WO2012132475A1 - 高耐火性ゴム組成物シート - Google Patents

高耐火性ゴム組成物シート Download PDF

Info

Publication number
WO2012132475A1
WO2012132475A1 PCT/JP2012/002254 JP2012002254W WO2012132475A1 WO 2012132475 A1 WO2012132475 A1 WO 2012132475A1 JP 2012002254 W JP2012002254 W JP 2012002254W WO 2012132475 A1 WO2012132475 A1 WO 2012132475A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
rubber
parts
foaming agent
rubber composition
Prior art date
Application number
PCT/JP2012/002254
Other languages
English (en)
French (fr)
Inventor
慎吾 宮田
秀明 矢野
岡田 和廣
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US14/008,952 priority Critical patent/US20140066531A1/en
Priority to AU2012235270A priority patent/AU2012235270A1/en
Priority to EP12763621.5A priority patent/EP2692792B1/en
Priority to JP2012523162A priority patent/JP5066303B1/ja
Publication of WO2012132475A1 publication Critical patent/WO2012132475A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/18Layered products comprising a layer of natural or synthetic rubber comprising butyl or halobutyl rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • C08K5/3155Dicyandiamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/026Phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds

Definitions

  • the present invention relates to a high fire resistance rubber composition sheet, and more particularly to a high fire resistance rubber composition sheet used for fireproof coating of building materials.
  • Fire resistant paints are known as materials that enhance the fire resistance of building materials such as steel frames, outer walls, partitions, fire doors, fire ducts, etc. (Patent Document 1).
  • the fireproof paint foams to form a heat insulating layer.
  • This heat insulating layer can protect the steel frame and the like from fire flames and the like.
  • the fire-resistant paint includes (a) a polyhydric alcohol such as pentaerythritol, (b) a nitrogen-containing foaming agent such as dicyandiamide and melamine, (c) a synthetic resin such as an acrylic resin, and (d) polyphosphoric acid.
  • the one-component modified epoxy resin has a problem that it is difficult to handle because the viscosity greatly varies with time. Further, this resin composition has an inorganic fibrous substance as an essential constituent element, and when there is no inorganic fiber, there is a problem that a thermal expansion residue generated by heat such as a fire is brittle (Patent Document 3). Paragraph [0004]).
  • the synthetic resin (c) is a vinyl acetate resin, an acrylic-vinyl acetate copolymer resin, an acrylic resin, an acrylic-styrene copolymer, a styrene-ethylene / propylene-styrene block copolymer, a styrene-isobutylene.
  • thermoplastic resins such as styrene block copolymers.
  • the thermal expansion residue is formed of brittle ash. It also turned out to be possible.
  • the purpose of the present invention is easy to install on building materials such as steel frames, does not cause the problem of thickness fluctuation at the time of installation, maintains a certain shape until a thermal expansion residue is formed by heat such as fire, High thermal resistance that prevents thermal penetration for at least 2 hours when exposed to fire flames, etc. when the thermal expansion residue formed by the heat of a fire is strong and does not peel off easily from building materials such as steel frames It is in providing a conductive rubber composition sheet.
  • A a polyhydric alcohol
  • B a nitrogen-containing foaming agent
  • C a rubber substance
  • D a flame retardant foaming agent
  • E A high fire resistance rubber composition sheet containing titanium dioxide, wherein the nitrogen-containing foaming agent (B) ranges from 76 to 80 parts by weight with respect to 100 parts by weight of the rubber substance (C).
  • the present inventors have found that a rubber composition sheet is suitable for the purpose of the present invention and have completed the present invention.
  • A a polyhydric alcohol
  • B a nitrogen-containing foaming agent
  • C a rubber substance
  • D a flame retardant foaming agent
  • E a high fire resistance rubber composition sheet comprising titanium dioxide
  • the rubber substance (C) comprises at least one selected from the group consisting of butyl rubber, polybutene and petroleum resin;
  • the total of the flame retardant foaming agent (D) and titanium dioxide (E) is in the range of 100 to 240 parts by weight with respect to 100 parts by weight of the rubber substance (C)
  • a highly fire resistant rubber composition sheet in which the weight ratio [(D) / (E)] of the flame retardant foaming agent (D) and titanium dioxide (E) is in the range of 1.5 to 5 is the present invention. It has also been found that it meets the purpose, and the present invention has been completed.
  • a highly fire resistant rubber composition containing (A) a polyhydric alcohol, (B) a nitrogen-containing foaming agent, (C) a rubber substance, (D) a flame retardant foaming agent and (E) titanium dioxide is molded.
  • a highly fire resistant rubber composition sheet comprising: The nitrogen-containing foaming agent (B) is provided in a range of 76 to 80 parts by weight with respect to 100 parts by weight of the rubber substance (C). .
  • One of the present invention is [2] The high fire-resistant rubber composition sheet according to [1], wherein the rubber substance (C) is made of at least one selected from the group consisting of butyl rubber, polybutene, and petroleum resin. To do.
  • One of the present invention is [3] The high fire resistant rubber composition according to the above [1] or [2], wherein the polyhydric alcohol (A) is in the range of 60 to 90 parts by weight with respect to 100 parts by weight of the rubber substance (C). A material sheet is provided.
  • the polyhydric alcohol (A) is at least one selected from the group consisting of pentaerythritol, dipentaerythritol, tripentaerythritol, and polypentaerythritol
  • the nitrogen-containing blowing agent (B) is at least one selected from the group consisting of dicyandiamide, azodicarbonamide, urea, guanidine, melamine and melamine derivatives; Any of the above-mentioned [1] to [3], wherein the flame retardant blowing agent (D) is at least one selected from the group consisting of red phosphorus, phosphates, phosphate esters and ammonium polyphosphates.
  • the highly fire-resistant rubber composition sheet described in 1. is provided.
  • the nitrogen-containing blowing agent (B) is dicyandiamide and melamine
  • the dicyandiamide is in the range of 10 to 20 parts by weight with respect to 100 parts by weight of the rubber substance (C)
  • One of the present invention is [6]
  • the total of the flame retardant foaming agent (D) and titanium dioxide (E) is in the range of 100 to 240 parts by weight with respect to 100 parts by weight of the rubber substance (C). Any of [1] to [5] above, wherein the weight ratio [(D) / (E)] of the flame retardant foaming agent (D) and titanium dioxide (E) is in the range of 1.5 to 5.
  • the highly fire-resistant rubber composition sheet according to claim 1 is provided.
  • the rubber substance (C) comprises butyl rubber, polybutene and petroleum resin, Based on 100 parts by weight of the total weight of the butyl rubber, polybutene and petroleum resin, The butyl rubber is in the range of 15 to 65 parts by weight; The polybutene is in the range of 20 to 80 parts by weight; The high fire resistance rubber composition sheet according to any one of the above [1] to [6], wherein the petroleum resin is in the range of 5 to 15 parts by weight.
  • the high fire-resistant rubber composition comprises an inorganic filler, a plasticizer, an antioxidant, a metal damage inhibitor, an antistatic agent, a stabilizer, a crosslinking agent, a lubricant, a processing aid, a softening agent, and a pigment.
  • the high fire resistant rubber composition sheet according to any one of the above [1] to [7], comprising at least one selected from the group.
  • One of the present invention is [9] For the high fire resistance rubber composition layer formed by molding the high fire resistance rubber composition, Laminating at least one selected from the group consisting of an organic material layer, an inorganic material layer and a metal layer, The high fire resistant rubber composition sheet according to any one of [1] to [8] above is provided.
  • the present invention also provides [10] A highly fire resistant rubber composition sheet comprising (A) a polyhydric alcohol, (B) a nitrogen-containing foaming agent, (C) a rubber substance, (D) a flame retardant foaming agent and (E) titanium dioxide.
  • the rubber substance (C) comprises at least one selected from the group consisting of butyl rubber, polybutene and petroleum resin;
  • the total of the flame retardant blowing agent (D) and titanium dioxide (E) is in the range of 100 to 240 parts by weight with respect to 100 parts by weight of the rubber substance (C),
  • a highly fire resistant rubber composition sheet in which the weight ratio [(D) / (E)] of the flame retardant foaming agent (D) and titanium dioxide (E) is in the range of 1.5 to 5. It is.
  • a highly fire resistant rubber composition sheet comprising (A) a polyhydric alcohol, (B) a nitrogen-containing foaming agent, (C) a rubber substance, (D) a flame retardant foaming agent and (E) titanium dioxide.
  • the rubber substance (C) comprises at least one selected from the group consisting of butyl rubber, polybutene and petroleum resin;
  • the total of the flame retardant blowing agent (D) and titanium dioxide (E) is in the range of 100 to 240 parts by weight with respect to 100 parts by weight of the rubber substance (C),
  • the weight ratio [(D) / (E)] of the flame retardant foaming agent (D) and titanium dioxide (E) is in the range of 1.5 to 5, the above [1], [3], [ 4], [5], [7], [8] or [9] provides a highly fire resistant rubber composition sheet.
  • the highly fire resistant rubber composition sheet according to the present invention comprises (A) a polyhydric alcohol, (B) a nitrogen-containing foaming agent, (C) a rubber substance, (D) a flame retardant foaming agent, and (E) dioxide. It contains titanium, and the nitrogen-containing foaming agent (B) ranges from 76 to 80 parts by weight with respect to 100 parts by weight of the rubber substance (C).
  • This formulation keeps a certain shape until a thermal expansion residue is formed by the heat of a fire, etc., and the thermal expansion residue formed by the heat of a fire, etc. is strong and does not easily peel off and fall off from building materials such as steel frames
  • the penetration of the flames can be prevented for at least 2 hours, so that the fire resistance for a long time is excellent.
  • the highly fire resistant rubber composition sheet according to the present invention comprises (A) a polyhydric alcohol, (B) a nitrogen-containing foaming agent, (C) a rubber substance, (D) a flame retardant foaming agent, and (E).
  • the rubber substance (C) comprises at least one selected from the group consisting of butyl rubber, polybutene and petroleum resin;
  • the total of the flame retardant blowing agent (D) and titanium dioxide (E) is in the range of 100 to 240 parts by weight with respect to 100 parts by weight of the rubber substance (C), In the case of a highly fire resistant rubber composition sheet in which the weight ratio [(D) / (E)] of the flame retardant foaming agent (D) and titanium dioxide (E) is in the range of 1.5 to 5. Excellent fire resistance for a long time.
  • a certain shape is maintained until a thermal expansion residue is formed by the heat of a fire or the like, and the thermal expansion residue formed by the heat of a fire or the like is strong and does not easily peel off from a building material such as a steel frame.
  • a building material such as a steel frame.
  • the high fire resistance rubber composition sheet according to the present invention has flexibility because it contains the rubber substance (C). For this reason, even when a curved surface, a corner portion, or the like exists in a building material such as a steel frame, a high fire-resistant rubber composition sheet can be disposed in a short time with respect to the building material while maintaining a certain thickness. For this reason, the fire resistance of building materials, such as a steel frame, can be improved easily.
  • High fire resistance rubber composition sheet What is obtained by molding a highly fire resistant rubber composition comprising (A) a polyhydric alcohol, (B) a nitrogen-containing foaming agent, (C) a rubber substance, (D) a flame retardant foaming agent, and (E) titanium dioxide.
  • a polyhydric alcohol used in the present invention will be described.
  • examples of the polyhydric alcohol (A) include pentaerythritol, dipentaerythritol, tripentaerythritol, polypentaerythritol, and the like.
  • the said polyhydric alcohol (A) can use 1 type, or 2 or more types.
  • the amount of the polyhydric alcohol (A) used in the highly fire resistant rubber composition used in the present invention is in the range of 60 to 90 parts by weight based on 100 parts by weight of the rubber substance (C).
  • the amount of the polyhydric alcohol (A) used relative to the rubber substance (C) is 60 to 90 parts by weight, the high fire resistant rubber composition is strong when exposed to heat such as a fire. A thermal expansion residue is formed.
  • the amount of the polyhydric alcohol (A) used is preferably in the range of 60 to 75 parts by weight, more preferably in the range of 62 to 65 parts by weight.
  • the nitrogen-containing foaming agent (B) examples include dicyandiamide, azodicarbonamide, urea, guanidine, melamine, and melamine derivatives.
  • the melamine derivative examples include trimethylol melamine and hexamethylol melamine obtained by reacting melamine with formaldehyde and the like. It is preferable to use at least one of dicyandiamide and melamine, and more preferable to use both dicyandiamide and melamine because the thermal expansion residue formed by heat such as fire becomes strong.
  • the said nitrogen-containing foaming agent (B) can use 1 type, or 2 or more types.
  • the amount of the nitrogen-containing foaming agent (B) contained in the high fire-resistant rubber composition used in the present invention is in the range of 76 to 80 parts by weight based on 100 parts by weight of the rubber substance (C). Is preferred.
  • the range of the nitrogen-containing foaming agent (B) with respect to the rubber substance (C) is 76 to 80 parts by weight, strong thermal expansion can be achieved when the highly refractory rubber composition is exposed to heat such as a fire. In addition to the formation of residues, flame penetration can be prevented for at least 2 hours when the sheet is exposed to a fire of high fire resistance rubber composition fire or the like.
  • the dicyandiamide is preferably in the range of 10 to 20 parts by weight with respect to 100 parts by weight of the rubber substance (C), and the melamine is contained in the rubber substance (C ) It is preferable that the amount is in the range of 56 to 70 parts by weight with respect to 100 parts by weight, because when the high fire resistant rubber composition is exposed to heat such as fire, a stronger thermal expansion residue is formed.
  • the dicyandiamide is more preferably in the range of 17 to 20 parts by weight, and the melamine is more preferably in the range of 56 to 63 parts by weight.
  • the rubber substance (C) used in the present invention examples include natural rubber, isoprene rubber, butyl rubber, prebutene rubber, polybutadiene rubber, nitrile rubber, acrylic rubber, urethane rubber, ethylene-propylene rubber, chlorosulfonated polyethylene rubber, and chloroprene rubber. And rubber components such as styrene-butadiene rubber, polyfluorinated ethylene rubber, and silicone rubber.
  • the highly fire-resistant rubber composition sheet according to the present invention has flexibility by including the rubber substance (C). In order to harden the highly fire-resistant rubber composition sheet, there are methods such as increasing the molecular weight of the rubber component and selecting an appropriate type.
  • the rubber substance (C) can be used alone or in combination of two or more.
  • the rubber substance (C) may contain a plasticizer, a tackifier and the like in addition to the rubber component.
  • the plasticizer is not particularly limited.
  • hydrocarbons phthalic acids, phosphate esters, adipic acid esters, sabatic acid esters, ricinoleic acid esters, polyesters, epoxies, chlorinated paraffins, etc. Is mentioned.
  • the tackifier is not particularly limited.
  • rosin resin for example, rosin resin, rosin derivative, dammar, polyterpene resin, modified terpene, aliphatic hydrocarbon resin, cyclopentadiene resin, aromatic petroleum resin, phenol resin, alkylphenol -Acetylene resin, styrene resin, xylene resin, coumarone-indene resin, vinyltoluene- ⁇ -methylstyrene copolymer and the like.
  • the rubber substance (C) is preferably at least one selected from the group consisting of butyl rubber, polybutene and petroleum resin.
  • the highly fire-resistant rubber composition sheet according to the present invention has flexibility by including the rubber substance (C).
  • In order to harden the highly fire-resistant rubber composition sheet there are methods such as increasing the molecular weight of the rubber component and selecting an appropriate type.
  • By using together with said each component when the said highly refractory rubber composition is exposed to the heat
  • Examples of the petroleum resin include a resin obtained by polymerizing a fraction contained in a cracked oil fraction by-produced by petroleum steam cracking, that is, an aromatic fraction.
  • the petroleum resin can be selected and used as appropriate regardless of whether it is hydrogenated or not.
  • By using the petroleum resin it is possible to impart adhesiveness to the high fire resistance rubber composition. Thereby, when installing a highly fire-resistant rubber composition sheet, it is easy to handle because temporary fixing work and the like are facilitated.
  • the said petroleum resin can use 1 type, or 2 or more types.
  • the rubber substance (C) is preferably made of butyl rubber and polybutene, or made of butyl rubber, polybutene and petroleum resin.
  • the butyl rubber is in the range of 80 to 20 parts by weight based on the total weight of 100 parts by weight of the butyl rubber and polybutene, and the polybutene is 20 to 80 parts by weight.
  • the range of parts by weight is preferable because the high fire resistance rubber composition sheet obtained is excellent in flexibility and handleability.
  • the butyl rubber is in the range of 15 to 65 parts by weight based on the total weight of 100 parts by weight, and the polybutene is 20 to 20 parts by weight. Since the range of 80 parts by weight and the petroleum resin in the range of 5 to 15 parts by weight are excellent in flexibility and handleability of the highly fire-resistant rubber composition sheet obtained while maintaining the adhesiveness. preferable.
  • the flame retardant foaming agent (D) examples include red phosphorus, Phosphate salts such as sodium phosphate, potassium phosphate, magnesium phosphate, ammonium phosphate, Ammonium polyphosphates such as ammonium polyphosphate and melamine-modified ammonium polyphosphate; Examples include phosphate esters represented by the following chemical formula.
  • These phosphorus compounds can be used alone or in combination of two or more.
  • red phosphorus, phosphate esters represented by the following chemical formula, and ammonium polyphosphates are preferable, and ammonium phosphates are more preferable in terms of performance, safety, cost, and the like. .
  • R 1 and R 3 represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon Represents an aryloxy group of formula 6-16.
  • Examples of the compound represented by the chemical formula include methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, t-butylphosphonic acid, 2, 3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphinic acid, diethylphenylphosphinic acid , Diphenylphosphinic acid, bis (4-methoxyphenyl) phosphinic acid and the like.
  • t-butylphosphonic acid is expensive but preferable in terms of high flame retardancy.
  • ammonium polyphosphates are not particularly limited, and examples include ammonium polyphosphate and melamine-modified ammonium polyphosphate.
  • Ammonium polyphosphate is preferred from the viewpoint of flame retardancy, safety, cost, and handleability. Used.
  • the average particle diameter of the titanium dioxide (E) is preferably in the range of 0.01 to 500 ⁇ m, more preferably in the range of 0.1 to 200 ⁇ m.
  • the total amount of the flame retardant blowing agent (D) and titanium dioxide (E) contained in the high fire resistance rubber composition used in the present invention is 100 to 240 based on 100 parts by weight of the rubber substance (C). A range of parts by weight is preferred.
  • the high fire resistant rubber composition When exposed to heat, a certain shape can be maintained until a thermal expansion residue is formed by heat from a fire or the like, and a strong thermal expansion residue is formed.
  • the weight ratio [(D) / (E)] of the flame retardant foaming agent (D) and titanium dioxide (E) contained in the high fire resistance rubber composition used in the present invention is 1.5-5. If it is the range, it is preferable. When the weight ratio of the flame retardant foaming agent (D) and titanium dioxide (E) is in the range of 1.5 to 5, when the highly fire resistant rubber composition is exposed to heat such as fire. A strong thermal expansion residue is formed.
  • the high fire-resistant rubber composition used in the present invention is an antioxidant, such as an inorganic filler, a plasticizer, a phenol, an amine, or a sulfur, as long as the object of the present invention is not impaired.
  • additives such as a metal harm preventive agent, an antistatic agent, a stabilizer, a crosslinking agent, a lubricant, a processing aid, a softening agent, and a pigment can be added.
  • the inorganic filler examples include inorganic salts such as calcium carbonate, aluminum hydroxide, magnesium hydroxide, Oxidized inorganic substances such as glass flakes, boehmite, wollastonite, Inorganic fibers such as rock wool fiber, glass fiber, ceramic fiber, silica fiber, carbon fiber, Examples thereof include fine inorganic substances such as carbon and fumed silica.
  • inorganic fibers both short fibers and long fibers can be used.
  • the boehmite is preferably in the form of needles, scales, or plates.
  • the wollastonite is preferably a needle-like shape.
  • plasticizer examples include phthalate esters such as diethyl phthalate and dibutyl phthalate, phosphate esters, fatty acid esters, and epoxy plasticizers.
  • phthalate esters such as diethyl phthalate and dibutyl phthalate
  • phosphate esters such as diethyl phthalate and dibutyl phthalate
  • phosphate esters such as diethyl phthalate and dibutyl phthalate
  • phosphate esters such as diethyl phthalate and dibutyl phthalate
  • phosphate esters such as diethyl phthalate and dibutyl phthalate
  • phosphate esters such as diethyl phthalate and dibutyl phthalate
  • phosphate esters such as diethyl phthalate and dibutyl phthalate
  • phosphate esters such as diethyl phthalate and dibutyl phthalate
  • phosphate esters such as diethyl phthalate and
  • antioxidants examples include an antioxidant containing a phenol compound, an antioxidant containing a sulfur atom, and an antioxidant containing a phosphite compound. One or two or more of the antioxidants can be used.
  • Examples of the metal harm preventing agent include methylbenzotriazole.
  • the said metal harm prevention agent can use 1 type, or 2 or more types.
  • antistatic agent examples include N, N-bis (hydroxyethyl) alkylamine, alkylallyl sulfonate, and alkyl sulfonate.
  • the said antistatic agent can use 1 type, or 2 or more types.
  • the stabilizer examples include lead heat stabilizers such as tribasic lead sulfate, tribasic lead sulfite, dibasic lead phosphite, lead stearate, and dibasic lead stearate, Organotin heat stabilizers such as organotin mercapto, organotin malate, organotin laurate, dibutyltin malate, Examples thereof include metal soap heat stabilizers such as zinc stearate and calcium stearate. One or two or more heat stabilizers can be used.
  • lead heat stabilizers such as tribasic lead sulfate, tribasic lead sulfite, dibasic lead phosphite, lead stearate, and dibasic lead stearate
  • Organotin heat stabilizers such as organotin mercapto, organotin malate, organotin laurate, dibutyltin malate
  • metal soap heat stabilizers such as zinc stearate and calcium
  • crosslinking agent examples include organic peroxides, sulfur, sulfur compounds and the like, and organic peroxides are preferable.
  • organic peroxide examples include diisopropylbenzene hydroperoxide, 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, t-butyl perbenzoate, cumyl hydroperoxide, t-butyl hydroperoxide, 1, 1-di (t-butylperoxy) -3,3,5-trimethylhexane, n-butyl-4,4-di (t-butylperoxy) valerate, ⁇ , ⁇ '-bis (t-butylperoxy) Isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, t-butylperoxycumene and the like.
  • sulfur compound examples include tetramethylthiuram disulfide, tetramethylthiuram monosulfide, zinc dimethyldithiocarbamate, 2-mercaptobenzothiazole, dibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazolesulfenamide, Nt -Butyl-2-benzothiazole sulfenamide, sulfur monochloride, sulfur dichloride and the like.
  • the crosslinking agent can be used alone or in combination of two or more.
  • the lubricant examples include waxes such as polyethylene, paraffin, and montanic acid, Waxes such as tall oil, sub-oil, beeswax, carnauba wax, lanolin, Ester waxes, Organic acids such as stearic acid, palmitic acid, ricinoleic acid, Organic alcohols such as stearyl alcohol, Examples include amide compounds such as dimethylbisamide.
  • the said lubricant can use 1 type, or 2 or more types.
  • processing aid examples include chlorinated polyethylene, methyl methacrylate-ethyl acrylate copolymer, and high molecular weight polymethyl methacrylate.
  • the processing aid can be used alone or in combination of two or more.
  • softener examples include animal and plant oils such as linseed oil, coal tar softeners such as coal tar and coal tar pitch, fatty oil softeners such as castor oil, linseed oil, rapeseed oil and coconut oil, ricinol Examples include acids, fatty acids such as palmitic acid and stearic acid, and fatty acid esters such as phthalic acid esters.
  • the softener can be used alone or in combination of two or more.
  • the pigment examples include inorganic pigments such as organic pigments such as azo compounds, phthalocyanine compounds, selenium compounds, dye lake compounds, oxides, molybdenum chromates, sulfides / selenides, ferrocyanides, and the like. And pigments.
  • the said pigment can use 1 type, or 2 or more types.
  • each component of the high fire-resistant rubber composition is supplied to a known kneading apparatus such as an extruder, a Banbury mixer, a kneader mixer, and melt-kneaded.
  • a known kneading apparatus such as an extruder, a Banbury mixer, a kneader mixer, and melt-kneaded.
  • the above-mentioned method, and each component of the high fire-resistant rubber composition are suspended in an organic solvent, heated and melted to form a paint, or dispersed in a solvent to prepare a slurry.
  • a high fire resistant rubber composition can be obtained.
  • the high fire resistance rubber composition sheet according to the invention uses the high fire resistance rubber composition obtained by kneading each of the above components using a known kneading apparatus such as a Banbury mixer, a kneader mixer, or a two roll. It can be obtained by forming into a sheet or the like by a conventionally known molding method such as molding, extrusion molding or calendar molding.
  • a known kneading apparatus such as a Banbury mixer, a kneader mixer, or a two roll. It can be obtained by forming into a sheet or the like by a conventionally known molding method such as molding, extrusion molding or calendar molding.
  • the high fire-resistant rubber composition is not particularly limited as long as it is thermally insulated by forming a thermal expansion residue when exposed to a high temperature such as a fire, and has the strength of the thermal expansion residue. It is preferable that the volume expansion coefficient after heating for 30 minutes in an electric furnace set at 0 ° C. is 3 to 100 times. When the volume expansion ratio exceeds three times, the expansion volume can sufficiently fill the burned-out portion of the rubber substance, and the fireproof performance is good. Moreover, the intensity
  • the thermal expansion residue In order for the thermal expansion residue to be self-supporting, the thermal expansion residue needs to have a high strength. As the strength, a 0.25 cm 2 indenter is used to compress the thermal expansion residue. It is preferable that the stress at break when the sample is measured at a compression speed of 0.1 m / s is 0.05 kgf / cm 2 or more. When the stress at break exceeds 0.05 kgf / cm 2 , the adiabatic expansion layer becomes self-supporting and fireproof performance is improved. More preferably, it is 0.1 kgf / cm 2 or more.
  • an organic material layer, an inorganic material layer, a metal layer, or the like can be laminated.
  • organic material used for the organic material layer include, for example, polyolefin resins such as polyethylene resin, polypropylene resin, polybutene resin, polypentene resin, Polystyrene resin, polystyrene resin such as poly- ⁇ -methylstyrene resin, Polyester resins such as polyethylene terephthalate resin, polybutylene terephthalate resin, polycarbonate resin, Polyamide resins such as polyurethane resin and polyamide resin, Ether resins such as polyphenylene ether resin, Unsaturated ester resins such as acrylic resins, Copolymer resins such as ABS resin, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, styrene-butadiene copolymer, Novolak resins such as epoxy resins and phenolic resins, Mention may be made of halogen resins such as fluorinated resins and polyvinyl chloride resins.
  • Examples of the shape of the organic material layer include a flat film, a woven fabric using the organic material, and a non-woven fabric using the organic material.
  • the flat film can be obtained by a method such as extrusion molding or press molding of the organic material.
  • the organic material can be used alone or in combination of two or more.
  • the metal used for the metal layer include iron, steel, stainless steel, galvanized steel, aluminum zinc alloy plated steel, and aluminum.
  • the metal layer may be a metal plate having a thickness greater than 500 ⁇ m, a metal foil having a thickness of 500 ⁇ m or less, and the like.
  • the metal layer is preferably an aluminum foil or the like in terms of handleability, and is preferably disposed on the outermost surface of the high fire-resistant rubber composition sheet.
  • the metal can be used alone or in combination of two or more.
  • inorganic material used for the inorganic material layer for example, inorganic fibers such as rock wool, glass wool, and ceramic wool can be used.
  • Examples of the shape of the inorganic material layer include a woven fabric using the inorganic material and a nonwoven fabric using the inorganic material.
  • the inorganic material can be used alone or in combination of two or more.
  • the high fire-resistant rubber composition sheet according to the present invention include, for example, a sheet made of a high fire-resistant rubber composition, a sheet in which the metal foil, the organic material sheet, and the like are laminated in the following order.
  • (A) 1. Metal foil layer, High fire resistant rubber composition layer (b) 1. Metal foil layer, 2. inorganic material layer; High fire resistant rubber composition layer (C) 1. Organic material layer, 2. metal foil layer; 3. inorganic material layer; High fire resistant rubber composition layer (d) 1. Metal foil layer, 2. inorganic material layer; 3. High fire resistant rubber composition layer 4. inorganic material layer; Metal foil layer A layer in which each layer is laminated in any order of (A) to (D) above.
  • the thickness of the high fire-resistant rubber composition layer is not particularly limited, but is preferably in the range of 0.1 to 10 mm, more preferably in the range of 0.2 to 10 mm, from the viewpoint of handleability. More preferably, it is in the range of 5 to 5 mm.
  • thermocouple was attached at a position 50 mm above and below the center of the back surface of the iron plate on which the high fire-resistant rubber composition sheet was placed.
  • a fire resistance test for 2 hours was performed on the side on which the high fire resistance rubber composition sheet was placed according to the conditions of ISO834.
  • the evaluation method of the fire resistance test is as follows.
  • Example 1 In the case of Example 1, except that 140 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D) and 35 parts by weight of titanium dioxide (E) was used, the fire resistance test was exactly the same as in Example 1. Carried out. The results are shown in Table 1. As shown in Table 1, the high fire resistance rubber composition sheet obtained in Example 2 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 1 a fire resistance test was performed in exactly the same manner as in Example 1 except that 175 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D) and 35 parts by weight of titanium dioxide (E) was used. Carried out. The results are shown in Table 1. As shown in Table 1, the high fire resistance rubber composition sheet obtained in Example 3 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 1 a fire resistance test was performed in the same manner as in Example 1 except that 183 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D) and 52 parts by weight of titanium dioxide (E) was used. Carried out. The results are shown in Table 1. As shown in Table 1, the highly fire resistant rubber composition sheet obtained in Example 4 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 1 In the case of Example 1, except that 120 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D) and 30 parts by weight of titanium dioxide (E) was used, the fire resistance test was exactly the same as in Example 1. Carried out. The results are shown in Table 1. As shown in Table 1, the high fire resistance rubber composition sheet obtained in Example 5 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 1 the fire resistance test was the same as in Example 1 except that 102 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D) and 23 parts by weight of titanium dioxide (E) was used. Carried out. The results are shown in Table 1. As shown in Table 1, the highly fire resistant rubber composition sheet obtained in Example 6 showed excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 1 In the case of Example 1, except that 80 parts by weight of ammonium polyphosphate and 45 parts by weight of titanium dioxide (E) were used as the flame retardant foaming agent (D), the fire resistance test was exactly the same as in Example 1. Carried out. The results are shown in Table 1. As shown in Table 1, the highly fire resistant rubber composition sheet obtained in Example 7 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • E titanium dioxide
  • Example 1 In the case of Example 1, except that 126 parts by weight of ammonium polyphosphate and 42 parts by weight of titanium dioxide (E) were used as the flame retardant foaming agent (D), the fire resistance test was exactly the same as in Example 1. Carried out. The results are shown in Table 1. As shown in Table 1, the highly fire resistant rubber composition sheet obtained in Example 8 showed excellent fire resistance and shape retention of the thermal expansion residue.
  • E titanium dioxide
  • Example 2 In the case of Example 1, except that 120 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D) and 20 parts by weight of titanium dioxide (E) was used, the fire resistance test was exactly the same as in Example 1. Carried out. The results are shown in Table 2. As shown in Table 2, the high fire resistance rubber composition sheet obtained in Example 9 showed excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 2 In the case of Example 1, except that 200 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D) and 50 parts by weight of titanium dioxide (E) was used, the fire resistance test was exactly the same as in Example 1. Carried out. The results are shown in Table 2. As shown in Table 2, the high fire resistance rubber composition sheet obtained in Example 10 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 2 In the case of Example 1, except that 250 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D) and 50 parts by weight of titanium dioxide (E) was used, the fire resistance test was exactly the same as in Example 1. Carried out. The results are shown in Table 2. As shown in Table 2, the high fire resistance rubber composition sheet obtained in Example 11 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 2 In the case of Example 1, 195 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D), and 35 parts by weight of titanium dioxide (E) was used. Exactly the same fire resistance test as in Example 1 Carried out. The results are shown in Table 2. As shown in Table 2, the high fire resistance rubber composition sheet obtained in Example 12 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 2 In the case of Example 1, 156 parts by weight of ammonium polyphosphate was used as the flame retardant foaming agent (D), and 104 parts by weight of titanium dioxide (E) was used. Exactly the same fire resistance test as in Example 1 Carried out. The results are shown in Table 2. As shown in Table 2, the high fire resistance rubber composition sheet obtained in Example 13 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 2 In the case of Example 1, except that 126 parts by weight of ammonium polyphosphate and 42 parts by weight of titanium dioxide (E) were used as the flame retardant foaming agent (D), the fire resistance test was exactly the same as in Example 1. Carried out. The results are shown in Table 2. As shown in Table 2, the high fire resistance rubber composition sheet obtained in Example 14 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 1 a fire resistance test was performed in the same manner as in Example 1 except that 42 parts by weight of titanium dioxide (E) was used.
  • the average value of Mooney viscosity of the high fire resistance rubber composition used in Example 15 was 58 (1 + 4) 50 ° C.
  • the average value of the remaining weight after heating of the high fire resistance rubber composition used in Example 15 was 45.9%.
  • the evaluation method of Mooney viscosity and the remaining weight after heating is as follows.
  • Mooney viscosity was measured using a Mooney viscometer manufactured by Toyo Seiki Co., Ltd. in accordance with JIS K6300-1. The rotor was L-shaped, pre-heated for 1 minute, measured at a test temperature of 50 ° C. and rotated for 4 minutes. The shape of the tie is a square groove. The values measured three times are shown in Table 2.
  • the high fire resistance rubber composition sheet obtained in Example 15 exhibited excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 1 In the case of Example 1, 45.7 parts by weight of butyl rubber and 54.3 parts by weight of polybutene were used as the rubber substance (C), no petroleum resin was used, and 42 parts by weight of titanium dioxide (E) was used. A fire resistance test was performed in the same manner as in Example 1 except that it was used. Further, the Mooney viscosity and the remaining weight after heating were measured under the same conditions as in Example 15. The average value of Mooney viscosity was 63 ML (1 + 4) 50 ° C. The average remaining weight after heating was 46.1%. The results are shown in Table 3. As shown in Table 3, the high fire resistance rubber composition sheet obtained in Example 10 showed excellent fire resistance and shape retention of the thermal expansion residue.
  • Example 1 In the case of Example 1, a fire resistance test was performed in the same manner as in Example 1 except that the amounts of the flame retardant foaming agent (D) and titanium dioxide (E) were changed to those shown in Table 4. The results are shown in Table 4. In any case, the temperature of the back surface of the iron plate exceeded 550 ° C. in 2 hours after the start of the fire resistance test, and the thermal expansion residue could not retain the shape except for Comparative Examples 6 and 7.
  • the highly fire resistant rubber composition sheet according to the present invention exhibits excellent fire resistance and shape retention of thermal expansion residue, it improves the fire resistance of building materials such as steel frames, outer walls, partitions, fire doors, fire ducts, etc. Can be widely used as material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】火災等の熱により熱膨張残渣を形成するまで一定の形状を保持し、火災等の熱により形成された熱膨張残渣が鉄骨等の建築材から容易に剥離脱落せず、火災の炎等にさらされた場合に少なくとも2時間は炎の貫通を阻止できる高耐火性ゴム組成物シートを提供すること。 【解決手段】(A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物を成形してなる高耐火性ゴム組成物シートであって、 前記含窒素発泡剤(B)が、前記ゴム物質(C)100重量部に対し、76~80重量部の範囲であることを特徴とする、高耐火性ゴム組成物シート。

Description

高耐火性ゴム組成物シート
 本発明は、高耐火性ゴム組成物シートに関し、詳しくは建築材の防火被覆等に使用される高耐火性ゴム組成物シートに関する。
 鉄骨、外壁、間仕切り、防火扉、耐火ダクト等の建築材の耐火性能を高める材料として耐火塗料が知られている(特許文献1)。
 前記耐火塗料を鉄骨等に塗布することにより、前記鉄骨等が火災の炎等にさらされた場合には、前記耐火塗料が発泡し断熱層を形成する。この断熱層により火災の炎等から前記鉄骨等を保護することができるとされる。
 前記耐火塗料としては、具体的には、(a)ペンタエリスリトール等の多価アルコール、(b)ジシアンジアミド、メラミン等の含窒素発泡剤、(c)アクリル樹脂等の合成樹脂、(d)ポリリン酸アンモニウム等の難燃性発泡剤および(e)二酸化チタンからなるものであり、それぞの成分が(a):(b):(c):(d):(e)=100:80~150:20~500:280~450:100~300の重量比で混合されたものが提案されている。
 しかしながら施工現場において鉄骨等に前記耐火塗料を塗布した場合には、前記鉄骨等に対して前記耐火塗料を均一に塗布することが容易ではなく、鉄骨等の表面に部分的に薄い耐火塗料層が生じる場合がある。
 鉄骨等の表面に部分的に薄い耐火塗料層が存在すると、火災等の熱により生成する熱膨張残渣の厚みが十分ではなく、鉄骨等を十分保護できない問題がある。
 特に鉄骨等の表面に曲面、角の部分等が存在すると、これらの部分について耐火塗料層を一定に保つことが困難となる。
 また耐火塗料層を厚くするためには前記鉄骨等に対して前記耐火塗料を重ねて塗布する必要があり、鉄骨等に十分な耐火塗料層を形成するためには多くの時間を要する問題もあった。
 この一方、(a)ペンタエリスリトール等の多価アルコール、(b)ジシアンジアミド、メラミン等の含窒素発泡剤、(c)スチレンブロック共重合体等の合成樹脂、(d)ポリリン酸アンモニウム等の難燃性発泡剤および(e)二酸化チタン等の金属酸化物からなるものであり、それぞの成分が(a):(b):(c):(d):(e)=5~90:0.1~20:100:10~120:20~200の重量比で混合されたものも提案されている(特許文献2)。
 しかしながら合成樹脂(c)として、ブチルゴム、ポリブテンおよび水添石油樹脂の混合物を使用した場合には、火災等の熱により生成する熱膨張残渣が脆いという問題点があった(特許文献2の比較例4、5)。
 また(a)ペンタエリスリトールからなる多価アルコール、(b)メラミンからなる含窒素発泡剤、(c)一液変性エポキシ樹脂からなる合成樹脂、(d)ポリリン酸アンモニウムからなる難燃性発泡剤および(e)二酸化チタン等の無機質粉末からなるものであり、それぞの成分が(a):(b):(c):(d):(e)=25~300:25~300:100:100~600:25~200の重量比で混合されたものも提案されている(特許文献3)。
 しかしながら一液変性エポキシ樹脂は時間の経過と共に粘度が大きく変動することから取り扱いが困難である問題があった。
 また、この樹脂組成物は無機質繊維状物質を必須の構成要素としていて、無機質繊維が存在しない場合には、火災等の熱により生成する熱膨張残渣が脆いという問題点があった
(特許文献3の段落[0004])。
特開2001-40290号公報 特開2003-64261号公報 特開平5-86310号公報
 本発明者らが上記の先行技術を検討したところ、上記の先行技術に開示された樹脂組成物では前記樹脂組成物層が火災等の熱にさらされた場合、膨張により断熱層が形成される前に合成樹脂(c)が溶融して流れ落ちてしまう可能性のあることが判明した。
 この傾向は、前記合成樹脂(c)が、酢酸ビニル樹脂、アクリル-酢酸ビニル共重合体樹脂、アクリル樹脂、アクリル-スチレン共重合体、スチレン-エチレン・プロピレン-スチレンブロック共重合体、スチレン-イソブチレン-スチレンブロック共重合体等の熱可塑性樹脂の場合に特に問題となる。
 また前記樹脂組成物層が火災等の熱にさらされて熱膨張残渣が形成された場合でも、前記熱膨張残渣が脆い灰分により形成されているため、容易に熱膨張残渣が鉄骨等から剥離脱落する可能性のあることも判明した。
 また最近では火災等の炎を短時間遮断するだけではなく、2時間程度の長時間に渡って火災等の炎の貫通を阻止することのできる樹脂組成物層の開発が期待されている。
 本発明の目的は、鉄骨等の建築材への設置が容易であり、設置の際の厚み変動の問題が生じず、火災等の熱により熱膨張残渣を形成するまで一定の形状を保持し、火災等の熱により形成された熱膨張残渣が強固であり鉄骨等の建築材から容易に剥離脱落せず、火災の炎等にさらされた場合に少なくとも2時間は炎の貫通を阻止できる高耐火性ゴム組成物シートを提供することにある。
 上記課題を解決するため、本発明者らが鋭意検討した結果、(A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、前記ゴム物質(C)100重量部に対し、前記含窒素発泡剤(B)の範囲が76~80重量部の範囲である高耐火性ゴム組成物シートが本発明の目的に適うことを見出し、本発明を完成するに至った。
 また、(A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
 前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
 前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
 前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である高耐火性ゴム組成物シートが本発明の目的に適うことも見出し、本発明を完成するに至った。
 すなわち本発明は、
[1](A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物を成形してなる高耐火性ゴム組成物シートであって、
 前記含窒素発泡剤(B)が、前記ゴム物質(C)100重量部に対し、76~80重量部の範囲であることを特徴とする、高耐火性ゴム組成物シートを提供するものである。
 また本発明の一つは、
[2]前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなることを特徴とする、上記[1]に記載の高耐火性ゴム組成物シートを提供するものである。
 また本発明の一つは、
[3]前記多価アルコール(A)が、前記ゴム物質(C)100重量部に対し、60~90重量部の範囲である、上記[1]または[2]に記載の高耐火性ゴム組成物シートを提供するものである。
 また本発明の一つは、
[4]前記多価アルコール(A)が、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトールおよびポリペンタエリスリトールからなる群より選ばれる少なくとも一つであり、
 前記含窒素発泡剤(B)が、ジシアンジアミド、アゾジカルボンアミド、尿素、グアニジン、メラミンおよびメラミン誘導体からなる群より選ばれる少なくとも一つであり、
 前記難燃性発泡剤(D)が、赤リン、リン酸塩類、リン酸エステル類およびポリリン酸アンモニウム類からなる群より選ばれる少なくとも一つである、上記[1]~[3]のいずれかに記載の高耐火性ゴム組成物シートを提供するものである。
 また本発明の一つは、
[5]前記含窒素発泡剤(B)が、ジシアンジアミドおよびメラミンであり、
 前記ジシアンジアミドが、前記ゴム物質(C)100重量部に対し、10~20重量部の範囲であり、
 前記メラミンが、前記ゴム物質(C)100重量部に対し、56~70重量部の範囲である、上記[1]~[4]のいずれかに記載の高耐火性ゴム組成物シートを提供するものである。
 また本発明の一つは、
[6]前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
 前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である、上記[1]~[5]のいずれかに記載の高耐火性ゴム組成物シートを提供するものである。
 また本発明の一つは、
[7]前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなり、
 前記ブチルゴム、ポリブテンおよび石油樹脂の合計重量100重量部を基準として、
 前記ブチルゴムが、15~65重量部の範囲であり、
 前記ポリブテンが、20~80重量部の範囲であり、
 前記石油樹脂が、5~15重量部の範囲である、上記[1]~[6]のいずれかに記載の高耐火性ゴム組成物シートを提供するものである。
 また本発明の一つは、
[8]前記高耐火性ゴム組成物が、無機充填材、可塑剤、酸化防止剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、加工助剤、軟化剤および顔料からなる群より選ばれる
少なくとも一つを含む、上記[1]~[7]のいずれかに記載の高耐火性ゴム組成物シートを提供するものである。
 また本発明の一つは、
[9]前記高耐火性ゴム組成物を成形してなる高耐火性ゴム組成物層に対し、
 有機材料層、無機材料層および金属層からなる群より選ばれる少なくとも一つを積層してなる、
 上記[1]~[8]のいずれかに記載の高耐火性ゴム組成物シートを提供するものである。
 また本発明は、
[10](A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
 前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
 前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
 前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である高耐火性ゴム組成物シートを提供するものである。
 また本発明の一つは、
[11](A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
 前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
 前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
 前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である、上記[1]、[3]、[4]、[5]、[7]、[8]または[9]のいずれかに記載の高耐火性ゴム組成物シートを提供するものである。
 本発明に係る高耐火性ゴム組成物シートは、上述の通り(A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含むものであり、前記ゴム物質(C)100重量部に対し、前記含窒素発泡剤(B)の範囲が76~80重量部の範囲である。
 この配合により、火災等の熱により熱膨張残渣を形成するまで一定の形状を保持し、火災等の熱により形成された熱膨張残渣が強固であり鉄骨等の建築材から容易に剥離脱落しないことに加え、火災の炎等にさらされた場合に少なくとも2時間は炎の貫通を阻止できることから長時間の耐火性に優れる。
 また本発明に係る高耐火性ゴム組成物シートは、上述の通り(A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含むものであり、
 前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
 前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
 前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である高耐火性ゴム組成物シートの場合には、長時間の耐火性に優れる。
 具体的には、火災等の熱により熱膨張残渣を形成するまで一定の形状を保持し、火災等の熱により形成された熱膨張残渣が強固であり鉄骨等の建築材から容易に剥離脱落しないことに加え、火災の炎等にさらされた場合に少なくとも2時間は炎の貫通を阻止できることから長時間の耐火性に優れる。
 また本発明に係る高耐火性ゴム組成物シートは、ゴム物質(C)を含むことから柔軟性を有する。このため、鉄骨等の建築材に曲面、角の部分等が存在した場合でも一定の厚みを維持しつつ前記建築材に対して高耐火性ゴム組成物シートを短時間で配置することができる。このため鉄骨等の建築材の耐火性を容易に高めることができる。
 本発明に係る高耐火性ゴム組成物シートは、
(A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンからなる高耐火性ゴム組成物を成形して得られるものであるが、最初に本発明に使用する多価アルコール(A)について説明する。
 前記多価アルコール(A)としては、例えば、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリペンタエリスリトール等が挙げられる。
 前記多価アルコール(A)は、一種もしくは二種以上を使用することができる。
 本発明に使用する高耐火性ゴム組成物に含まれる前記多価アルコール(A)の使用量は、前記ゴム物質(C)100重量部を基準として60~90重量部の範囲である。
 前記ゴム物質(C)に対する前記多価アルコール(A)の使用量の範囲が60~90重量部の場合には、前記高耐火性ゴム組成物が火災等の熱にさらされた場合に強固な熱膨張残渣が形成される。
 前記多価アルコール(A)の使用量は、60~75重量部の範囲であることが好ましく、62~65重量部の範囲であればより好ましい。
 次に含窒素発泡剤(B)について説明する。
 前記含窒素発泡剤(B)としては、例えば、ジシアンジアミド、アゾジカルボンアミド、尿素、グアニジン、メラミン、メラミン誘導体等が挙げられる。
 前記メラミン誘導体としては、例えば、メラミンとホルムアルデヒド等を反応させたトリメチロールメラミン、ヘキサメチロールメラミン等を挙げることができる。
 火災等の熱により形成される熱膨張残渣が強固となることから、ジシアンジアミドおよびメラミンの少なくとも一方を使用することが好ましく、ジシアンジアミドおよびメラミンの両方を使用することがより好ましい。
 前記含窒素発泡剤(B)は、一種もしくは二種以上を使用することができる。
 本発明に使用する高耐火性ゴム組成物に含まれる前記含窒素発泡剤(B)の使用量は、前記ゴム物質(C)100重量部を基準として、76~80重量部の範囲であることが好ましい。
 前記ゴム物質(C)に対する前記含窒素発泡剤(B)の範囲が76~80重量部の場合には、前記高耐火性ゴム組成物が火災等の熱にさらされた場合に強固な熱膨張残渣が形成される他、シートが高耐火性ゴム組成物火災の炎等にさらされた場合に少なくとも2時間は炎の貫通を阻止することができる。
 またジシアンジアミドおよびメラミンの両方を使用する場合には、前記ジシアンジアミドが、前記ゴム物質(C)100重量部に対し10~20重量部の範囲であることが好ましく、前記メラミンが、前記ゴム物質(C)100重量部に対し56~70重量部の範囲であることが、前記高耐火性ゴム組成物が火災等の熱にさらされた場合にさらに強固な熱膨張残渣を形成することから好ましい。
 前記ジシアンジアミドは、17~20重量部の範囲であればより好ましく、前記メラミンは、56~63重量部の範囲であればより好ましい。
 次にゴム物質(C)について説明する。
 本発明に使用するゴム物質(C)としては、例えば、天然ゴム、イソプレンゴム、ブチルゴム、プリブテンゴム、ポリブタジエンゴム、ニトリルゴム、アクリルゴム、ウレタンゴム、エチレン-プロピレンゴム、クロロスルホン化ポリエチレンゴム、クロロプレンゴム、スチレン-ブタジエンゴム、ポリフッ化エチレンゴム、シリコーンゴム等のゴム成分を挙げることができる。
 本発明に係る高耐火性ゴム組成物シートは、前記ゴム物質(C)を含むことにより柔軟性を有する。前記高耐火性ゴム組成物シートを硬くするためには、前記ゴム成分の分子量を大きくする、適宜種類を選択する等の方法が挙げられる。
 前記ゴム物質(C)は、一種もしくは二種以上を使用することができる。
 また前記ゴム物質(C)は、前記ゴム成分に加えて、可塑剤、粘着付与剤等を含むものであってもよい。
 前記可塑剤としては特に限定はないが、例えば、炭化水素類、フタル酸類、リン酸エステル類、アジピン酸エステル類、サバチン酸エステル類、リシノール酸エステル類、ポリエステル類、エポキシ類、塩化パラフィン類などが挙げられる。
 前記粘着付与剤としては特に限定はないが、例えば、ロジン樹脂、ロジン誘導体、ダンマル、ポリテルペン樹脂、テルペン変性体、脂肪族系炭化水素樹脂、シクロペンタジエン樹脂、芳香族系石油樹脂、フェノール樹脂、アルキルフェノール-アセチレン樹脂、スチレン樹脂、キシレン樹脂、クマロン-インデン樹脂、ビニルトルエン-αメチルスチレン共重合体等が挙げられる。
 前記ゴム物質(C)は、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つであることが好ましい。
 本発明に係る高耐火性ゴム組成物シートは、前記ゴム物質(C)を含むことにより柔軟性を有する。前記高耐火性ゴム組成物シートを硬くするためには、前記ゴム成分の分子量を大きくする、適宜種類を選択する等の方法が挙げられる。
 また上記各成分と併用することにより、前記高耐火性ゴム組成物が火災等の熱にさらされた場合に強固な熱膨張残渣を形成すると共に、火災の炎等にさらされた場合に少なくとも2時間は炎の貫通を阻止でき、長時間の耐火性に優れることから好ましい。
 前記石油樹脂としては、例えば、石油類のスチームクラッキングにより副生する分解油留分に含まれる留分、すなわち、芳香族留分を重合して得られる樹脂等が挙げられる。
 前記石油樹脂は、水素添加されていても、水素添加されていなくてもいずれのものも適宜選択して使用することができる。
 前記石油樹脂を使用することにより、高耐火性ゴム組成物に粘着性を付与することができる。これにより高耐火性ゴム組成物シートを設置する際に仮止め作業等が容易になることから取り扱いやすくなる。
 前記石油樹脂は、一種もしくは二種以上を使用することができる。
 前記ゴム物質(C)は、ブチルゴムおよびポリブテンからなるもの、またはブチルゴム、ポリブテンおよび石油樹脂からなるものを使用することが好ましい。
  前記ブチルゴムおよびポリブテンの配合比の一例を挙げるとすれば、前記ブチルゴムおよびポリブテンの合計重量100重量部を基準として、前記ブチルゴムが、80~20重量部の範囲であり、前記ポリブテンが、20~80重量部の範囲であることが、得られる高耐火性ゴム組成物シートの柔軟性、取り扱い性に優れることから好ましい。
 また前記ブチルゴム、ポリブテンおよび石油樹脂の配合比の一例を挙げるとすれば、これらの合計重量100重量部を基準として、前記ブチルゴムが、15~65重量部の範囲であり、前記ポリブテンが、20~80重量部の範囲であり、前記石油樹脂が、5~15重量部の範囲であることが、粘着性を維持しつつ得られる高耐火性ゴム組成物シートの柔軟性、取り扱い性に優れることから好ましい。
 次に難燃性発泡剤(D)について説明する。
 前記難燃性発泡剤(D)としては、例えば、赤リン、
 リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム、リン酸アンモニウム等のリン酸塩類、
 ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等のポリリン酸アンモニウム類、
 下記の化学式により表されるリン酸エステル類等が挙げられる。
 これらのリン化合物は、一種もしくは二種以上を使用することができる。
 これらのうち、耐火性の観点から、赤リン、下記の化学式で表されるリン酸エステル類、およびポリリン酸アンモニウム類が好ましく、性能、安全性、費用等の点においてポリリン酸アンモニウム類がより好ましい。
Figure JPOXMLDOC01-appb-C000001
@0001

 上記化学式中、R及びRは、水素、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は、炭素数6~16のアリール基を表す。
 Rは、水酸基、炭素数1~16の直鎖状若しくは分岐状のアルキル基、炭素数1~16の直鎖状若しくは分岐状のアルコキシル基、炭素数6~16のアリール基、又は、炭素数6~16のアリールオキシ基を表す。
 前記化学式で表される化合物としては、例えば、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2-メチルプロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチル-ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4-メトキシフェニル)ホスフィン酸等が挙げられる。
 中でも、t-ブチルホスホン酸は、高価ではあるが、高難燃性の点において好ましい。
 ポリリン酸アンモニウム類としては、特に限定されず、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等が挙げられるが、難燃性、安全性、コスト、取扱性等の点からポリリン酸アンモニウムが好適に用いられる。
 次に二酸化チタン(E)について説明する。
 前記二酸化チタン(E)の平均粒径は、0.01~500μmの範囲が好ましく、より好ましくは0.1~200μmの範囲である。また、平均粒径の大きい無機充填剤と平均粒径の小さいものとを組み合わせて使用することがより好ましく、このような組み合わせによって、シート状成形体の力学的性能を維持したまま、高充填化することが可能となる。
 次に本発明に使用する高耐火性ゴム組成物の配合について説明する。
 本発明に使用する高耐火性ゴム組成物に含まれる前記難燃性発泡剤(D)および二酸化チタン(E)の合計の使用量は、ゴム物質(C)100重量部を基準として100~240重量部の範囲であることが好ましい。
 ゴム物質(C)に対する前記難燃性発泡剤(D)および二酸化チタン(E)の合計の使用量の範囲が100~240重量部の場合には、前記高耐火性ゴム組成物が火災等の熱にさらされた際に、火災等の熱により熱膨張残渣を形成するまで一定の形状を保持することができ、強固な熱膨張残渣が形成される。
 また本発明に使用する高耐火性ゴム組成物に含まれる前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]は、1.5~5の範囲であれば好ましい。
 前記難燃性発泡剤(D)と二酸化チタン(E)との重量比が1.5~5の範囲の場合には、前記高耐火性ゴム組成物が火災等の熱にさらされた場合に強固な熱膨張残渣が形成される。
 さらに本発明に使用する高耐火性ゴム組成物は、それぞれ本発明の目的を損なわない範囲で、必要に応じて、無機充填材、可塑剤、フェノール系、アミン系、イオウ系等の酸化防止剤の他、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、加工助剤、軟化剤、顔料等の添加剤を添加することができる。
 前記無機充填材としては、例えば、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム等の無機塩類、
 ガラスフレーク、ベーマイト、ウォラストナイト等の酸化無機物、
 ロックウール繊維、ガラス繊維、セラミック繊維、シリカ繊維、カーボン繊維等の無機繊維類、
 カーボン、ヒュームドシリカ等の微粒無機物等があげられる。
 前記無機繊維類は、短繊維、長繊維のいずれも使用することができる。
 前記ベーマイトは、針状、鱗片状、板状の形状であれば好ましい。また前記ウォラストナイトは針状の形状であれば好ましい。
 前記可塑剤としては、例えばフタル酸ジエチル、フタル酸ジブチル等のフタル酸エステル、リン酸エステル、脂肪酸エステル、エポキシ系可塑剤などが挙げらる。
 前記可塑剤は、一種もしくは二種以上を使用することができる。
 前記酸化防止剤としては、例えばフェノール化合物を含む抗酸化剤、硫黄原子を含む抗酸化剤、ホスファイト化合物を含む抗酸化剤等が挙げられる。
 前記酸化防止剤は、一種もしくは二種以上を使用することができる。
 前記金属害防止剤としては、例えばメチルベンゾトリアゾール等が挙げられる。
 前記金属害防止剤は、一種もしくは二種以上を使用することができる。
 前記帯電防止剤としては、例えばN,N-ビス(ヒドロキシエチル)アルキルアミン、アルキルアリルスルホネート、アルキルスルファネート等が挙げられる。
 前記帯電防止剤は、一種もしくは二種以上を使用することができる。
 前記安定剤としては、例えば、三塩基性硫酸鉛、三塩基性亜硫酸鉛、二塩基性亜リン酸鉛、ステアリン酸鉛、二塩基性ステアリン酸鉛等の鉛熱安定剤、
 有機錫メルカプト、有機錫マレート、有機錫ラウレート、ジブチル錫マレート等の有機錫熱安定剤、
 ステアリン酸亜鉛、ステアリン酸カルシウム等の金属石鹸熱安定剤等が挙げられる。
 前記熱安定剤は一種もしくは二種以上を使用することができる。
 前記架橋剤としては、例えば、有機過酸化物、硫黄、硫黄化合物などが挙げらるが、有機過酸化物が好ましい。
 前記有機過酸化物としては、例えば、ジイソプロピルベンゼンヒドロパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーベンゾエート、クミルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1-ジ(t-ブチルパーオキシ)-3,3,5-トリメチルヘキサン、n-ブチル-4,4-ジ(t-ブチルパーオキシ)バレレート、α,α'-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、t-ブチルパーオキシクメンなどが挙げらる。
 前記硫黄化合物としては、例えば、テトラメチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジメチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、一塩化硫黄、二塩化硫黄などが挙げられる。
 前記架橋剤は、一種もしくは二種以上を使用することができる。
 前記滑剤としては、例えば、ポリエチレン、パラフィン、モンタン酸等のワックス類、
 トール油、サブ油、蜜ロウ、カルナウバロウ、ラノリンなどのロウ類、
 エステルワックス類、
 ステアリン酸、パルミチン酸、リシノール酸等の有機酸類、
 ステアリルアルコール等の有機アルコール類、
 ジメチルビスアミド等のアミド系化合物等が挙げられる。
 前記滑剤は一種もしくは二種以上を使用することができる。
 前記加工助剤としては、例えば、塩素化ポリエチレン、メチルメタクリレートーエチルアクリレート共重合体、高分子量のポリメチルメタクリレート等が挙げられる。
 前記加工助剤は一種もしくは二種以上を使用することができる。
 前記軟化剤としては、例えば、アマニ油等の動植物油類、コールタール、コールタールピッチ等のコールタール系軟化剤、ヒマシ油、アマニ油、ナタネ油、ヤシ油等の脂肪油系軟化剤、リシノール酸、パルミチン酸、ステアリン酸などの脂肪酸、フタル酸エステルなどの脂肪酸エステル類等が挙げられる。
 前記軟化剤は、一種もしくは二種以上を使用することができる。
 前記顔料としては、例えばアゾ化合物類、フタロシアニン化合物類、スレン化合物類、染料レーキ化合物類等の有機顔料、酸化物類、クロム酸モリブデン類、硫化物・セレン化物類、フェロシアン化物類等の無機顔料等が挙げられる。
 前記顔料は、一種もしくは二種以上を使用することができる。
 次に前記高耐火性ゴム組成物の製造方法について説明する。
 前記高耐火性ゴム組成物の製造方法に特に限定はないが、例えば、前記高耐火性ゴム組成物の各成分を押出機、バンバリーミキサー、ニーダーミキサー等公知の混練装置に供給して溶融混練する方法や、前記高耐火性ゴム組成物の各成分を有機溶剤に懸濁さたり、加温して溶融させたりして塗料状にしたり、溶剤に分散してスラリーを調製する等の方法により、前記高耐火性ゴム組成物を得ることができる。
 発明に係る前記高耐火性ゴム組成物シートは、上記各成分をバンバリーミキサー、ニーダーミキサー、二本ロール等の公知の混練装置を用いて混練された前記高耐火性ゴム組成物を用い、熱プレス成形、押出成形、カレンダー成形等の従来公知の成形方法によりシート状等に成形して得ることができる。
 前記高耐火性ゴム組成物は、火災時などの高温にさらされた際に熱膨張残渣を形成することにより断熱し、かつその熱膨張残渣の強度があるものであれば特に限定されないが、600℃に設定した電気炉で30分間加熱した後の体積膨張率が3~100倍のものであれば好ましい。
 前記体積膨張率が3倍を上回ると、膨張体積が前記ゴム物質の焼失部分を十分に埋めることができ防火性能が良好となる。また100倍以下であると、熱膨張残渣の強度が維持され、火炎の貫通を防止する効果が向上する。より好ましくは、体積膨張率が5~80倍の範囲であり、さらに好ましくは8~60倍の範囲である。
 前記熱膨張残渣が自立するためには、前記熱膨張残渣は強度の大きいことが必要であり、その強度としては、圧縮試験器にて0.25cmの圧子を用いて、前記熱膨張残渣のサンプルを0.1m/sの圧縮速度で測定した場合の破断点応力が0.05kgf/cm以上であれば好ましい。破断点応力が0.05kgf/cmを上回ると、断熱膨張層が自立し防火性能が向上する。より好ましくは、0.1kgf/cm以上である。
 前記高耐火性ゴム組成物をシートの形状に成形する際には、有機材料層、無機材料層、金属層等を積層することができる。
 前記有機材料層に使用する有機材料の具体例としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブテン樹脂、ポリペンテン樹脂等のポリオレフィン樹脂類、
 ポリスチレン樹脂、ポリ-α-メチルスチレン樹脂等のポリスチレン樹脂、
 ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポカーボネート樹脂等のポリエステル樹脂類、
 ポリウレタン樹脂、ポリアミド樹脂等のポリアミド樹脂類、
 ポリフェニレンエーテル樹脂等のエーテル系樹脂類、
アクリル樹脂等の不飽和エステル樹脂類、
ABS樹脂、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、スチレン-ブタジエン共重合体等の共重合樹脂類、
エポキシ樹脂、フェノール樹脂等のノボラック樹脂類、
フッ素化樹脂、ポリ塩化ビニル樹脂等のハロゲン樹脂類等を挙げることができる。
 前記有機材料層の形状としては、例えば、平面状に成形されたフィルム、前記有機材料を用いた織布、前記有機材料を用いた不織布等を挙げることができる。
 前記平面状に成形されたフィルムは、前記有機系材料の押出成形、プレス成形等の方法により得ることができる。
 前記有機材料は一種もしくは二種以上を使用することができる。
 前記金属層に使用する金属の具体例としては、例えば、鉄、鋼、ステンレス、亜鉛メッキ鋼、アルミ亜鉛合金メッキ鋼、アルミニウム等が挙げられる。
 前記金属層は500μmよりも大きい厚みを有する金属板、500μm以下の厚みを有する金属箔等を使用することができる。
 前記金属層としては、取り扱い性の面からアルミニウム箔等が好ましく、前記高耐火性ゴム組成物シートの最外面に配置されることが好ましい。
 前記金属は一種もしくは二種以上を使用することができる。
 前記無機材料層に使用する無機材料の具体例としては、例えば、ロックウール、グラスウール、セラミックウール等の無機繊維を使用することができる。
 前記無機材料層の形状としては、例えば、前記無機材料を用いた織布、前記無機材料を用いた不織布等を挙げることができる。
 前記無機材料は一種もしくは二種以上を採用することができる。
 次に本発明に係る高耐火性ゴム組成物シートの具体的な構成について説明する。
 本発明に係る高耐火性ゴム組成物シートの具体例としては、例えば、高耐火性ゴム組成物からなるシート、次の順番に前記金属箔、前記有機系材料シート等が積層されたもの等を挙げることができる。
 具体的な一例を示すとすれば、
(イ)1.金属箔層、2.高耐火性ゴム組成物層
(ロ)1.金属箔層、2.無機材料層、3.高耐火性ゴム組成物層
(ハ)1.有機材料層、2.金属箔層、3.無機材料層、4.高耐火性ゴム組成物層
(ニ)1.金属箔層、2.無機材料層、3.高耐火性ゴム組成物層、4.無機材料層、5.金属箔層
 上記の(イ)~(ニ)等のいずれかの順番に各層が積層されたもの等が挙げられる。
 本発明に使用する有機材料層、無機材料層、金属層等を積層する順番、各層の厚み等に限定はなく、本発明に係る高耐火性ゴム組成物シートの使用場所、目的等に応じて適宜選択することができる。
 また前記高耐火性ゴム組成物層の厚みについても特に限定はないが、取り扱い性の面から0.1~10mmの範囲であれば好ましく、0.2~10mmの範囲であればより好ましく、0.5~5mmの範囲であればさらに好ましい。
 次に本発明を実施例に基づいて詳細に説明する。なお、本発明はこれらの実施例により何ら限定されるものではない。
 表1に記載した配合に従い、多価アルコール(A)としてペンタエリスリトールを63重量部、含窒素発泡剤(B)としてメラミンを57重量部およびジシアンジアミドを19重量部、ゴム物質(C)としてブチルゴムを42重量部、ポリブテンを50重量部および石油樹脂を8重量部、難燃性発泡剤(D)としてポリリン酸アンモニウムを126重量部、ならびに二酸化チタン(E)を73重量部配合した高耐火性ゴム組成物を加熱ロールにて混練した。
 なお使用した各成分の詳細は次の通りである。
・ブチルゴム:JSR社製、商品名JSR065
・ポリブテン:JX日鉱日石エネルギー社製、商品名HV100
・石油樹脂:出光興産社製、商品名アイマーブP125
・メラミン:日産化学社製、商品名メラミン
・ジシアンジアミド:日本カーバイド工業社製、商品名ジシアンジアミド
・ポリリン酸アンモニウム(APP):クラリアントジャパン社製、商品名AP422
・ペンタエリスリトール:広栄化学社製、商品名ペンタリット
・二酸化チタン(TiO):堺化学社製、商品名SA-1、アナターゼ型二酸化チタン粒子、平均粒径0.15μm、比表面積9.7m/g。
 なお、二酸化チタンの平均粒径は、レーザ回折散乱法粒子径分布測定等を利用した市販の測定装置により測定することができる。
 次に混練した高耐火性ゴム組成物の両面に、アルミニウム箔ラミネートガラスクロスを、アルミニウム箔が最外面となる様にそれぞれ積層し、100℃に設定した加熱プレス機を用いて成形し、高耐火性ゴム組成物シートを得た。
 得られた高耐火性ゴム組成物シートの樹脂部分の厚みは1mmであった。
 次に縦200mm、横200mmおよび厚み0.5mmの鉄製プレートの上に、縦200mm、横200mmおよび樹脂部分の厚み1mmの高耐火性ゴム組成物シートを置いた。
 次に前記鉄製プレートと前記高耐火性ゴム組成物シートとの縁をセラミックブランケットを用いて固定した。
 前記高耐火性ゴム組成物シートが置かれた前記鉄製プレートの裏面の中心から上下50mmの位置に熱電対を取り付けた。
 前記高耐火性ゴム組成物シートが置かれた側に対し、ISO834の条件に従って2時間の耐火試験を実施した。
 なお耐火試験の評価方法は次の通りである。
[断熱性能]:耐火試験開始2時間後に鉄製プレートの裏面最大温度が450℃未満の場合を◎、450~550℃の場合を○、550℃を超えた場合を×とした。
[形状保持性]:耐火試験開始2時間後に加熱を中断し、室温まで放冷後、高耐火性ゴム組成物シートの熱膨張残渣の両面にあるアルミニウム箔ラミネートガラスクロスを除去し、熱膨張残渣の状態を観察した。熱膨張残渣が形状を保持し崩れがない場合を◎、熱膨張残渣に一部崩れが観察されたが使用できる場合を○、熱膨張残渣が崩れて使用できない場合を×ととした。
 結果を表1に示す。
 表1に示した通り、実施例1により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを140重量部使用し、二酸化チタン(E)を35重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表1に示す。
 表1に示した通り、実施例2により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを175重量部使用し、二酸化チタン(E)を35重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表1に示す。
 表1に示した通り、実施例3により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを183重量部使用し、二酸化チタン(E)を52重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表1に示す。
 表1に示した通り、実施例4により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを120重量部使用し、二酸化チタン(E)を30重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表1に示す。
 表1に示した通り、実施例5により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを102重量部使用し、二酸化チタン(E)を23重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表1に示す。
 表1に示した通り、実施例6により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを80重量部使用し、二酸化チタン(E)を45重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表1に示す。
 表1に示した通り、実施例7により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを126重量部使用し、二酸化チタン(E)を42重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表1に示す。
 表1に示した通り、実施例8により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを120重量部使用し、二酸化チタン(E)を20重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表2に示す。
 表2に示した通り、実施例9により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを200重量部使用し、二酸化チタン(E)を50重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表2に示す。
 表2に示した通り、実施例10により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを250重量部使用し、二酸化チタン(E)を50重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表2に示す。
 表2に示した通り、実施例11により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを195重量部使用し、二酸化チタン(E)を35重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表2に示す。
 表2に示した通り、実施例12により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを156重量部使用し、二酸化チタン(E)を104重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表2に示す。
 表2に示した通り、実施例13により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、難燃性発泡剤(D)としてポリリン酸アンモニウムを126重量部使用し、二酸化チタン(E)を42重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表2に示す。
 表2に示した通り、実施例14により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、二酸化チタン(E)を42重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 また実施例15に使用した高耐火性ゴム組成物のムーニー粘度の平均値は58(1+4)50℃であった。
 実施例15に使用した高耐火性ゴム組成物の加熱後の残重量の平均値は45.9%であった。
 なおムーニー粘度および加熱後の残重量の評価方法は次の通りである。
[ムーニー粘度]:東洋精機社製のムーニー粘度計を用いて、JIS K6300-1に準拠して測定を実施した。ロータはL型形状のものを使用し、1分間予備加熱を行い、試験温度を50℃としてロータを4分間回転させて測定した。なおタイの形状は角形溝である。三回測定した値をそれぞれ表2に示した。
[加熱後の残重量]:高耐火性ゴム組成物を98mm×98mm×1mmのシートに成形し、電気炉で600℃×30分間加熱した。加熱前の重量をA、加熱後の重量をAとし、(A/A)×100の値を加熱後の残重量(%)として表示した。三回測定した値をそれぞれ表3に示した。
 表3に示した通り、実施例15により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
 実施例1の場合で、ゴム物質(C)として、ブチルゴム45.7重量部およびポリブテン54.3重量部を使用し、石油樹脂を使用しなかったこと、ならびに二酸化チタン(E)を42重量部使用した他は実施例1の場合と全く同様に耐火試験を実施した。
 またムーニー粘度と加熱後の残重量との測定を実施例15の場合と同様の条件で実施した。
 ムーニー粘度の平均値は63ML(1+4)50℃であった。加熱後の残重量の平均値は46.1%であった。
 結果を表3に示す。
 表3に示した通り、実施例10により得られた高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示した。
[比較例1~9]
 実施例1の場合で、難燃性発泡剤(D)および二酸化チタン(E)の使用量を表4に示すものに変更した他は実施例1の場合と全く同様に耐火試験を実施した。
 結果を表4に示す。
 いずれの場合も耐火試験開始後2時間で鉄板の裏面温度が550℃を越えた他、熱膨張残渣も比較例6およ7を除き、形状を保持することができなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本明細書は、2011年3月31日出願の特願2011-081320に基づく。この内容はすべてここに含めておく。
 本発明に係る高耐火性ゴム組成物シートは優れた耐火性および熱膨張残渣の形状保持性を示すことから、鉄骨、外壁、間仕切り、防火扉、耐火ダクト等の建築材の耐火性能を向上させる材料として広く使用することができる。

Claims (18)

  1. (A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物を成形してなる高耐火性ゴム組成物シートであって、
     前記含窒素発泡剤(B)が、前記ゴム物質(C)100重量部に対し、76~80重量部の範囲であることを特徴とする、高耐火性ゴム組成物シート。
  2.  前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなることを特徴とする、請求項1に記載の高耐火性ゴム組成物シート。
  3.  前記多価アルコール(A)が、前記ゴム物質(C)100重量部に対し、60~90重量部の範囲である、請求項2に記載の高耐火性ゴム組成物シート。
  4.  前記多価アルコール(A)が、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトールおよびポリペンタエリスリトールからなる群より選ばれる少なくとも一つであり、
     前記含窒素発泡剤(B)が、ジシアンジアミド、アゾジカルボンアミド、尿素、グアニジン、メラミンおよびメラミン誘導体からなる群より選ばれる少なくとも一つであり、
     前記難燃性発泡剤(D)が、赤リン、リン酸塩類、リン酸エステル類およびポリリン酸アンモニウム類からなる群より選ばれる少なくとも一つである、請求項3に記載の高耐火性ゴム組成物シート。
  5.  前記含窒素発泡剤(B)が、ジシアンジアミドおよびメラミンであり、
     前記ジシアンジアミドが、前記ゴム物質(C)100重量部に対し、10~20重量部の範囲であり、
     前記メラミンが、前記ゴム物質(C)100重量部に対し、56~70重量部の範囲である、請求項4に記載の高耐火性ゴム組成物シート。
  6.  前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
     前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である、請求項5に記載の高耐火性ゴム組成物シート。
  7.  前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなり、
     前記ブチルゴム、ポリブテンおよび石油樹脂の合計重量100重量部を基準として、
     前記ブチルゴムが、15~65重量部の範囲であり、
     前記ポリブテンが、20~80重量部の範囲であり、
     前記石油樹脂が、5~15重量部の範囲である、請求項6に記載の高耐火性ゴム組成物シート。
  8.  前記高耐火性ゴム組成物が、無機充填材、可塑剤、酸化防止剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、加工助剤、軟化剤および顔料からなる群より選ばれる少なくとも一つを含む、請求項7に記載の高耐火性ゴム組成物シート。
  9.  前記高耐火性ゴム組成物を成形してなる高耐火性ゴム組成物層に対し、
     有機材料層、無機材料層および金属層からなる群より選ばれる少なくとも一つを積層してなる、請求項6に記載の高耐火性ゴム組成物シート。
  10.  前記高耐火性ゴム組成物を成形してなる高耐火性ゴム組成物層に対し、
     有機材料層、無機材料層および金属層からなる群より選ばれる少なくとも一つを積層してなる、請求項7に記載の高耐火性ゴム組成物シート。
  11.  前記高耐火性ゴム組成物を成形してなる高耐火性ゴム組成物層に対し、
     有機材料層、無機材料層および金属層からなる群より選ばれる少なくとも一つを積層してなる、請求項8に記載の高耐火性ゴム組成物シート。
  12. (A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
     前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
     前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
     前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である高耐火性ゴム組成物シート。
  13. (A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
     前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
     前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
     前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である、請求項1に記載の高耐火性ゴム組成物シート。
  14. (A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
     前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
     前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
     前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である、請求項3に記載の高耐火性ゴム組成物シート。
  15. (A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
     前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
     前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
     前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である、請求項4に記載の高耐火性ゴム組成物シート。
  16. (A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
     前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
     前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
     前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である、請求項7に記載の高耐火性ゴム組成物シート。
  17. (A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
     前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
     前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
     前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である、請求項8に記載の高耐火性ゴム組成物シート。
  18. (A)多価アルコール、(B)含窒素発泡剤、(C)ゴム物質、(D)難燃性発泡剤および(E)二酸化チタンを含む高耐火性ゴム組成物シートであって、
     前記ゴム物質(C)が、ブチルゴム、ポリブテンおよび石油樹脂からなる群より選ばれる少なくとも一つからなり、
     前記難燃性発泡剤(D)および二酸化チタン(E)の合計が、前記ゴム物質(C)100重量部に対し、100~240重量部の範囲であり、
     前記難燃性発泡剤(D)と二酸化チタン(E)との重量比[(D)/(E)]が、1.5~5の範囲である、請求項9に記載の高耐火性ゴム組成物シート。
PCT/JP2012/002254 2011-03-31 2012-03-30 高耐火性ゴム組成物シート WO2012132475A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/008,952 US20140066531A1 (en) 2011-03-31 2012-03-30 Highly refractory rubber composition sheet
AU2012235270A AU2012235270A1 (en) 2011-03-31 2012-03-30 Highly refractory rubber composition sheet
EP12763621.5A EP2692792B1 (en) 2011-03-31 2012-03-30 Highly refractory rubber composition sheet
JP2012523162A JP5066303B1 (ja) 2011-03-31 2012-03-30 高耐火性ゴム組成物シート

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011081320 2011-03-31
JP2011-081320 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132475A1 true WO2012132475A1 (ja) 2012-10-04

Family

ID=46930243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002254 WO2012132475A1 (ja) 2011-03-31 2012-03-30 高耐火性ゴム組成物シート

Country Status (5)

Country Link
US (1) US20140066531A1 (ja)
EP (1) EP2692792B1 (ja)
JP (1) JP5066303B1 (ja)
AU (1) AU2012235270A1 (ja)
WO (1) WO2012132475A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017440A1 (ja) * 2014-07-28 2016-02-04 住友化学株式会社 フィルムの製造方法および塗布液の保管方法
JP2017061684A (ja) * 2015-05-14 2017-03-30 積水化学工業株式会社 耐火樹脂組成物
WO2020026564A1 (ja) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 熱膨張性耐火樹脂組成物、熱膨張性耐火シート、及び熱膨張性耐火シートの施工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107057166A (zh) * 2017-05-31 2017-08-18 三斯达(江苏)环保科技有限公司 一种无味pe发泡材料及其制造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586310A (ja) 1991-09-27 1993-04-06 Sk Kaken Co Ltd 発泡性耐火塗料
JPH0953075A (ja) * 1995-08-09 1997-02-25 Ohbayashi Corp 発泡型防火性組成物
JP2001040290A (ja) 1999-07-30 2001-02-13 Kikusui Chemical Industries Co Ltd 発泡形耐火塗料
JP2001322195A (ja) * 2000-05-12 2001-11-20 Kanegafuchi Chem Ind Co Ltd 防水層を積層した発泡型防火性積層体
JP2002012776A (ja) * 2000-07-03 2002-01-15 Kanegafuchi Chem Ind Co Ltd 発泡型防火性組成物
JP2002194225A (ja) * 2000-12-22 2002-07-10 Kanegafuchi Chem Ind Co Ltd 発泡型防火性組成物
JP2002225200A (ja) * 2001-01-30 2002-08-14 Kanegafuchi Chem Ind Co Ltd 不燃性耐火発泡性複合体
JP2002322374A (ja) * 2001-04-27 2002-11-08 Kanegafuchi Chem Ind Co Ltd 耐火性に優れた発泡型防火性組成物
JP2003064261A (ja) 2001-08-27 2003-03-05 Kanegafuchi Chem Ind Co Ltd 耐火性に優れた発泡型防火性組成物、発泡型防火性シート状成形体、及び発泡型防火性シート積層体
JP2005255921A (ja) * 2004-03-15 2005-09-22 Kaneka Corp 発泡型防火性組成物
JP2011052192A (ja) * 2009-09-04 2011-03-17 Kaneka Corp 発泡型防火性組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586310A (ja) 1991-09-27 1993-04-06 Sk Kaken Co Ltd 発泡性耐火塗料
JPH0953075A (ja) * 1995-08-09 1997-02-25 Ohbayashi Corp 発泡型防火性組成物
JP2001040290A (ja) 1999-07-30 2001-02-13 Kikusui Chemical Industries Co Ltd 発泡形耐火塗料
JP2001322195A (ja) * 2000-05-12 2001-11-20 Kanegafuchi Chem Ind Co Ltd 防水層を積層した発泡型防火性積層体
JP2002012776A (ja) * 2000-07-03 2002-01-15 Kanegafuchi Chem Ind Co Ltd 発泡型防火性組成物
JP2002194225A (ja) * 2000-12-22 2002-07-10 Kanegafuchi Chem Ind Co Ltd 発泡型防火性組成物
JP2002225200A (ja) * 2001-01-30 2002-08-14 Kanegafuchi Chem Ind Co Ltd 不燃性耐火発泡性複合体
JP2002322374A (ja) * 2001-04-27 2002-11-08 Kanegafuchi Chem Ind Co Ltd 耐火性に優れた発泡型防火性組成物
JP2003064261A (ja) 2001-08-27 2003-03-05 Kanegafuchi Chem Ind Co Ltd 耐火性に優れた発泡型防火性組成物、発泡型防火性シート状成形体、及び発泡型防火性シート積層体
JP2005255921A (ja) * 2004-03-15 2005-09-22 Kaneka Corp 発泡型防火性組成物
JP2011052192A (ja) * 2009-09-04 2011-03-17 Kaneka Corp 発泡型防火性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2692792A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017440A1 (ja) * 2014-07-28 2016-02-04 住友化学株式会社 フィルムの製造方法および塗布液の保管方法
CN106661245A (zh) * 2014-07-28 2017-05-10 住友化学株式会社 膜的制造方法及涂布液的保管方法
JPWO2016017440A1 (ja) * 2014-07-28 2017-06-29 住友化学株式会社 フィルムの製造方法および塗布液の保管方法
JP2017061684A (ja) * 2015-05-14 2017-03-30 積水化学工業株式会社 耐火樹脂組成物
WO2020026564A1 (ja) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 熱膨張性耐火樹脂組成物、熱膨張性耐火シート、及び熱膨張性耐火シートの施工方法
JP2020019851A (ja) * 2018-07-30 2020-02-06 パナソニックIpマネジメント株式会社 熱膨張性耐火樹脂組成物、熱膨張性耐火シート、及び熱膨張性耐火シートの施工方法
JP7108924B2 (ja) 2018-07-30 2022-07-29 パナソニックIpマネジメント株式会社 熱膨張性耐火樹脂組成物、熱膨張性耐火シート、及び熱膨張性耐火シートの施工方法

Also Published As

Publication number Publication date
AU2012235270A1 (en) 2013-10-17
JPWO2012132475A1 (ja) 2014-07-24
JP5066303B1 (ja) 2012-11-07
EP2692792A4 (en) 2014-09-17
US20140066531A1 (en) 2014-03-06
EP2692792B1 (en) 2015-12-16
EP2692792A1 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP6247368B2 (ja) 耐火性樹脂組成物
JP5796137B2 (ja) 熱膨張性樹脂組成物
CA2511187C (en) Flame retardant polymer compositions
JP4270470B1 (ja) 耐火被覆材、該耐火被覆材の製造方法、及び前記耐火被覆材を用いた耐火被覆方法
JP6200622B1 (ja) 耐火性樹脂組成物
JP2010534757A (ja) ハロゲン不含の難燃剤
JP5066303B1 (ja) 高耐火性ゴム組成物シート
JP2006219564A (ja) 難燃性粘着テープ
JP4312254B2 (ja) 耐火ゴム組成物
CN104854184A (zh) 聚烯烃类阻燃树脂组合物及成型产品
JP6769867B2 (ja) 耐火性樹脂組成物
JP2006219565A (ja) 難燃性粘着テープ
JP2008024827A (ja) 難燃性粘着テープ
JP3832703B2 (ja) 耐火性塗料
JP4130009B2 (ja) 耐火性樹脂組成物及びそれを用いたシート成形体
JPH107838A (ja) 耐火性ゴム組成物
JP3299899B2 (ja) 耐火性樹脂組成物
JPH09176404A (ja) 耐火性樹脂組成物
JP3707891B2 (ja) 耐火性ゴム組成物
JP2000063619A (ja) 難燃性樹脂組成物
JP6964139B2 (ja) 難燃性粘着テープ
JP2024035638A (ja) 熱膨張性耐火材
JP2022164721A (ja) 熱膨張性耐火材
CN114364764A (zh) 与非卤代阻燃剂具有广泛相容性的压敏粘合剂
JP2019143069A (ja) 難燃高減衰材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012523162

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012235270

Country of ref document: AU

Date of ref document: 20120330

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012763621

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14008952

Country of ref document: US