WO2012144369A1 - シリカ担持触媒 - Google Patents

シリカ担持触媒 Download PDF

Info

Publication number
WO2012144369A1
WO2012144369A1 PCT/JP2012/059707 JP2012059707W WO2012144369A1 WO 2012144369 A1 WO2012144369 A1 WO 2012144369A1 JP 2012059707 W JP2012059707 W JP 2012059707W WO 2012144369 A1 WO2012144369 A1 WO 2012144369A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
silica
temperature
catalyst
mass
Prior art date
Application number
PCT/JP2012/059707
Other languages
English (en)
French (fr)
Inventor
遠藤 聡
加藤 高明
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to KR1020137026983A priority Critical patent/KR101537459B1/ko
Priority to EP12774665.9A priority patent/EP2700447B1/en
Priority to JP2013510952A priority patent/JP5710749B2/ja
Priority to RU2013146523/04A priority patent/RU2564418C2/ru
Priority to US14/112,269 priority patent/US9199921B2/en
Priority to CN201280019327.2A priority patent/CN103476491B/zh
Publication of WO2012144369A1 publication Critical patent/WO2012144369A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/31Chromium, molybdenum or tungsten combined with bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a silica-supported catalyst used for producing an unsaturated nitrile.
  • Patent Document 1 discloses a silica-supported catalyst having a large pore volume by using silica sol and powdered silica as silica raw materials.
  • Patent Document 2 discloses a composite oxide catalyst used when producing acrolein and acrylic acid, in which the pore distribution is adjusted to a specific range.
  • Patent Document 3 discloses a granular porous ammoxidation catalyst in which pores are controlled within a specific range in order to improve the target product yield.
  • JP 2002-219362 A Japanese Patent Laid-Open No. 2003-220334 International Publication No. 2004/0783344 Pamphlet
  • Patent Document 1 When silica sol and powdered silica are mixed as described in Patent Document 1, although the pore volume can be increased, the average pore diameter does not increase. Therefore, although the effect of improving the fluidity due to the increase in the pore volume is seen, the yield of the target product is not improved. Moreover, there is no description regarding combustion of raw material ammonia, which is one of the problems in producing nitrile by subjecting alkane to vapor phase catalytic ammoxidation. Patent Document 2 describes that the yield is increased by controlling the pore diameter. However, since there is a description of tableting molding and it is considered that the fluidity is poor, it is known that the catalyst is for a fixed bed reaction and is not suitable for a fluid bed reaction.
  • Patent Document 3 improves the yield of the target product by setting the pore diameter within a specific range.
  • the pore distribution of the obtained catalyst was “the cumulative volume of pores having a pore diameter of 80 mm or less is the total pore volume of the catalyst.
  • the total volume of pores with a pore diameter of 1000 mm or more is 20% or less with respect to the total pore volume of the catalyst, but the pores have a diameter of 80 to 1000 mm. It became clear that it is distributed in a relatively small one.
  • an object of the present invention is to provide a catalyst having a low raw material ammonia combustion rate and a high yield of the target product.
  • the present inventors have conducted extensive research to solve the above-described problems of the prior art.
  • the inventors have a composition containing at least Mo, V, and Nb, such as an average pore diameter.
  • a silica-supported catalyst whose specific physical property value is controlled within an appropriate range, the yield of the target product can be greatly improved, and furthermore, combustion of the raw material ammonia can be suppressed.
  • the present invention has been completed.
  • a silica-supported catalyst used for producing a corresponding unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane which has the following formula (1) MoV a Nb b X c T d Z e O n ⁇ (1)
  • X represents at least one element selected from Sb and Te
  • T represents at least one element selected from Ti, W, Mn and Bi
  • a, b, c, d and e are 0.05 ⁇ a ⁇ 0.5 and 0.01 ⁇ b, respectively.
  • n is a value that satisfies the balance of valences.
  • An average pore diameter of 60 to 120 nm, a total pore volume of 0.15 cm 3 / g or more, a specific surface area of 5 to 25 m 2 / g, and X-ray diffraction A silica-supported catalyst having a crystallite size of 40 to 250 nm determined from the half width of the (001) peak according to [2]
  • the pore volume of pores having a pore diameter of less than 60 nm is less than 30% of the total pore volume, and the pore volume of pores having a pore diameter of more than 120 nm is 30% of the total pore volume.
  • a method for producing a silica-supported catalyst comprising the following steps (I) to (III): (I) containing Mo, V, Nb, X, T, and Z, the atomic ratio a of V to the Mo1 atom, the atomic ratio b of Nb, the atomic ratio c of X, the atomic ratio d of T, and the atomic ratio e of Z That are 0.05 ⁇ a ⁇ 0.5, 0.01 ⁇ b ⁇ 0.5, 0.001 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 1, and 0 ⁇ e ⁇ 1, respectively.
  • Preparing the step (II) drying the raw material preparation liquid to obtain a dry powder; (III) a step of pre-baking the dry powder at 200 to 400 ° C. to obtain a pre-fired body, (IV) a step of subjecting the pre-stage fired body to main firing at 600 to 750 ° C.
  • the raw material preparation liquid has a silica sol (i) having an average primary particle diameter of 0 to 30% by mass with respect to the total mass of the silica raw material of 3 nm or more and less than 20 nm, Silica sol (ii) having an average primary particle diameter of 70% by mass of 20 nm to 100 nm, and silica sol having an average primary particle diameter of 30 to 70% by mass with respect to the total mass of the silica raw material of 50 nm or less.
  • the manufacturing method of the silica supported catalyst whose sum total of silica sol (ii) and powdered silica is 100 mass% on a silica basis.
  • a catalyst having a low ammonia combustion rate and a high yield of the target product can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • the silica-supported catalyst of this embodiment is A silica-supported catalyst used for producing a corresponding unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane, which has the following formula (1) MoV a Nb b X c T d Z e O n ⁇ (1)
  • X represents at least one element selected from Sb and Te
  • T represents at least one element selected from Ti, W, Mn and Bi
  • a, b, c, d, e and n are 0.05 ⁇ a ⁇ 0.5 and 0.01, respectively.
  • n is a value that satisfies the balance of valence.
  • An average pore diameter of 60 to 120 nm, a total pore volume of 0.15 cm 3 / g or more, a specific surface area of 5 to 25 m 2 / g, and X-ray diffraction The crystallite size determined from the half-value width of the (001) peak by is from 40 to 250 nm.
  • the silica-supported catalyst of the present embodiment has good catalyst performance because the metal composition ratio of the metal oxide contained in the catalyst is optimized.
  • the method for producing the silica-supported catalyst of the present embodiment is not particularly limited, but is preferably produced by a method including the following steps (I) to (IV).
  • the raw material preparation liquid has a silica sol (i) having an average primary particle diameter of 0 to 30% by mass with respect to the total mass of the silica raw material of 3 nm or more and less than 20 nm, Silica sol (ii) having an average primary particle diameter of 70% by mass of 20 nm to 100 nm, and silica sol having an average primary particle diameter of 30 to 70% by mass with respect to the total mass of the silica raw material of 50 nm or less.
  • the manufacturing method of the silica supported catalyst whose sum total of silica sol (ii) and powdered silica is 100 mass% on a silica basis.
  • Step (I) contains Mo, V, Nb, X, T, and Z, and the atomic ratio a of V to the Mo1 atom, the atomic ratio b of Nb, the atomic ratio c of X, and the atomic ratio d, Z of T
  • the atomic ratios e are 0.05 ⁇ a ⁇ 0.5, 0.01 ⁇ b ⁇ 0.5, 0.001 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 1, and 0 ⁇ e ⁇ 1, respectively.
  • This is a step of preparing a raw material preparation liquid.
  • constituent elements of the silica-supported catalyst are dissolved or dispersed in a solvent and / or dispersion medium at a specific ratio to obtain a raw material preparation liquid.
  • water can be used as a solvent for the raw material preparation liquid.
  • the raw material preparation solution is Mo, V, Nb, X, T, and Z (X is at least one element selected from Sb and Te, and T is selected from Ti, W, Mn, and Bi) And at least one element selected from the group consisting of at least one element selected from La, Ce, Yb, and Y).
  • a salt or compound containing a constituent element of the silica-supported catalyst can be used as a raw material of the raw material preparation liquid.
  • Mo raw materials include ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O], molybdenum trioxide [MoO 3 ], phosphomolybdic acid [H 3 PMo 12 O 40 ], and molybdenum molybdenum.
  • Acid [H 4 SiMo 12 O 40 ], molybdenum pentachloride [MoCl 5 ] and the like can be used, and ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O] is particularly preferable.
  • ammonium metavanadate [NH 4 VO 3 ], vanadium pentoxide [V 2 O 5 ], vanadium chloride [VCl 4 , VCl 3 ] and the like can be used, and in particular, ammonium metavanadate [NH 4 VO 3 ] is preferred.
  • niobic acid As a raw material of Nb, for example, niobic acid, an inorganic acid salt of niobium, and an organic acid salt of niobium can be used, and niobic acid is particularly preferable.
  • Niobic acid is represented by Nb 2 O 5 .nH 2 O and is also referred to as niobium hydroxide or niobium oxide hydrate. Further, it is preferably used as an Nb raw material liquid having a dicarboxylic acid / niobium molar ratio of 1 to 4, and oxalic acid is preferred as the dicarboxylic acid at this time.
  • the raw material for X is not particularly limited as long as it is a substance containing these elements, and a compound containing these elements or a material obtained by solubilizing a metal of these elements with an appropriate reagent is used. be able to.
  • the compounds containing these elements are usually ammonium salts, nitrates, carboxylates, ammonium carboxylates, peroxocarboxylates, ammonium peroxocarboxylates, ammonium halides, halides, acetylacetates of these elements. Nerts, alkoxides and the like can be used, and water-soluble raw materials such as nitrates and carboxylates are preferably used.
  • the raw material for T is not particularly limited as long as it is a substance containing these elements, and a compound containing these elements or a metal of these elements is solubilized with an appropriate reagent. Things can be used.
  • the compounds containing these elements are usually ammonium salts, nitrates, carboxylates, ammonium carboxylates, peroxocarboxylates, ammonium peroxocarboxylates, ammonium halides, halides, acetylacetates of these elements. Nerts, alkoxides and the like can be used, and water-soluble raw materials such as nitrates and carboxylates are preferably used.
  • the raw material for Z (La, Ce, Yb, Y) is not particularly limited as long as it is a substance containing these elements, and a compound containing these elements or a metal of these elements is solubilized with an appropriate reagent. Things can be used.
  • the compounds containing these elements are usually ammonium salts, nitrates, carboxylates, ammonium carboxylates, peroxocarboxylates, ammonium peroxocarboxylates, ammonium halides, halides, acetylacetates of these elements. Nerts, alkoxides and the like can be used, and water-soluble raw materials such as nitrates and carboxylates are preferably used.
  • raw materials there are no particular limitations on the procedure for dissolving, mixing or dispersing the raw materials for the catalyst constituent elements.
  • the raw materials may be dissolved, mixed or dispersed in the same aqueous medium, or the aqueous medium may be mixed after the raw materials are individually dissolved, mixed or dispersed in the aqueous medium.
  • you may heat and / or stir as needed.
  • the component Z is uniformly distributed in the catalyst particles.
  • “uniform” means that the distribution of the component Z is not biased in the catalyst particles.
  • 80% or more (mass ratio) of the oxide particles containing component Z is present in the catalyst particles as fine particles having a particle size of 1 ⁇ m or less. More preferably, when “uniform” is defined, uniform means that when the composition of the cross section of the catalyst particle is analyzed, the variance of the signal intensity ratio between the component Z and Si (value obtained by dividing the standard deviation by the average value) is 0. Says it is in the range of ⁇ 0.5.
  • the dispersion value is indicated by “Dx”.
  • a general composition analysis method such as SEM-EDX, XPS, SIMS, EPMA or the like can be used.
  • EPMA can be used.
  • EPMA is a common name of Electron Probe X-ray Microanalyzer (sometimes called by omitting this X-ray), and this analyzer irradiates a substance with an accelerated electron beam. By observing characteristic X-rays obtained in this way, the apparatus can perform composition analysis of a minute region (spot) irradiated with an electron beam.
  • this EPMA in general, information on the concentration distribution and composition change of a specific element can be obtained for the cross section of solid particles such as catalyst particles and carrier particles.
  • the dispersion value (Dx) of the intensity ratio of the component Z and Si by the above EPMA is the following according to the surface analysis method by EPMA of the particle cross section performed in the normal catalyst field for the cross section of the particle to be measured. In this way, it is measured and calculated. That is, first, the distribution of the X-ray peak intensity (count number ISi) of Si at an arbitrary position (x, y) in the catalyst particle cross section is measured so as to cover the entire area of the catalyst particle cross section. Next, similarly, the distribution of the X-ray peak intensity (count number IX) is also measured for the component Z so as to cover the entire region of the catalyst particle cross section.
  • “silica-supported catalyst also simply referred to as“ catalyst ”)” includes a product obtained by removing protrusions generated on the particle surface from the calcined product after the main calcination, but the dispersion value is measured in cross section. Since it is not affected by the state of the surface because it depends on the observation, the same value is shown even if it is measured after the main baking and before the protrusion removal step.
  • the area corresponding to 10% of the cross sectional area in the cross section of the catalyst particle and excluding the area corresponding to the outer periphery of the particle is excluded from the center in the cross section of the catalyst particle. It is preferable to calculate 90% area data as an effective area.
  • 90% area data is calculated as an effective area.
  • the raw material preparation liquid is prepared so as to contain a silica raw material.
  • the raw material preparation solution is a silica sol having an average primary particle diameter of 0 to 30% by mass with respect to the total mass of the silica raw material of 3 nm or more and less than 20 nm
  • silica sol (ii) having an average primary particle diameter of 30 to 70% by mass with respect to the total mass of the silica raw material of 20 nm to 100 nm, and an average primary particle of 30 to 70% by mass with respect to the total mass of the silica raw material
  • silica sol (i) contains 5 to 20% by mass of silica sol (i), 30 to 60% by mass of silica sol (ii), and 30 to 50% by mass of powdered silica.
  • the order in which these silica raw materials are added to the raw material preparation liquid is not particularly limited, and they may be mixed before being added to the raw material preparation liquid. The reason is not clear, but when silica sol (i), silica sol (ii), or powdered silica is used at a specific content, it is possible to produce a catalyst having a large average pore diameter and high wear resistance strength. It was found by their experiment.
  • silica sol (i) and silica sol (ii) are used, it is considered that silica particles having a small particle diameter enter between silica particles having a large particle diameter, thereby reducing the fine pores of the catalyst. Furthermore, it is considered that the addition of powdered silica prevents the silica sol from agglomerating and has an effect of increasing large pores. Since the catalyst of this embodiment has an average pore diameter larger than that of the conventional catalyst, the reaction temperature is made uniform by increasing the rate at which the raw material ammonia and the target product diffuse in the catalyst particles and / or by diffusing heat in the catalyst particles. It is estimated that the gasification has occurred, and combustion of the raw material ammonia and decomposition of the target product can be suppressed.
  • the metal contained as an impurity in the silica raw material may affect the performance of the prepared silica-supported catalyst.
  • An example of the impurities of the silica raw material is sodium.
  • the amount of sodium is preferably 0.02 atom or less and more preferably 0.01 atom or less per 100 atoms of silicon. When more than 0.02 atom of sodium is contained per 100 atoms of silicon, when the obtained silica-supported catalyst is used for an ammoxidation reaction, the raw material and / or the target product may be easily decomposed. .
  • the average pore diameter of the catalyst is adjusted in the range of 60 to 120 nm, preferably in the range of 65 to 100 nm.
  • the pore volume of pores having a pore diameter of less than 60 nm was smaller than the total pore volume. It was 30% or more.
  • the pore volume of pores having a pore diameter of less than 60 nm is 30% or more with respect to the total pore volume, combustion of the raw material ammonia and / or It is considered that the target product is easily decomposed.
  • the silica-supported catalyst in the present embodiment has a pore volume of pores having a pore diameter of less than 60 nm of less than 30% with respect to the total pore volume, and pores having a pore diameter of more than 120 nm.
  • the pore volume is preferably less than 30% with respect to the total pore volume.
  • silica sols having different particle diameters In order to produce such a catalyst, it is preferable to use silica sols having different particle diameters and to sinter at 600 to 750 ° C. to control silica sintering. Firing at 600 ° C. or higher is preferable because sintering of the silica proceeds sufficiently and the pore volume of pores having a pore diameter of 60 nm or more increases.
  • the amount of the carrier silica contained in the catalyst is preferably 20% by mass or more from the viewpoint of improving the strength of the catalyst with respect to the total mass of the catalyst composed of the metal oxide and silica, and imparts sufficient activity. From the viewpoint, it is preferably 70% by mass or less, more preferably 40 to 65% by mass with respect to the total mass.
  • the raw material of the silica carrier may be only silica sol, but a part of it can be replaced with powder silica.
  • powder silica as a raw material for the silica carrier, effects such as improvement in catalyst activity and / or yield of the target product can be expected.
  • a catalyst is prepared using only powder silica without using silica sol, the wear resistance of the catalyst Remarkably low.
  • the powder silica is preferably produced by a high heat method.
  • the powder silica in water in advance.
  • the method for dispersing the powdered silica in water is not particularly limited, and a general homogenizer, homomixer, ultrasonic vibrator, or the like can be dispersed alone or in combination.
  • the primary shape of the powdered silica at this time may be a sphere or a non-sphere.
  • the average primary particle diameter of the silica sol and powdered silica that are carrier raw materials can be determined by the BET method (BET adsorption isotherm). Generally available silica is considered to have a certain distribution width around the average primary particle diameter. In order to sufficiently exhibit the ammonia combustion suppressing effect, the standard deviation in the particle size distribution of each silica is preferably as small as possible. Specifically, the standard deviation is preferably 30% or less of the average primary particle diameter.
  • the average pore diameter of the catalyst In order to control the average pore diameter of the catalyst, it is effective to change the average primary particle diameter of the silica sol. Generally, when the average primary particle diameter of the silica sol is increased, the strength of the obtained catalyst tends to decrease. On the other hand, since it is desirable that an industrial fluidized bed catalyst has high strength, conventionally, a silica sol having an average primary particle diameter of several tens of nanometers has generally been used as a silica raw material. When such a silica sol is used to produce a catalyst by a conventional method, the average pore diameter is about 20 to 50 nm, and the average pore diameter defined in this embodiment does not satisfy the range of 60 to 120 nm. The rate is not enough.
  • the average pore diameter By changing the firing conditions, the average pore diameter can be controlled, and when the firing temperature is increased and / or the firing time is increased, the average pore diameter tends to increase.
  • the specific surface area and / or crystallite size also changes. Therefore, the average pore diameter, specific surface area, and crystallite size are controlled only by the firing conditions. It is difficult. As described above, it is virtually impossible to obtain a catalyst satisfying the average pore diameter, specific surface area and / or crystallite size by the method for producing a catalyst described in the background art literature.
  • the specific surface area and the crystallite size can be controlled by adjusting the firing conditions because the temperature range in which the sintering of silica, which greatly affects the specific surface area, is different from the temperature range in which crystals grow.
  • the means for controlling the average pore diameter of the catalyst of the present embodiment to an appropriate range is not particularly limited, and any means can be used as long as the average pore diameter can be controlled to an appropriate range.
  • Methods for controlling the average pore diameter of the catalyst include a method of changing the average primary particle diameter of the silica sol, which is the silica raw material, a method of using powdered silica as a part of the silica raw material, a silica carrier in the catalyst, and Means such as a method of changing the ratio of the metal oxide may be mentioned.
  • the raw material preparation liquid preferably contains powder silica having an average primary particle diameter of 50 nm or less as a part of the silica raw material in an amount of 30 to 70% by mass based on silica.
  • “silica standard” means “a ratio to the total amount of silica sol and powder silica.
  • the average primary particle diameter of powder silica is more preferably 10 to 20 nm.
  • the amount of is more preferably 30 to 50% by mass based on silica, and the specific surface area of the catalyst increases when powdered silica is used, in order to control the specific surface area and crystallite size within an appropriate range.
  • the baking temperature is preferably 640 to 750 ° C.
  • the baking time is 1 to 20 hours
  • the average temperature decreasing rate after the main baking is preferably 0.05 to 20 ° C./min.
  • the amount of supported silica is set to 20 to 70% by mass with respect to the total mass of the catalyst composed of metal oxide and silica. It is preferable to make it 40 to 60% by mass.
  • the amount of silica supported is reduced, the silica is shifted to the large pore diameter side, and the specific surface area is reduced.
  • the firing temperature of the main firing is 600 to 700 ° C.
  • the firing time is 0.1 to 5 hours
  • the average temperature drop rate after the completion of the main firing is 0. It is preferably performed at 5 to 50 ° C./min.
  • a gas adsorption method, a mercury intrusion method, or the like As a method for measuring the pore distribution of the catalyst, a gas adsorption method, a mercury intrusion method, or the like is known, but the value varies depending on the measurement method.
  • the value of the pore distribution of the catalyst in the present embodiment is obtained by a mercury intrusion method (using Pole Master GT manufactured by QUANTACHROME INSTRUMENTS).
  • the mercury intrusion method is a method in which mercury is injected into catalyst particles and the distribution of pore diameter is measured from the relationship between the pressure and the amount of intrusion at this time. An integrated curve of the pore volume with respect to the pore diameter calculated assuming the shape is given.
  • a value obtained by first-ordering the pore volume integrated curve with respect to the pore diameter and plotting it against the corresponding pore diameter is usually called a pore distribution.
  • a sample (catalyst) of 0.4 to 0.6 g is put in a dilatometer (dilatometer), degassed to 6.67 Pa or less with a vacuum pump, then mercury is injected, and then the dilatometer is placed in an autoclave. It is loaded, the pressure of mercury is gradually increased from normal pressure to 413 MPa, the decrease in mercury liquid level is traced, and the pore distribution is measured from the change in pressure and mercury liquid level (injection amount of mercury into catalyst pores). is there.
  • the gap between the catalyst particles is measured as tens of thousands to hundreds of thousands of pores, so pores of 200 nm or less are added to the integrated volume.
  • the measurement lower limit value of the pore diameter is 6 nm, pores of 6 nm or more are added to the integrated volume. Therefore, in this embodiment, the total volume of pores having a pore diameter of 6 nm or more and 200 nm or less is defined as the total pore volume.
  • the total pore volume of the catalyst in the present embodiment is 0.15 cm 3 / g or more from the viewpoint of fluidity in the fluidized bed reaction.
  • the total pore volume tends to increase as the average pore diameter increases and / or as the specific surface area increases.
  • the specific surface area is increased by lowering the firing temperature and / or shortening the firing time in the method of increasing the average pore diameter using silica sols having different particle sizes and / or the firing step. Methods and the like.
  • the raw material preparation step is an example of preparing a raw material preparation liquid of a silica-supported catalyst containing a Mo compound, a V compound, an Nb compound, an X compound, a T compound, and a Z compound using water as a solvent and / or a dispersion medium.
  • Mo compound, V compound, X compound and component Z compound are added to water and heated to prepare a raw material preparation liquid (A). It is preferable to adjust the heating temperature and heating time during preparation of the raw material preparation liquid (A) so that the raw material compound can be sufficiently dissolved, and the heating temperature is preferably 70 ° C. to 100 ° C., and the heating time is preferably Is 30 minutes to 5 hours.
  • the number of rotations of stirring during heating is adjusted to an appropriate number of rotations at which the raw materials are easily dissolved.
  • the raw material is a metal salt
  • the inside of the container may be an air atmosphere, but from the viewpoint of adjusting the oxidation number of the obtained composite oxide catalyst, a nitrogen atmosphere can also be used.
  • the state after the heating of the raw material preparation liquid (A) is referred to as a raw material preparation liquid (A ′). It is preferable to hold
  • the temperature of the raw material preparation liquid (A ′) is less than 20 ° C.
  • precipitation of metal species dissolved in the raw material preparation liquid (A ′) may occur.
  • silica sol is added as a raw material for the carrier.
  • the order in which the silica sols are added is not particularly limited, and these may be mixed before being added to the raw material preparation liquid.
  • the temperature of the raw material preparation liquid (A ′) when adding the silica sol is preferably 80 ° C. or less.
  • the stability of the silica sol becomes weak and the raw material preparation liquid may be gelled.
  • the timing of adding the silica sol may be at the start of ripening described later, during ripening, or just before drying the raw material preparation liquid, but it is preferably added when the raw material preparation liquid (A ′) is in the state. Furthermore, from the viewpoint of adjusting the oxidation number of the obtained metal oxide, it is preferable to add an appropriate amount of hydrogen peroxide water to the raw material preparation liquid (A ′) as necessary.
  • the timing of adding the hydrogen peroxide solution may be added to the raw material preparation liquid (A ′) or during the preparation of the raw material preparation liquid (A ′), and may be a problem before or after the addition of the silica sol. Absent.
  • the amount of hydrogen peroxide added is preferably 0.01 to 5 as H 2 O 2 / Sb (molar ratio), more Preferably it is 0.5 to 3, more preferably 1 to 2.5.
  • the temperature is preferably 30 ° C. to 70 ° C., and the heating time is preferably 5 minutes to 4 hours.
  • the number of rotations of stirring at the time of heating is adjusted to an appropriate number of rotations in which the liquid phase oxidation reaction with hydrogen peroxide solution easily proceeds. From the viewpoint of sufficiently proceeding the liquid phase oxidation reaction with hydrogen peroxide, it is preferable to keep the stirring state during heating.
  • the raw material mixture prepared in this way is designated as (A ′′).
  • the Nb compound and dicarboxylic acid are heated and stirred in water to prepare a mixed solution (B 0 ).
  • the dicarboxylic acid include oxalic acid [(COOH) 2 ].
  • a hydrogen peroxide solution is added to the mixed liquid (B 0 ) to prepare the raw material preparation liquid (C).
  • H 2 O 2 / Nb (molar ratio) is determined by forming a complex with the Nb compound and stabilizing it in a dissolved state, appropriately adjusting the redox state of the catalyst constituent elements, and the catalyst of the resulting catalyst. From the viewpoint of optimizing the performance, it is preferably 0.5 to 20, and more preferably 1 to 10.
  • the raw material preparation liquid (A ′′), the raw material preparation liquid (C), the T compound, and powder silica are suitably mixed to obtain the raw material preparation liquid (D).
  • the obtained raw material preparation liquid (D) is subjected to aging treatment to obtain a raw material preparation liquid.
  • the powder silica used here can be added as it is, but more preferably it is added as an aqueous solution in which powder silica is dispersed in water. At this time, the concentration of the powder silica with respect to water is preferably 1 to 30% by mass, and more preferably 3 to 20% by mass.
  • the concentration of the powder silica is less than 1% by mass, the viscosity of the slurry is too low, and the resulting particle shape may be distorted, and the catalyst particles may be easily dented. .
  • the powder silica concentration exceeds 30% by mass, the viscosity of the raw material preparation liquid becomes too high, the raw material preparation liquid gels, and clogging occurs in the pipe, making it difficult to obtain a dry powder. There is a risk that the catalyst performance may deteriorate.
  • the aging of the raw material preparation liquid (D) means that the raw material preparation liquid (D) is allowed to stand for a predetermined time or is stirred.
  • the processing speed of the spray dryer is rate-limiting, and after a part of the raw material preparation liquid (D) is spray-dried, it takes time until the spray-drying of all the mixed liquids is completed. May be required.
  • the aging of the liquid mixture which has not been spray-dried can be continued. That is, the aging time includes not only the aging time before spray drying but also the time from the start to the end of spray drying.
  • the catalyst supported on silica preferably has a viewpoint of sufficiently dissolving and / or dispersing a compound containing a catalyst constituent element, a viewpoint of appropriately adjusting the oxidation-reduction state of the catalyst constituent element, and a shape and / or strength of the resulting catalyst particle. It is preferable from the viewpoint of improving the catalytic performance of the resulting composite oxide.
  • Silica sol can be added as appropriate. A part of the silica sol can be used as an aqueous dispersion of powdered silica, and an aqueous dispersion of powdered silica can also be added as appropriate.
  • the above raw material preparation step can be repeatedly performed according to the production amount.
  • the raw material preparation step in the present embodiment preferably includes the following steps (a) to (d).
  • (A) Step of preparing raw material preparation liquid containing Mo, V, X and component Z (b) Step of adding silica sol and hydrogen peroxide solution to raw material preparation liquid obtained in step (a)
  • (c) ( b)
  • a solution containing Nb, dicarboxylic acid and hydrogen peroxide solution and a T compound are mixed in the solution obtained in step b).
  • a process of adding liquid and aging a process of adding liquid and aging.
  • Step (II) is a step of drying the raw material preparation liquid to obtain a dry powder.
  • Dry powder is obtained by drying the slurry-like raw material preparation liquid obtained through the raw material preparation step. Drying can be performed by a known method, for example, spray drying or evaporation to dryness.
  • spray drying is adopted. It is preferable to do this.
  • the atomization in the spray drying method may be any of a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method.
  • the drying heat source air heated by steam, an electric heater or the like can be used.
  • the inlet temperature of the dryer of the spray dryer is preferably 150 to 300 ° C. from the viewpoint of obtaining a favorable shape and / or strength of the obtained catalyst particles and improving the catalyst performance of the obtained composite oxide.
  • the outlet temperature of the dryer is preferably 100 to 160 ° C.
  • the average particle size of the dry powder is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 to 150 ⁇ m.
  • the average particle size of the dry powder should be determined by measuring the particle size distribution according to JIS R 1629-1997 “Method for measuring particle size distribution of fine ceramic raw materials by laser diffraction / scattering method” and averaging on a volume basis. Can do. More specifically, a part of the dry powder is baked at 400 ° C. for 1 hour in the air, and the obtained particles are measured using a laser diffraction scattering method particle size distribution measuring apparatus BECKMAN COULTER LS230.
  • the average particle diameter is measured after a part of the dry powder is “baked in air at 400 ° C. for 1 hour” in order to prevent the dry powder from being dissolved in water. That is, “calcination in air at 400 ° C. for 1 hour” is exclusively for measurement, and is not related to the later-described firing step. It may be considered that the particle diameter does not substantially change before and after the firing.
  • the average particle size of the dry powder is measured as follows according to the manual attached to the laser diffraction / scattering particle size distribution measuring apparatus (manufactured by BECKMAN COULTER, trade name “LS230”). First, after background measurement (RunSpeed 60), 0.2 g of particles are weighed into a screw tube of an appropriate size, and 10 cc of water is added. The screw tube is covered (sealed) and shaken well to disperse the particles in water. An ultrasonic wave of 300 W is applied by the apparatus, and the screw tube is sufficiently shaken again. Thereafter, while continuing to apply ultrasonic waves, the particles dispersed in water are injected into the apparatus main body using a dropper so as to have an appropriate concentration (concentration 10, PIDS60). When the concentration display is stabilized, the application of ultrasonic waves is stopped, and after standing for 10 seconds, measurement is started (measurement time 90 seconds). The median diameter value of the measurement result is defined as the average particle diameter.
  • Step (III) is a step of pre-baking the dried powder at 200 to 400 ° C. to obtain a pre-fired body.
  • Step (IV) is a step of subjecting the pre-stage fired body to main firing at 600 to 750 ° C. to obtain a fired body.
  • the step (III) and the step (IV) are collectively referred to as a “baking step”.
  • the dry powder obtained in the drying step is fired. Conditions such as the firing temperature, time, and atmosphere may be determined as appropriate from the viewpoint of removal of organic components contained in the dry powder and crystal growth of the composite oxide, and are not particularly limited. In the manufacturing method of this embodiment, conditions such as temperature are changed as described later, and multi-stage firing is performed as pre-stage firing and main firing.
  • the “projection” refers to a material that has exuded and / or adhered to the surface of a fired body obtained by the main firing described later, and refers to a material that protrudes or adheres from the surface of the fired body.
  • most of the protrusions are protruding oxide crystals and other impurities.
  • an oxide having a composition different from that of a crystal that forms most of the fired body may be formed in a shape that exudes from the fired body body.
  • the protrusions are often formed in the shape of a plurality of protrusions (for example, a height of 0.1 ⁇ m to 20 ⁇ m) on the surface of a sphere-like fired body (for example, a diameter of 30 to 150 ⁇ m). The removal of the protrusion will be described later in detail.
  • a baking apparatus for baking the dry powder for example, a rotary furnace (rotary kiln) can be used.
  • the shape of the calciner is not particularly limited, but is preferably a tubular shape (firing tube) and particularly preferably a cylindrical shape from the viewpoint that continuous firing can be performed.
  • the heating method is preferably an external heating type from the viewpoint of easy adjustment of the firing temperature so as to have a preferable temperature rise pattern, and an electric furnace can be suitably used.
  • the size and material of the firing tube an appropriate one can be selected according to the firing conditions and the production amount.
  • the inner diameter of the calcining tube is preferably 70 to 2000 mm, more preferably 100 to 1200 mm, from the viewpoints of preventing unevenness in the calcining temperature distribution in the catalyst layer and adjusting the calcining time and production amount to appropriate values. It is.
  • the length of the calcining tube is determined based on the residence time of the dry powder and catalyst precursor particles in the calcining tube, that is, the viewpoint of making the distribution of the calcining time as narrow as possible, the viewpoint of preventing distortion of the calcining pipe, the calcining time and the production amount. From the viewpoint of adjusting to an appropriate value, etc., the thickness is preferably 200 to 10,000 mm, more preferably 800 to 8000 mm.
  • the thickness is preferably 2 mm or more, more preferably 4 mm or more, from the viewpoint of having a sufficient thickness that does not damage the fired tube. Further, from the viewpoint that the impact is sufficiently transmitted to the inside of the firing tube, the thickness is preferably 100 mm or less, more preferably 50 mm or less.
  • the material of the calciner is not particularly limited as long as it is preferably heat-resistant and has a strength that does not break due to impact. For example, SUS can be suitably used.
  • the “catalyst precursor” refers to a compound produced in the middle of the firing process.
  • the crystallite size of the catalyst can be controlled.
  • the main calcination is preferably performed at 600 to 750 ° C. for 0.1 to 20 hours, and is performed at 650 to 720 ° C. for 0.5 to 5 hours. It is more preferable.
  • the crystallite size is greatly influenced by the main firing temperature and / or time. The crystallite size increases as the firing temperature is increased and / or the firing time is increased.
  • the crystal of the silica-supported catalyst has a cylindrical shape, and when the crystal grows in the (001) direction, the ratio of the side surface to the total crystal plane increases.
  • the crystallite size measured in the present embodiment is the length in the (001) direction, and it is considered that the ratio of the decomposition plane to the total crystal plane increases when the crystallite size exceeds 250 nm. Decomposition tends to occur. Conversely, when the firing temperature is lowered and / or the firing time is shortened, the crystallite size becomes smaller. When the crystallite size is less than 40 nm, the construction of active sites becomes insufficient, and combustion of the raw material ammonia and decomposition of the target product are likely to occur. Accordingly, the crystallite size of the catalyst is 40 to 250 nm, preferably 40 to 180 nm.
  • a catalyst having a crystallite size in an appropriate range has a high degree of crystal perfection and a small ratio of the decomposition surface to the total crystal surface, so that combustion of raw material ammonia can be suppressed and a target product can be produced in a high yield. can do.
  • the crystallite size of the catalyst can be determined by measuring X-ray diffraction. Since the (001) peak involved in the reaction overlaps with the impurity peak not involved in the reaction, pretreatment is performed. In the pretreatment, 5 to 20 g of catalyst, 200 mL of water, and 2 mL of nitric acid are put in a pressure vessel and left at 150 to 200 ° C. for 24 hours or more in a sealed state to dissolve impurities. When 24 hours or more have elapsed, the pressure vessel is cooled to room temperature and filtered through filter paper. The solid material obtained by filtration was dried in a high-temperature bath set at 30 to 100 ° C. for 24 hours or longer, and X-ray diffraction measurement of the dried powder was performed, so that the (001) peak of only the crystals involved in the reaction was obtained. Obtainable.
  • the crystallite size measurement method can be obtained by the Scherrer equation from the half width of the peak obtained by X-ray diffraction after the pretreatment.
  • Specific X-ray measurement conditions are as follows: apparatus: RIGAKU RINT2500HF / PC, light source: Cu K ⁇ ray, output: 40 kV-20 mA, measurement range (2 ⁇ ): 5-50 °, scan speed: 1 deg / min, number of integrations : Perform measurement four times.
  • apparatus RIGAKU RINT2500HF / PC
  • light source Cu K ⁇ ray
  • output 40 kV-20 mA
  • measurement range (2 ⁇ ) 5-50 °
  • scan speed 1 deg / min
  • number of integrations Perform measurement four times.
  • LaB6 standard reference material
  • L 0.9 ⁇ / ⁇ cos ⁇ (ii)
  • L crystallite size ( ⁇ )
  • wavelength
  • diffraction line width (rad)
  • rad diffraction angle
  • the firing atmosphere may be an air atmosphere or an air flow, but from the viewpoint of adjusting to a preferable redox state, at least a part of the firing is performed while circulating an inert gas substantially free of oxygen such as nitrogen. It is preferable to do.
  • the supply amount of the inert gas is 50 Nl / Hr or more, preferably 50 to 5000 Nl / Hr, per 1 kg of the dry powder.
  • it is 50 to 3000 N liter / Hr (N liter means liter measured at standard temperature and pressure conditions, that is, 0 ° C. and 1 atm).
  • the supply amount of the inert gas is 50 N liters or more, preferably 50 to 5000 N liters, more preferably 50 to 5,000 liters per kg of dry powder. 3000 N liters.
  • the inert gas and the dry powder may be countercurrent or cocurrent, but countercurrent contact is preferable in consideration of a gas component generated from the dry powder and a small amount of air mixed with the dry powder.
  • Dry powder usually contains ammonium root, organic acid, inorganic acid, etc. in addition to moisture.
  • the catalyst constituent elements are reduced when they are evaporated, decomposed or the like.
  • the catalyst constituent element in the dry powder has almost the highest oxidation number, in order to bring the reduction rate of the catalyst into the desired range, it is only necessary to carry out the reduction in the calcination step, which is industrially simple.
  • an oxidizing component or a reducing component may be added to the firing atmosphere so that the reduction rate of the pre-stage fired body is within a desired range.
  • the calcination is carried out so that the reduction ratio of the obtained pre-stage calcined product is 8 to 12% and the specific surface area of the catalyst is 5 to 25 m 2 / g.
  • the specific surface area of the catalyst is 5 to 25 m 2 / g, further sufficient activity is obtained, combustion of the raw material ammonia is suppressed, and the yield tends to be further increased.
  • the specific surface area exceeds 25 m 2 / g, the decomposition point on the silica surface increases, and the raw ammonia tends to burn and the target product tends to decompose.
  • the specific surface area is less than 5 m 2 / g, sufficient active sites are not generated, and the yield tends to decrease.
  • the effect of addition of the molybdenum compound for maintaining the yield during the ammoxidation reaction the effect is more fully exhibited, and there is no sharp deterioration, so the amount and frequency of addition of the molybdenum compound are reduced. Tend to be able to.
  • the specific surface area of the catalyst is less than 5 m 2 / g, the active surface of the active species involved in the reaction is small and the effect of adding the molybdenum compound is difficult to be exhibited.
  • the specific surface area of the catalyst exceeds 25 m 2 / g, it is presumed that the active surface of the active species becomes large, while the escape of molybdenum from the active surface becomes fast.
  • the specific surface area of the catalyst is 5 to 25 m 2 / g, and preferably 8 to 18 m 2 / g.
  • a specific surface area is calculated
  • the dry powder is fired, and the heating temperature of the dry powder starts from a temperature lower than 400 ° C., and continuously or intermittently to a temperature within the range of 600 to 750 ° C.
  • the firing conditions are adjusted so that the reduction rate of the pre-stage fired body during firing when the heating temperature reaches 400 ° C. is 8 to 12%.
  • the temperature and time at which the catalyst is finally calcined (heated) and the silica content affect the specific surface area of the catalyst, but the reduction rate, main calcining temperature and / or time when the heating temperature reaches 400 ° C, The rate of temperature drop after firing has a particularly great effect.
  • the reduction rate when the heating temperature reaches 400 ° C. is low, the specific surface area of the catalyst becomes small, and when the reduction rate when the heating temperature reaches 400 ° C. is high, the specific surface area of the catalyst tends to increase.
  • the main baking temperature is 600 ° C. to 750 ° C. for 0.1 hour to 20 hours. The higher the main calcination temperature and the longer the time, the smaller the specific surface area of the catalyst.
  • the temperature lowering rate after the main firing is preferably 0.05 to 50 ° C./min, more preferably 0.05 to 20 ° C./min. When the temperature lowering rate after the main firing is reduced, the specific surface area tends to be reduced.
  • the specific surface area and crystallite size of the catalyst can be controlled separately by adjusting the firing conditions. Since the temperature at which crystal growth proceeds is in the region of main baking, the crystallite size is controlled by the main baking temperature and / or main baking time. Since the temperature range in which the sintering of silica, which has a large influence on the specific surface area, proceeds is wider than the temperature range in which crystal growth proceeds, it is preferable to control the specific surface area with the temperature drop rate after the completion of the main firing. Moreover, since the specific surface area is greatly influenced by the oxidation-reduction degree, it is also preferable to control the reduction rate using the reduction rate as an index.
  • the specific surface area of the catalyst can be adjusted by adjusting the feed amount of the dry powder during firing.
  • the residence time of the dry powder in the system becomes longer, so the reduction of the dry powder by a reducing gas such as ammonia generated by heating the dry powder in the firing tube proceeds.
  • the reduction rate is increased, and the specific surface area of the catalyst obtained after the main calcination is increased.
  • the specific surface area can be adjusted by the amount of nitrogen during the pre-stage firing.
  • the component gas that reduces the pre-stage calcined powder at the time of firing is quickly discharged out of the system, so that the pre-stage calcined body is less susceptible to reduction, and as a result, the specific surface area is considered to be small.
  • reducing the amount of nitrogen increases the reduction rate and increases the specific surface area of the catalyst.
  • the reduction rate when the heating temperature reaches 400 ° C. is within the range of 8 to 12%, and the final calcination temperature is 600 ° C. to It is preferable to set it as 750 degreeC.
  • the calcination step includes pre-stage calcination and main calcination, and the pre-stage calcination is preferably performed in a temperature range of 200 to 400 ° C., and the main calcination is preferably performed in a temperature range of 600 to 750 ° C.
  • the pre-stage baking and the main baking may be performed continuously, or after the pre-stage baking is once completed, the main baking may be performed again. Moreover, each of pre-stage baking and main baking may be divided into several stages.
  • the sample When measuring the reduction rate of the pre-stage calcined product during firing, the sample may be taken out from the firing device at that temperature, but it may be oxidized by contact with air at a high temperature, and the reduction rate may change. After cooling to room temperature, the sample taken out from the baking apparatus is preferably used as the representative sample.
  • a method of controlling the reduction rate when the heating temperature reaches 400 ° C. to a desired range specifically, a method of changing the pre-stage firing temperature, an oxidizing component such as oxygen is added to the atmosphere during firing Or a method of adding a reducing component to the atmosphere during firing. Moreover, you may combine these.
  • the method of changing the pre-stage baking temperature is a method of changing the reduction rate when the heating temperature reaches 400 ° C. by changing the pre-stage baking temperature.
  • the reduction rate can be controlled by changing the pre-stage firing temperature.
  • the reduction rate can be controlled by increasing / decreasing the number of revolutions in increasing / decreasing the amount of supplied nitrogen, increasing / decreasing the amount of supplied dry powder, and firing using a rotary kiln.
  • the components to be oxidized evaporated from the dry powder by heating the furnace are not oxidized by the metal oxide present in the firing furnace (the metal oxide is reduced) and discharged outside the system. It is considered that the reduction of the fired body is difficult to proceed because the ratio of the heat generated is high.
  • the dry powder supplied decreases, in a rotary kiln, it is considered that the reduction proceeds because the residence time of the catalyst is extended. Further, in the case of a rotary kiln, if the number of rotations is reduced, the moving speed of the catalyst in the kiln is reduced, so that the time for contacting with more oxidizable components becomes longer, so that the reduction proceeds. .
  • the reduction rate of the pre-stage calcined product before the end of firing is measured as follows. About 200 mg of the pre-stage calcined product is precisely weighed in a beaker. Further, an excessive amount of a KMnO 4 aqueous solution having a known concentration is added. Further, 150 mL of pure water at 70 ° C., 2 mL of 1: 1 sulfuric acid (that is, sulfuric acid aqueous solution obtained by mixing concentrated sulfuric acid and water at a volume ratio of 1/1) was added, and the beaker was capped with a watch glass. The sample is oxidized by stirring for 1 hour in a hot water bath at ⁇ 2 ° C.
  • the reduction rate of the fired product after the completion of the firing can be measured as follows. In a beaker, about 200 mg of a fired body crushed in a mortar made of agate is precisely weighed. 150 mL of pure water at 95 ° C. and 4 mL of 1: 1 sulfuric acid (that is, a sulfuric acid aqueous solution obtained by mixing concentrated sulfuric acid and water at a volume ratio of 1/1) are added. Stirring is continued while the liquid temperature is maintained at 95 ° C. ⁇ 2 ° C., and titration is performed with an aqueous KMnO 4 solution having a known concentration.
  • 1: 1 sulfuric acid that is, a sulfuric acid aqueous solution obtained by mixing concentrated sulfuric acid and water at a volume ratio of 1/1
  • the reduction ratios of the pre-stage calcined body before the end of the main calcination and the calcined body after the end of the main calcination can also be measured as follows. Heating to a temperature higher than the firing temperature at which the pre-stage calcined body or calcined body was calcined under the condition that the constituent elements of the sample do not volatilize or escape, complete oxidation with oxygen, and increased mass (amount of bound oxygen) From this, the value of (n 0 -n) is obtained, and the reduction rate is obtained based on this value.
  • the firing atmosphere is performed in an inert gas or a preferable oxidizing / reducing atmosphere, it is preferable to use a firing device having an appropriate seal structure and capable of sufficiently blocking contact with the outside air.
  • the pre-stage calcination temperature is preferably 200 ° C. to 400 ° C., more preferably in the presence of an inert gas flow, from the viewpoint of easy adjustment of the resulting catalyst to a preferable redox state and improvement in catalyst performance. Is performed in the range of 300 ° C to 400 ° C.
  • the pre-stage firing temperature is preferably maintained at a constant temperature within a temperature range of 200 ° C. to 400 ° C., but even if the temperature fluctuates within the range of 200 ° C. to 400 ° C., or the temperature is raised or lowered gradually. Good.
  • the holding time of the heating temperature is preferably 30 minutes or more, more preferably 3 to 12 hours, from the viewpoint of easy adjustment of the obtained catalyst to a preferable redox state and improvement of catalyst performance.
  • the temperature pattern until reaching the pre-stage firing temperature may be a linear temperature rising pattern, or may be a temperature rising pattern that draws an upward or downward convex arc. Further, there may be a time for the temperature to drop during the temperature rise, and the temperature rise and the temperature fall may be repeated. Furthermore, an endothermic reaction may occur due to components contained in the dry powder and / or catalyst precursor during the temperature raising process, and the temperature may be temporarily lowered.
  • the average rate of temperature increase at the time of temperature increase until reaching the pre-stage calcination temperature is usually 0. It is about 1 to 15 ° C./min, preferably 0.5 to 5 ° C./min, more preferably 1 to 2 ° C./min.
  • the main calcination is preferably performed under an inert gas flow, preferably from the viewpoint of easily adjusting the obtained catalyst to a preferable specific surface area, sufficiently forming a crystal structure active in reaction, and improving catalyst performance. It can be carried out at 600 to 750 ° C., more preferably at 650 to 720 ° C.
  • the main calcination temperature is preferably maintained at a constant temperature within a temperature range of 650 to 720 ° C. However, the temperature may fluctuate within the range of 650 to 720 ° C., or the temperature may be gradually increased or decreased. In addition, the temperature may be lowered during the temperature increase, or the temperature increase / decrease may be repeated.
  • An endothermic reaction may be caused by the components contained in the dry powder during the temperature rising process, and the pattern of temperature drop may be determined depending on the course.
  • the specific surface area of the catalyst can be adjusted by the firing temperature. In order to obtain a catalyst having a specific surface area, it is possible to increase or decrease the specific surface area depending on the temperature of the pre-stage calcination, but adjusting the calcination temperature of the main calcination, which is easily influenced by the specific surface area, is This is a preferred embodiment for obtaining a catalyst having a surface area.
  • the firing time is preferably 0.1 to 20 hours, more preferably 0.5 to 5 hours.
  • at least two of the pre-stage fired body and / or the fired body are preferably 2 to 20, more preferably, from the viewpoint of securing a suitable residence time in the fired tube such as a dry powder. Passes continuously through 4-15 zones.
  • the temperature can be controlled by using one or more controllers, but in order to obtain the desired firing pattern, a heater and a controller can be installed and controlled for each section separated by these weirs. preferable.
  • the set temperature is controlled by a heater and a controller in which eight areas are provided for each of the areas so that the temperature becomes the desired firing temperature pattern.
  • a heater and a controller in which eight areas are provided for each of the areas so that the temperature becomes the desired firing temperature pattern.
  • the temperature of the thermocouple inserted in the central part of the area of the pre-stage calcined body staying in the calciner is counted from the supply side of the pre-stage calcined body, zone 1: 120 to 280 ° C., zone 2: 180-330 ° C, Zone 3: 250-350 ° C, Zone 4: 270-380 ° C, Zone 5: 300-380 ° C, Zone 6: 300-390 ° C, Zone 7: 320-390 ° C, Zone 8: 260- It is preferable to adjust so that it may become 380 degreeC.
  • zone 1 360-560 ° C.
  • zone 2 450-650 ° C.
  • zone 3 600-700 ° C.
  • zone 4 650-750 ° C.
  • zone 5 600-700 ° C.
  • zone 6 500 It is preferable that the temperature is adjusted to ⁇ 690 ° C.
  • zone 7 480 to 630 ° C.
  • zone 8 400 to 580 ° C.
  • the specific surface area of the pre-fired body is not as high as that of the main fire, but can be adjusted to some extent according to the pre-fire conditions. Although the clear reason is not certain, since the reduction rate and the specific surface area are in a proportional relationship, the same management as described above makes it easy to optimize the range of the specific surface area. However, the adjustment of the specific surface area of the catalyst greatly depends on the firing method of the main firing.
  • the firing temperature of 650 ° C. greatly exceeds the melting point of the oxide of the constituent metal, a large amount of oxide adheres to the wall surface of the firing tube, so the number of hits to the firing tube using a hammer or the like is reduced.
  • an oxidizing component for example, oxygen
  • a reducing component for example, ammonia
  • the temperature rising pattern until reaching the main firing temperature may be increased linearly, or the temperature may be increased by drawing an upward or downward convex arc. Further, a time for lowering the temperature may be entered during the temperature increase, and the temperature increase / decrease may be repeated. An endothermic reaction may occur due to the components remaining in the pre-stage calcined body in the temperature raising process, and a pattern of temperature lowering may be entered.
  • the average rate of temperature increase at the time of temperature increase until reaching the main firing temperature is not particularly limited, but is preferably 0.5 to 8 ° C./min.
  • the average cooling rate after the completion of the main calcination is preferably 0.05 to 50 ° C. from the viewpoints of controlling the specific surface area, easily forming a crystal structure active in the reaction, improving the catalyst performance, and the like. / Min, more preferably 0.05 to 20 ° C./min.
  • the annealing is once held at a temperature lower than the main calcination temperature.
  • the holding temperature is 5 ° C., preferably 10 ° C., more preferably 50 ° C. lower than the main firing temperature.
  • the holding time is preferably 0.5 hours or more, more preferably 1 hour or more, still more preferably 3 hours or more, and particularly preferably 10 hours or more.
  • the time required for low-temperature treatment that is, the time required for raising the temperature to the firing temperature after lowering the temperature of the pre-stage calcined body and / or calcined body is the size, thickness, material, catalyst of the calciner It can be appropriately adjusted depending on the production amount, a series of periods in which the pre-stage calcined body and / or the calcined body are continuously fired, the fixing speed, the fixing amount, and the like.
  • the oxide layer temperature refers to a temperature measured by a thermocouple inserted in the pre-stage calcined powder and / or main calcined powder deposited in the calciner.
  • the pre-stage calcined powder is supplied at a speed of 35 kg / hr while rotating at 6 rpm by a rotary furnace having a SUS calcining tube having an inner diameter of 500 mm, a length of 4500 mm and a wall thickness of 20 mm, and the main calcining temperature is 645 ° C.
  • the step of raising the temperature to 645 ° C. can be performed in about one day.
  • continuous firing for one year by performing such a low temperature treatment once a month, it is possible to perform firing while stably maintaining the oxide layer temperature.
  • Protrusions are generated on the particle surface of the fired product that has undergone the main firing step.
  • the calcined body in this embodiment has an appropriate composition as compared with the conventional calcined body, so the amount of the projecting body is small and the impact of the projecting body is smaller than that of the conventional catalyst, but the reaction is performed in the gas phase ammoxidation reaction. If present in the vessel, side reactions are liable to occur and / or the protrusions are peeled off and the fluidity is deteriorated. Therefore, it is preferably removed before the reaction.
  • the amount of the protrusions is preferably 2% by mass or less with respect to the total mass of the fired body.
  • a method for removing the protrusions among these, a method of removing the projections by contacting the catalysts with each other under a gas flow is preferable.
  • a method of circulating gas in a hopper or the like for storing the fired body and a method of putting the fired body in a fluidized bed reactor and causing the gas to flow therethrough.
  • the method using a fluidized bed reactor is a preferable embodiment in that a special apparatus for removing protrusions is not necessary, but it is a little because it is not an apparatus originally designed for contact between catalysts.
  • the protrusions may not be sufficiently removed depending on conditions such as the amount of catalyst input, the time for circulation and the amount of gas.
  • the protrusion can be efficiently removed by bringing an air flow having a sufficient flow velocity into contact with the fired body having the protrusion.
  • Providing an apparatus having a structure in which an appropriate flow rate can be brought into contact with the fired body enables efficient removal of the protrusions even on a large scale.
  • it has a main body for storing the fired body, a fired body recovery means provided on the upper part of the main body, and a return means for the fired body connected to the recovery means.
  • An apparatus that is provided so as to come into contact with each other, and a part of the fired body that has contacted the airflow in the main body is recovered by the recovery means and returned to the main body by the return means can efficiently remove the protrusions even on a large scale. .
  • the fired body comes into contact with each other, and the protruding protrusions are removed. Since the protrusion separated from the fired body is much smaller than the fired body, it flows out of the fluidized bed reactor together with the flowing gas. At this time, it is preferable to fill the fired body in the apparatus so that the density of the fired body is 300 to 1300 kg / m 3 .
  • the cross-sectional area of the body portion of the apparatus to be used is preferably 0.1 to 100 m 2 , more preferably 0.2 to 85 m 2 .
  • the gas to be circulated is preferably an inert gas such as nitrogen or air.
  • the gas linear velocity to be circulated through the body portion of the apparatus filled with a fired body such as a hopper or a fluidized bed reactor is preferably 0.03 m / s to 5 m / s, more preferably 0.05 to 1 m / s. is there.
  • the gas circulation time is preferably 1 to 168 hours.
  • the protrusion removing device of the present embodiment includes a main body, and the airflow is brought into contact with the fired body accommodated in the main body, or particles that have flowed by the airflow come into contact with each other, and thus are on the surface of the fired body.
  • An apparatus for removing the protrusions from the fired body, the airflow length in the direction in which the airflow flows is 10 mm or more, and the average airflow velocity is 80 m when converted to a linear velocity at 15 degrees Celsius and 1 atmosphere. / S or more and 500 m / s or less is preferable.
  • the gas phase catalytic ammoxidation reaction of this embodiment is a method for producing an unsaturated nitrile using the silica-supported catalyst in a method for producing a corresponding unsaturated nitrile by subjecting propane or isobutane to a gas phase catalytic ammoxidation reaction.
  • Propane, isobutane and ammonia feedstocks do not necessarily have to be high purity, and industrial grade gases can be used.
  • As the supply oxygen source air, pure oxygen, or air enriched with pure oxygen can be used.
  • helium, neon, argon, carbon dioxide gas, water vapor, nitrogen or the like may be supplied as a dilution gas.
  • the gas phase catalytic ammoxidation reaction of propane or isobutane can be performed under the following conditions.
  • the molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to 6, preferably 0.5 to 4.
  • the molar ratio of ammonia to propane or isobutane fed to the reaction is 0.3 to 1.5, preferably 0.7 to 1.2.
  • the reaction temperature is 350 to 500 ° C, preferably 380 to 470 ° C.
  • the reaction pressure is 5 ⁇ 10 4 to 5 ⁇ 10 5 Pa, preferably 1 ⁇ 10 5 to 3 ⁇ 10 5 Pa.
  • the contact time is 0.1 to 10 (sec ⁇ g / cc), preferably 0.5 to 5 (sec ⁇ g / cc).
  • the contact time is defined by the following equation.
  • Contact time (sec ⁇ g / cc) (W / F) ⁇ 273 / (273 + T)
  • W, F, and T are defined as follows.
  • W both catalyst (g)
  • F Raw material mixed gas flow rate (Ncc / sec) in standard state (0 ° C., 1.013 ⁇ 10 5 Pa)
  • T reaction temperature (° C.)
  • the gas phase ammoxidation reaction may be a single flow type or a recycle type.
  • the propane conversion rate, the acrylonitrile yield, and the ammonia combustion rate are respectively in accordance with the following definitions.
  • the number of moles of the produced acrylonitrile and nitrogen was measured by gas chromatography.
  • Example 1 (Preparation of niobium raw material liquid) A niobium raw material solution was prepared by the following method. Niobic acid 76.33 kg containing 80.2 mass% as Nb 2 O 5 and oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O] 290.2 kg were mixed in 500 kg of water. The molar ratio of charged oxalic acid / niobium was 5.0, and the concentration of charged niobium was 0.532 (mol-Nb / kg-solution). This solution was heated and stirred at 95 ° C. for 1 hour to obtain an aqueous solution in which the niobium compound was dissolved.
  • the aqueous solution was allowed to stand and ice-cooled, and then the solid was separated by suction filtration to obtain a uniform aqueous niobium compound solution. The same operation was repeated several times, and the obtained niobium compound aqueous solution was combined into one niobium raw material solution.
  • the molar ratio of oxalic acid / niobium in this niobium raw material liquid was 2.40 according to the following analysis. In a crucible, 10 g of this niobium raw material solution was precisely weighed, dried overnight at 95 ° C., and then heat-treated at 600 ° C. for 1 hour to obtain 0.8323 g of Nb 2 O 5 .
  • the niobium concentration was 0.626 (mol-Nb / kg-solution).
  • 3 g of this niobium raw material solution was precisely weighed into a 300 mL glass beaker, 200 mL of hot water at about 80 ° C. was added, and then 10 mL of 1: 1 sulfuric acid was added.
  • the obtained solution was titrated with 1 / 4N KMnO 4 under stirring while maintaining the liquid temperature at 70 ° C. on a hot stirrer. The end point was a point where a faint pale pink color by KMnO 4 lasted for about 30 seconds or more.
  • the concentration of oxalic acid was 1.50 (mol-oxalic acid / kg) as a result of calculation from the titration amount according to the following formula. 2KMnO 4 + 3H 2 SO 4 + 5H 2 C 2 O 4 ⁇ K 2 SO 4 + 2MnSO 4 + 10CO 2 + 8H 2 O
  • the obtained niobium raw material liquid was used as a niobium raw material liquid in the production of the following oxide catalyst.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.9 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 34.2kg of average primary particle diameter 50nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 3.60 kg of silica sol having an average primary particle diameter of 18 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 690 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, baked at 690 ° C. for 2 hours, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • the specific surface area was measured by the BET 1-point method using Gemini 2360 manufactured by MICROMETRICS.
  • the specific surface area was 10.8m 2 / g.
  • Total pore volume The total pore volume was determined with a mercury porosimeter. The total pore volume was 0.297 cm 3 / g.
  • the pore distribution was determined with a mercury porosimeter.
  • the ratio of the pore volume of pores having a pore diameter of less than 60 nm was 3.9%, and the ratio of the pore volume of pores having a pore diameter of more than 120 nm was 1.0%.
  • X-ray measurement conditions are as follows: pre-processing, device: RIGAKU RINT2500HF / PC, light source: Cu K ⁇ ray, output: 40 kV-20 mA, measurement range (2 ⁇ ): 5-50 °, scan speed: 1 deg / min, integration Number of times: Measurement was performed 4 times.
  • a standard reference material LaB6 was used to correct the device-specific half-value breadth before measuring the sample.
  • L 0.9 ⁇ / ⁇ cos ⁇ (ii)
  • L crystallite size ( ⁇ )
  • wavelength
  • diffraction line width
  • rad diffraction angle
  • the calculated crystallite size was 106 nm.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 89.8%, the acrylonitrile yield was 54.8%, and the ammonia combustion rate was 18.8%.
  • Example 2 Preparation of niobium raw material liquid
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 23nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 13 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 685 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, fired at 685 ° C. for 2 hours, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.288 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 90.1%, the acrylonitrile yield was 54.9%, and the ammonia combustion rate was 18.6%.
  • Example 3 Preparation of niobium raw material liquid
  • Example 3 Preparation of niobium raw material liquid
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing an average primary particle diameter 25nm silica sol 25.3kg containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 12.5 kg of silica sol having an average primary particle diameter of 10 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • raw material preparation liquid (III) a raw material preparation liquid (purity of raw material preparation liquid (II) and ammonium metatungstate aqueous solution) 50%) was added. Further, 8.60 kg of powdered silica was dispersed in 77.4 kg of water and aged for 1 hour at 50 ° C. to obtain a raw material preparation liquid (III).
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • the propane conversion after the reaction was 88.5%, and the acrylonitrile yield was 54.7%.
  • the reaction was conducted for 3 months, and the acrylonitrile yield was 54.7% and the ammonia combustion rate was 19.4%.
  • Example 4 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 690 ° C. under a nitrogen gas flow of 500 Nl / min at a rate of 2 ° C./min, calcined at 690 ° C. for 3 hours, 0.5 ° C. /
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile in which the temperature was decreased at min, and the main catalyst was fired to obtain an oxide catalyst.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Te 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.235 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 88.8%, the acrylonitrile yield was 54.8%, and the ammonia combustion rate was 19.0%.
  • Example 5 Preparation of niobium raw material liquid
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 50nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 18 nm was added.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of the composition analysis of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.005 Ti 0.002 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.288 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 88.8%, the acrylonitrile yield was 54.6%, and the ammonia combustion rate was 19.5%.
  • Example 6 Preparation of niobium raw material liquid
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing 30.0 wt% as silica sol 31.0kg and SiO 2 having an average primary particle diameter 50nm containing 30.2 wt% as SiO 2 6.80 kg of silica sol with an average primary particle diameter of 18 nm was added.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.005 Mn 0.003 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.304 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 88.8%, the acrylonitrile yield was 54.7%, and the ammonia combustion rate was 19.3%.
  • Example 7 Preparation of niobium raw material liquid
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 50nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 18 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and mixed with stirring at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.003 Bi 0.004 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.313 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 88.8%, the acrylonitrile yield was 54.6%, and the ammonia combustion rate was 19.2%.
  • Example 8 Preparation of niobium raw material liquid
  • raw material preparation liquid (I) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 50nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 7.70 kg of silica sol having an average primary particle diameter of 18 nm was added.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.007 La 0.003 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.320 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 88.8%, the acrylonitrile yield was 54.6%, and the ammonia combustion rate was 18.8%.
  • Example 9 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material preparation liquid (I) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 50nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 7.70 kg of silica sol having an average primary particle diameter of 18 nm was added.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.008 Y 0.002 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.330 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 88.8%, the acrylonitrile yield was 54.7%, and the ammonia combustion rate was 18.9%.
  • Example 10 Preparation of niobium raw material liquid
  • raw material preparation liquid (I) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 50nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 18 nm was added.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.006 Yb 0.003 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.334 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 88.8%, the acrylonitrile yield was 54.6%, and the ammonia combustion rate was 19.0%.
  • Example 11 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 23nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 13 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 680 ° C. under a nitrogen gas flow of 500 Nl / min at a rate of 2 ° C./min, fired at 680 ° C. for 2 hours, The temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition ratio of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.350 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 88.9%, the acrylonitrile yield was 54.4%, and the ammonia combustion rate was 19.1%.
  • Example 12 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 23nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 13 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 685 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, baked at 685 ° C. for 2.5 hours, and 1 ° C. /
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile in which the temperature was decreased at min, and the main catalyst was fired to obtain an oxide catalyst.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.306 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 89.1%, the acrylonitrile yield was 54.3%, and the ammonia combustion rate was 19.4%.
  • Example 13 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing an average primary particle diameter 55nm silica sol 34.0kg containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 3.80 kg of silica sol having an average primary particle diameter of 13 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was sampled every day, and 0.5 g of the obtained 10 sampled products was in the range of 200-800 nm using JASCO UV / VIS spectrometer V-650 manufactured by JASCO Corporation. Was measured by the diffuse reflection method. Spectralon manufactured by Labspere was used as a baseline standard. The maximum absorbance was 1.02. The absorbance at 600 nm is 0.31 to 0.36, and when referring to Japanese Patent Application Laid-Open No. 2009-148749, the absorbance is expected to be high performance. Therefore, the obtained spray-dried product is classified without sorting. Used for operation.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 695 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, baked at 695 ° C. for 2 hours, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.168 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 89.2%, the acrylonitrile yield was 54.0%, and the ammonia combustion rate was 19.2%.
  • Example 14 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 23nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 13 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 670 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, baked at 670 ° C. for 2 hours, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.342 cm 3 / g.
  • Example 15 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing an average primary particle diameter 25nm silica sol 30.7kg containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 7.1 kg of silica sol having an average primary particle diameter of 12 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 695 ° C. under a nitrogen gas flow of 500 Nl / min at a rate of 2 ° C./min, fired at 695 ° C. for 1 hour, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.170 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 89.1%, the acrylonitrile yield was 54.1%, and the ammonia combustion rate was 19.3%.
  • Example 16 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 56.4kg of average primary particle diameter 23nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.90 kg of silica sol having an average primary particle diameter of 13 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 685 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, fired at 685 ° C. for 2 hours, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.184 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 90.1%, the acrylonitrile yield was 54.1%, and the ammonia combustion rate was 19.6%.
  • Example 17 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 23nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 13 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 550 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, baked at 550 ° C. for 2 hours, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.270 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 90.1%, the acrylonitrile yield was 53.8%, and the ammonia combustion rate was 19.8%.
  • Example 1 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • the liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II).
  • the obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 26nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 16 nm was added.
  • 4.02 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C. for 30 minutes, and then 523 g (purity) of the raw material preparation liquid (II) and the ammonium metatungstate aqueous solution 50%) was added.
  • 8.60 kg of powdered silica was dispersed in 77.4 kg of water and aged for 1 hour at 50 ° C. to obtain a raw material preparation liquid (III).
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.60 Nb 0.005 Sb 0.30 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.329 cm 3 / g.
  • Example 2 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 108nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 16 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition ratio of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.543 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 86.9%, the acrylonitrile yield was 52.6%, and the ammonia combustion rate was 19.3%.
  • Example 3 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 12nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 5 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.086 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • the propane conversion after the reaction was 87.1%, the acrylonitrile yield was 53.1%, and the ammonia combustion rate was 22.6%.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 110nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 16 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 695 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, baked at 695 ° C. for 4 hours, and 0.5 ° C. /
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile in which the temperature was decreased at min, and the main catalyst was fired to obtain an oxide catalyst.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition ratio of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.324 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • the propane conversion after the reaction was 85.9%, the acrylonitrile yield was 52.2%, and the ammonia combustion rate was 20.1%.
  • Example 5 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 108nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 16 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 670 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, baked at 670 ° C. for 1 hour, and at 2 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition ratio of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.559 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 86.5%, the acrylonitrile yield was 52.1%, and the ammonia combustion rate was 19.3%.
  • Example 6 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 12nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 8 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 695 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, baked at 695 ° C. for 4 hours, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition ratio of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.097 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 87.0%, the acrylonitrile yield was 52.3%, and the ammonia combustion rate was 23.1%.
  • Example 7 (Preparation of niobium raw material liquid) The same operation as in Example 1 was performed.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 10nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 13 nm was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 670 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, fired at 670 ° C. for 1 hour, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition ratio of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.112 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion was 86.3.1%
  • the acrylonitrile yield was 52.1%
  • the ammonia combustion rate was 21.1%.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). The obtained raw material mixture (I) is and the mixture was cooled to 70 ° C., containing silica sol 31.0kg of average primary particle diameter 15nm containing 30.2 wt% as SiO 2, 30.0 wt% as SiO 2 6.80 kg of silica sol having an average primary particle diameter of 5 nm was added. Next, 3.80 g of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 700 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, fired at 700 ° C. for 2 hours, 0.2 ° C. /
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile in which the temperature was decreased at min, and the main catalyst was fired to obtain an oxide catalyst.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition ratio of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.055 cm 3 / g.
  • Propane was subjected to a gas phase ammoxidation reaction by the following method using the oxide catalyst obtained above.
  • a contact time 2.8 (sec ⁇ g / cc).
  • the propane conversion after the reaction was 86.2%, the acrylonitrile yield was 50.6%, and the ammonia combustion rate was 22.8%.
  • raw material mixture (I ) 2.28 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added to 15.95 kg of the niobium raw material liquid. The liquid temperature was maintained at about 20 ° C., and the mixture was stirred and mixed to obtain a raw material preparation liquid (II). After cooling the obtained raw material preparation liquid (I) to 70 ° C., 34.7 kg of silica sol having an average primary particle diameter of 23 nm containing 30.2% by mass as SiO 2 was added. Next, 3.80 kg of hydrogen peroxide containing 30% by mass as H 2 O 2 was added and stirred and mixed at 55 ° C.
  • the obtained dried product was classified using a sieve having an opening of 25 ⁇ m to obtain a classified product.
  • the obtained classified product had a particle content of 25 ⁇ m or less of 0.8% by mass and an average particle size of 55 ⁇ m.
  • the obtained classified product was set so that the length of the heating furnace portion was divided into 8 equal parts by using seven SUS cylindrical firing tubes with an inner diameter of 500 mm, a length of 3500 mm, and a wall thickness of 20 mm made of SUS.
  • the sample was circulated at a rate of 20 kg / hr, and the temperature was raised to 370 ° C. over about 4 hours while rotating the calcining tube at 4 rev / min under a nitrogen gas flow of 600 Nl / min.
  • the heating furnace temperature was adjusted so that the temperature profile was maintained for a time, and the pre-stage firing product was obtained by pre-stage firing.
  • the pre-stage calcined product was circulated at a speed of 15 kg / hr while rotating at a rotation / min.
  • the powder introduction side portion (the portion not covered by the heating furnace) of the firing tube is a hammering device in which the hammering tip is provided with a SUS hammer with a mass of 14 kg, and the firing tube is perpendicular to the rotation axis.
  • the temperature was raised to 685 ° C. under a nitrogen gas flow of 500 Nl / min at 2 ° C./min, fired at 685 ° C. for 2 hours, and 1 ° C./min.
  • the temperature of the heating furnace was adjusted so as to obtain a temperature profile for decreasing the temperature, and the oxide catalyst was obtained by performing main firing.
  • composition of oxide catalyst As a result of analyzing the composition of the oxide catalyst, the composition of the metal oxide was MoV 0.21 Nb 0.09 Sb 0.20 W 0.01 Ce 0.01 .
  • the supported amount of silica was 47% by mass with respect to the total mass of the catalyst composed of the metal oxide and silica.
  • Total pore volume As a result of measurement by the same method as in Example 1, the total pore volume was 0.174 cm 3 / g.
  • the silica-supported catalyst of the present invention has industrial applicability as a catalyst used for producing a corresponding unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 プロパン又はイソブタンの気相接触アンモ酸化反応により対応する不飽和ニトリルを製造する際に用いられるシリカ担持触媒であって、下記式(1) MoVNb・・・(1) (式(1)中、Xは、Sb及びTeから選択される少なくとも1種以上の元素を示し、Tは、Ti、W、Mn及びBiから選択される少なくとも1種以上の元素を示し、Zは、La、Ce、Yb及びYから選択される少なくとも1種以上の元素を示す。a、b、c、d、e及びnは、それぞれ、0.05≦a≦0.5、0.01≦b≦0.5、0.001≦c≦0.5、0≦d≦1、0≦e≦1の範囲にあり、nは原子価のバランスを満たす値である。) で示される金属酸化物を含み、平均細孔直径が60~120nm、且つ、全細孔容積が0.15cm/g以上、且つ、比表面積が5~25m/g、且つ、X線回折による(001)ピークの半価幅から求められる結晶子サイズが40~250nmであるシリカ担持触媒。

Description

シリカ担持触媒
 本発明は、不飽和ニトリルの製造に用いられるシリカ担持触媒に関する。
 従来、プロピレン又はイソブチレンを気相接触酸化又は気相接触アンモ酸化して対応する不飽和カルボン酸又は不飽和ニトリルを製造する方法が良く知られているが、近年、プロピレン又はイソブチレンの代わりにプロパン又はイソブタンを気相接触酸化又は気相接触アンモ酸化することによって対応する不飽和カルボン酸又は不飽和ニトリルを製造する方法が着目されている。そのため、プロパン又はイソブタンの気相接触アンモ酸化の触媒としても、種々の酸化物触媒が提案されている。
 特許文献1には、シリカの原料としてシリカゾルと粉体シリカを使用することで、細孔容積を大きくしたシリカ担持触媒が開示されている。
 特許文献2には、アクロレイン及びアクリル酸を製造する際に用いられる複合酸化物触媒であって、細孔分布を特定の範囲に調整した触媒が開示されている。
 特許文献3には、目的物収率の向上のために、細孔を特定の範囲内に制御した粒状多孔性アンモ酸化触媒が開示されている。
特開2002-219362号公報 特開2003-220334号公報 国際公開2004/078344号パンフレット
 特許文献1に記載されたようにシリカゾルと粉体シリカを混合すると、細孔容積を大きくすることはできるものの、平均細孔直径は大きくならない。そのため、細孔容積の増大による流動性の向上効果は見られるものの、目的物の収率の向上には至らない。また、アルカンを気相接触アンモ酸化させてニトリルを製造する際の課題の一つである原料アンモニアの燃焼に関しては記載がない。
 特許文献2には、細孔径を制御することで収率を上昇させることが記載されている。しかしながら、打錠成型との記載があり、流動性に乏しいと考えられることから、固定床反応用の触媒であることが判り、流動床反応には不向きな触媒である。
 特許文献3に記載された方法は、細孔径を特定の範囲にすることで、目的物の収率を向上させるものである。本発明者らが、当該文献に記載された方法に従って追試実験を行ったところ、得られる触媒の細孔分布は、「細孔直径80Å以下の細孔の積算容積が該触媒の全細孔容積に対して20%以下であり、且つ、細孔直径1000Å以上の細孔の積算容積が該触媒の全細孔容積に対して20%以下である」を満たすものの、細孔は直径80~1000Åの間で比較的小さい方に分布していることが明らかになった。酸化力の強いアルカンのアンモ酸化触媒において、直径の小さい細孔は、原料アンモニアの燃焼及び/又は目的物の分解反応が進行しやすいため、不適である。また、結晶子サイズを規定していないため、収率の向上が十分でないと考えられる。
 上記事情に鑑み、本発明は、原料アンモニア燃焼率が小さく、且つ、目的物の収率が高い触媒を提供することを目的とする。
 このような状況下において、本発明者らは、従来技術の上記諸問題を解決するために鋭意研究を行った結果、少なくともMo、V及びNbを含む組成を有し、平均細孔直径等の特定の物性値が適正な範囲に制御されたシリカ担持触媒を用いることにより、目的物収率が大きく向上し、更には、原料アンモニアの燃焼を抑制することができるため、効率的に不飽和ニトリルを製造することができることを見出し、本発明を完成させた。
 即ち、本発明は以下のとおりである。
[1]
 プロパン又はイソブタンの気相接触アンモ酸化反応により対応する不飽和ニトリルを製造する際に用いられるシリカ担持触媒であって、下記式(1)
 MoVNb・・・(1)
(式(1)中、Xは、Sb及びTeから選択される少なくとも1種以上の元素を示し、Tは、Ti、W、Mn及びBiから選択される少なくとも1種以上の元素を示し、Zは、La、Ce、Yb及びYから選択される少なくとも1種以上の元素を示す。a、b、c、d及びeは、それぞれ、0.05≦a≦0.5、0.01≦b≦0.5、0.001≦c≦0.5、0≦d≦1、0≦e≦1の範囲にあり、nは原子価のバランスを満たす値である。)
で示される金属酸化物を含み、平均細孔直径が60~120nm、且つ、全細孔容積が0.15cm/g以上、且つ、比表面積が5~25m/g、且つ、X線回折による(001)ピークの半価幅から求められる結晶子サイズが40~250nmであるシリカ担持触媒。
[2]
 細孔直径60nm未満の細孔の細孔容積が全細孔容積に対して30%未満であり、且つ、細孔直径120nm超の細孔の細孔容積が全細孔容積に対して30%未満である、上記[1]記載のシリカ担持触媒。
[3]
 シリカの担持量が、前記金属酸化物とシリカから成る触媒の全質量に対して20~70質量%である、上記[1]又は[2]記載のシリカ担持触媒。
[4]
 シリカ担持触媒の製造方法であって、以下の工程(I)~(III);
 (I)Mo、V、Nb、X、T及びZを含有し、Mo1原子に対するVの原子比a、Nbの原子比b、Xの原子比c、Tの原子比d及びZの原子比eが、それぞれ、0.05≦a≦0.5、0.01≦b≦0.5、0.001≦c≦0.5、0≦d≦1及び0≦e≦1である原料調合液を調製する工程、
(II)前記原料調合液を乾燥し、乾燥粉体を得る工程、
(III)前記乾燥粉体を200~400℃で前段焼成し、前段焼成体を得る工程、
(IV)前記前段焼成体を600~750℃で本焼成し、焼成体を得る工程、
を有し、前記原料調合液が、シリカ原料の全質量に対して0~30質量%の平均一次粒子直径が3nm以上20nm未満であるシリカゾル(i)、シリカ原料の全質量に対して30~70質量%の平均一次粒子直径が20nm以上100nm以下であるシリカゾル(ii)、シリカ原料の全質量に対して30~70質量%の平均一次粒子直径が50nm以下の粉体シリカを含有し、シリカゾル(i)、シリカゾル(ii)及び粉体シリカの合計がシリカ基準で100質量%であるシリカ担持触媒の製造方法。
[5]
 上記[1]~[3]のいずれかに記載のシリカ担持触媒を用い、プロパン又はイソブタンの気相接触アンモ酸化反応を行うことにより対応する不飽和ニトリルを製造する方法。
 本発明により、アンモニア燃焼率が小さく、且つ、目的物の収率が高い触媒を提供することができる。
 以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態のシリカ担持触媒は、
 プロパン又はイソブタンの気相接触アンモ酸化反応により対応する不飽和ニトリルを製造する際に用いられるシリカ担持触媒であって、下記式(1)
 MoVNb・・・(1)
(式(1)中、Xは、Sb及びTeから選択される少なくとも1種以上の元素を示し、Tは、Ti、W、Mn及びBiから選択される少なくとも1種以上の元素を示し、Zは、La、Ce、Yb及びYから選択される少なくとも1種以上の元素を示す。a、b、c、d、e及びnは、それぞれ、0.05≦a≦0.5、0.01≦b≦0.5、0.001≦c≦0.5、0≦d≦1、0≦e≦1の範囲にあり、nは原子価のバランスを満たす値である。)
で示される金属酸化物を含み、平均細孔直径が60~120nm、且つ、全細孔容積が0.15cm/g以上、且つ、比表面積が5~25m/g、且つ、X線回折による(001)ピークの半価幅から求められる結晶子サイズが40~250nmである。
 本実施形態のシリカ担持触媒は、触媒中に含まれる金属酸化物の金属組成比が最適化されているため、良好な触媒性能を有する。本実施形態のシリカ担持触媒の製造方法としては、特に限定されないが、以下の(I)~(IV)の工程を含む方法により製造することが好ましい。
(I)Mo、V、Nb、X、T、及びZを含有し、Mo1原子に対するVの原子比a、Nbの原子比b、Xの原子比c、Tの原子比d、Zの原子比eが、それぞれ、0.05≦a≦0.5、0.01≦b≦0.5、0.001≦c≦0.5、0≦d≦1、0≦e≦1である原料調合液を調製する工程、
(II)前記原料調合液を乾燥し、乾燥粉体を得る工程、
(III)前記乾燥粉体を200~400℃で前段焼成し、前段焼成体を得る工程、
(IV)前記前段焼成体を600~750℃で本焼成し、焼成体を得る工程、
を有し、前記原料調合液が、シリカ原料の全質量に対して0~30質量%の平均一次粒子直径が3nm以上20nm未満であるシリカゾル(i)、シリカ原料の全質量に対して30~70質量%の平均一次粒子直径が20nm以上100nm以下であるシリカゾル(ii)、シリカ原料の全質量に対して30~70質量%の平均一次粒子直径が50nm以下の粉体シリカを含有し、シリカゾル(i)、シリカゾル(ii)及び粉体シリカの合計がシリカ基準で100質量%であるシリカ担持触媒の製造方法。
(工程(I)原料調合工程)
 工程(I)は、Mo、V、Nb、X、T、及びZを含有し、Mo1原子に対するVの原子比a、Nbの原子比b、Xの原子比c、Tの原子比d、Zの原子比eが、それぞれ、0.05≦a≦0.5、0.01≦b≦0.5、0.001≦c≦0.5、0≦d≦1、0≦e≦1である原料調合液を調製する工程である。
 原料調合工程においては、溶媒及び/又は分散媒に、シリカ担持触媒の構成元素を特定の割合で溶解又は分散させ、原料調合液を得る。原料調合液の溶媒として通常は水を用いることができる。原料調合液はMo、V、Nb、X、T、及びZ(Xは、Sb及びTeから選択される少なくとも1種以上の元素であり、Tは、Ti、W、Mn及びBiから選択される少なくとも1種以上の元素であり、Zは、La、Ce、Yb、Yから選択される少なくとも1種以上の元素である。)を含有する。原料調合液の原料としては、シリカ担持触媒の構成元素を含む塩又は化合物を使用できる。
 Moの原料としては、例えば、ヘプタモリブデン酸アンモニウム〔(NHMo24・4HO]、三酸化モリブデン〔MoO〕、リンモリブデン酸〔HPMo1240〕、ケイモリブデン酸〔HSiMo1240〕、五塩化モリブデン〔MoCl〕等を用いることができ、特にヘプタモリブデン酸アンモニウム〔(NHMo24・4HO〕が好ましい。
 Vの原料としては、例えば、メタバナジン酸アンモニウム〔NHVO]、五酸化バナジウム〔V〕、塩化バナジウム〔VCl、VCl〕等を用いることができ、特にメタバナジン酸アンモニウム〔NHVO]が好ましい。
 Nbの原料としては、例えば、ニオブ酸、ニオブの無機酸塩及びニオブの有機酸塩を用いることができ、特にニオブ酸が好ましい。ニオブ酸はNb・nHOで表され、ニオブ水酸化物又は酸化ニオブ水和物とも称される。更にジカルボン酸/ニオブのモル比が1~4のNb原料液として用いることが好ましく、このときのジカルボン酸としてはシュウ酸が好ましい。
 X(Sb、Te)の原料としては、これらの元素を含む物質であれば特に制限はなく、これらの元素を含む化合物や、これらの元素の金属を適当な試薬で可溶化したものを使用することができる。これらの元素を含む化合物としては、通常、これらの元素のアンモニウム塩、硝酸塩、カルボン酸塩、カルボン酸アンモニウム塩、ペルオキソカルボン酸塩、ペルオキソカルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、ハロゲン化物、アセチルアセトナート、アルコキシド等を使用することができ、好ましくは硝酸塩、カルボン酸塩等の水溶性原料が使用される。
 T(Ti、W、Mn、Bi)の原料としては、これらの元素を含む物質であれば特に制限はなく、これらの元素を含む化合物や、これらの元素の金属を適当な試薬で可溶化したものを使用することができる。これらの元素を含む化合物としては、通常、これらの元素のアンモニウム塩、硝酸塩、カルボン酸塩、カルボン酸アンモニウム塩、ペルオキソカルボン酸塩、ペルオキソカルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、ハロゲン化物、アセチルアセトナート、アルコキシド等を使用することができ、好ましくは硝酸塩、カルボン酸塩等の水溶性原料が使用される。
 Z(La、Ce、Yb、Y)の原料としては、これらの元素を含む物質であれば特に制限はなく、これらの元素を含む化合物や、これらの元素の金属を適当な試薬で可溶化したものを使用することができる。これらの元素を含む化合物としては、通常、これらの元素のアンモニウム塩、硝酸塩、カルボン酸塩、カルボン酸アンモニウム塩、ペルオキソカルボン酸塩、ペルオキソカルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、ハロゲン化物、アセチルアセトナート、アルコキシド等を使用することができ、好ましくは硝酸塩、カルボン酸塩等の水溶性原料が使用される。
 原料の調合において、触媒構成元素の原料の溶解手順、混合手順又は分散手順は特に限定されない。原料を同じ水性媒体中で溶解、混合又は分散させてもよく、或いは原料を個別に水性媒体中に溶解、混合又は分散させた後に水性媒体を混合させてもよい。また、必要に応じて加熱及び/又は攪拌してもよい。
 シリカ担持触媒において、重要な点の一つは、成分Zが触媒粒子内で均一に分布していることである。ここで、均一とは、触媒粒子中で成分Zの分布に偏りがないことを言う。好ましくは、成分Zを含有する酸化物粒子の80%以上(質量比率)が、1μm以下の粒径を有する微粒子として触媒粒子内に存在することを言う。より好適に「均一」を定義すれば、均一とは、触媒粒子の断面を組成分析した時に、成分ZとSiとの信号強度比の分散値(標準偏差を平均値で除した値)が0~0.5の範囲にあることを言う。ここで、該分散値は「Dx」で示される。
 上記の組成分析には、一般的な組成分析方法、例えば、SEM-EDX、XPS、SIMS、EPMA等を用いることができる。好ましくはEPMAを用いることができる。ここで、EPMAとは、Electron Probe X-ray Microanalyzer(但し、このX-rayを省略して呼ばれることもある。)の通称であり、この分析装置は、加速された電子線を物質に照射することによって得られる特性X線を観測することにより、電子線を当てた微小領域(スポット)の組成分析を行うことができる装置である。このEPMAによって、一般に、触媒粒子や担体粒子等の固体粒子の断面について、特定元素の濃度分布や組成変化の情報を得ることができる。
 なお、上記EPMAによる成分ZとSiの強度比の分散値(Dx)は、測定の対象となる粒子の断面について、通常の触媒分野で行われる粒子断面のEPMAによる面分析の手法に従って、次のようにして測定・算出されるものである。即ち、まず、その触媒粒子断面の任意の位置(x,y)に対するSiのX線ピーク強度(カウント数ISi)の分布の測定を、触媒粒子断面の全領域をカバーするように行う。次いで、同様に、成分Zについても触媒粒子断面の全領域をカバーするようにX線ピーク強度(カウント数IX)の分布を測定する。得られたSi及び成分Zに関する一連のデータ(x,y,ISi、IX)を基に、同一の位置(x、y)での成分Z及びSiのピーク強度比IR(IR=IX/ISi)を求め、IRの単純平均(IR)av及び標準偏差Sを求める。その標準偏差Sを単純平均(IR)avで除した値を前記の分散値(Dx)とする。この時、単純平均及び標準偏差は通常の方法で求めればよい。本明細書中、「シリカ担持触媒(単に「触媒」とも言う。)」は、本焼成後の焼成体から粒子表面に生成した突起体を除去したものを包含するが、分散値の測定は断面の観察に依ることから表面の状態には影響されないので、本焼成後、突起体の除去工程前に測定しても同じ値を示す。
 上記測定における粒子断面のエッジ効果によるデータの不確定さを避けるべく、触媒粒子断面における断面積の10%の領域であって、粒子外周部分に相当する領域を除外し、触媒粒子断面における中心から90%の領域のデータを有効領域として算出することが好ましい。もちろん、始めから、粒子外周部の10%分の領域を除した触媒粒子断面の内部のみについて、EPMAによる上記の面分析を行い、そのデータから、分散値Dxを求めてもよい。
 本実施形態における触媒は、シリカに担持されたシリカ担持触媒であるので、原料調合液がシリカ原料を含有するように調製する。シリカゾルにより触媒の平均細孔直径を60~120nmに制御する観点から、原料調合液が、シリカ原料の全質量に対して0~30質量%の平均一次粒子直径が3nm以上20nm未満であるシリカゾル(i)、シリカ原料の全質量に対して30~70質量%の平均一次粒子直径が20nm以上100nm以下であるシリカゾル(ii)、シリカ原料の全質量に対して30~70質量%の平均一次粒子直径が50nm以下の粉体シリカを含有し、シリカゾル(i)、シリカゾル(ii)及び粉体シリカの合計がシリカ基準で100質量%であることが好ましい。より好ましくは、シリカゾル(i)を5~20質量%、シリカゾル(ii)を30~60質量%、粉体シリカを30~50質量%含有する。これらのシリカ原料を原料調合液に加える順番は、特に限定されず、原料調合液に加える前に混合してもよい。理由は定かではないが、シリカゾル(i)、シリカゾル(ii)、粉体シリカを特定の含有量で使用すると、平均細孔直径が大きく、耐摩耗性強度の高い触媒が製造できることが、本発明者らの実験により分かった。
 シリカゾル(i)とシリカゾル(ii)を使用すると、大粒子径のシリカ粒子間に小粒子径のシリカ粒子が入り、触媒の微細孔を減らす効果があると考えられる。さらに粉体シリカを加えることで、シリカゾルが凝集するのを防ぎ、大きい細孔を増やす効果があると考えられる。本実施態様の触媒は、従来の触媒よりも平均細孔直径が大きいため、原料アンモニア及び目的物が触媒粒子中を拡散する速度の上昇及び/又は触媒粒子中の熱の拡散による反応温度の均一化が起こっていると推定され、原料アンモニアの燃焼及び目的物の分解を抑制することができる。
 シリカ原料中に不純物として含まれる金属が、調製されるシリカ担持触媒の性能に影響を及ぼす場合がある。シリカ原料の不純物の一例としてナトリウムが挙げられる。ナトリウムの量は、珪素100原子あたり0.02原子以下であることが好ましく、0.01原子以下であることがより好ましい。珪素100原子あたり0.02原子超のナトリウムが含まれていると、得られるシリカ担持触媒をアンモ酸化反応に使用したときに、原料及び/又は目的生成物の分解反応が発生し易い場合がある。
 アルカンを気相接触アンモ酸化して不飽和ニトリルを製造する場合、アルカンの低い反応性のために酸化力の強い触媒の存在下で反応する及び/又は高い温度で反応するため、原料アンモニアの燃焼及び不飽和ニトリルの分解が起こりやすい。原料アンモニアの燃焼が起これば、不飽和ニトリルの製造に使われるアンモニアが不足し、アルカンに対して多量のアンモニアを供給する必要があるため、生産性が低くなる。本実施形態においては、原料アンモニアの燃焼を抑制することで、効率的に不飽和ニトリルを製造することができる。また、当然ではあるが、目的物である不飽和ニトリルの分解を抑制することで、収率が向上する。
 触媒の平均細孔直径が60nm未満である場合、原料アンモニアの燃焼及び目的物の分解が起こりやすくなる。一方、平均細孔直径が120nmを超える場合、耐摩耗性強度が小さくなるため、流動床反応に不適な触媒となる。上記観点から、本実施形態における触媒の平均細孔直径は60~120nmの範囲に調整されており、好ましくは65~100nmの範囲に調整される。
 従来の、プロピレン又はイソブチレン等のオレフィンのアンモ酸化反応に用いられる触媒について本発明者らが追試実験を行ったところ、細孔直径60nm未満の細孔の細孔容積が全細孔容積に対して30%以上であった。アルカンのアンモ酸化反応の場合、触媒の酸化力が強いため、細孔直径60nm未満の細孔の細孔容積が全細孔容積に対して30%以上であると、原料アンモニアの燃焼及び/又は目的物の分解が起こりやすいと考えられる。従って、アルカンのアンモ酸化反応の場合は、比較的大きな細孔で、細孔の大きさが均一な触媒が好ましい。一方、細孔直径120nm超の細孔の細孔容積が全細孔容積に対して30%未満であることで、耐摩耗性強度が大きく、流動床反応に好適に使用し易い傾向にある。上記観点から、本実施形態におけるシリカ担持触媒は、細孔直径60nm未満の細孔の細孔容積が全細孔容積に対して30%未満であり、且つ、細孔直径120nm超の細孔の細孔容積が全細孔容積に対して30%未満であることが好ましい。
 このような触媒を製造するためには、異なる粒子径を有するシリカゾルを使用し、600~750℃で焼成してシリカのシンタリングを制御することが好ましい。600℃以上で焼成するとシリカのシンタリングが十分に進行し、細孔直径60nm以上の細孔の細孔容積が増えるため好ましい。
 触媒に含まれる担体シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して、触媒の強度を向上させる観点から20質量%以上であることが好ましく、十分な活性を付与する観点から70質量%以下であることが好ましく、より好ましくは全質量に対して40~65質量%である。
 シリカ担体の原料は、シリカゾルのみでもよいが、一部を粉体シリカに代替することも可能である。シリカ担体の原料として粉体シリカを用いることにより、触媒活性及び/又は目的物の収率向上等の効果を期待できる一方、シリカゾルを使用しないで粉体シリカのみで触媒を調製すると触媒の耐摩耗性が著しく低くなる。本実施形態において用語「粉体シリカ」とは、固体のSiOの微粒子を示す。シリカの一次粒径が大きすぎると、得られる触媒が脆くなる傾向にあるので、ナノメートルサイズの粉体シリカが好ましい。また、粉体シリカは、高熱法で製造されたものが好ましい。
 原料調合液への添加及び混合を容易にする観点で、粉体シリカは予め水に分散させておくことが好ましい。粉体シリカを水に分散させておく方法としては特に制限はなく、一般的なホモジナイザー、ホモミキサー又は超音波振動器等を単独若しくは組み合わせて分散させることができる。この時の粉体シリカの一次形状は、球体でもよいし、非球体でもよい。
 担体原料であるシリカゾル及び粉体シリカの平均一次粒子直径は、BET法(BET吸着等温式)で求めることができる。一般的に入手可能なシリカは、平均一次粒子直径を中心にある程度の分布幅を持つと考えられる。アンモニア燃焼抑制効果を十分に発揮するためには、各シリカの粒径分布における標準偏差は、小さいほど好ましく、具体的には、標準偏差が平均一次粒子直径の30%以下であることが好ましい。
 触媒の平均細孔直径を制御するには、シリカゾルの平均一次粒子直径を変化させることが有効である。一般的に、シリカゾルの平均一次粒子直径を大きくすると、得られる触媒の強度が下がる傾向にある。一方、工業的な流動床触媒は高い強度を有することが望ましいため、従来は、一般的にシリカ原料として平均一次粒子直径が十数nmのシリカゾルが使用されていた。このようなシリカゾルを用いて、従来の方法で触媒を製造すると、平均細孔直径は20~50nm程度であり、本実施形態において規定する平均細孔直径が60~120nmの範囲を満たさず、収率も十分でない。焼成条件を変えることで、平均細孔直径を制御することもでき、焼成温度を高く及び/又は焼成時間を長くすると平均細孔直径は大きくなる傾向にある。しかしながら、焼成条件を変えることで、平均細孔直径を制御すると、比表面積及び/又は結晶子サイズも変化してしまうため、焼成条件だけで平均細孔直径、比表面積及び結晶子サイズを制御することは困難である。上述したとおり、背景技術の文献に記載された触媒の製造方法では、平均細孔直径、比表面積及び/又は結晶子サイズを満足する触媒を得るのは実質的に不可能である。平均一次粒子直径の異なるシリカゾルを使用する方法で平均細孔直径を制御すれば、比表面積及び/又は結晶子サイズを焼成条件によって制御することができるので好ましい。比表面積と結晶子サイズは、比表面積に大きな影響を与えるシリカのシンタリングが進行する温度領域と結晶が成長する温度領域が異なるため、焼成条件を調節することで制御することが可能である。
 本実施態様の触媒の平均細孔直径を適正な範囲に制御するための手段は特に限定されるものではなく、平均細孔直径を適正な範囲に制御できればどのような手段も用いることができる。触媒の平均細孔直径を制御する方法としては、前述したシリカ原料であるシリカゾルの平均一次粒子直径を変化させる方法、シリカ原料の一部として粉体シリカを使用する方法、触媒中のシリカ担体と金属酸化物の比率を変える方法等の手段が挙げられる。
 原料調合液が、シリカ原料の一部として、平均一次粒子直径が50nm以下の粉体シリカをシリカ基準で30~70質量%の量で含有するのが好ましい。なお、本実施形態において「シリカ基準」とは「シリカゾルと粉体シリカの合計量に対する割合を示す。粉体シリカの一次粒子平均直径は10~20nmであることがより好ましい。また、粉体シリカの量は、シリカ基準で30~50質量%であることがより好ましい。粉体シリカを用いると触媒の比表面積が大きくなる。比表面積及び結晶子サイズを適正な範囲に制御するためには、本焼成で焼成温度を640~750℃、焼成時間を1~20時間で行い、本焼成終了後の平均降温速度を0.05~20℃/minで行うことが好ましい。
 触媒中のシリカ担持量と金属酸化物量の比率を変えて平均細孔直径を制御する場合、シリカの担持量を、金属酸化物とシリカから成る触媒の全質量に対して20~70質量%にすることが好ましく、40~60質量%にすることがより好ましい。一般的に、シリカ担持量を減らすと大孔径側にシフトし、比表面積が小さくなる。比表面積及び結晶子サイズを適正な範囲に制御するためには、本焼成の焼成温度を600~700℃、焼成時間を0.1~5時間で行い、本焼成終了後の平均降温速度を0.5~50℃/minで行うことが好ましい。
 触媒の細孔分布の測定方法としては、ガス吸着法や水銀圧入法等が知られているが、測定法によって値が異なる。本実施形態における触媒の細孔分布の値は、水銀圧入法(QUANTACHROME INSTRUMENTS社製 Pore Master GTを使用)により求めたものである。ここで水銀圧入法とは、触媒粒子内部に水銀を圧入させて、その時の圧力と浸入量の関係から細孔径の分布を測定するものであり、これは一次データとして、細孔の形状が円筒形であると仮定して計算された細孔直径に対する細孔容積の積算カーブを与える。この細孔容積の積算カーブを細孔直径で一次微分した値を対応する細孔直径に対してプロットしたものが、通常、細孔分布と呼ばれるものである。詳しくは、ディラトメーター(膨張計)に試料(触媒)0.4~0.6gを入れ、真空ポンプで6.67Pa以下に脱気した後、水銀を注入し、次いでディラトメーターをオートクレーブに装填し、常圧から徐々に413MPaまで圧力をかけて水銀液面の低下を追跡し、圧力と水銀液面の変化(触媒細孔への水銀の圧入量)から細孔分布を測定するものである。
 触媒の場合、水銀圧入法を用いると触媒粒子間の間隙を数万Åから数十万Åの細孔として測定することになるため、200nm以下の細孔を積算容積に加える。また、細孔直径の測定下限値は、6nmであるため、6nm以上の細孔を積算容積に加える。従って、本実施形態においては、細孔直径6nm以上、200nm以下の細孔の積算容積を全細孔容積とする。
 本実施形態における触媒の全細孔容積は、流動床反応における流動性の観点から、0.15cm/g以上である。全細孔容積が0.15cm/g未満である場合、流動性が低くなり、反応温度に斑ができることで収率が低下する。全細孔容積は、平均細孔直径が大きいほど及び/又は比表面積が大きいほど大きくなる傾向にある。全細孔容積を調整する手段としては、異なる粒子径のシリカゾルを用いて平均細孔直径を大きくする方法及び又は焼成工程において焼成温度を低く及び/又は焼成時間を短くして比表面積を大きくする方法等が挙げられる。
 触媒の平均細孔直径の計算は、細孔が円筒形であると仮定して、式(i)を用いて行う。
 D=4V/S   (i)
 ここで、D:平均細孔直径(m)、V:全細孔容積(m/g)、S:比表面積(m/g)である。
 以下、原料調合工程を、溶媒及び/又は分散媒を水とし、Mo化合物、V化合物、Nb化合物、X化合物、T化合物及びZ化合物を含有するシリカ担持触媒の原料調合液を調製する場合を例にとって説明する。
 Mo化合物、V化合物、X化合物、成分Z化合物を水に添加し、加熱して原料調合液(A)を調製する。原料調合液(A)調製時の加熱温度及び加熱時間は原料化合物が十分に溶解しうる状態になるよう調整することが好ましく、加熱温度は好ましくは70℃~100℃であり、加熱時間は好ましくは30分~5時間である。加熱時の攪拌の回転数は、同様に原料が溶解しやすい適度な回転数に調整する。原料が金属塩である場合、それを十分に溶解させる観点から、攪拌状態を保つことが好ましい。この時、容器内は空気雰囲気でもよいが、得られる複合酸化物触媒の酸化数を調整する観点から、窒素雰囲気にすることもできる。原料調合液(A)の加熱が終了した後の状態を原料調合液(A’)とする。原料調合液(A’)の温度は20℃以上80℃以下で保持することが好ましく、より好ましくは40℃以上80℃以下である。原料調合液(A’)の温度が20℃未満である場合には、原料調合液(A’)に溶解している金属種の析出が起こる可能性がある。原料調合液(A)の加熱が終了した後に、担体の原料としてシリカゾルを加える。平均一次粒子直径の異なる2種以上のシリカゾルを加える場合、それらのシリカゾルを加える順番は特に限定されず、原料調合液に加える前にこれらを混合しても構わない。シリカゾルを添加するときの原料調合液(A’)の温度は、80℃以下が好ましい。80℃を超える温度でシリカゾルを添加した場合には、シリカゾルの安定性が弱くなり原料調合液がゲル化するおそれがある。シリカゾルを添加するタイミングは、後述する熟成開始時でも、熟成途中でも、原料調合液を乾燥する直前でもかまわないが、原料調合液(A’)の状態の時に加えるのが好ましい。さらに、得られる金属酸化物の酸化数を調整する観点から、適量の過酸化水素水を原料調合液(A’)に、必要に応じて添加することが好ましい。過酸化水素水を添加するタイミングとしては、原料調合液(A’)に添加しても、原料調合液(A’)を調合する途中に添加してもよく、シリカゾル添加前でも添加後でも問題ない。この時、得られる酸化物触媒の酸化数を適正な範囲に調整する観点から、過酸化水素水の添加量は、H/Sb(モル比)として0.01~5が好ましく、より好ましくは0.5~3、更に好ましくは1~2.5である。
 原料調合液(A’)に過酸化水素水を添加した後の加熱温度及び加熱時間は、過酸化水素水による液相酸化反応が十分に進行しうる状態になるよう調整することが好ましく、加熱温度は好ましくは30℃~70℃であり、加熱時間は好ましくは5分~4時間である。加熱時の攪拌の回転数は、同様に過酸化水素水による液相酸化反応が進行しやすい適度な回転数に調整する。過酸化水素水による液相酸化反応を十分に進行させる観点から、加熱の間、攪拌状態を保つことが好ましい。こうして調製された原料調合液を(A’’)とする。
 次に、Nb化合物とジカルボン酸を水中で加熱撹拌して混合液(B)を調製する。ジカルボン酸の例としては、シュウ酸〔(COOH)〕が挙げられる。混合液(B)に、過酸化水素水を添加し、原料調合液(C)を調製することが好ましい。この時、H/Nb(モル比)は、Nb化合物と錯体を形成させて溶解状態で安定化させること、触媒構成元素の酸化還元状態を適正に調節すること、得られる触媒の触媒性能を適正にすること等の観点から、0.5~20とすることが好ましく、1~10とすることがより好ましい。
 目的とする組成に合わせて、原料調合液(A’’)、原料調合液(C)、T化合物、粉体シリカを好適に混合して、原料調合液(D)を得る。得られた原料調合液(D)を熟成処理し、原料調合液を得る。ここで用いる粉体シリカはそのまま添加することも可能であるが、より好ましくは粉体シリカを水に分散させた水溶液として添加することが好ましい。この時の水に対する粉体シリカ濃度は、1~30質量%が好ましく、より好ましくは3~20質量%である。粉体シリカ濃度が1質量%未満の場合には、スラリーの粘度が低すぎるために、得られる粒子の形状が歪になる、また、触媒粒子にくぼみが発生しやすくなる、等のおそれがある。一方で、粉体シリカ濃度が30質量%を超える場合には、原料調合液の粘性が大きくなりすぎ、原料調合液がゲル化し、配管内でつまりを生じて乾燥粉末を得ることが困難になる、触媒性能が低下する、等のおそれがある。
 原料調合液(D)の熟成とは、原料調合液(D)を所定時間静置するか撹拌することを言う。工業的にシリカ担持触媒を製造する場合、噴霧乾燥機の処理スピードが律速となり、一部の原料調合液(D)が噴霧乾燥された後、全ての混合液の噴霧乾燥が終了するまでに時間を要する場合がある。この間、噴霧乾燥処理されていない混合液の熟成は継続することができる。つまり、熟成時間には、噴霧乾燥前の熟成時間だけでなく、噴霧乾燥開始後から終了までの時間も含まれる。
 シリカで担持された触媒は、触媒構成元素を含む化合物を十分に溶解及び/又は分散する観点、触媒構成元素の酸化還元状態を適正に調整する観点、得られる触媒粒子形状及び/又は強度を好ましい状態にする観点、得られる複合酸化物の触媒性能を向上させる観点等から好ましい。シリカゾルは適宜添加することができる。またシリカゾルの一部を粉体シリカの水分散液とすることもでき、粉体シリカの水分散液も、適宜添加することができる。
 以上の原料調合工程は、生産量に応じて繰り返し実施することができる。
 本実施形態における原料調合工程は、好ましくは以下の(a)~(d)の工程を含む。
(a)Mo、V、X及び成分Zを含有する原料調合液を調製する工程
(b)(a)工程で得られた原料調合液にシリカゾル及び過酸化水素水を添加する工程
(c)(b)工程で得られた溶液に、Nb、ジカルボン酸及び過酸化水素水を含有する水溶液と、T化合物を混合する工程
(d)(c)工程で得られた溶液に粉体シリカ含有懸濁液を加えて、熟成する工程。
(工程(II)乾燥工程)
 工程(II)は、前記原料調合液を乾燥し、乾燥粉体を得る工程である。
 原料調合工程を経て得られたスラリー状の原料調合液を乾燥することによって、乾燥粉体が得られる。乾燥は公知の方法で行うことができ、例えば、噴霧乾燥又は蒸発乾固によって行うこともできる。気相接触アンモ酸化反応で流動床反応方式を採用する場合、反応器内での流動性を好ましい状態にする等の観点から、微小球状の乾燥粉体を得ることが好ましいので、噴霧乾燥を採用するのが好ましい。噴霧乾燥法における噴霧化は、遠心方式、二流体ノズル方式又は高圧ノズル方式のいずれであってもよい。乾燥熱源としては、スチーム、電気ヒーター等によって加熱された空気を用いることができる。噴霧乾燥装置の乾燥機の入口温度は、得られる触媒粒子形状及び/又は強度を好ましい状態にする観点、得られる複合酸化物の触媒性能を向上させる観点等から、150~300℃が好ましい。また、乾燥機の出口温度は100~160℃が好ましい。
 噴霧速度、原料調合液の送液の速度、遠心方式の場合のアトマイザーの回転数等は、得られる乾燥粉体の大きさが好適になるように調整することが好ましい。乾燥粉体の平均粒子径は、好ましくは5μm~200μmであり、より好ましくは10~150μmである。
 乾燥粉体の平均粒子径は、JIS R 1629-1997「ファインセラミックス原料のレーザー回折・散乱法による粒子径分布測定方法」に準拠して粒子径分布を測定し、体積基準で平均して求めることができる。より詳細には、乾燥粉体の一部を空気中400℃で1時間焼成し、得られた粒子を対象として、レーザー回折散乱法粒度分布測定装置BECKMAN COULTER製LS230を用いて測定される。
 平均粒子径を、乾燥粉体の一部を「空気中400℃で1時間焼成」した後で測定するのは、乾燥粉体が水に溶けるのを防ぐためである。つまり、「空気中400℃で1時間焼成」は専ら測定のためであって、後述の焼成工程とは関係しない。この焼成の前後で、粒子径はほぼ変化しないと考えてよい。
 より具体的には、乾燥粉体の平均粒子径の測定は、レーザー回折散乱法粒度分布測定装置(BECKMAN COULTER製、商品名「LS230」)に添付のマニュアルに準じ、次のように行う。まず、バックグラウンド測定(RunSpeed60)を行った後、粒子0.2gを適当な大きさのスクリュー管に秤量し、水10ccを加える。スクリュー管に蓋をして(密閉して)十分に振とうし、粒子を水に分散させる。装置により300Wの超音波を印加し、再度スクリュー管を十分に振とうする。その後、超音波の印加を続けながら、水に分散させた粒子を適切な濃度(濃度10、PIDS60)になるよう装置本体にスポイトを用いて注入する。濃度表示が安定したら、超音波の印加を停止し、10秒間静置した後、測定を開始する(測定時間90秒)。測定結果の中位径の値を平均粒子径とする。
((III)前段焼成工程及び(IV)本焼成工程)
 工程(III)は、乾燥粉体を200~400℃で前段焼成し、前段焼成体を得る工程である。
 工程(IV)は、前段焼成体を600~750℃で本焼成し、焼成体を得る工程である。
 本明細書においては、工程(III)と工程(IV)をまとめて「焼成工程」とも言う。
 工程(III)及び(IV)においては、乾燥工程で得られた乾燥粉体を焼成する。焼成温度、時間、雰囲気等の条件は、乾燥粉体に含まれる有機成分の除去や複合酸化物の結晶成長の観点等で適宜決めればよく、特に限定されない。本実施形態の製造方法においては、後述のとおり温度等の条件を変更して、前段焼成、本焼成とした多段階の焼成を行う。
 本明細書において「突起体」とは、後述する本焼成により得られた焼成体の表面に滲出及び/又は付着した物を示し、焼成体の表面から突出又は付着した物をいう。ここで、突起体の多くは突出した酸化物の結晶やその他の不純物である。特に、複数の金属を含む焼成体の場合、焼成体の大部分を形成する結晶とは組成の異なる酸化物が、焼成体本体部から滲出したような形状で形成されることがある。この場合、突起体は、球体様の焼成体(例えば、直径30~150μm)の表面に複数の突起のような形(例えば、高さ0.1μm~20μm)で形成されることが多い。突起体の除去については、後で詳述する。
(乾燥粉体の焼成方法)
 乾燥粉体を焼成するための焼成装置としては、例えば、回転炉(ロータリーキルン)を用いることができる。焼成器の形状は特に限定されないが、連続的な焼成を実施することができる観点から、管状(焼成管)であることが好ましく、円筒状であるのが特に好ましい。加熱方式は、焼成温度を好ましい昇温パターンになるよう調整しやすい等の観点から外熱式が好ましく、電気炉を好適に使用できる。焼成管の大きさ及び材質等は焼成条件や製造量に応じて適当なものを選択することができる。焼成管の内径は、触媒層内の焼成温度分布にムラがないようにする、焼成時間及び製造量を適正な値に調整する等の観点から、好ましくは70~2000mm、より好ましくは100~1200mmである。また、焼成管の長さは、焼成管内の乾燥粉体及び触媒前駆体粒子の滞留時間、即ち、焼成時間の分布を極力狭くする観点、焼成管の歪みを防止する観点、焼成時間及び製造量を適正な値に調整する観点等から、好ましくは200~10000mm、より好ましくは800~8000mmである。焼成管に衝撃を与える場合、その肉厚は衝撃により破損しない程度の十分な厚みを持つという観点から、2mm以上が好ましく、より好ましくは4mm以上である。また、衝撃が焼成管内部まで十分に伝わるという観点から、その肉厚は、好ましくは100mm以下、より好ましくは50mm以下である。焼成器の材質は、好ましくは耐熱性があり衝撃により破損しない程度の強度を持つものであれば特に限定されず、例えばSUSを好適に使用できる。
 なお、本明細書において「触媒前駆体」とは、焼成工程の途中段階で生成する化合物のことを言う。
 本焼成工程において、触媒の結晶子サイズを制御することができる。適正な範囲の結晶子サイズに制御するためには、本焼成を600~750℃で0.1~20時間で実施することが好ましく、650℃~720℃で0.5~5時間で実施することがより好ましい。結晶子サイズは、本焼成温度及び/又は時間に大きく影響を受ける。焼成温度を高くする及び/又は焼成時間を長くするほど結晶子サイズは大きくなる。シリカ担持触媒の結晶は、円柱形であり、(001)方向に結晶が成長すると全結晶面に対する側面の割合が増大する。アンモ酸化反応が進行するのは、上下の面であり、側面は分解面であることが知られている。本実施形態において測定する結晶子サイズは(001)方向の長さであり、結晶子サイズが250nmを超えると全結晶面に対する分解面の割合が増大すると考えられ、原料アンモニアの燃焼及び目的物の分解が起こりやすくなる。逆に、焼成温度を低く及び/又は焼成時間を短くすると、結晶子サイズは小さくなる。結晶子サイズが40nm未満であると、活性点の構築が不十分になり、原料アンモニアの燃焼及び目的物の分解が起こりやすくなる。従って、触媒の結晶子サイズは、40~250nmであり、40~180nmであることが好ましい。適正な範囲の結晶子サイズを有する触媒は、結晶の完成度が高く、全結晶面に対する分解面の割合が小さいため、原料アンモニアの燃焼を抑制することができ、高い収率で目的物を製造することができる。
 触媒の結晶子サイズは、X線回折を測定することにより求めることができ、反応に関与する(001)ピークに、反応に関与しない不純物ピークが重なるため、事前処理を行う。事前処理は、触媒5~20g、水200mL、硝酸2mLを耐圧容器に入れ、150~200℃、密閉下で24時間以上放置して、不純物を溶解させる。24時間以上経過したら、耐圧容器を室温まで降温し、ろ紙によりろ過する。ろ過により得られた固形物を30~100℃に設定した高温槽で24時間以上乾燥させ、乾燥した粉体のX線回折測定を行うことで、反応に関与する結晶のみの(001)ピークを得ることができる。
 結晶子サイズの測定方法は、事前処理後に、X線回折により得られるピークの半価幅からシェラーの式により求めることができる。具体的なX線の測定条件は、装置:RIGAKU RINT2500HF/PC、光源:CuのKα線、出力:40kV―20mA、測定範囲(2θ):5~50°、スキャンスピード:1deg/min、積算回数:4回で測定を行う。正確な半価幅を得るために、試料の測定前に、標準参照物質(LaB6)を用いて、装置固有の半価幅の拡がりを補正するのが好ましい。
 結晶子サイズは、X線回折による(001)ピーク(面間隔d=4.02)の半価幅から以下のシェラーの式(ii)によって計算する。(001)ピーク(面間隔d=4.02)は、反応に関与する結晶由来のピークである。
 L=0.9λ/βcosθ   (ii)
 ここで、L:結晶子サイズ(Å)、λ:波長(Å)、β:回折線幅(rad)θ:回折角(rad)である。
 焼成雰囲気は、空気雰囲気下でも空気流通下でもよいが、好ましい酸化還元状態に調整する観点から、焼成の少なくとも一部を、窒素等の実質的に酸素を含まない不活性ガスを流通させながら実施することが好ましい。焼成をバッチ式で行う場合は、好ましい酸化還元状態に調整する観点から、不活性ガスの供給量は乾燥粉体1kg当たり、50Nリットル/Hr以上であり、好ましくは50~5000Nリットル/Hr、より好ましくは50~3000Nリットル/Hrである(Nリットルは、標準温度・圧力条件、即ち0℃、1気圧で測定したリットルを意味する)。
 焼成を連続式で行う場合は、好ましい酸化還元状態に調整する観点から、不活性ガスの供給量は乾燥粉体1kg当たり、50Nリットル以上であり、好ましくは50~5000Nリットル、より好ましくは50~3000Nリットルである。この時、不活性ガスと乾燥粉体は向流でも並流でも問題ないが、乾燥粉体から発生するガス成分や、乾燥粉体とともに微量混入する空気を考慮すると、向流接触が好ましい。
 乾燥粉体は、通常、水分の他、アンモニウム根、有機酸、無機酸等を含んでいる。実質的に酸素を含まない不活性ガスを流通させながら焼成する場合、これらが蒸発、分解等する際、触媒構成元素は還元される。乾燥粉体中の触媒構成元素がほぼ最高酸化数である場合、触媒の還元率を所望の範囲にするには、焼成工程において還元のみを実施すればよいので、工業的には簡便である。
 一方、後述するように、前段焼成体の還元率が所望の範囲になるように、焼成雰囲気中に酸化性成分又は還元性成分を添加してもよい。本実施形態の製造方法においては、得られる前段焼成体の還元率が8~12%、触媒の比表面積が5~25m/gとなるように焼成が実施されるのが好ましい。触媒の比表面積が5~25m/gであることにより、更に十分な活性が得られ、原料アンモニアの燃焼も抑制され、収率も一層高くなるという効果が奏される傾向にある。比表面積が25m/gを超えるとシリカ表面の分解点が増大し、原料アンモニアの燃焼及び目的物の分解が起こりやすくなる傾向にある。比表面積が5m/g未満であると十分な活性点が生成せず、収率が低下する傾向にある。また、アンモ酸化反応中の収率維持のためのモリブデン化合物の添加効果に関して、その効果がより十分に発揮され、急峻な劣化を示すこともないため、モリブデン化合物の添加量及び添加頻度を低減することができる傾向にある。この理由については明らかではないが、触媒の比表面積が5m/g未満であると、反応に関与する活性種の活性面が小さく、モリブデン化合物の添加効果が発揮され難いためと推定される。触媒の比表面積が25m/gを超えると、活性種の活性面が大きくなる一方で、活性面からのモリブデンの逃散も速くなるものと推定される。従って、触媒の比表面積は、5~25m/gであり、8~18m/gであることが好ましい。ここで、比表面積は、MICROMETRICS社製Gemini2360を用いて、BET1点法により求められる。
 前段焼成体の還元率は、下記式(2)
  還元率(%)=((n-n)/n)×100・・・(2)
(式中:nは前段焼成体における酸素以外の構成元素の原子価を満足する酸素原子の数であり、nは前段焼成体の酸素以外の構成元素がそれぞれの最高酸化数を有する時に必要な酸素原子の数である。)
により表される。
 具体的には、乾燥粉体を焼成し、その際、乾燥粉体の加熱温度を、400℃より低い温度から昇温を始めて、600~750℃の範囲内にある温度まで連続的に又は断続的に昇温する焼成条件で行い、その際、加熱温度が400℃に達した時の焼成中の前段焼成体の還元率が8~12%となるように焼成条件を調節する。
 触媒が最終的に焼成(加熱)される温度や時間、シリカ含有量が触媒の比表面積に影響するが、加熱温度が400℃に達した時の還元率、本焼成温度及び/又は時間、本焼成後の降温速度が特に大きな影響を及ぼす。加熱温度が400℃に達した時の還元率が低いと、触媒の比表面積は小さくなり、加熱温度が400℃に達した時の還元率が高いと触媒の比表面積は高まる傾向にある。また、本焼成温度は、600℃~750℃、0.1時間~20時間で実施される。本焼成温度が高いほど、また時間が長いほど触媒の比表面積は小さくなる傾向にある。明確な理由は定かではないが、二段階に分けて焼成する場合において、本焼成の温度を一定にした場合には、前段焼成の最高温度が高いほうが、比表面積は大きくなり、前段焼成の最高温度が低い場合には、比表面積は小さくなる。また、本焼成後の降温速度は、0.05~50℃/minが好ましく、0.05~20℃/minがより好ましい。本焼成後の降温速度を小さくすると比表面積は小さくなる傾向にある。
 触媒の比表面積及び結晶子サイズは、焼成条件を調製することで別々に制御することができる。結晶成長が進行する温度は、本焼成の領域であるため、本焼成温度及び/又は本焼成時間で結晶子サイズを制御する。比表面積に大きな影響を与えるシリカのシンタリングが進行する温度領域は、結晶成長が進行する温度領域より広いため、本焼成終了後の降温速度で比表面積を制御することが好ましい。また、比表面積は、酸化還元度に大きく影響されるため、還元率を指標に制御することも好ましい。
 ロータリーキルンで焼成する場合、焼成時に乾燥粉体のフィード量を調整することにより触媒の比表面積を調整することが可能である。フィード量を少なくすることで、乾燥粉体の系内における滞留時間が長くなるため、焼成管内で乾燥粉体が加熱されることで発生するアンモニア等の還元性ガスによる乾燥粉体の還元が進行し、還元率が高まり、本焼成後に得られる触媒の比表面積は大きくなる。逆にフィード量を多くすると、還元率が低くなり、触媒の比表面積は小さくなる。また、前段焼成時の窒素量によっても比表面積を調整することが可能である。窒素量を増やすことで、焼成時の前段焼成粉を還元させる成分ガスが系外にすばやく排出されるため、前段焼成体は還元を受けにくくなり、その結果比表面積は小さくなると考えられる。逆に、窒素量を減らせば、還元率は高まり、触媒の比表面積は大きくなる
 触媒の比表面積を5~25m/gとするためには、加熱温度が400℃に達した時の還元率を8~12%の範囲内とし、且つ、最終的な焼成温度を600℃~750℃とするのが好ましい。
 焼成工程は、前段焼成と本焼成からなり、該前段焼成を200~400℃の温度範囲で行い、該本焼成を600~750℃の温度範囲で行うことが好ましい。前段焼成と本焼成を連続して実施してもよいし、前段焼成を一旦完了してから、あらためて本焼成を実施してもよい。また、前段焼成及び本焼成のそれぞれが数段に分かれていてもよい。
 焼成中の前段焼成体の還元率を測定する場合は、試料をその温度で焼成装置から取り出してもよいが、高温で空気に接触することで酸化され、還元率が変化する場合があるので、室温に冷却した後、焼成装置から取り出したものを代表試料とするのが好ましい。加熱温度が400℃に達した時の還元率を所望の範囲に制御する方法としては、具体的には、前段焼成温度を変更する方法、焼成時の雰囲気中に酸素等の酸化性成分を添加する方法、又は、焼成時の雰囲気中に還元性成分を添加する方法等が挙げられる。また、これらを組み合わせてもよい。
 前段焼成温度を変更する方法とは、前段焼成温度を変更することで、加熱温度が400℃に達した時の還元率を変える手法である。通常、前段焼成温度を下げると還元率は下がり、前段焼成温度を上げると還元率は上がる傾向を示すので、前段焼成温度を変化させて還元率を制御できる。また、供給する窒素量を増減させること、供給する乾燥粉体の量を増減させること、ロータリーキルンを用いた焼成においては、回転数を増減させることによっても還元率を制御することが可能である。供給する窒素を増加させると、炉の加熱によって乾燥粉体から気化した被酸化成分が焼成炉内に存在する金属酸化物によって酸化させられる(金属酸化物は還元する)ことなく、系外に排出される割合が高くなるため、焼成体の還元が進行しにくい、と考えられる。また、供給する乾燥粉体が少なくなると、ロータリーキルンでは触媒の滞留時間が延びることにより還元が進む、と考えられる。また、ロータリーキルンの場合において、回転数を減少させると、触媒のキルン内移動速度が低下するため、より多くの被酸化性分と接触する時間が長くなるため還元が進行する、と考えることができる。
 焼成終了前の前段焼成体の還元率については以下のようにして測定する。
 ビーカーに前段焼成体約200mgを精秤する。更に濃度が既知のKMnO水溶液を過剰量添加する。更に70℃の純水150mL、1:1硫酸(即ち、濃硫酸と水を容量比1/1で混合して得られる硫酸水溶液)2mLを添加した後、ビーカーに時計皿で蓋をし、70℃±2℃の湯浴中で1Hr攪拌し、試料を酸化させる。この時、KMnOは過剰に存在させており、液中には未反応のKMnOが存在するため、液色は紫色である事を確認する。酸化終了後、ろ紙にてろ過を行い、ろ液全量を回収する。濃度が既知のシュウ酸ナトリウム水溶液を、ろ液中に存在するKMnOに対し、過剰量添加し、液温が70℃となるように加熱攪拌する。液が無色透明になることを確認し、1:1硫酸2mLを添加する。液温を70℃±2℃に保ちながら攪拌を続け、濃度が既知のKMnO水溶液で滴定する。液色がKMnOによりかすかな淡桃色が約30秒続くところを終点とする。
 全KMnO量、全Na量から、試料の酸化に消費されたKMnO量を求める。この値から、(n-n)を算出し、これに基づき還元率を求める。
 本焼成終了後の焼成体の還元率は以下のようにして測定することができる。
 ビーカーに、瑪瑙(めのう)製乳鉢で擂り潰した焼成体約200mgを精秤する。95℃の純水150mL、1:1硫酸(即ち、濃硫酸と水を容量比1/1で混合して得られる硫酸水溶液)4mLを添加する。液温を95℃±2℃に保ちながら攪拌を続け、濃度が既知のKMnO水溶液で滴定する。この時、液色がKMnO滴下により一時的に紫色となるが、紫色が30秒以上続かないように、ゆっくりと少量ずつKMnOを滴下する。また、水の蒸発により液量が少なくなるので、液量が一定になるように95℃の純水を追加する。液色がKMnOによりかすかな淡桃色が約30秒続くところを終点とする。
 こうして、試料の酸化に消費されたKMnO量を求める。この値から、(n-n)を算出し、これに基づき還元率を求める。
 上記の測定方法の他に、本焼成終了前の前段焼成体と本焼成終了後の焼成体のいずれの還元率についても、以下のようにして測定することもできる。
 試料の構成元素が揮発、逃散しない条件で、前段焼成体又は焼成体が焼成された焼成温度よりも高い温度まで加熱し、酸素による完全酸化を行い、増加した質量(結合した酸素の量)を求め、これから(n-n)の値を求め、これに基づき還元率を求める。
 焼成雰囲気を不活性ガス又は好ましい酸化/還元雰囲気中で行うため、焼成装置としては適切なシール構造をもち、外気との接触を十分に遮断できるものを用いることが好ましい。
 前段焼成は、得られる触媒を好ましい酸化還元状態に調整しやすいこと、触媒性能を向上できること等の観点から、好ましくは不活性ガス流通下、前段焼成温度が好ましくは200℃~400℃、より好ましくは300℃~400℃の範囲で行われる。前段焼成温度は200℃~400℃の温度範囲内の一定温度で保持することが好ましいが、200℃~400℃の範囲内で温度が変動したり、緩やかに昇温又は降温されたりしてもよい。加熱温度の保持時間は、得られる触媒を好ましい酸化還元状態に調整しやすいこと、触媒性能を向上できること等の観点から、好ましくは30分間以上、より好ましくは3~12時間である。前段焼成温度に達するまでの温度パターンは、直線的な昇温パターンであってもよく、上又は下に凸なる弧を描くような昇温パターンであってもよい。また、昇温中に降温する時間があってもよく、昇温及び降温を繰り返してもよい。さらには、昇温過程で乾燥粉体及び/又は触媒前駆体の中に含まれる成分によって吸熱反応が起こり、一時的に降温してもよい。
 前段焼成温度に達するまでの昇温時の平均昇温速度には特に限定はないが、得られる触媒を好ましい酸化還元状態に調整しやすいこと、触媒性能を向上できること等の観点から、通常0.1~15℃/分程度であり、好ましくは0.5~5℃/分、より好ましくは1~2℃/分である。
 本焼成は、得られる触媒を好ましい比表面積に調整しやすいこと、反応に活性な結晶構造を十分に形成すること、触媒性能を向上できること等の観点から、好ましくは不活性ガス流通下、好ましくは600~750℃、より好ましくは650~720℃で実施することができる。本焼成温度は650~720℃の温度範囲内の一定温度で保持することが好ましいが、650~720℃の範囲内で温度が変動、又は、緩やかに昇温、降温しても構わない。また、昇温の中に降温する時間が入ってもよいし、昇温・降温を繰り返してもよい。昇温過程で乾燥粉体の中に含まれる成分によって吸熱反応が起こり、降温するパターンが成り行きで決まってもよい。
 触媒の比表面積は焼成温度によって調整することができる。特定の比表面積を有する触媒を得るには、前段焼成の温度によっても比表面積を増減することは可能であるが、比表面積により影響し易い本焼成の焼成温度を調整することは、目的の比表面積を有する触媒を得るために好ましい態様である。
 本焼成の時間は好ましくは0.1~20時間、より好ましくは0.5~5時間である。焼成管を堰板で区切る場合、前段焼成体及び/又は焼成体は少なくとも2つ、乾燥粉体等の適した焼成管内の滞留時間を確保する等の観点から、好ましくは2~20、更に好ましくは4~15の区域を連続して通過する。温度の制御は1つ以上の制御器を用いて行うことができるが、前記所望の焼成パターンを得るために、これら堰で区切られた区域ごとにヒーターと制御器を設置し、制御することが好ましい。例えば堰板を焼成管の加熱炉内に入る部分の長さを8等分するように7枚設置し、8つの区域に仕切った焼成管を用いる場合、部分焼成粉体及び/又は焼成粉体の温度が前記所望の焼成温度パターンとなるよう8つの区域を各々の区域について設置したヒーターと制御器により設定温度を制御することが好ましい。例えば、堰板を焼成器の加熱炉内に入る部分の長さを8等分するように7枚設置し、8つの区域に仕切った焼成器を用いる場合、前記所望の焼成パターンを得るため、以下のように調整することができる。前段焼成では焼成器内を滞留している前段焼成体の区域内中心部に挿入した熱電対の温度がそれぞれ、前段焼成体の供給側から数えて、区域1:120~280℃、区域2:180~330℃、区域3:250~350℃、区域4:270~380℃、区域5:300~380℃、区域6:300~390℃、区域7:320~390℃、区域8:260~380℃となるように調整するのが好ましい。本焼成では同様に、区域1:360~560℃、区域2:450~650℃、区域3:600~700℃、区域4:650~750℃、区域5:600~700℃、区域6:500~690℃、区域7:480~630℃、区域8:400~580℃となるように調整するのが好ましい。
 前段焼成体の比表面積も本焼成ほどではないが、前段焼成の条件によってある程度調整することが可能である。明確な理由は定かではないが、還元率と比表面積は比例の関係にあることから、上記と同じ管理を行うことで、比表面積の範囲を適正化しやすくする。しかし、触媒の比表面積の調整は本焼成の焼成方法に大きく依存している。
 また、650℃という焼成温度は、構成金属の酸化物の融点を大きく超えているので、焼成管の壁面への酸化物が多く固着するため、ハンマー等を用いた本焼成管への打撃回数を増やすことを行うか、又は、回転数を増やすこと等によって前段焼成体の滞留する時間を延ばすことが好ましい。これらの増加率については、本焼成管にフィードした前段焼成粉量と本焼成管から排出される触媒量のマスバランスから任意に設定することが可能である。なお、不活性ガス流通下の焼成雰囲気には、所望により、酸化性成分(例えば酸素)又は還元性成分(例えばアンモニア)を添加してもかまわない。
 本焼成温度に達するまでの昇温パターンは直線的に上げてもよいし、上又は下に凸なる弧を描いて昇温してもよい。また、昇温中に降温する時間が入ってもよいし、昇温・降温を繰り返してもよい。昇温過程で前段焼成体の中に残っている成分によって吸熱反応が起こり、降温するパターンが成り行きで入ってしまってもよい。
 本焼成温度に達するまでの昇温時の平均昇温速度としては特に限定はないが、好ましくは0.5~8℃/minである。本焼成終了後の平均降温速度は、比表面積を制御すること、反応に活性な結晶構造を十分に形成しやすいこと、触媒性能が向上すること等の観点から、好ましくは0.05~50℃/min、より好ましくは0.05~20℃/minである。また、反応に活性な結晶構造を十分に形成しやすいこと、触媒性能を向上すること等の観点から、本焼成温度より低い温度で一旦保持してアニーリングすることも好ましい。保持する温度は、本焼成温度より5℃、好ましくは10℃、より好ましくは50℃低い温度である。保持する時間は、上記と同様の観点から、好ましくは0.5時間以上、より好ましくは1時間以上、さらに好ましくは3時間以上、特に好ましくは10時間以上である。
 前段焼成を一旦完了してからあらためて本焼成を実施する場合は、本焼成で低温処理を行うこともできる。低温処理に要する時間、即ち、前段焼成体及び/又は焼成体の温度を低下させた後、昇温して焼成温度にするまでに要する時間は、焼成器の大きさ、肉厚、材質、触媒生産量、連続的に前段焼成体及び/又は焼成体を焼成する一連の期間、固着速度・固着量等により適宜調整することが可能である。焼成管壁面に固着した前段焼成粉体及び/又は焼成体を十分に剥離すること、安定して酸化物層温度を維持すること、得られる触媒の性能が向上すること等の観点から、連続的に焼成体を焼成する一連の期間中に、好ましくは30日以内、より好ましくは15日以内、更に好ましくは3日以内、特に好ましくは2日以内である。なお、酸化物層温度とは、焼成器内に堆積している前段焼成粉体及び/又は本焼成粉体に挿入した熱電対によって測定する温度をいう。また、例えば、内径500mm、長さ4500mm、肉厚20mmのSUS製の焼成管を有する回転炉により6rpmで回転しながら35kg/hrの速度で前段焼成粉体を供給し、本焼成温度が645℃である場合、温度を400℃まで低下させた後、昇温して645℃にする工程を1日程度で行うことができる。1年間連続的に焼成する場合、このような低温処理を1ヶ月に1回の頻度で実施することで、安定して酸化物層温度を維持しながら焼成することができる。
 焼成工程において焼成器に衝撃を加えると、固着した塊に亀裂を生じさせる効果が高まる傾向にあり、また、低温処理を実施する場合においても焼成器に衝撃を加えると、亀裂を生じた塊が焼成器から容易に剥離する傾向にあるため好ましい。
 本焼成工程を経た焼成体の粒子表面には突起体が生成する。本実施形態における焼成体は、従来の焼成体と比較して組成が適正であることから、突起体の量が少なく、従来触媒より突起体の影響が小さいものの、気相接触アンモ酸化反応において反応器中に存在すると、副反応を起こし易い及び/又は突起体が剥がれて流動性が悪くなるため、反応前に除去することが好ましい。
 突起体を除去することにより、突起体の量を焼成体の全質量に対して好ましくは2質量%以下にすることが好ましい。突起体の除去方法としては、いくつかの方法が考えられるが、これらのうち、ガス流通下、触媒同士の接触等により除去する方法が好ましい。例えば、焼成体を貯蔵するホッパー等にガスを流通する方法、流動床反応器に焼成体を入れてそこにガスを流通させる方法が挙げられる。流動床反応器を用いる方法は、突起体を除去するための特別な装置が不要である点で好ましい態様であるが、もともと触媒同士の接触を意図して設計された装置ではないためか、少ない量の触媒を投入して時間をかけて流動させる等の対策をしない限り、触媒の投入量、流通させる時間やガス量等、条件によっては突起体を十分に除去できない場合がある。本発明者らの検討によると、十分な流速の気流を、突起体を有する焼成体に接触させることで効率的に突起体を除去することができる。適切な流速を焼成体に接触させられる構造の装置を設ければ、大きなスケールでも、突起体を効率的に除去することができる。
 例えば、焼成体を収容する本体と、本体の上部に設けられた焼成体の回収手段と、回収手段に接続された前記焼成体の戻し手段とを有し、前記戻し手段は、下端が気流に接触するように設けられており、本体内で気流に接触した焼成体の一部が回収手段によって回収され、戻し手段によって本体内に戻される装置は、大きなスケールでも効率よく突起体を除去しうる。
 焼成体を充填した流動床反応器等の装置にガスを流通させると、焼成体は接触しあって、突起状の突起体が除去される。焼成体から剥離した突起体は焼成体より遥かに小さいので、流通させているガスと共に流動床反応器の外へ流出する。この時の焼成体の密度は、300~1300kg/mになるように装置内に焼成体を充填するのが好ましい。用いる装置の胴体部分の断面積は、好ましくは0.1~100m、より好ましくは、0.2~85mである。
 流通させるガスは、窒素等のイナートガスや、空気が好ましい。ホッパー、流動床反応器等の焼成体を充填した装置の胴体部分に流通させるガス線速度は0.03m/s~5m/sとするのが好ましく、より好ましくは0.05~1m/sである。また、ガスの流通時間は1~168時間が好ましい。具体的には、本実施形態の突起体除去装置は、本体を備え、前記本体に収容した焼成体に気流を接触させる若しくは気流によって流動した粒子同士が接触することによって、焼成体の表面にある突起体を焼成体から除去する装置であって、気流が流れる方向における気流長さが10mm以上であり、かつ、気流の平均流速が、摂氏15℃、1気圧における線速に換算した場合に80m/s以上500m/s以下であるのが好ましい。
 突起体の除去をグラムスケールで行う場合には、底部に1つ以上の穴のある穴あき板を備え、上部にペーパーフィルターを設けた垂直チューブに焼成体を投入し、下部から空気を流通させることで、それぞれの穴から気流が流れることで焼成体同士の接触を促し、突起体の除去が行われる装置を用いることが可能である。
[気相接触アンモ酸化反応]
 本実施形態の気相接触アンモ酸化反応は、プロパン又はイソブタンを気相接触アンモ酸化反応させて対応する不飽和ニトリルを製造する方法において、上記シリカ担持触媒を用いる不飽和ニトリルの製造方法である。
 プロパン、イソブタン及びアンモニアの供給原料は必ずしも高純度である必要はなく、工業グレードのガスを使用できる。供給酸素源としては、空気、純酸素又は純酸素で富化した空気を用いることができる。さらに、希釈ガスとしてヘリウム、ネオン、アルゴン、炭酸ガス、水蒸気、窒素等を供給してもよい。
 プロパン又はイソブタンの気相接触アンモ酸化反応は、以下の条件で行うことができる。
 反応に供給する酸素のプロパン又はイソブタンに対するモル比は0.1~6、好ましくは0.5~4である。反応に供給するアンモニアのプロパン又はイソブタンに対するモル比は0.3~1.5、好ましくは0.7~1.2である。反応温度は350~500℃、好ましくは380~470℃である。反応圧力は5×10~5×10Pa、好ましくは1×10~3×10Paである。接触時間は0.1~10(sec・g/cc)、好ましくは0.5~5(sec・g/cc)である。
 本実施の形態において、接触時間は次式で定義される。
 接触時間(sec・g/cc)=(W/F)×273/(273+T)
 ここで、W、F及びTは次のように定義される。
   W=充填触媒両(g)
   F=標準状態(0℃、1.013×10Pa)での原料混合ガス流量(Ncc/sec)
   T=反応温度(℃)
 気相接触アンモ酸化反応における反応方式は、固定床、流動床、移動床等従来の方式を採用できるが、反応熱の除去が容易な流動床反応器が好ましい。また、気相接触アンモ酸化反応は、単流式であってもリサイクル式であってもよい。
 以下に本実施形態を、実施例と比較例によって更に詳細に説明するが、本実施形態の範囲はこれら実施例に限定されるものではない。
 実施例と比較例においては、プロパン転化率、アクリロニトリル収率、及びアンモニア燃焼率は、それぞれ次の定義に従う。
 プロパン転化率(%)=(反応したプロパンのモル数)/(供給したプロパンのモル数)×100
 アクリロニトリル(AN)収率(%)=(生成したアクリロニトリルのモル数)/(供給したプロパンのモル数)×100
 アンモニア燃焼率(%)=(生成した窒素のモル数)×2/(供給したアンモニアのモル数)×100
 ここで、生成アクリロニトリル及び窒素のモル数は、ガスクロマトグラフィーにより測定した。
(実施例1)
(ニオブ原料液の調製)
 以下の方法でニオブ原料液を調製した。水500kgにNbとして80.2質量%を含有するニオブ酸76.33kgとシュウ酸二水和物〔H・2HO〕290.2kgを混合した。仕込みのシュウ酸/ニオブのモル比は5.0、仕込みのニオブ濃度は0.532(mol-Nb/kg-液)であった。
 この液を95℃で1時間加熱撹拌することによって、ニオブ化合物が溶解した水溶液を得た。この水溶液を静置、氷冷後、固体を吸引濾過によって濾別し、均一なニオブ化合物水溶液を得た。同じような操作を数回繰り返して、得られたニオブ化合物水溶液を一つにし、ニオブ原料液とした。このニオブ原料液のシュウ酸/ニオブのモル比は下記の分析により2.40であった。
 るつぼに、このニオブ原料液10gを精秤し、95℃で一夜乾燥後、600℃で1時間熱処理し、Nb0.8323gを得た。この結果から、ニオブ濃度は0.626(mol-Nb/kg-液)であった。
 300mLのガラスビーカーにこのニオブ原料液3gを精秤し、約80℃の熱水200mLを加え、続いて1:1硫酸10mLを加えた。得られた溶液をホットスターラー上で液温70℃に保ちながら、攪拌下、1/4規定KMnOを用いて滴定した。KMnOによるかすかな淡桃色が約30秒以上続く点を終点とした。シュウ酸の濃度は、滴定量から次式に従って計算した結果、1.50(mol-シュウ酸/kg)であった。
 2KMnO+3HSO+5H→KSO+2MnSO+10CO+8H
 得られたニオブ原料液を、以下の酸化物触媒の製造においてニオブ原料液として用いた。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.9kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径50nmのシリカゾル34.2kgと、SiOとして30.0質量%を含有する平均一次粒子直径18nmのシリカゾル3.60kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下690℃まで2℃/minで昇温し、690℃で2時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 比表面積の測定は、比表面積はMICROMETRICS社製Gemini2360を用いて、BET1点法により測定した。
 比表面積は、10.8m/gであった。
(突起体の除去)
 底部に直径1/64インチの3つの穴のある穴あき円盤を備え、上部にペーパーフィルターを設けた垂直チューブ(内径41.6mm、長さ70cm)に酸化物触媒を50g投入した。この時の気流が流れる方向における気流長さは52mm、気流の平均線速は310m/sであった。24時間後に得られた酸化物触媒をSEMにより確認したところ、酸化物触媒表面には突起体が存在しなかった。
(全細孔容積)
 全細孔容積は、水銀ポロシメーターにより求めた。
 全細孔容積は、0.297cm/gであった。
(細孔分布)
 細孔分布は、水銀ポロシメーターにより求めた。
 細孔直径60nm未満の細孔の細孔容積の割合は3.9%で、細孔直径120nm超の細孔の細孔容積の割合は1.0%であった。
(平均細孔直径の計算)
 平均細孔直径の計算は、細孔が円筒形であると仮定して、式(i)を用いて行った。
 D=4V/S   (i)
 ここで、D:平均細孔直径(m)、V:全細孔容積(m/g)、S:比表面積(m/g)である。
 計算した平均細孔直径は、110nmであった。
(結晶子サイズの測定)
 X線の測定条件は、事前処理後に、装置:RIGAKU RINT2500HF/PC、光源:CuのKα線、出力:40kV―20mA、測定範囲(2θ):5~50°、スキャンスピード:1deg/min、積算回数:4回で測定を行った。正確な半価幅を得るために、試料の測定前に、標準参照物質(LaB6)を用いて、装置固有の半価幅の拡がりを補正した。
 結晶子サイズは、X線回折により得られた(001)ピーク(面間隔d=4.02)の半価幅からシェラーの式(ii)によって計算した。
 L=0.9λ/βcosθ   (ii)
 ここで、L:結晶子サイズ(Å)、λ:波長(Å)、β:回折線幅(rad)θ:回折角(rad)である。
 計算した結晶子サイズは、106nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は89.8%、アクリロニトリル収率は54.8%、アンモニア燃焼率18.8%であった。
(実施例2)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径23nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径13nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下685℃まで2℃/minで昇温し、685℃で2時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、12.8m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.288cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は6.8%で、細孔直径120nm超の細孔の細孔容積の割合は0.6%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、90nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、98nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は90.1%、アクリロニトリル収率は54.9%、アンモニア燃焼率18.6%であった。
(実施例3)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径25nmのシリカゾル25.3kgと、SiOとして30.0質量%を含有する平均一次粒子直径10nmのシリカゾル12.5kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)を添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、13.6m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.221cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は18.7%で、細孔直径120nm超の細孔の細孔容積の割合は0.2%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、65nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、102nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は88.5%、アクリロニトリル収率は54.7%であった。3ヵ月間反応を行い、アクリロニトリル収率は54.7%、アンモニア燃焼率19.4%であった。
(実施例4)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化テルル〔TeO〕を1.96kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径45nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径15nmのシリカゾル7.70kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下690℃まで2℃/minで昇温し、690℃で3時間焼成し、0.5℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Te0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、10.2m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.235cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は7.1%で、細孔直径120nm超の細孔の細孔容積の割合は0.7%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、92nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、185nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は88.8%、アクリロニトリル収率は54.8%、アンモニア燃焼率19.0%であった。
(実施例5)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径50nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径18nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を258g(純度50%)と酸化チタン〔TiO〕18.2g添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.005Ti0.002Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例と同様の方法により測定した結果、比表面積は、12.8m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.288cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は6.6%で、細孔直径120nm超の細孔の細孔容積の割合は0.5%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、90nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、98nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は88.8%、アクリロニトリル収率は54.6%、アンモニア燃焼率19.5%であった。
(実施例6)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径50nmのシリカゾル31.0kgとSiOとして30.0質量%を含有する平均一次粒子直径18nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を258g(純度50%)と酸化マンガン〔MnO〕29.6g添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.005Mn0.003Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、13.2m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.304cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は6.9%で、細孔直径120nm超の細孔の細孔容積の割合は0.6%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、92nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、101nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は88.8%、アクリロニトリル収率は54.7%、アンモニア燃焼率19.3%であった。
(実施例7)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径50nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径18nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を155g(純度50%)と硝酸ビスマス〔Bi(NO・5HO〕220g添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.003Bi0.004Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、13.3m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.313cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は7.3%で、細孔直径120nm超の細孔の細孔容積の割合は0.8%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、94nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、103nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は88.8%、アクリロニトリル収率は54.6%、アンモニア燃焼率19.2%であった。
(実施例8)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕347gと硝酸ランタン〔La(NO・6HO〕147gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径50nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径18nmのシリカゾル7.70kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液516g(純度50%)を添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.007La0.003であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、14.2m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.320cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は6.7%で、細孔直径120nm超の細孔の細孔容積の割合は0.4%であった。
(細孔分布の測定)
 実施例1と同様の方法により測定した結果、平均細孔直径は、90nmであった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、結晶子サイズは、95nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は88.8%、アクリロニトリル収率は54.6%、アンモニア燃焼率18.8%であった。
(実施例9)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕397gと硝酸ランタン〔Y(NO・6HO〕87gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径50nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径18nmのシリカゾル7.70kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)を添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.0080.002であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、14.5m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.330cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は7.2%で、細孔直径120nm超の細孔の細孔容積の割合は0.5%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、91nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、102nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は88.8%、アクリロニトリル収率は54.7%、アンモニア燃焼率18.9%であった。
(実施例10)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕297gと硝酸ランタン〔Yb(NO・4HO〕146gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径50nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径18nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80gを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液516g(純度50%)を添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.006Yb0.003であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、15.2m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.334cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は8.2%で、細孔直径120nm超の細孔の細孔容積の割合は0.4%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、88nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、98nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は88.8%、アクリロニトリル収率は54.6%、アンモニア燃焼率19.0%であった。
(実施例11)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径23nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径13nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下680℃まで2℃/minで昇温し、680℃で2時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成比はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、14.6m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.350cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は5.8%で、細孔直径120nm超の細孔の細孔容積の割合は0.9%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、96nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、61nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は88.9%、アクリロニトリル収率は54.4%、アンモニア燃焼率19.1%であった。
(実施例12)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径23nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径13nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下685℃まで2℃/minで昇温し、685℃で2.5時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、15.1m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.306cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は9.3%で、細孔直径120nm超の細孔の細孔容積の割合は0.3%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、81nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、181nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は89.1%、アクリロニトリル収率は54.3%、アンモニア燃焼率19.4%であった。
(実施例13)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径55nmのシリカゾル34.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径13nmのシリカゾル3.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報を参考とした場合、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下695℃まで2℃/minで昇温し、695℃で2時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、8.0m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.168cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は8.8%で、細孔直径120nm超の細孔の細孔容積の割合は0.4%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、84nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、156nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は89.2%、アクリロニトリル収率は54.0%、アンモニア燃焼率19.2%であった。
(実施例14)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径23nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径13nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下670℃まで2℃/minで昇温し、670℃で2時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、16.7m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.342cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は9.0%で、細孔直径120nm超の細孔の細孔容積の割合は0.3%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、82nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、52nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は89.1%、アクリロニトリル収率は54.0%、アンモニア燃焼率19.5%であった。
(実施例15)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径25nmのシリカゾル30.7kgと、SiOとして30.0質量%を含有する平均一次粒子直径12nmのシリカゾル7.1kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下695℃まで2℃/minで昇温し、695℃で1時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、9.2m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.170cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は10.6%で、細孔直径120nm超の細孔の細孔容積の割合は0.3%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、74nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、55nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は89.1%、アクリロニトリル収率は54.1%、アンモニア燃焼率19.3%であった。
(実施例16)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径23nmのシリカゾル56.4kgと、SiOとして30.0質量%を含有する平均一次粒子直径13nmのシリカゾル6.90kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。その後、50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下685℃まで2℃/minで昇温し、685℃で2時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、10.2m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.184cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は9.6%で、細孔直径120nm超の細孔の細孔容積の割合は0.2%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、72nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、98nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は90.1%、アクリロニトリル収率は54.1%、アンモニア燃焼率19.6%であった。
(実施例17)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径23nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径13nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下550℃まで2℃/minで昇温し、550℃で2時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、17.4m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.270cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は31.2%で、細孔直径120nm超の細孔の細孔容積の割合は0.1%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、62nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、44nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は90.1%、アクリロニトリル収率は53.8%、アンモニア燃焼率19.8%であった。
(比較例1)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を21.0kg、メタバナジン酸アンモニウム〔NHVO〕を2.91kg、三酸化二アンチモン〔Sb〕を3.46kg、さらに硝酸セリウム〔Ce(NO・6HO〕524gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液937gに、Hとして30質量%を含有する過酸化水素水134gを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径26nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径16nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水4.02kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を523g(純度50%)を添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.60Nb0.005Sb0.300.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、14.6m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.329cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は8.9%で、細孔直径120nm超の細孔の細孔容積の割合は0.4%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、90nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、120nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は87.5%、アクリロニトリル収率は51.5%、アンモニア燃焼率21.1%であった。
(比較例2)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径108nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径16nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成比はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、14.0m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.543cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は1.3%で、細孔直径120nm超の細孔の細孔容積の割合は3.2%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、155nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、105nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は86.9%、アクリロニトリル収率は52.6%、アンモニア燃焼率19.3%であった。
(比較例3)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径12nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径5nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 実施例2と同様に行った。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、13.8m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.086cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は88.2%で、細孔直径120nm超の細孔の細孔容積の割合は0%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、25nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、104nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は87.1%、アクリロニトリル収率は53.1%、アンモニア燃焼率22.6%であった。
(比較例4)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径110nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径16nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下695℃まで2℃/minで昇温し、695℃で4時間焼成し、0.5℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成比はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、8.1m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.324cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は1.1%で、細孔直径120nm超の細孔の細孔容積の割合は3.8%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、160nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、390nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は85.9%、アクリロニトリル収率は52.2%、アンモニア燃焼率20.1%であった。
(比較例5)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径108nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径16nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下670℃まで2℃/minで昇温し、670℃で1時間焼成し、2℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成比はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、16.2m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.559cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は2.3%で、細孔直径120nm超の細孔の細孔容積の割合は3.2%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、138nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、20nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は86.5%、アクリロニトリル収率は52.1%、アンモニア燃焼率19.3%であった。
(比較例6)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径12nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径8nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下695℃まで2℃/minで昇温し、695℃で4時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成比はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、9.2m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.097cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は68.4%で、細孔直径120nm超の細孔の細孔容積の割合は0%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、42nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、375nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は87.0%、アクリロニトリル収率は52.3%、アンモニア燃焼率23.1%であった。
(比較例7)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径10nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径13nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下670℃まで2℃/minで昇温し、670℃で1時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成比はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、20.3m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.112cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は91.4%で、細孔直径120nm超の細孔の細孔容積の割合は0%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、22nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、24nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は86.3.1%、アクリロニトリル収率は52.1%、アンモニア燃焼率21.1%であった。
(比較例8)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径15nmのシリカゾル31.0kgと、SiOとして30.0質量%を含有する平均一次粒子直径5nmのシリカゾル6.80kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80gを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下700℃まで2℃/minで昇温し、700℃で2時間焼成し、0.2℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成比はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、4.2m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.055cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は54.6%で、細孔直径120nm超の細孔の細孔容積の割合は0%であった。
(平均細孔直径の計算)
 実施例1と同様の方法により測定した結果、平均細孔直径は、52nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、204nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は86.2%、アクリロニトリル収率は50.6%、アンモニア燃焼率22.8%であった。
(比較例9)
(ニオブ原料液の調液)
 実施例1と同様に行った。
(調合槽における原料調合液の調合)
 水100kgにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を19.9kg、メタバナジン酸アンモニウム〔NHVO〕を2.75kg、三酸化二アンチモン〔Sb〕を3.28kg、さらに硝酸セリウム〔Ce(NO・6HO〕495gを水2kgに溶解させた硝酸セリウム水溶液を加え、攪拌しながら95℃で1時間加熱して原料調合液(I)を得た。
 上記ニオブ原料液15.95kgに、Hとして30質量%を含有する過酸化水素水2.28kgを添加した。液温をおよそ20℃に維持し、攪拌混合して、原料調合液(II)を得た。
 得られた原料調合液(I)を70℃に冷却した後に、SiOとして30.2質量%を含有する平均一次粒子直径23nmのシリカゾル34.7kgを添加した。次いで、Hとして30質量%を含有する過酸化水素水3.80kgを添加し、55℃で30分間撹拌混合した後、原料調合液(II)とメタタングステン酸アンモニウム水溶液を516g(純度50%)添加した。さらに、粉体シリカ8.60kgを77.4kgの水に分散させ、そのまま50℃で1時間熟成をして原料調合液(III)を得た。
(調合槽で得られた原料調合液の噴霧乾燥)
 原料調合液(III)の調合完了前までに、210℃に加熱された空気と80kg/Hrの供給量に調整した50℃の温水を遠心式噴霧乾燥機に供給し、予め乾燥機入口温度210℃、出口温度120℃とした。
 噴霧乾燥機出口温度が変動しないように噴霧乾燥機に供給する原料調合液の供給量を調整したところ、供給量は100kg/Hrになった。その間、出口温度は120±5℃で大きな変動はなかった。
(紫外可視反射スペクトルの測定)
 得られた乾燥品を1日ごとにサンプリングし、得られた10個のサンプリング品のうち0.5gを、日本分光社製JASCO UV/VISスペクトロメーターV-650を用いて、200-800nmの範囲を拡散反射法で測定した。ベースライン用標準物質としてLabspere社製スペクトラロンを使用した。吸光度最大値は1.02であった。600nmにおける吸光度は0.31~0.36であり、特開2009-148749号公報の記載を参照し、高性能が予想できる吸光度であったため、得られた噴霧乾燥品は選別せずに全量分級操作に使用した。
(分級操作)
 得られた乾燥品を目開き25μmの篩を用いて分級し、分級品を得た。得られた分級品の25μm以下の粒子含有率は0.8質量%であり、平均粒子径は55μmであった。
(分級品の焼成)
 得られた分級品を、内径500mm、長さ3500mm、肉厚20mmのSUS製円筒状焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、20kg/hrの速度で流通し、600Nリットル/minの窒素ガス流通下、焼成管を4回転/分で回転させながら、370℃まで約4時間かけて昇温し、370℃で3時間保持する温度プロファイルとなるように加熱炉温度を調整し、前段焼成することにより前段焼成品を得た。別の内径500mm、長さ3500mm、肉厚20mmのSUS製焼成管で高さ150mmの7枚の堰板を加熱炉部分の長さを8等分するように設置したものに、焼成管を4回転/分で回転させながら、前段焼成品を15kg/hrの速度で流通した。その際、焼成管の粉導入側部分(加熱炉に覆われていない部分)を、打撃部先端がSUS製の質量14kgのハンマーを設置したハンマリング装置で、回転軸に垂直な方向で焼成管上部250mmの高さから5秒に1回打撃を加えながら、500Nリットル/minの窒素ガス流通下685℃まで2℃/minで昇温し、685℃で2時間焼成し、1℃/minで降温する温度プロファイルとなるように加熱炉温度を調整し、本焼成することにより酸化物触媒を得た。
(酸化物触媒の組成)
 酸化物触媒の組成分析を行った結果、金属酸化物の組成はMoV0.21Nb0.09Sb0.200.01Ce0.01であった。また、シリカの担持量は、金属酸化物とシリカから成る触媒の全質量に対して47質量%であった。
(比表面積の測定)
 実施例1と同様の方法により測定した結果、比表面積は、15.1m/gであった。
(突起体の除去)
 実施例1と同様に行った。
(全細孔容積)
 実施例1と同様の方法により測定した結果、全細孔容積は、0.174cm/gであった。
(細孔分布)
 実施例1と同様の方法により測定した結果、細孔直径60nm未満の細孔の細孔容積の割合は63.8%で、細孔直径120nm超の細孔の細孔容積の割合は0%であった。
(平均細孔直径)
 実施例1と同様の方法により測定した結果、平均細孔直径は、46nmであった。
(結晶子サイズの測定)
 実施例1と同様の方法により測定した結果、結晶子サイズは、98nmであった。
(プロパンのアンモ酸化反応)
 上記で得られた酸化物触媒を用いて、以下の方法により、プロパンを気相アンモ酸化反応に供した。内径25mmのバイコールガラス流動床型反応管に酸化物触媒を35g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。反応後のプロパン転化率は90.1%、アクリロニトリル収率は53.1%、アンモニア燃焼率22.3%であった。
 以下の表1に、各実施例及び比較例における触媒の組成及び物性と、アクリロニトリル収率、アンモニア燃焼率を示した。
Figure JPOXMLDOC01-appb-T000001
 本出願は、2011年4月21日に日本国特許庁へ出願された日本特許出願(特願2011-095422)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のシリカ担持触媒は、プロパン又はイソブタンの気相接触アンモ酸化反応により対応する不飽和ニトリルを製造する際に用いられる触媒としての産業上利用可能性を有する。

Claims (5)

  1.  プロパン又はイソブタンの気相接触アンモ酸化反応により対応する不飽和ニトリルを製造する際に用いられるシリカ担持触媒であって、下記式(1)
     MoVNb・・・(1)
    (式(1)中、Xは、Sb及びTeから選択される少なくとも1種以上の元素を示し、Tは、Ti、W、Mn及びBiから選択される少なくとも1種以上の元素を示し、Zは、La、Ce、Yb及びYから選択される少なくとも1種以上の元素を示す。a、b、c、d及びeは、それぞれ、0.05≦a≦0.5、0.01≦b≦0.5、0.001≦c≦0.5、0≦d≦1、0≦e≦1の範囲にあり、nは原子価のバランスを満たす値である。)
    で示される金属酸化物を含み、平均細孔直径が60~120nm、且つ、全細孔容積が0.15cm/g以上、且つ、比表面積が5~25m/g、且つ、X線回折による(001)ピークの半価幅から求められる結晶子サイズが40~250nmであるシリカ担持触媒。
  2.  細孔直径60nm未満の細孔の細孔容積が全細孔容積に対して30%未満であり、且つ、細孔直径120nm超の細孔の細孔容積が全細孔容積に対して30%未満である、請求項1記載のシリカ担持触媒。
  3.  シリカの担持量が、前記金属酸化物とシリカから成る触媒の全質量に対して20~70質量%である、請求項1又は2記載のシリカ担持触媒。
  4.  シリカ担持触媒の製造方法であって、以下の工程(I)~(IV);
     (I)Mo、V、Nb、X、T及びZを含有し、Mo1原子に対するVの原子比a、Nbの原子比b、Xの原子比c、Tの原子比d及びZの原子比eが、それぞれ、0.05≦a≦0.5、0.01≦b≦0.5、0.001≦c≦0.5、0≦d≦1及び0≦e≦1である原料調合液を調製する工程、
    (II)前記原料調合液を乾燥し、乾燥粉体を得る工程、
    (III)前記乾燥粉体を200~400℃で前段焼成し、前段焼成体を得る工程、
    (IV)前記前段焼成体を600~750℃で本焼成し、焼成体を得る工程、
    を有し、前記原料調合液が、シリカ原料の全質量に対して0~30質量%の平均一次粒子直径が3nm以上20nm未満であるシリカゾル(i)、シリカ原料の全質量に対して30~70質量%の平均一次粒子直径が20nm以上100nm以下であるシリカゾル(ii)、シリカ原料の全質量に対して30~70質量%の平均一次粒子直径が50nm以下の粉体シリカを含有し、シリカゾル(i)、シリカゾル(ii)及び粉体シリカの合計がシリカ基準で100質量%であるシリカ担持触媒の製造方法。
  5.  請求項1~3のいずれか1項記載のシリカ担持触媒を用い、プロパン又はイソブタンの気相接触アンモ酸化反応を行うことにより対応する不飽和ニトリルを製造する方法。
PCT/JP2012/059707 2011-04-21 2012-04-09 シリカ担持触媒 WO2012144369A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137026983A KR101537459B1 (ko) 2011-04-21 2012-04-09 실리카 담지 촉매
EP12774665.9A EP2700447B1 (en) 2011-04-21 2012-04-09 Silica-supported catalyst
JP2013510952A JP5710749B2 (ja) 2011-04-21 2012-04-09 シリカ担持触媒
RU2013146523/04A RU2564418C2 (ru) 2011-04-21 2012-04-09 Нанесенный на диоксид кремния катализатор
US14/112,269 US9199921B2 (en) 2011-04-21 2012-04-09 Silica-supported catalyst
CN201280019327.2A CN103476491B (zh) 2011-04-21 2012-04-09 二氧化硅负载催化剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095422 2011-04-21
JP2011-095422 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012144369A1 true WO2012144369A1 (ja) 2012-10-26

Family

ID=47041481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059707 WO2012144369A1 (ja) 2011-04-21 2012-04-09 シリカ担持触媒

Country Status (9)

Country Link
US (1) US9199921B2 (ja)
EP (1) EP2700447B1 (ja)
JP (1) JP5710749B2 (ja)
KR (1) KR101537459B1 (ja)
CN (1) CN103476491B (ja)
MY (1) MY162465A (ja)
RU (1) RU2564418C2 (ja)
TW (1) TWI469828B (ja)
WO (1) WO2012144369A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199617A (ja) * 2014-04-04 2015-11-12 旭化成ケミカルズ株式会社 複合酸化物及びその製造方法
US20160016864A1 (en) * 2013-03-27 2016-01-21 Asahi Kasei Chemicals Corporation Process for producing butadiene
US9950313B2 (en) 2015-03-31 2018-04-24 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst, and method for producing unsaturated nitrile
WO2019054296A1 (ja) * 2017-09-13 2019-03-21 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
JP2020157294A (ja) * 2019-03-25 2020-10-01 日本化薬株式会社 触媒前駆体、それを用いた触媒、及びその製造方法
JP2023101553A (ja) * 2019-04-23 2023-07-21 日本化薬株式会社 触媒及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2945435A1 (en) * 2016-10-18 2018-04-18 Nova Chemicals Corporation Low pressure gas release hydrothermal and peroxide treatment of odh catalyst
CA2975140C (en) * 2017-08-03 2024-06-18 Nova Chemicals Corporation Agglomerated odh catalyst
EP3482824A1 (de) * 2017-11-14 2019-05-15 Umicore Ag & Co. Kg Scr-katalysator
EP3482825A1 (de) 2017-11-14 2019-05-15 Umicore Ag & Co. Kg Scr-katalysator
BR112021003208A2 (pt) * 2018-08-23 2021-05-11 Asahi Kasei Kabushiki Kaisha método para produzir catalisador para amoxidação e método para produzir acrilonitrila
KR102285143B1 (ko) * 2018-11-19 2021-08-02 한화솔루션 주식회사 올레핀 중합용 촉매의 제조방법
WO2021066410A1 (ko) * 2019-09-30 2021-04-08 주식회사 엘지화학 프로필렌의 암모산화용 촉매, 이의 제조 방법, 이를 이용한 프로필렌의 암모산화 방법
CN113828337B (zh) * 2020-06-24 2024-02-02 中国石油化工股份有限公司 丙烯氨氧化制丙烯腈催化剂及其制备方法和应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775147A (en) * 1980-10-28 1982-05-11 Ube Ind Ltd Catalyst for production of acrylonitrile
JPH04118051A (ja) * 1990-09-10 1992-04-20 Nitto Chem Ind Co Ltd 鉄・アンチモン・モリブデン含有酸化物触媒組成物およびその製法
JPH06285372A (ja) * 1992-12-24 1994-10-11 Mitsubishi Kasei Corp ニトリル製造用触媒の製造方法
JP2002159853A (ja) * 2000-09-18 2002-06-04 Asahi Kasei Corp 酸化又はアンモ酸化用酸化物触媒の製造方法
JP2002219362A (ja) 2001-01-24 2002-08-06 Asahi Kasei Corp 低比重シリカ担持触媒
JP2003220334A (ja) 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp 複合酸化物触媒及びその製造方法
WO2004078344A1 (ja) 2003-03-05 2004-09-16 Asahi Kasei Chemicals Corporation 粒状多孔性アンモ酸化触媒
JP2006061888A (ja) * 2004-08-30 2006-03-09 Asahi Kasei Chemicals Corp 金属酸化物触媒、及びその触媒の製造方法、並びにニトリルの製造方法
US20060199730A1 (en) * 2005-03-02 2006-09-07 Seely Michael J Composition and method for improving density and hardness of fluid bed catalysts
JP2009148749A (ja) 2007-11-30 2009-07-09 Mitsubishi Materials Corp 重金属類含有水の処理方法
JP2009285581A (ja) * 2008-05-29 2009-12-10 Asahi Kasei Chemicals Corp 流動床用アンモ酸化触媒及びそれを用いたアクリロニトリル又はメタクリロニトリルの製造方法
JP2010523314A (ja) * 2007-04-03 2010-07-15 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 改善された混合金属酸化物触媒および低級アルカン系炭化水素の(amm)酸化方法
JP2010172851A (ja) * 2009-01-30 2010-08-12 Asahi Kasei Chemicals Corp アクリロニトリルの製造用触媒及びアクリロニトリルの製造方法
JP2011095422A (ja) 2009-10-28 2011-05-12 Toda Kogyo Corp 磁性キャリア及び現像剤

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603836B1 (en) 1992-12-24 1998-05-20 Mitsubishi Chemical Corporation Process for preparing a catalyst useful for producing a nitrile
JP3584485B2 (ja) 1993-03-03 2004-11-04 日産化学工業株式会社 シリカゾルの製造方法
US6143690A (en) * 1998-05-07 2000-11-07 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane
KR100407528B1 (ko) 2000-09-18 2003-11-28 아사히 가세이 가부시키가이샤 산화 또는 가암모니아산화용 산화물 촉매의 제조 방법
MY141945A (en) * 2004-04-21 2010-07-30 Asahi Kasei Chemicals Corp Particulate porous ammoxidation catalyst
US20080103325A1 (en) * 2006-10-31 2008-05-01 Claus Lugmair Mixed metal oxide catalysts for the ammoxidation of propane and isobutane
RU2451548C2 (ru) * 2007-02-16 2012-05-27 ИНЕОС ЮЭсЭй ЭлЭлСи Способ окислительного аммонолиза пропана и изобутана в присутствии смешанных металлоксидных катализаторов
US8772195B2 (en) * 2009-01-30 2014-07-08 Asahi Kasei Chemicals Corporation Method for producing silica-supported catalyst, and method for producing unsaturated carboxylic acid or unsaturated nitrile
EP2659965A4 (en) * 2010-12-27 2013-11-20 Asahi Kasei Chemicals Corp COMPOUND OXIDE CATALYST AND METHOD OF MANUFACTURING THEREOF

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775147A (en) * 1980-10-28 1982-05-11 Ube Ind Ltd Catalyst for production of acrylonitrile
JPH04118051A (ja) * 1990-09-10 1992-04-20 Nitto Chem Ind Co Ltd 鉄・アンチモン・モリブデン含有酸化物触媒組成物およびその製法
JPH06285372A (ja) * 1992-12-24 1994-10-11 Mitsubishi Kasei Corp ニトリル製造用触媒の製造方法
JP2002159853A (ja) * 2000-09-18 2002-06-04 Asahi Kasei Corp 酸化又はアンモ酸化用酸化物触媒の製造方法
JP2002219362A (ja) 2001-01-24 2002-08-06 Asahi Kasei Corp 低比重シリカ担持触媒
JP2003220334A (ja) 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp 複合酸化物触媒及びその製造方法
WO2004078344A1 (ja) 2003-03-05 2004-09-16 Asahi Kasei Chemicals Corporation 粒状多孔性アンモ酸化触媒
JP2006061888A (ja) * 2004-08-30 2006-03-09 Asahi Kasei Chemicals Corp 金属酸化物触媒、及びその触媒の製造方法、並びにニトリルの製造方法
US20060199730A1 (en) * 2005-03-02 2006-09-07 Seely Michael J Composition and method for improving density and hardness of fluid bed catalysts
JP2010523314A (ja) * 2007-04-03 2010-07-15 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 改善された混合金属酸化物触媒および低級アルカン系炭化水素の(amm)酸化方法
JP2009148749A (ja) 2007-11-30 2009-07-09 Mitsubishi Materials Corp 重金属類含有水の処理方法
JP2009285581A (ja) * 2008-05-29 2009-12-10 Asahi Kasei Chemicals Corp 流動床用アンモ酸化触媒及びそれを用いたアクリロニトリル又はメタクリロニトリルの製造方法
JP2010172851A (ja) * 2009-01-30 2010-08-12 Asahi Kasei Chemicals Corp アクリロニトリルの製造用触媒及びアクリロニトリルの製造方法
JP2011095422A (ja) 2009-10-28 2011-05-12 Toda Kogyo Corp 磁性キャリア及び現像剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700447A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160016864A1 (en) * 2013-03-27 2016-01-21 Asahi Kasei Chemicals Corporation Process for producing butadiene
JP2015199617A (ja) * 2014-04-04 2015-11-12 旭化成ケミカルズ株式会社 複合酸化物及びその製造方法
US9950313B2 (en) 2015-03-31 2018-04-24 Asahi Kasei Kabushiki Kaisha Method for producing oxide catalyst, and method for producing unsaturated nitrile
WO2019054296A1 (ja) * 2017-09-13 2019-03-21 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
JP2019053846A (ja) * 2017-09-13 2019-04-04 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
JP2022133367A (ja) * 2017-09-13 2022-09-13 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
JP2020157294A (ja) * 2019-03-25 2020-10-01 日本化薬株式会社 触媒前駆体、それを用いた触媒、及びその製造方法
JP7418252B2 (ja) 2019-03-25 2024-01-19 日本化薬株式会社 触媒前駆体、それを用いた触媒、及びその製造方法
JP2023101553A (ja) * 2019-04-23 2023-07-21 日本化薬株式会社 触媒及びその製造方法
JP7455256B2 (ja) 2019-04-23 2024-03-25 日本化薬株式会社 触媒及びその製造方法

Also Published As

Publication number Publication date
US9199921B2 (en) 2015-12-01
EP2700447B1 (en) 2021-06-16
TW201247314A (en) 2012-12-01
US20140194642A1 (en) 2014-07-10
MY162465A (en) 2017-06-15
KR20130133866A (ko) 2013-12-09
JP5710749B2 (ja) 2015-04-30
RU2564418C2 (ru) 2015-09-27
KR101537459B1 (ko) 2015-07-16
JPWO2012144369A1 (ja) 2014-07-28
CN103476491B (zh) 2015-07-15
EP2700447A1 (en) 2014-02-26
TWI469828B (zh) 2015-01-21
EP2700447A4 (en) 2015-03-25
CN103476491A (zh) 2013-12-25
RU2013146523A (ru) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5710749B2 (ja) シリカ担持触媒
JP6159847B2 (ja) 複合酸化物触媒及びその製造方法、並びに不飽和ニトリルの製造方法
KR101506828B1 (ko) 복합 산화물 촉매 및 그 제조 방법
TWI590870B (zh) A method for producing an oxide catalyst, and a method for producing an unsaturated nitrile
US10179763B2 (en) Oxide catalyst and method for producing same, and method for producing unsaturated nitrile
KR102368345B1 (ko) 산화물 촉매의 제조 방법, 및 불포화 니트릴의 제조 방법
CN105813732B (zh) 氧化物催化剂的制造方法及不饱和腈的制造方法
WO2018025774A1 (ja) 酸化物触媒の製造方法、及び不飽和ニトリルの製造方法
JP6584882B2 (ja) 酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法
TWI765269B (zh) 氧化物觸媒以及不飽和腈之製造方法
TWI783358B (zh) 觸媒製造用組合物、觸媒製造用組合物之製造方法、及製造氧化物觸媒之製造方法
JP2015171699A (ja) 酸化物触媒の製造方法、不飽和酸の製造方法及び不飽和ニトリルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510952

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137026983

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14112269

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013146523

Country of ref document: RU

Kind code of ref document: A