から、PV100の発電に影響を与える日射量等を推定し、今後の発電電力を予測できる。情報取得部711は、当日の日付及び現在時刻の情報を、HEMS700の内部タイマ、又は広域通信I/F部740を介して外部ネットワーク2から取得する。
・停電開始時の発電量からの推測:例えば、停電開始時(自立運転への移行時)における発電電力が増加傾向であるか減少傾向であるかに応じて、今後の発電電力を予測できる。
・過去の発電実績データ:例えば、記憶部720に発電電力を環境条件別に格納しておき、現在の環境条件に合致する過去の発電電力を検索することによって、今後の発電電力を予測できる。
本実施形態において、上述した蓄電情報及び発電情報は、電力供給手段の電力供給状況に相当する。
消費電力情報は、停電前(停電直前)の負荷300の総消費電力を示す情報である。負荷300の総消費電力は例えば分電盤500で計測、又は負荷300が接続されるコンセントで計測可能であり、情報取得部711は、構内通信I/F部730を介して消費電力情報を取得する。あるいは、図2に示したように、自立運転中に電力供給を行うべき負荷が限定されている場合には、当該負荷についての消費電力情報を取得すればよい。また、自立運転用コンセント440に負荷を接続して自立運転を行う場合には、当該負荷の情報を手動又は自動で取得し、取得した情報から当該負荷についての消費電力情報を求めてもよい。
基本的には、上述した停電予定期間情報、蓄電情報、発電情報、及び消費電力情報を用いることによって、自立運転中スケジュールを決定可能である。例えば、停電中(自立運転中)に負荷300に対して供給可能な総電力により、負荷300の総消費電力をどの程度賄うことができるかを判定し、停電予定期間(自立運転期間)においてどのようなタイミングで負荷300に電力を供給するかといったスケジュールが決定される。
さらに、情報取得部711は、負荷優先順位情報、省電力モード情報、電力平準化情報、及び起動電力情報を取得することによって、より適切に自立運転中スケジュールを決定可能になる。
負荷優先順位情報は、負荷300に対する電力供給優先順位を設定した情報である。情報取得部711は、ユーザI/F部750に対するユーザ入力に基づいて負荷優先順位情報を取得する。あるいは、予め定められた優先順位での負荷優先順位情報を記憶部720に記憶しておき、記憶部720から負荷優先順位情報を取得してもよい。予め定められた優先順位としては、例えば、ガス発電装置が需要家に設けられている場合にはガス発電装置を最も高い優先順位に設定し、HEMS700や非常灯を次に高い優先順位に設定する。
省電力モード情報は、負荷300毎の省電力モードの情報(例えば、省電力モードの種類や省電力モードでの消費電力)を示す情報である。
電力平準化情報は、図3に示したような電力平準化制御に関する情報(例えば、電力平準化制御の対象とすべき負荷300の情報)である。
起動電力情報は、負荷300毎の起動電力を示す情報である。例えば、停電時に、省電力モードとしての断続運転などを行って冷蔵庫の温度が上がったあと、電気が復旧した際にまた元の温度まで冷やし直すための起動電力は大きくなるため、連続運転を長時間続けていたほうが消費電力は少ないようなケースが想定される。よって、起動電力情報(取得可能であれば冷蔵庫の内部温度なども)を考慮してスケジュール決定を行うことが好ましい。
ステップS12において、運転スケジュール決定部712は、情報取得部711によって取得された停電予定期間情報、蓄電情報、発電情報、消費電力情報、負荷優先順位情報、省電力モード情報、電力平準化情報、及び起動電力情報に基づいて、自立運転中スケジュールを決定する。例えば、停電中(自立運転中)に負荷300に対して供給可能な総電力により、省電力制御や電力平準化制御が加味された負荷総消費電力をどの程度賄うことができるかを判定し、負荷300の優先順位や起動電力も考慮して、停電予定期間(自立運転期間)においてどのようなタイミングでどの負荷に電力を供給するかといったスケジュールが決定される。
具体例として、停電予定期間2時間と入力した後、蓄電情報と発電情報をもとに決定される負荷の自立運転スケジュールを表1に示す。このように、蓄電池と太陽電池の発電量を負荷消費電力が超えないようにスケジュールを組めばよい。なお、30分単位で切り替えを行う際、図3で説明した「電力平準化制御」を行うようにしてもよい。
ステップS13において、制御コマンド生成部715は、自立運転への切り替えコマンドを生成し、生成した切り替えコマンドを、構内通信I/F部730を介してPCS400及び分電盤500に送信する。あるいは、分電盤500が自立運転への切り替えを自動で行ってもよく、ユーザが自立運転用コンセント440へ負荷300を接続することにより自立運転への切り替えを手動で行ってもよい。
ステップS14において、制御コマンド生成部715は、運転スケジュール記憶部721に記憶されている自立運転中スケジュール情報に従った制御コマンドを、構内通信I/F部730を介して、負荷300や、PCS400、分電盤500に送信する。
停電予定期間の経過により、自立運転を終了する場合には、系統連系に切り替わり(ステップS19)、本フローが終了する。これに対し、自立運転を継続する場合(ステップS15;NO)、ステップS16において、情報取得部711は、蓄電情報、発電情報、及び負荷優先順位情報を再度取得する。蓄電情報及び発電情報を再度取得するのは、当初の予想に対して現在の蓄電電力及び現在の発電電力の誤差がある場合に、自立運転中スケジュールを変更するためである。負荷優先順位情報を再度取得するのは、携帯電話の充電が必要となった場合など、スケジュールされていない負荷の割り込みを許容するためである。また、情報取得部711は、需要家内に人感センサが設けられている場合には、人感センサ情報を取得してもよい。例えば、部屋毎に人感センサを設けておき、その部屋にユーザが居る/居ないに応じて照明やエアコン等の運転スケジュールを変更することが考えられる。
具体例として、表1の自立運転スケジュールにて稼動後、1時間を経過した際、改めて発電情報を入手し、急遽携帯電話の充電がされた場合の自立運転スケジュールの変更を表2に示す。
自立運転中スケジュールを変更しないと判定した場合(ステップS17;NO)、処理をステップS14に戻す。
自立運転中スケジュールを変更すると判定した場合(ステップS17;YES)、ステップS18において、運転スケジュール変更部714は、運転スケジュール記憶部721に格納されている自立運転中スケジュールを変更し、その後、処理をステップS14に戻す。
以上説明したように、運転スケジュール決定部712は、自立運転を実行する期間と、発電装置及び蓄電池200の電力供給状況と、負荷300の状況とに基づいて、自立運転中スケジュールを決定することによって、停電中(すなわち、自立運転中)の負荷300の運転スケジュールを適切に決定できる。
また、本実施形態では、運転スケジュール決定部712は、自立運転開始時に、自立運転中スケジュールを決定することによって、停電中(すなわち、自立運転中)の負荷300の運転スケジュールを適切なタイミングで決定できる。
さらに、本実施形態では、運転スケジュール決定部712は、自立運転を実行する期間と、自立運転中スケジュールを決定する以前の発電装置及び蓄電池200の電力供給状況と、自立運転中スケジュールを決定する以前の負荷300の状況とに基づいて、自立運転中スケジュールを決定することによって、直近の状況に応じた自立運転中スケジュールを決定できる。
本実施形態では、運転スケジュール決定部712は、負荷300に対する電力供給優先順位の設定に更に基づいて、自立運転中スケジュールを決定することによって、適切な優先順位で負荷300に電力を供給できる。
本実施形態では、運転スケジュール決定部712は、省電力制御に更に基づいて、自立運転中スケジュールを決定することによって、自立運転中の省電力制御を考慮して自立運転中スケジュールを適切に決定できる。
本実施形態では、運転スケジュール決定部712は、電力平準化制御に更に基づいて、自立運転中スケジュールを決定することによって、自立運転中の電力平準化制御を考慮して自立運転中スケジュールを適切に決定できる。
本実施形態では、運転スケジュール変更部714は、自立運転中の発電装置及び蓄電池200の電力供給状況、自立運転中の負荷300の状況、又は自立運転中のユーザの状況の少なくとも1つに基づいて、決定された自立運転中スケジュールの少なくとも一部を変更することによって、自立運転中に自立運転中スケジュールを適切に変更できる。
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
上述した実施形態では、PV100及び蓄電池200の両方が需要家に設けられる構成を説明したが、何れか一方のみが需要家に設けられる構成であってもよい。また、PV100に加えて、又はPV100に代えて、ガス発電装置や風力発電装置が需要家に設けられる構成であってもよい。
上述した実施形態では、住宅単位で電力管理を行うためのHEMS700を例に説明したが、HEMS700に代えて、ビル単位で電力管理を行うためのBEMSとしてもよい。
また、図5に示したHEMS700の構成の少なくとも一部をPCS400のコントローラ430に設け、図6に示した処理フローの少なくとも一部をPCS400のコントローラ430に実行させてもよい。すなわち、PCS400を本発明に係る制御装置としてもよい。
図6に示したフローにおいては、自立運転への切替前に自立運転中スケジュールを決定していたが、図7に示すように、自立運転への切り替え後に自立運転中スケジュールを決定してもよい。図7に示すフローは、ステップS21において自立運転に切り替えた後、ステップS22において各種情報を取得し、ステップS23において自立運転中スケジュールを決定する。以降の処理は図6と同様である。
このように本発明は、ここでは記載していない様々な実施形態等を包含するということを理解すべきである。
なお、日本国特許出願第2011-092522号(2011年4月18日出願)の全内容が、参照により、本願明細書に組み込まれている。
以上のように、本発明に係る制御装置、電力制御システム、及び電力制御方法は、自立運転中の負荷の運転スケジュールを適切に決定できるので、電力分野において有用である。
Claims (9)
- 自立運転可能な電力供給手段と少なくとも1つの負荷とを有する需要家に設けられ、前記電力供給手段と前記負荷とを制御するための制御装置であって、
自立運転中の前記負荷の運転スケジュールである自立運転中スケジュールを決定する運転スケジュール決定部を備え、
前記運転スケジュール決定部は、前記自立運転を実行する期間と、前記電力供給手段の電力供給状況と、前記負荷の状況とに基づいて、前記自立運転中スケジュールを決定することを特徴とする制御装置。 - 前記運転スケジュール決定部は、前記自立運転開始時又は前記自立運転中に、前記自立運転中スケジュールを決定することを特徴とする請求項1に記載の制御装置。
- 前記運転スケジュール決定部は、前記自立運転を実行する期間と、前記自立運転中スケジュールを決定する以前の前記電力供給手段の電力供給状況と、前記自立運転中スケジュールを決定する以前の前記負荷の状況とに基づいて、前記自立運転中スケジュールを決定することを特徴とする請求項2に記載の制御装置。
- 前記負荷に対する電力供給優先順位の設定を取得する取得部を更に備え、
前記運転スケジュール決定部は、前記設定に更に基づいて、前記自立運転中スケジュールを決定することを特徴とする請求項1に記載の制御装置。 - 前記自立運転中に前記負荷のそれぞれの消費電力を削減するための省電力制御を行う省電力制御部を更に備え、
前記運転スケジュール決定部は、前記省電力制御に更に基づいて、前記自立運転中スケジュールを決定することを特徴とする請求項1に記載の制御装置。 - 前記自立運転中に前記負荷の総消費電力を平準化するための電力平準化制御を行う電力平準化制御部を更に備え、
前記運転スケジュール決定部は、前記電力平準化制御に更に基づいて、前記自立運転中スケジュールを決定することを特徴とする請求項1に記載の制御装置。 - 前記自立運転中の前記電力供給手段の電力供給状況、前記自立運転中の前記負荷の状況、又は前記自立運転中のユーザの状況の少なくとも1つに基づいて、前記決定された自立運転中スケジュールの少なくとも一部を変更する運転スケジュール変更部を更に備えることを特徴とする請求項1に記載の制御装置。
- 自立運転可能な電力供給手段と少なくとも1つの負荷とを有する需要家に設けられ、前記電力供給手段と前記負荷とを制御するための制御装置を有する電力制御システムであって、
自立運転中の前記負荷の運転スケジュールである自立運転中スケジュールを決定する運転スケジュール決定部を備え、
前記運転スケジュール決定部は、前記自立運転を実行する期間と、前記電力供給手段の電力供給状況と、前記負荷の状況とに基づいて、前記自立運転中スケジュールを決定することを特徴とする電力制御システム。 - 自立運転可能な電力供給手段と少なくとも1つの負荷とを有する需要家に設けられ、前記電力供給手段と前記負荷とを制御するための制御装置が、自立運転中の前記負荷の運転スケジュールである自立運転中スケジュールを決定する決定ステップを含み、
前記決定ステップにおいて、前記自立運転を実行する期間と、前記電力供給手段の電力供給状況と、前記負荷の状況とに基づいて、前記自立運転中スケジュールを決定することを特徴とする電力制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/112,271 US9651971B2 (en) | 2011-04-18 | 2012-04-16 | Control device, power control system, and power control method |
CN201280018766.1A CN103493325A (zh) | 2011-04-18 | 2012-04-16 | 控制设备、电力控制系统和电力控制方法 |
EP12773709.6A EP2701261A4 (en) | 2011-04-18 | 2012-04-16 | CONTROL DEVICE, ELECTRIC CONTROL SYSTEM, AND ELECTRIC CONTROL METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011092522A JP5837322B2 (ja) | 2011-04-18 | 2011-04-18 | 制御装置、電力制御システム、及び電力制御方法 |
JP2011-092522 | 2011-04-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012144474A1 true WO2012144474A1 (ja) | 2012-10-26 |
Family
ID=47041580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/060295 WO2012144474A1 (ja) | 2011-04-18 | 2012-04-16 | 制御装置、電力制御システム、及び電力制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9651971B2 (ja) |
EP (1) | EP2701261A4 (ja) |
JP (1) | JP5837322B2 (ja) |
CN (1) | CN103493325A (ja) |
WO (1) | WO2012144474A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239664A1 (ja) * | 2018-06-14 | 2019-12-19 | 三菱電機株式会社 | 電力管理システム |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8849469B2 (en) | 2010-10-28 | 2014-09-30 | Microsoft Corporation | Data center system that accommodates episodic computation |
US10345766B2 (en) * | 2012-12-11 | 2019-07-09 | Kabushiki Kaisha Toshiba | Energy management server, energy management method, and medium |
JP6054737B2 (ja) * | 2012-12-21 | 2016-12-27 | 旭化成ホームズ株式会社 | 蓄電量の推移を予測する方法、及び予測装置 |
JP6094739B2 (ja) * | 2013-02-04 | 2017-03-15 | 東芝ライテック株式会社 | 照明装置 |
JP5474226B1 (ja) * | 2013-02-08 | 2014-04-16 | 三菱電機株式会社 | エネルギマネジメントシステム |
JP5805690B2 (ja) * | 2013-03-21 | 2015-11-04 | 三菱電機株式会社 | エネルギーマネジメントシステム、及び、エネルギー管理方法 |
JP6158562B2 (ja) | 2013-04-01 | 2017-07-05 | 京セラ株式会社 | 電力変換装置、制御システム、及び制御方法 |
JP5538592B1 (ja) | 2013-05-17 | 2014-07-02 | 三菱電機株式会社 | エネルギーマネジメントコントローラ、エネルギーマネジメントシステム、エネルギーマネジメント方法、及び、プログラム |
US9893530B2 (en) | 2013-05-27 | 2018-02-13 | Kyocera Corporation | Power control device, power control method, and power control system |
WO2015005254A1 (ja) | 2013-07-08 | 2015-01-15 | 京セラ株式会社 | 電力変換装置、電力変換システム、及び電力変換方法 |
JP6174410B2 (ja) * | 2013-07-29 | 2017-08-02 | 京セラ株式会社 | 電力制御装置、電力制御方法、および電力制御システム |
JP6187920B2 (ja) * | 2013-07-30 | 2017-08-30 | パナソニックIpマネジメント株式会社 | 給電制御装置及び配電システム |
JP6197476B2 (ja) * | 2013-08-20 | 2017-09-20 | 株式会社リコー | 電源制御装置 |
JP6268633B2 (ja) * | 2013-09-30 | 2018-01-31 | パナソニックIpマネジメント株式会社 | 電力管理装置、電力管理方法、プログラム |
JP2015076648A (ja) * | 2013-10-07 | 2015-04-20 | パナソニックIpマネジメント株式会社 | 電力値収集システム |
JP2015095922A (ja) * | 2013-11-11 | 2015-05-18 | 株式会社日立製作所 | エネルギー管理装置およびエネルギー管理方法 |
JP6275020B2 (ja) * | 2014-01-14 | 2018-02-07 | 三菱電機株式会社 | エネルギーマネジメントシステム |
JP2015171199A (ja) * | 2014-03-05 | 2015-09-28 | パナソニックIpマネジメント株式会社 | 電力管理システム |
JP6004451B2 (ja) | 2014-03-26 | 2016-10-05 | インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation | データセンター、データセンター間での負荷分散方法 |
JP6317987B2 (ja) * | 2014-04-21 | 2018-04-25 | 京セラ株式会社 | 電力制御システム、電力制御装置、および電力制御方法 |
CN104052150A (zh) * | 2014-05-09 | 2014-09-17 | 上海交通大学 | 户用分布式光伏发电系统的智能家庭能效管理系统 |
US9933804B2 (en) | 2014-07-11 | 2018-04-03 | Microsoft Technology Licensing, Llc | Server installation as a grid condition sensor |
US20160011617A1 (en) * | 2014-07-11 | 2016-01-14 | Microsoft Technology Licensing, Llc | Power management of server installations |
US10234835B2 (en) | 2014-07-11 | 2019-03-19 | Microsoft Technology Licensing, Llc | Management of computing devices using modulated electricity |
WO2016039844A1 (en) * | 2014-09-08 | 2016-03-17 | Debone Christopher Robert | Grid tied, real time adaptive, distributed intermittent power |
JP2016092881A (ja) * | 2014-10-30 | 2016-05-23 | 有限会社バベッジ | ブレーカおよびブレーカ装置制御 |
KR101950456B1 (ko) | 2015-01-19 | 2019-04-22 | 엘에스산전 주식회사 | 태양광발전 장치의 데이터 수집 장치 |
KR101677831B1 (ko) * | 2015-02-11 | 2016-11-18 | 엘에스산전 주식회사 | 배터리 에너지 저장 시스템을 포함하는 전력 공급 시스템 |
JP2016163422A (ja) * | 2015-03-02 | 2016-09-05 | 三菱電機株式会社 | 蓄電システム |
US10642241B2 (en) | 2015-04-22 | 2020-05-05 | Siemens Aktiengesellschaft | Systems, methods and apparatus for improved generation control of microgrid energy systems |
JP6532335B2 (ja) * | 2015-07-23 | 2019-06-19 | 和希 石川 | 電源システム及びバックアップ電源システムの増設方法 |
KR20180052666A (ko) * | 2015-09-09 | 2018-05-18 | 씨피지 테크놀로지스, 엘엘씨. | 유도 표면파 전력 전달 시스템에서의 부하 쉐딩 |
MX2018014039A (es) | 2016-05-26 | 2019-04-01 | Landis & Gyr Innovations Inc | Medidor de empresa electrica con dispositivo de generacion distribuida. |
EP3279853A1 (en) * | 2016-08-05 | 2018-02-07 | LG Electronics Inc. | Control device of home energy management system |
JP6818566B2 (ja) * | 2017-01-25 | 2021-01-20 | 三菱電機株式会社 | 充放電装置 |
CN108539743B (zh) * | 2018-05-19 | 2021-08-17 | 北京合众汇能科技有限公司 | 一种高效节能型配电终端 |
CN108667031B (zh) * | 2018-05-21 | 2020-06-26 | 上海电力学院 | 一种基于实时滚动窗口的家庭用电调度优化方法 |
US11303130B2 (en) * | 2018-06-14 | 2022-04-12 | Mitsubishi Electric Corporation | Power management system |
US10948516B2 (en) | 2019-01-10 | 2021-03-16 | Landis+Gyr Innovations, Inc. | Methods and systems for connecting and metering distributed energy resource devices |
US11187734B2 (en) | 2019-05-31 | 2021-11-30 | Landis+Gyr Innovations, Inc. | Systems for electrically connecting metering devices and distributed energy resource devices |
US10916940B2 (en) * | 2019-07-03 | 2021-02-09 | Neworld.Energy Llc | Grid-tied electric meter adapter and systems for automated power resilience and on-demand grid balancing |
JP7390584B2 (ja) * | 2019-08-07 | 2023-12-04 | パナソニックIpマネジメント株式会社 | 電力変換システム、分散電源システム、及び負荷制御システム |
US11506693B2 (en) | 2019-10-11 | 2022-11-22 | Landis+Gyr Innovations, Inc. | Meter and socket for use with a distributed energy resource device |
FI20205450A1 (en) * | 2020-05-04 | 2021-11-05 | Riot Innovations Oy | Modular device for monitoring and controlling energy use |
JP7539689B2 (ja) | 2020-05-15 | 2024-08-26 | 株式会社Sassor | 情報処理方法、プログラムおよび情報処理装置 |
JP7076669B1 (ja) * | 2021-09-27 | 2022-05-27 | 三菱電機株式会社 | 負荷制御装置、中央装置、負荷制御システム、負荷制御方法および負荷制御プログラム |
CN117404762A (zh) * | 2022-07-15 | 2024-01-16 | 太阳能安吉科技有限公司 | 电力供应不足期间的气候控制系统和方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008252441A (ja) | 2007-03-30 | 2008-10-16 | Hitachi Software Eng Co Ltd | 家電の自動運転システム |
JP2008289276A (ja) * | 2007-05-17 | 2008-11-27 | Nippon Telegr & Teleph Corp <Ntt> | 機器制御装置、機器制御システムおよび機器制御方法 |
JP2010233362A (ja) * | 2009-03-27 | 2010-10-14 | Toyota Motor Corp | 電力供給制御装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6201371B1 (en) * | 1998-08-07 | 2001-03-13 | Matsushita Electric Industrial Co., Ltd. | Uninterruptible power system |
JP2003092844A (ja) * | 2001-09-20 | 2003-03-28 | Fujitsu General Ltd | 自家電力供給制御システム |
JP4433656B2 (ja) * | 2002-01-29 | 2010-03-17 | ソニー株式会社 | 情報処理装置 |
US6680547B1 (en) * | 2002-08-01 | 2004-01-20 | Innovations Electrical, Lc | Power sharing system including rechargeable power source |
US7132951B2 (en) * | 2003-07-11 | 2006-11-07 | Liebert Corporation | Apparatus and method for protecting an uninterruptible power supply and critical loads connected thereto |
US7373222B1 (en) * | 2003-09-29 | 2008-05-13 | Rockwell Automation Technologies, Inc. | Decentralized energy demand management |
US20080217998A1 (en) * | 2005-02-26 | 2008-09-11 | Parmley Daniel W | Renewable energy power systems |
US7818592B2 (en) * | 2007-04-18 | 2010-10-19 | Globalfoundries Inc. | Token based power control mechanism |
US8334771B2 (en) * | 2007-06-13 | 2012-12-18 | National Institute Of Information And Communications Technology | Home network, area network using the same, program for computer to execute operation in home network, and computer-readable recording medium storing the program |
US8996183B2 (en) * | 2007-08-28 | 2015-03-31 | Consert Inc. | System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management |
US20090063228A1 (en) * | 2007-08-28 | 2009-03-05 | Forbes Jr Joseph W | Method and apparatus for providing a virtual electric utility |
US8527107B2 (en) * | 2007-08-28 | 2013-09-03 | Consert Inc. | Method and apparatus for effecting controlled restart of electrical servcie with a utility service area |
US7786618B2 (en) * | 2008-04-02 | 2010-08-31 | American Power Conversion Corporation | Apparatus, system and method for a UPS |
US8639862B2 (en) * | 2009-07-21 | 2014-01-28 | Applied Micro Circuits Corporation | System-on-chip queue status power management |
US8462014B1 (en) * | 2009-08-10 | 2013-06-11 | Ecologic Analytics, LLC | Meter data management systems, methods, and software with outage management capabilities |
CA2731433C (en) * | 2010-02-09 | 2018-05-15 | Open Access Technology International, Inc. | Systems and methods for demand response and distributed energy resource management |
US9310792B2 (en) * | 2010-05-03 | 2016-04-12 | Battelle Memorial Institute | Scheduling and modeling the operation of controllable and non-controllable electronic devices |
KR101801095B1 (ko) * | 2010-10-25 | 2017-11-24 | 삼성전자주식회사 | 전력 관리 장치, 그를 가지는 전력 관리 시스템 및 그 제어 방법 |
US20120253532A1 (en) * | 2011-03-30 | 2012-10-04 | General Electric Company | Systems and methods for forecasting electrical load |
WO2012144473A1 (ja) * | 2011-04-18 | 2012-10-26 | 京セラ株式会社 | 制御装置、電力制御システム、及び電力制御方法 |
US20130123996A1 (en) * | 2011-11-14 | 2013-05-16 | Gilberto Augusto Matos | Method and system for improving the effectiveness of planned power consumption demand response events |
-
2011
- 2011-04-18 JP JP2011092522A patent/JP5837322B2/ja not_active Expired - Fee Related
-
2012
- 2012-04-16 EP EP12773709.6A patent/EP2701261A4/en not_active Withdrawn
- 2012-04-16 CN CN201280018766.1A patent/CN103493325A/zh active Pending
- 2012-04-16 US US14/112,271 patent/US9651971B2/en not_active Expired - Fee Related
- 2012-04-16 WO PCT/JP2012/060295 patent/WO2012144474A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008252441A (ja) | 2007-03-30 | 2008-10-16 | Hitachi Software Eng Co Ltd | 家電の自動運転システム |
JP2008289276A (ja) * | 2007-05-17 | 2008-11-27 | Nippon Telegr & Teleph Corp <Ntt> | 機器制御装置、機器制御システムおよび機器制御方法 |
JP2010233362A (ja) * | 2009-03-27 | 2010-10-14 | Toyota Motor Corp | 電力供給制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2701261A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019239664A1 (ja) * | 2018-06-14 | 2019-12-19 | 三菱電機株式会社 | 電力管理システム |
Also Published As
Publication number | Publication date |
---|---|
JP5837322B2 (ja) | 2015-12-24 |
US20140042811A1 (en) | 2014-02-13 |
EP2701261A4 (en) | 2014-10-29 |
EP2701261A1 (en) | 2014-02-26 |
CN103493325A (zh) | 2014-01-01 |
US9651971B2 (en) | 2017-05-16 |
JP2012228043A (ja) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5837322B2 (ja) | 制御装置、電力制御システム、及び電力制御方法 | |
JP6001712B2 (ja) | パワーコンディショナ、電力システム及び制御方法 | |
JP5107345B2 (ja) | モジュール式エネルギー制御システム | |
JP4606389B2 (ja) | 分散型発電機の制御システム | |
JP5917896B2 (ja) | 電力管理システム | |
EP2983265B1 (en) | Electric power conversion device, control system, and control method | |
WO2011039586A1 (ja) | 電力管理システム | |
JP2011101529A (ja) | 配電システム | |
EP2903216B1 (en) | Management system, management method, and device | |
JP2016123267A (ja) | 制御装置、蓄電池及び制御方法 | |
JP5729764B2 (ja) | 集合住宅電力システム及び制御装置 | |
JP2011083088A (ja) | 直流配電システム | |
JP2011083083A (ja) | 電力供給システム及び電力供給システムの制御装置 | |
JP6194527B2 (ja) | 系統連系電源装置 | |
JP2012147621A (ja) | 停電救済システム | |
US9846418B2 (en) | Energy control system, energy control device, and energy control method for prioritizing a power generation source based on the possibility of selling generated power | |
JP5647731B2 (ja) | 電力制御装置及び電力制御方法 | |
JP2013017284A (ja) | 電力制御システム、電気機器、および充放電制御部 | |
JP2013038838A (ja) | 集合住宅電力システム | |
JP2013074704A (ja) | 制御装置及び制御方法 | |
JP2003173808A (ja) | 分散型発電装置の系統連系システム | |
JP6762297B2 (ja) | 機器制御システムおよび制御方法 | |
JP6639187B2 (ja) | 電気自動車用パワーコンディショナ | |
JP2013062197A (ja) | 制御装置及び制御方法 | |
JP2012080290A (ja) | カメラ制御システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12773709 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14112271 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012773709 Country of ref document: EP |