WO2012132228A1 - 多極子およびそれを用いた荷電粒子線装置 - Google Patents

多極子およびそれを用いた荷電粒子線装置 Download PDF

Info

Publication number
WO2012132228A1
WO2012132228A1 PCT/JP2012/001360 JP2012001360W WO2012132228A1 WO 2012132228 A1 WO2012132228 A1 WO 2012132228A1 JP 2012001360 W JP2012001360 W JP 2012001360W WO 2012132228 A1 WO2012132228 A1 WO 2012132228A1
Authority
WO
WIPO (PCT)
Prior art keywords
multipole
pole
poles
aberration corrector
cylindrical housing
Prior art date
Application number
PCT/JP2012/001360
Other languages
English (en)
French (fr)
Inventor
琴子 浦野
猛 川▲崎▼
騰 守谷
朝則 中野
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to DE112012000586.4T priority Critical patent/DE112012000586B4/de
Priority to US14/000,236 priority patent/US9343260B2/en
Publication of WO2012132228A1 publication Critical patent/WO2012132228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations

Definitions

  • the present invention relates to a charged particle beam apparatus, and more particularly to a multipole structure used for an aberration corrector, a deflector, and the like.
  • Microscopes, microfabrication devices, semiconductor manufacturing devices, etc. that apply charged particle beams use single-stage or multistage multipoles (2, 4, 6, octupole, etc.) as beam deflectors and aberration correctors.
  • processing on the order of several tens of nanometers or observation on the order of sub-nanometers is performed, and it is required to control the beam with sub-nanometer order accuracy.
  • final adjustment is performed electrically, but as a precondition, it is necessary to assemble the multipole with high mechanical accuracy.
  • a parasitic multipole field that causes aberrations is generated, and a new correction coil is required for the correction, This is because individual fine adjustment of individual poles is required.
  • the spherical aberration corrector and the chromatic aberration corrector are required to have an assembly accuracy of the order of micrometers.
  • Patent Document 2 discloses a method of positioning a multipole by arranging ball-shaped or cylindrical spacers inside a cylindrical housing.
  • Patent Document 3 discloses a method in which individual poles are fixed to a base plate with pins, and a method in which an integrated pole is fixed and then separated with a wire cutter.
  • Patent Document 4 discloses a method of fixing a multistage connecting pole to a base block.
  • Patent Document 5 discloses a method of forming an electrostatic multipole using a metal layer provided on an inner wall of a cylindrical ceramic cylinder as an electrode.
  • JP-A-11-339709 Japanese Patent Laid-Open No. 5-334979 JP 2004-241190 A JP 2009-43533 A JP 2006-139958 A
  • the conventional multipole assembly method and structure aiming at achieving both high accuracy and ease of assembly have the following problems.
  • a positioning member is set on the optical axis, the pole is pressed against the positioning member, fixed, and then the positioning member is pulled out. Is difficult to pull out.
  • the positioning member In order to pull out the positioning member without damaging the pole tip, there must be a backlash between the positioning member and the pole tip.
  • the backlash has to be large, and eventually there is a problem that it is practically difficult to keep the positioning accuracy within 10 micrometers.
  • Patent Document 2 In the structure described in Patent Document 2 in which a ball-shaped or cylindrical spacer is arranged inside the cylindrical housing to position the multipole, the ball, the cylindrical spacer, and the housing can be processed with high precision, but the number of parts for assembly is small. There is a problem that it becomes very large and takes time to assemble. There is also a problem in the method of fixing the spacer. Although the spacer itself can be manufactured with very high accuracy, it is necessary to incorporate a plurality of spacers into the housing at the same time without any gaps during assembly, and the spacers cannot be held and are difficult to assemble.
  • the amount of adjustment per pole is based on the distance between the optical axis and the tip of the pole and the azimuth angle of the pole in the plane perpendicular to the optical axis. is there. They need to be adjusted with at least two pins. Alternatively, the distance between the optical axis and the pole tip can be adjusted with one pin, and the azimuth angle can be fixed with a guide. In any case, in order to adjust them in the micrometer order, it is necessary to repeatedly perform measurement and pin eccentric processing, which is very time-consuming, and the accuracy is determined depending on the skill of the assembler. Therefore, there is a problem that it is poor in reproducibility and cannot be mass-produced.
  • the method of fixing the multistage connecting poles to the base block is because the poles are manufactured by wire cutter processing or grinding processing, so assembly accuracy of micrometer order can be easily obtained, the number of parts is small, and assembly is easy. It can be applied to electric field type, magnetic field type and composite type multipoles, and it is easy to form not only a single stage but also a multistage multipole, but in the case of an electrostatic multistage multipole that requires ceramics in the base block, Ceramic base blocks with high-precision grooving are expensive and there are problems in terms of cost.
  • a multipole that forms an electrode with a metal layer provided on the inner wall of a cylindrical ceramic cylinder can form a multipole with high mechanical accuracy, but the effect of the charge-up on the inner wall of the ceramics and the electric field of the asymmetric voltage introduction line appears. There are problems such as the inability to make a magnetic multipole.
  • This application provides a multi-stage or single-stage multipole that is easy to assemble and does not require adjustment, has a small number of parts, and can be assembled within 10 micrometers.
  • a pole member made of a metal material and a cylindrical housing are provided, and guide grooves corresponding to the number of poles are provided on the inner walls of the upper and lower ends of the cylindrical housing in parallel with the optical axis.
  • the pole member is inserted into the guide groove while sliding in the optical axis direction, and the pole member is fixed to the cylindrical housing with a set screw to form a multipole.
  • a multistage multipole is formed by using a connected pole member in which a plurality of poles are connected via a support member in the optical axis direction as the pole member.
  • a single metal multipole can be formed by the above-described method using a single metal pole as the pole member and a spacer having a thickness of one pole as the housing.
  • the present invention it is possible to realize a multipole having an assembly accuracy of within 10 micrometers and an angle of a few seconds, such as the inner diameter unevenness of the multipole and the angle of each pole. Because today, the shape of the pole and the shape of the guide groove can be machined with a machine accuracy of several micrometers by wire cutter processing or grinding, so it is possible to combine them and obtain the above-mentioned assembly accuracy sufficiently Become.
  • the basic parts for forming the multipole are only the pole, the cylindrical housing, and the set screw, and there are no adjustment points, it is not affected by the skill of the assembling worker, and in a short time with good reproducibility. It is possible to assemble multipoles with almost no difference.
  • the present invention since the number of components of the multipole is small and the structure is simple, a stable device can be provided without the pole being loosened due to vibration caused by carrying the device or heat generated by the coil.
  • a spare pole can be manufactured under the same processing conditions when the pole is manufactured, maintenance work such as replacement of the pole when the pole is damaged can be easily performed.
  • FIG. 1 schematically shows a 4-connected pole member 7 that is one of the elements of a 12-pole 4-stage unit at the center of the chromatic / spherical aberration corrector according to the first embodiment of the present invention. is there.
  • soft magnetic metals such as pure iron and permendur can be used in addition to permalloy.
  • These four poles are integrated by brazing via alumina pillars 5 and 6 to form a four-connected pole member 7.
  • the inclined surface 8 at the tip of the pole is formed by simultaneously processing the four poles after forming the four-connecting pole member 7, thereby aligning the angles. Since twelve 4-connected pole members are finished under the same processing conditions using the same jig, it is possible to produce 4-connected pole members having the same shape on the order of micrometers.
  • FIG. 2 is an external view of a 12-pole 4-stage unit in which the 4-connected pole member of FIG. 1 is incorporated in a cylindrical housing. Twelve square grooves 10 are formed on the inner periphery of the inner wall portions at both ends of the opening of the cylindrical housing 9.
  • the 12-pole assembly is assembled by fitting the 4-connection pole member 7 into the angular groove 10 of the cylindrical housing 9 with the acute angle portion of the inclined surface 8 of the 4-connection pole member 7 facing the optical axis 0 side and sliding it in the optical axis 0 direction. .
  • the first-stage pole 1 and the fourth-stage pole 4 are fixed to the cylindrical housing 9 with screws 11 through holes formed in the square grooves 10.
  • the cylindrical housing 9 is made of nonmagnetic metal, and the square grooves 10 formed at both ends of the opening penetrating the cross section of the cylindrical housing 9 are formed by the first-stage pole 1 and the fourth-stage pole 4 of the four-connection pole member 7. It is formed to be fitted.
  • the side wall of the cylindrical housing in which the second stage pole 2 and the third stage pole 3 are arranged is thin so that the second stage pole 2 and the third stage pole 3 do not contact the cylindrical housing 9. It has become.
  • FIG. 3 shows the structure of a chromatic / spherical aberration corrector in which a coil and a magnetic yoke are attached based on the 12-pole four-stage unit described in FIG.
  • the tip of the soft magnetic metal material shaft 12 in which the coil 13 is wound around the shaft mounting hole 17 of the poles 1, 2, 3, 4 is provided. Fit the convex part and fit.
  • a hole for fixing each shaft 12 is opened in the outer magnetic path ring 14, and the soft magnetic metal material piece 15 is fitted into the hole to connect the shaft 12 and the outer magnetic path ring 14 to form a magnetic path. Form. In this way, a magnetic path is formed for each stage of the multipole element. Since an electric field is also applied to the second and third stage poles, the second and third stage pieces 15 are covered with an insulating sleeve 16 to insulate from the outer magnetic path ring 14.
  • Chromatic aberration correction is performed by exciting a magnetic quadrupole field in the first, second, third, and fourth stages, and simultaneously exciting an electric field quadrupole field that is 45 ° out of phase with the second and third stages.
  • Spherical aberration correction is performed by exciting a magnetic octupole field in the first, second, third, and fourth stages.
  • a dipole field acting as a deflector
  • a hexapole field is excited at each stage, and astigmatism and axial coma are corrected three times.
  • FIG. 4 shows an example in which the chromatic / spherical aberration corrector of FIG. 3 is placed in a vacuum container and incorporated in a scanning electron microscope (hereinafter referred to as SEM).
  • SEM scanning electron microscope
  • This SEM is composed of an SEM column 301 that irradiates or scans a sample with an electron beam, a sample chamber 302 in which a sample stage is stored, a control unit 303 for controlling each component of the SEM column 301 and the sample chamber 302, and the like.
  • illustration and explanation of an ion pump, a turbo molecular pump, vacuum piping, and a vacuum system control mechanism are omitted.
  • the control unit 303 is further connected to a data storage 376 for storing predetermined information, a monitor 377 for displaying acquired images, and an operation console 378 serving as a man-machine interface between the apparatus and the apparatus user.
  • the console 378 is configured by information input means such as a keyboard and a mouse, for example.
  • the field emission electron source 31 is an electron source in which the tip of a single crystal of tungsten is sharpened by electropolishing. The surface is cleaned by energizing and heating with a flashing power source 32, and then in an ultra high vacuum of the order of 10 ⁇ 8 Pa. By applying a voltage of about +5 kV between the extraction electrode 34 and the extraction power source 33, field emission electrons are emitted. Electrons accelerated and converged by the electrostatic lens formed between the extraction electrode 34 and the second anode 35 enter the subsequent component along the optical axis 0.
  • the light is converged by the first condenser lens 320, the beam amount is limited by the movable diaphragm 321, passes through the second condenser lens 322 and the two-stage deflector 323, and enters the aberration corrector 20.
  • the two-stage deflector 323 is adjusted so that the axes of the field emission electron gun 310 and the condenser lenses 320 and 322 coincide with the axis of the aberration corrector 20.
  • the beam exiting the aberration corrector 20 is adjusted by the two-stage deflector 334 so as to coincide with the optical axes of the adjustment lens 324 and the objective lens 331.
  • the aberration corrector 20 of the present embodiment is a quadrupole-octupole aberration corrector and can correct chromatic aberration and spherical aberration.
  • a quadrupole and an octupole are formed at each stage of the aberration corrector 20, and if a 12-pole magnetic pole (which may also serve as an electrode) is used for this, a quadrupole or an octupole, a dipole, a hexapole, Twelve poles can also be formed overlapping.
  • These multipole fields are used to correct parasitic aberrations such as on-axis coma, 3-fold astigmatism, 4-fold astigmatism, etc. caused by electrode and magnetic pole assembly errors and magnetic pole material non-uniformity.
  • the electron beam whose angle corresponding to the off-axis corresponding to canceling out the chromatic aberration and spherical aberration of the objective lens 331 mainly by the aberration corrector 20 is once focused near the ExB deflector 327 by the adjusting lens 324.
  • the reason why the crossover is formed in the vicinity of the ExB deflector is to reduce the influence of the aberration of the ExB deflector 327.
  • the adjustment lens 324 also suppresses an increase in the fourth-order chromatic / spherical combination aberration and the fifth-order spherical aberration after correction of chromatic aberration and spherical aberration. Therefore, in order to obtain a high resolution image by aberration correction, the adjustment lens 324 is necessary. Thereafter, the electron beam is focused on the sample 332 by the objective lens 331 and scanned on the sample by the scanning deflector 329.
  • Reference numeral 328 denotes an objective aligner.
  • a sample stage 333 having a sample placement surface on which the sample 332 is placed is stored.
  • Secondary charged particles (secondary electrons or reflected electrons in this case) generated by electron beam irradiation pass through the objective lens 331 and hit the reflector 325 to generate secondary particles.
  • the generated electrons are detected by the secondary electron detector 326.
  • the ExB deflector 327 bends the trajectory of secondary electrons generated from the sample and directly guides it to the secondary electron detector 326, or adjusts the position where the secondary electrons generated from the sample hit the reflecting plate 325, thereby improving the detection efficiency.
  • the detected secondary electron signal is taken into the control computer 30 as a luminance signal synchronized with scanning.
  • the control computer 30 performs appropriate processing on the acquired luminance signal information and displays it on the monitor 377 as an SEM image. Although only one detector is shown here, a plurality of detectors can be arranged so that images can be acquired by selecting the energy and angular distribution of reflected electrons and secondary electrons. If a coaxial disk-shaped secondary electron detector with a hole in the center is disposed on the optical axis 0, the reflecting plate 325 is not necessarily required.
  • the control unit 303 includes a flushing power supply 32, a drawer power supply 33, an acceleration power supply 36, a first condenser lens power supply 340, a second condenser lens power supply 341, an adjustment lens power supply 351, a deflector power supply 342, an aberration correction coil power supply 343, and an aberration correction voltage.
  • the vacuum vessel 352 also serves as a magnetic shield, it is made of a soft magnetic metal such as permalloy or made of a nonmagnetic metal and a magnetic shield is formed on the surface with a thin plate of permalloy.
  • a coil power supply is connected to the aberration corrector 20 so as to form a quadrupole and an octupole at each stage.
  • a coil for forming a quadrupole and a coil for forming an octupole can be separately wound around the coil 13. In this case, a 4-pole coil power supply and an 8-pole coil power supply are prepared independently.
  • one coil power supply corresponds to each pole, and the control computer 30 calculates the output current of the coil power supply of each pole so as to form a quadrupole field or an octupole field, and so aberration
  • the correction coil power supply 343 outputs a current.
  • the voltage applied to the second and third stage poles is similarly calculated by the control computer 30 and output from the aberration correction voltage source 3431.
  • the beam is moved by the two-stage deflector 323 around the optical axis of the aberration corrector at a constant azimuth (for example, divided into 12 at 30 ° increments), and the SEM image in each case is analyzed for aberration. Can be measured.
  • the plurality of SEM image data is taken into the control computer 30, and aberrations are calculated.
  • the control computer 30 calculates the outputs of the aberration correction coil power supply 343 and the aberration correction voltage source 3431 so as to cancel the calculated aberration, and issues an instruction to these power supplies to correct the aberration.
  • the aberration is measured again, and the aberration correction amount is calculated based on the measured value and output to the power source. This process is repeated several times manually or automatically, and aberration correction is completed when all the aberration amounts in the system are below a preset threshold value.
  • the influence of the fifth-order aberration can be suppressed by projecting the image of the fourth-pole main surface of the aberration corrector 20 onto the main surface of the objective lens 331. ing.
  • the influence of the fifth-order aberration changes greatly in consideration of the beam opening angle. Therefore, it is not necessary to operate the adjustment lens 324 under the exact condition, and the operation may be performed under a condition close to this.
  • FIG. 5 shows a chromatic spherical aberration corrector mainly composed of an electric field quadrupole having 12 stages and 4 stages.
  • fixing brackets 21 and 22 are added to the groove 10 above and below the four poles. This isolates all four poles from the housing.
  • the first and fourth stages are connected only to the voltage source, the second and third stage poles are electromagnetic field composite type poles, and a coil for generating a magnetic field is arranged inside the outer magnetic circuit ring 14.
  • the top 15 is fitted into the hole of the outer magnetic path ring 14 through the insulating sleeve 16 and connected to the shaft 12.
  • the magnetic field that has passed through the poles travels around the outer magnetic path ring 14 to form a magnetic circuit.
  • the second and third stage poles are insulated from the outer magnetic path, mirror body and other poles by the insulating sleeve 16.
  • the chromatic spherical aberration corrector mainly including the electric field quadrupole is formed.
  • FIG. 6 shows a schematic diagram of a length measuring SEM (CD-SEM) equipped with the aberration corrector shown in FIG.
  • CD-SEM length measuring SEM
  • FIG. 6 shows a schematic diagram of a length measuring SEM (CD-SEM) equipped with the aberration corrector shown in FIG.
  • a large magnetic shield 25 is required, but the coil of the heat source is naturally cooled to reduce the thermal drift of the magnetic pole.
  • the coil can be accessed, it is easy to perform maintenance such as repairing the broken wire and changing the number of turns.
  • the configuration shown in FIG. 6 has many parts in common with the configuration of FIG. In this embodiment, a Schottky electron gun 40 is used.
  • the Schottky electron source 41 is an electron source that uses the Schottky effect by diffusing oxygen, zirconium, and the like into a single crystal of tungsten, and a suppressor electrode 42 and an extraction electrode 34 are provided in the vicinity thereof.
  • the Schottky electron source 41 is heated and a voltage of about +2 kV is applied between the extraction electrode 34 and Schottky electrons are emitted.
  • a negative voltage is applied to the suppressor electrode 42 to suppress emission of electrons from other than the tip of the Schottky electron source 41.
  • the energy width and the light source diameter are large, but a large probe current can be taken, and there is no need for flushing, which is suitable for continuous operation.
  • the landing energy is usually suppressed to 1 keV or less from the viewpoint of sample damage.
  • the working distance is constant, the operating conditions of the aberration corrector corresponding to a few observation modes with different landing energy, the retarding voltage value, etc. are stored in the data storage 376.
  • the control computer 30 calls the selected operating condition, sets the condition of each power supply, and executes the observation mode.
  • a sample preparation chamber 401 for carrying a wafer is provided in the sample chamber 302, and the wafer sample is set on the sample stage 333 by the sample transport mechanism 402 through the gate valve 403.
  • the control computer 30 moves the stage by controlling the sample stage control mechanism 404 for the measurement points input in advance, adjusts the focus with the objective lens 331, corrects astigmatism with the astigmatism correction coil 330, and scans the deflector 329.
  • the secondary electron detector 326 and the like are controlled to automatically perform operations such as length measurement, data recording, image acquisition, and data storage.
  • FIG. 7 shows an example in which a scanning transmission electron microscope (STEM) is constructed as a third embodiment.
  • the charged particle optical column for STEM generates an electron beam and emits it at a predetermined acceleration voltage, a scanning deflector 329 that scans the electron beam on the sample, and converges and irradiates the electron beam on the sample.
  • the STEM spherical aberration corrector is disposed, for example, between the electron gun and the objective lens.
  • the aberration corrector 20 of the present embodiment is a spherical aberration corrector having a configuration in which upper and lower hexapoles (or 12 poles) and two transfer lenses 360 are arranged therebetween. The positioning of the upper and lower poles is performed by fitting the rectangular grooves of the cylindrical housing 9 and the poles 1 and 2 as described above. The positions of the two transfer lenses 360 are determined by the three spacers 361.
  • the spacer 361 has a square protrusion that fits into the square groove of the cylindrical housing 9, and can be easily assembled.
  • Control computer 31 ... Field emission electron source, 32 ... Flushing power supply, 33 ... Extraction power supply, 34 ... Extraction electrode, 35 ... Second anode, 36 ... Acceleration power supply , 301 ... SEM column, 302 ... sample chamber, 303 ... control unit, 310 ... field emission electron gun, 320 ... first condenser lens, 321 ... movable aperture, 322 ... second condenser lens, 23 ... Two-stage deflector, 324 ... Adjustment lens, 325 ... Reflector, 326 ... Secondary electron detector, 327 ... ExB deflector, 328 ... Objective aligner, 329 ... Scanning deflector, 330 ... Astigmatism correction coil, 331 ...
  • objective lens 332 ... sample, 333 ... sample stage, 334 ... two-stage deflector, 335 ... deflector power supply, 336 ... side entry sample holder, 340 ... first condenser lens power supply, 341 ... second condenser lens power supply, 342 ... deflector power supply, 343 ... aberration correction coil power supply, 3431 ... aberration correction voltage source, 344 ... scanning coil power supply, 345 ... objective lens power supply, 346 ... retarding power supply, 347 ... astigmatism correction coil power supply, 348 ... objective aligner power supply 349 ... ExB deflector power supply, 350 ... secondary electron detector power supply, 351 ... adjusting lens power supply, 352 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

 高精度で簡単に組み上がる多極子を実現するために、極子を円筒形ハウジング(9)の内側に設けた角溝(10)をガイドにして固定し、多極子を形成することで組み立て精度10マイクロメートル以内、角度数秒以内の多極子を構成する。

Description

多極子およびそれを用いた荷電粒子線装置
 本発明は荷電粒子ビーム装置に係り、特に収差補正器、偏向器などに使用する多極子の構造に関する。
 荷電粒子ビームを応用した顕微鏡、微細加工装置、半導体製造装置などではビームの偏向器や収差補正器に単段または多段の多極子(2、4、6、8極子など)を使用している。近年これらの荷電粒子ビーム応用装置を使って数十ナノメートルオーダーの加工またはサブナノメートルオーダーの観察が行われ、サブナノメートルオーダーの精度でビームを制御することが求められている。これらの装置に組み込まれる偏向器や収差補正器では、もちろん最終的な調整は電気的におこなうが、その前提として多極子を機械精度よく組み立てることが必要である。さもないと、偏向や収差補正のために本来必要とされる多極子場以外に、収差の原因となる寄生多極子場が発生し、その補正のために新たに補正コイルが必要になったり、個々の極子の独立な微調整が必要になるからである。特に球面収差補正器や色収差補正器ではマイクロメートルオーダーの組立て精度が求められている。従来の、精度よく多極子を形成できる手法としは、多極子製造の際、特許文献1には、光軸上に位置決め用部材をセットし、極子を位置決め用部材に押し当てて固定後、位置決め用部材を引き抜く手法が開示されている。特許文献2には、円筒型ハウジング内側にボール状や円筒状のスペーサを配置して多極子の位置決めをおこなう方式が開示されている。特許文献3には、個々の極子をベース板にピンで固定する方式、一体の極子を固定後、ワイヤーカッターで切り離す手法が開示されている。特許文献4には、多段連結極子をベースブロックに固定する方式が開示されている。特許文献5には、円筒型セラミクス筒内壁上に設けた金属層を電極として静電多極子を形成する方式が開示されている。
特開平11-339709号 特開平5-334979号 特開2004-241190号 特開2009-43533号 特開2006-139958号
 高精度化と組立て容易性の両立をめざした従来の多極子組み立て方や構造では以下のような課題があった。
 まず光軸上に位置決め用部材をセットし、極子を位置決め用部材に押し当てて固定後、位置決め用部材を引き抜く手法では、極子先端の凹凸を10マイクロメートル以内に抑えようとすると、位置決め用部材を引き抜くことが困難である。極子先端を傷つけずに位置決め用部材を引き抜くには、位置決め用部材と極子先端の間にガタがなければならず、特に8極子や12極子、20極子など極数が多いほど、また段数が多いほど、このガタが大きくなければならず、結局、位置決め精度10マイクロメートル以内に収めることは実用上難しいという課題があった。
 円筒型ハウジング内側にボール状や円筒状のスペーサを配置して多極子の位置決めをおこなう特許文献2に記載の構造では、ボールや円筒スペーサ、ハウジングは精度よく加工できるが、組み立てるための部品点数が非常に多くなり組立てに手間がかかるという課題がある。またスペーサの固定方法にも課題がある。スペーサ自体は非常に精度よく製作できるが、組み立て時に複数のスペーサを隙間なく同時にハウジング内に組み込む必要があり、その保持ができず、組み立てが困難である。
 一方、スペーサを保持しておくために円筒面にねじ孔など非対称的な加工をして保持するなら、その位置決め精度は保てなくなることが課題である。また輸送に伴う振動でスペーサがずれる心配がある。
 個々の極子をベース板にピンで固定する方式では、1つの極子につき、調整する量は光軸-極子先端間の距離と、光軸に垂直な面内での極子の方位角の2つである。それらを少なくとも2本のピンで調整する必要がある。あるいは1本のピンで光軸-極子先端間の距離を調整し、方位角はガイドで固定することもできる。いずれにしろ、それらをマイクロメートルオーダーで調整するためには、測定とピンの偏心加工が繰り返し必要になり、非常に手間がかかり、組み立て者の技量に依存して精度が決まる。それゆえ再現性に乏しく、量産することができないという課題がある。
 一体の極子をベース板に固定後、ワイヤーカッター加工で切り離す方式ではマイクロメーターオーダーの加工精度があり、切り離しによる極子の磁気特性の変化も軽微に留まるよう工夫されている。しかし加工後はベース板と極子を分解すると精度を保持できないため、洗浄が困難である。そのため真空外で使用する磁界型多極子の製造には向いているが、真空中で使用する静電型多極子には適していない。またこの方法で多段の多極子を形成することは難しい。なぜなら、ワイヤーが長くなるのでワイヤーカッター加工で精度を出すのがより困難になるからである。
 多段連結極子をベースブロックに固定する方式は、極子をワイヤーカッター加工や研削加工で製作するので、簡単にマイクロメートルオーダーの組立て精度が得られ、部品点数も少なく、組み立ても容易である。電界型、磁界型、複合型いずれの多極子にも適用でき、単段ばかりでなく多段多極子の形成も容易であるが、ベースブロックにセラミクスを必要とする静電型多段多極子の場合、高精度な溝加工をしたセラミクス製ベースブロックが高価でありコストの面で課題がある。
 円筒型セラミクス筒内壁上に設けた金属層で電極を形成する多極子では、機械精度のよい多極子が形成できるが、セラミクス内壁でのチャージアップ、非対称な電圧導入線の電界の影響が出ること、磁界型多極子ができないことなどの課題がある。
 本出願では組立てが容易かつ調整が不要で、部品点数が少なく、10マイクロメートル以内の組立て精度が得られる多段または単段の多極子を提供する。
 本発明では以下の手段により、上記課題の解決を図る。
金属材を用いて構成された極子部材と、円筒形ハウジングとを備え、その円筒形ハウジングの上端と下端の内壁に光軸と平行に、極子の数だけガイド溝を設ける。このガイド溝に、極子部材を光軸方向にスライドさせながら挿入し、止めネジで極子部材を円筒形ハウジングに固定して多極子を形成する。極子部材として複数の極子を光軸方向に支持部材を介して連結した連結極子部材を使い、多段多極子を形成する。
また極子部材として単体金属の極子、ハウジングとして極子1段分の厚さのスペーサを使い、上記方法で単段の多極子を形成することもできる。
 本発明によれば、多極子の内径凹凸、極子毎の角度など、組立て精度:10マイクロメートル以内、角度数秒以内の多極子を実現することができる。なぜなら今日、極子の形状やガイド溝の形状は、ワイヤーカッター加工や研削加工で数マイクロメートルの機械精度で加工することができるので、それらを組み合わせて、前述の組立て精度を得ることが十分可能となる。
 本発明によれば、多極子を形成するための基本部品は極子と円筒形ハウジングと止めネジだけで調整箇所がないため、組立て作業者の技能に左右されずに、短時間に、再現性良く、機差もほとんどなく多極子を組み立てることが可能である。
 本発明によれば多極子の構成部品数が少なく、単純な構造なので、装置運搬による振動やコイルによる発熱などで極子が緩むこともなく、安定した装置が提供できる。
 本発明によれば極子製作時に同一加工条件で予備の極子も製作しておけるので、極子損傷時の極子の入れ替えなどメンテナンス作業が容易に行える。
 本発明によれば、組立て精度ばかりでなく、構造上、多段の多極子間の方位角のズレも小さく抑えられるので高性能な電子光学装置が提供できる。
本発明の4連結極子部材を示す図である。 本発明の円筒形ハウジングに組み込まれた12極子4段ユニットを示す図である。 色・球面収差補正器の構造の一例を示す図である。 色・球面収差補正器付走査電子顕微鏡の一例を示す図である。 色・球面収差補正器の構造の別の例を示す図である。 色・球面収差補正器付測長走査電子顕微鏡の一例を示す図である。 球面収差補正器付走査透過型電子顕微鏡の一例を示す図である。
 本発明の実施の形態について図を用いて説明する。なお以下の各図では同一部分には同一の符号を付し、その重複説明は必要な場合に限り行う。
 12極子4段の色・球面収差補正器の一例を複数の図面を用いて説明する。
 図1は本発明の第一の実施の形態の色・球面収差補正器のうち、その中心部分の12極子4段ユニットの要素のひとつである4連結極子部材7を模式的に示したものである。極子1から極子4の材質は、パーマロイのほか、純鉄、パーメンジュール等の軟磁性金属を用いることができる。これら4個の極子は、アルミナ材の支柱5,6を介してロウ付けにより一体化されて、4連結極子部材7を形成する。極子先端部の傾斜面8は、4連結極子部材7を形成後に4つの極子を同時加工で仕上げて、角度をそろえる。同一の冶具を使い、同一の加工条件で12個の4連結極子部材を仕上げるので、マイクロメートルオーダーで同じ形状の4連結極子部材をつくることが可能である。
 図2は図1の4連結極子部材を、円筒形ハウジング内に組み込んだ12極子4段ユニットの外観図である。円筒形ハウジング9の開口両端部の内壁部には12本の角溝10が内周に形成されている。4連結極子部材7の傾斜面8の鋭角部分を光軸0側に向けて、円筒形ハウジング9の角溝10に4連結極子部材7を嵌め込み、光軸0方向にスライドさせて12極子を組み立てる。1段目の極子1と4段目の極子4は、角溝10にあけた孔を通してネジ11で円筒形ハウジング9に固定される。円筒形ハウジング9は非磁性金属製で、円筒形ハウジング9断面を貫通する開口の両端部に形成する角溝10は4連結極子部材7の1段目の極子1と4段目の極子4が嵌め込まれるように形成されている。2段目の極子2と3段目の極子3は円筒形ハウジング9に接触しないように、2段目の極子2と3段目の極子3が配置される前記円筒形ハウジング側壁の厚みは肉薄になっている。
 図3に、図2で説明した12極子4段ユニットをベースにコイルや磁気ヨークをとりつけた色・球面収差補正器の構造を示す。各極子端部には、円筒形ハウジング9の側壁に設けられた孔18を通して、極子1、2、3、4のシャフト取付穴17にコイル13を巻いた軟磁性金属材のシャフト12の先端の凸部を嵌めこみ、取り付けられる。外磁路リング14には各シャフト12を固定するための孔が開いており、この孔に上記軟磁性金属材のコマ15を嵌めてシャフト12と外磁路リング14を連結して磁路を形成する。このようにして多極子の各段毎に磁路が形成される。2段目と3段目の極子には電界も印加するので、2段目と3段目のコマ15には絶縁スリーブ16をかぶせて外磁路リング14と絶縁する。
 色収差補正は1、2、3、4段目に磁界4極子場を励起し、同時に2、3段目に磁界4極子場と45°位相のずれた電界4極子場を励起することによりおこなう。球面収差補正は1、2、3、4段目に磁界8極子場を励起することによりおこなう。実際の補正に際しては、各多極子は光軸に対しナノメートルオーダーで機械的に整列させることはできないので、各段に2極子場(偏向器として作用する)を励起し、重畳して各段の4極子場の中心をビームが通るように電気的に調整する。また各段に6極子場を励起して3回非点収差および軸上コマ収差補正をおこなう。
 図4に、図3の色・球面収差補正器を真空容器に入れて、走査型電子顕微鏡(以下、SEMと称す)に組み込んだ一例を示す。このSEMは電子線を試料上に照射ないし走査させるSEMカラム301、試料ステージが格納される試料室302、SEMカラム301や試料室302の各構成部品を制御するための制御ユニット303等により構成されている。ここではイオンポンプやターボ分子ポンプと真空配管、真空系制御機構についての図示,説明は省略している。制御ユニット303には、更に、所定の情報を格納するためのデータストレージ376や取得画像を表示するモニタ377、装置と装置ユーザとのマン・マシンインタフェースとなる操作卓378が接続されている。操作卓378は、例えば、キーボードやマウスなどの情報入力手段により構成される。
 初めに、SEMカラム301内部の構成要素について説明する。電界放出電子源31はタングステンの単結晶先端を電界研磨して尖らせた電子源で、フラッシング電源32により通電加熱して表面を清浄にした後,10-8Paオーダーの超高真空中にて引き出し電極34との間に+5kV程度の電圧を引き出し電源33で印加することにより、電界放出電子を放出させる。引き出し電極34と第2陽極35との間で形成される静電レンズにより加速、収束された電子は、光軸0に沿って後段の構成要素へ入射する。第1コンデンサーレンズ320で収束され、可動絞り321にてビーム量を制限され、第2コンデンサーレンズ322および2段偏向器323を通り、収差補正器20に入射する。2段偏向器323は、電界放出電子銃310および、コンデンサーレンズ320、322の軸と収差補正器20の軸が一致するように調整される。収差補正器20を出たビームは、2段偏向器334により調整レンズ324、対物レンズ331の光軸に一致するよう調整される。
 次に、収差補正器の動作について説明する。本実施例の収差補正器20は、4極―8極子系収差補正器であり、色収差と球面収差が補正可能である。収差補正器20の各段で4極子、8極子を形成するが、これに12極の磁極(電極を兼ねてもよい)を用いると、4極子、8極子のほか、2極子、6極子、12極子も重畳して形成可能である。電極、磁極の組み立て誤差、磁極材料の不均一性により生じる寄生収差たとえば軸上コマ収差、3回非点収差、4回非点収差などを補正するためにこれらの多極子場を使用する。
 収差補正器20により主に対物レンズ331の色収差、球面収差を相殺するに相当する離軸に応じた角度を調整された電子ビームは、調整レンズ324により一度ExB偏向器327近傍に集束される。ExB偏向器近傍にクロスオーバを形成するのは、ExB偏向器327の収差の影響を小さくするためである。また、調整レンズ324により、色収差、球面収差補正後の4次の色・球面組み合わせ収差や5次球面収差の増大も抑制される。よって、収差補正で高分解能像を得るためには、調整レンズ324が必要である。その後、電子ビームは、対物レンズ331にて試料332上に集束され、走査偏向器329にて試料上を走査される。符号328は対物アライナである。
 試料室302内部には、試料332を載置する試料載置面を備えた試料ステージ333が格納されている。電子線照射により発生する2次荷電粒子(この場合は2次電子または反射電子)は、対物レンズ331を抜けて、反射板325に当たり副次粒子を発生させる。発生した電子は、2次電子検出器326で検出される。ExB偏向器327は、試料から発生する2次電子の軌道を曲げて2次電子検出器326に直接導き、あるいは試料から発生する2次電子が反射板325に当たる位置を調整し検出効率を向上させる。検出された2次電子信号は、走査と同期した輝度信号として制御コンピュータ30に取り込まれる。制御コンピュータ30は、取り込んだ輝度信号情報に対して適当な処理を行い、モニタ377上にSEM画像として表示される。検出器はここでは1つしか図示していないが、反射電子や2次電子のエネルギーや角度分布を選別して画像取得できるように、複数配置することもできる。中心に孔のあいた同軸円板状の2次電子検出器を光軸0上に配置すれば反射板325は必ずしも必要ではない。
 制御ユニット303は、フラッシング電源32、引き出し電源33、加速電源36、第1コンデンサーレンズ電源340、第2コンデンサーレンズ電源341、調整レンズ電源351、偏向器電源342、収差補正コイル電源343、収差補正電圧源3431、走査コイル電源344、対物レンズ電源345、リターディング電源346、非点補正コイル電源347、対物アライナー電源348、ExB偏向器電源349、2次電子検出器電源350等により構成され、それぞれSEMカラム内の対応する構成要素と、信号伝送路や電気配線等で接続されている。
 真空容器352は磁気シールドを兼ねるのでパーマロイなどの軟磁性金属で作るか、非磁性金属で作成し表面にパーマロイの薄板で磁気シールドを形成する。収差補正器20に対して、各段に4極子および8極子を形成するよう、コイル電源が接続される。コイル13には4極子形成用と8極子形成用のコイルを分離して巻くこともできる。この場合は4極子用コイル電源と8極子用コイル電源は独立に用意する。分離巻きしない場合には各極子に1つのコイル電源が対応し、4極子場や8極子場を形成するように制御コンピュータ30が各極子のコイル電源の出力電流を計算して、そのように収差補正コイル電源343に電流を出力させる。また2、3段目極子に印加する電圧も、同様に制御コンピュータ30により計算され、収差補正電圧源3431により出力される。
 収差補正器20の収差調整量を決めるには収差補正する以前に、系の収差測定をする必要がある。このためには2段偏向器323でビームを、収差補正器の光軸の周りを一定の方位角(たとえば30°刻みで12分割など)で移動させ、各場合のSEM画像を解析して収差を計測することができる。この複数のSEM画像データは制御コンピュータ30に取り込まれ、収差を計算する。次に制御コンピュータ30は計算された収差を相殺するように収差補正コイル電源343、収差補正電圧源3431の出力を計算し、これらの電源に命令を出して収差を補正する。再び収差を計測して、その値に基づきまた収差補正量を計算して電源に出力させる。このプロセスを何回かマニュアルまたは自動で繰り返して、系のすべての収差量があらかじめ設定したしきい値以下になったら、収差補正が完了する。調整レンズ324の設定条件の一つとして、収差補正器20の4段目の極子主面の像を対物レンズ331の主面に投影すると、5次収差の影響を小さく抑えることができることが知られている。実際にはビーム開き角との兼ね合いで5次収差の影響は大きく変化するので、厳密にその条件で調整レンズ324を動作させる必要はなく、これに近い条件で運用すればよい。
 第二の実施例として図5に、12極子4段の電界4極子を主体とした色球面収差補正器を示す。この場合は4段の極子がすべて絶縁されている必要があるので、ロウ付け極子部材としては4個の極子の上下に溝10へ固定用の金具21、22を加える。これにより4つの極子はすべてハウジングと絶縁される。1段目と4段目は電圧源のみ接続し、2、3段目の極子は電磁界複合型極子であり、磁場発生のためのコイルが外磁路リング14の内側に配置される。絶縁スリーブ16を介してコマ15を外磁路リング14の穴にはめ込み、シャフト12と連結する。極子をぬけた磁場は外磁路リング14内をまわって磁気回路を形成する。2、3段目の極子は絶縁スリーブ16により外磁路や鏡体、他の極子とも絶縁される。以上のようにして電界4極子を主体とした色球面収差補正器が形成される。
 図6に上記図5の収差補正器を搭載した測長SEM(CD-SEM)の概略図を示す。ここでは図5の収差補正ユニットのうち、コイル12と外磁路リング14を真空外に出した例を示している。これにより大きな磁気シールド25が必要になるが、発熱源のコイルが自然冷却されて磁極の熱ドリフトが小さくなる。またコイルにアクセスできるので、コイルの断線修理や巻き数変更などメンテナンスが容易になるという特徴がある。図6に示した構成は、図4の構成と共通する部分が多いので、構造の異なる部分のみ説明する。本実施例ではショットキー電子銃40を使用する。ショットキー電子源41はタングステンの単結晶に、酸素とジルコニウムなどを拡散させショットキー効果を利用する電子源で、その近傍にサプレッサー電極42、引き出し電極34が設けられる。ショットキー電子源41を加熱し、引き出し電極34との間に+2kV程度の電圧を印加することにより、ショットキー電子を放出させる。サプレッサー電極42には負電圧が印加されショットキー電子源41の先端以外からの電子放出を抑制する。電界放出電子銃に比べて、エネルギー幅や光源径は大きくなるが、プローブ電流が多くとれ、フラッシングの必要がなく連続運転に適している。
 本実施例のCD-SEMでは半導体ウェハー上のレジストパターンなどを計測するので、試料ダメージの観点から、通常はランディングエネルギーを1keV以下に抑えて使用する。CD-SEMではワーキングディスタンスが一定であり、ランディングエネルギーの異なる2、3の観察モードに対応した収差補正器の動作条件やリターディング電圧値等がデータストレージ376に格納されており、オペレータの選択により制御コンピュータ30が選択された動作条件を呼び出して、各電源を条件設定して観察モードを実行する。試料室302にはウェハーを搬入するための試料準備室401が設けられ、ゲートバルブ403を通ってウェハー試料が試料搬送機構402で試料ステージ333にセットされる。あらかじめ入力された計測箇所について制御コンピュータ30は試料ステージ制御機構404を制御してステージ移動をおこない、対物レンズ331でフォーカスをあわせ、非点補正コイル330で非点収差を補正し、走査偏向器329、2次電子検出器326などを制御して、測長、データ記録、画像取得、データ格納などの動作を自動で行う。
 第三の実施例として走査透過電子顕微鏡(STEM)を構成した例を図7に示す。STEM用の荷電粒子光学カラムは、電子ビームを発生し所定の加速電圧で放出する電子銃310、試料上に電子ビームを走査する走査偏向器329、電子ビームを試料上に収束して照射するための対物レンズ331、試料を透過した電子線を検出するためのアニュラー検出器355、軸上検出器357などにより構成される。透過電子を検出する必要があるためSTEM用の試料は薄片化されている必要があり、メッシュなどに固定された状態で、サイドエントリ試料ホールダ336により電子線の光軸上に配置される。
 高加速電圧のSTEMでは色収差より球面収差で分解能が主に制限されており、球面収差のみを補正する場合には電磁重畳極子を使う必要がなく、すべて磁界型多極子を使用する。STEM用球面収差補正器は、例えば、電子銃と対物レンズの間に配置される。本実施例の収差補正器20は、上下の6極子(または12極子)とその間にトランスファーレンズ360を2段配置した構成の球面収差補正器である。上下の極子の位置決めを前述のように円筒形ハウジング9の角溝と極子1、2のはめ合いでおこなう。3個のスペーサ361にて2個のトランスファーレンズ360の位置を決める。スペーサ361には円筒形ハウジング9の角溝にはめ込む四角い突起がついており、容易に組立てができる。
0…光軸、1…極子、2…極子、3…極子、4…極子、5…アルミナ支柱、6…アルミナ支柱、7…4連結極子部材、8…傾斜面、9…円筒形ハウジング、10…角溝、11…ネジ、12…シャフト、13…コイル、14…外磁路リング、15…コマ、16…絶縁スリーブ、17…シャフト取付穴、18…シャフト貫通孔、20…収差補正器、21…金具、22…金具、25…パーマロイシールド、30…制御コンピュータ、31…電界放出電子源、32…フラッシング電源、33…引き出し電源、34…引き出し電極、35…第2陽極、36…加速電源、301…SEMカラム、302…試料室、303…制御ユニット、310…電界放出電子銃、320…第1コンデンサーレンズ、321…可動絞り、322…第2コンデンサーレンズ、323…2段偏向器、324…調整レンズ、325…反射板、326…2次電子検出器、327…ExB偏向器、328…対物アライナー、329…走査偏向器、330…非点補正コイル、331…対物レンズ、332…試料、333…試料ステージ、334…2段偏向器、335…偏向器電源、336…サイドエントリ試料ホールダ、340…第1コンデンサーレンズ電源、341…第2コンデンサーレンズ電源、342…偏向器電源、343…収差補正コイル電源、3431…収差補正電圧源、344…走査コイル電源、345…対物レンズ電源、346…リターディング電源、347…非点補正コイル電源、348…対物アライナー電源、349…ExB偏向器電源、350…2次電子検出器電源、351…調整レンズ電源、352…真空容器、353…投射レンズ、354…投射レンズ電源、355…アニュラー検出器、356…アニュラー検出器電源、357…軸上検出器、358…軸上検出器電源、360…トランスファーレンズ、361…スペーサ、376…データストレージ、377…モニタ、378…操作卓、40…ショットキー電子銃、41…ショットキー電子源、42…サプレッサー電極、44…第一陽極、401…試料準備室、402…試料搬送機構、403…ゲートバルブ、404…試料ステージ制御機構、

Claims (9)

  1.  複数の極子と、前記複数の極子を支柱に一体化形成した極子部材と、中心部に荷電粒子線が通過しえる、貫通する開口部を有する円筒形ハウジングとを備え、前記円筒形ハウジングは前記開口部の内壁の円周上に光軸方向に平行な溝を複数備え、前記極子部材は、前記溝に嵌め込んで固定されるように配置することを特徴とする多極子。
  2.  請求項1に記載の多極子において、前記複数の極子は、先端部が同一方向を向くように前記支柱に所定の間隔で多段に形成され、前記円筒形ハウジングには、前記開口部の内壁の両端部に前記溝が設けられ、前記円筒形ハウジングの中間部の内壁の厚さは、前記両端部の内壁の厚さより薄く形成し、前記極子部材は、前記溝と、前記支柱に形成された前記多段の極子の内、両端部の極子とで、前記円筒形ハウジングに固定されることを特徴とする多極子。
  3.  請求項2に記載の多極子において、前記極子は軟磁性金属材、若しくは軟磁性金属材と非磁性金属材を用いて構成されており、前記極子部材は、前記複数の極子を、絶縁体を挟んで光軸方向に対して平行に所定の間隔で固定して配置することを特徴とする多極子。
  4.  請求項3に記載の多極子において、前記絶縁体はアルミナ材であり、前記極子の前記支柱への固定方法がロウ付けであることを特徴とする多極子。
  5.  請求項2に記載の多極子において、4段以上の多段多極子を用いたことを特徴とする多極子。
  6.  請求項3に記載の多極子と、外磁路とを備え、前記多極子はコイルを巻いたシャフトを介して、前記外磁路と連結して磁路を形成することを特徴とする色及び球面収差補正器。
  7.  請求項6に記載の色及び球面収差補正器において、4段以上の多段多極子を用いたことを特徴とする色及び球面収差補正器。
  8.  請求項6に記載の色及び球面収差補正器を真空雰囲気にて搭載したことを特徴とする荷電粒子線装置。
  9.  請求項8に記載の荷電粒子線装置において、前記色及び球面収差補正器は、4段以上の多段多極子を用いたことを特徴とする荷電粒子線装置。
PCT/JP2012/001360 2011-03-30 2012-02-29 多極子およびそれを用いた荷電粒子線装置 WO2012132228A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112012000586.4T DE112012000586B4 (de) 2011-03-30 2012-02-29 Mehrpol, chromatischer und sphärischer Aberrationskorrektor und Ladungsteilchen-Strahlvorrichtung mit demselben
US14/000,236 US9343260B2 (en) 2011-03-30 2012-02-29 Multipole and charged particle radiation apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-073877 2011-03-30
JP2011073877A JP5715866B2 (ja) 2011-03-30 2011-03-30 多極子およびそれを用いた収差補正器または荷電粒子線装置

Publications (1)

Publication Number Publication Date
WO2012132228A1 true WO2012132228A1 (ja) 2012-10-04

Family

ID=46930024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001360 WO2012132228A1 (ja) 2011-03-30 2012-02-29 多極子およびそれを用いた荷電粒子線装置

Country Status (4)

Country Link
US (1) US9343260B2 (ja)
JP (1) JP5715866B2 (ja)
DE (1) DE112012000586B4 (ja)
WO (1) WO2012132228A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014061835A (ja) 2012-09-24 2014-04-10 Hitachi Automotive Systems Ltd ブレーキ制御装置
JP6219741B2 (ja) * 2014-02-13 2017-10-25 日本電子株式会社 多極子レンズの製造方法、多極子レンズ、および荷電粒子線装置
JP6267543B2 (ja) 2014-02-28 2018-01-24 株式会社日立ハイテクノロジーズ 収差補正器及びそれを用いた荷電粒子線装置
CN106104746B (zh) * 2014-04-04 2017-12-05 株式会社日立高新技术 带电粒子束装置及球面像差校正方法
TWI506666B (zh) * 2014-08-08 2015-11-01 Nat Univ Tsing Hua 桌上型電子顯微鏡及其複合多極-聚焦可調式磁透鏡
US11014163B2 (en) * 2017-04-14 2021-05-25 Desktop Metal, Inc. Calibration of 3D printer via computer vision
CN116864359A (zh) * 2017-09-29 2023-10-10 Asml荷兰有限公司 用于带电粒子束检查的样本预充电方法和设备
US11769650B2 (en) 2019-01-21 2023-09-26 Hitachi High-Tech Corporation Multistage-connected multipole, multistage multipole unit, and charged particle beam device
JP2022127284A (ja) 2021-02-19 2022-08-31 株式会社日立ハイテク 多極子ユニットおよび荷電粒子線装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210749A (ja) * 1988-11-21 1990-08-22 Siemens Ag 荷電二次粒子の検出装置
JP2004241190A (ja) * 2003-02-04 2004-08-26 Jeol Ltd 多極子レンズ用の多極子製造方法、多極子レンズ及び荷電粒子線装置
JP2007287365A (ja) * 2006-04-13 2007-11-01 Jeol Ltd 多極子レンズ及び多極子レンズの製造方法
JP2009043533A (ja) * 2007-08-08 2009-02-26 Hitachi High-Technologies Corp 収差補正器およびそれを用いた荷電粒子線装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334979A (ja) 1992-06-01 1993-12-17 Agency Of Ind Science & Technol 荷電ビーム用レンズ構体
JP3504856B2 (ja) 1998-05-29 2004-03-08 日本電子株式会社 静電偏向装置と静電偏向装置の製造方法
US7138629B2 (en) * 2003-04-22 2006-11-21 Ebara Corporation Testing apparatus using charged particles and device manufacturing method using the testing apparatus
JP4276929B2 (ja) * 2003-11-18 2009-06-10 株式会社日立ハイテクノロジーズ 荷電粒子線色収差補正装置および該収差補正装置を搭載した荷電粒子線装置
JP2006139958A (ja) 2004-11-10 2006-06-01 Toshiba Corp 荷電ビーム装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210749A (ja) * 1988-11-21 1990-08-22 Siemens Ag 荷電二次粒子の検出装置
JP2004241190A (ja) * 2003-02-04 2004-08-26 Jeol Ltd 多極子レンズ用の多極子製造方法、多極子レンズ及び荷電粒子線装置
JP2007287365A (ja) * 2006-04-13 2007-11-01 Jeol Ltd 多極子レンズ及び多極子レンズの製造方法
JP2009043533A (ja) * 2007-08-08 2009-02-26 Hitachi High-Technologies Corp 収差補正器およびそれを用いた荷電粒子線装置

Also Published As

Publication number Publication date
DE112012000586T5 (de) 2014-01-16
JP5715866B2 (ja) 2015-05-13
JP2012209130A (ja) 2012-10-25
DE112012000586B4 (de) 2017-08-17
US9343260B2 (en) 2016-05-17
US20130320227A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5715866B2 (ja) 多極子およびそれを用いた収差補正器または荷電粒子線装置
JP5028181B2 (ja) 収差補正器およびそれを用いた荷電粒子線装置
JP6267543B2 (ja) 収差補正器及びそれを用いた荷電粒子線装置
US10446361B2 (en) Aberration correction method, aberration correction system, and charged particle beam apparatus
JP6554288B2 (ja) 荷電粒子線装置
JP4620981B2 (ja) 荷電粒子ビーム装置
JP4988216B2 (ja) 収差補正装置を搭載した荷電粒子線装置
JP4275441B2 (ja) 収差補正器付電子線装置
JP5660860B2 (ja) 粒子光学レンズの軸収差用の補正装置
JP4708854B2 (ja) 荷電粒子線装置
JP4881661B2 (ja) 荷電粒子線装置
US7326927B2 (en) Focusing lens and charged particle beam device for titled landing angle operation
JP2006216396A (ja) 荷電粒子線装置
JP6134145B2 (ja) 荷電粒子線装置及び荷電粒子線装置における軌道修正方法
JP4291827B2 (ja) 走査電子顕微鏡又は測長semの調整方法
WO2019224895A1 (ja) 荷電粒子線装置及びその軸調整方法
JP2005251440A (ja) 電子線装置及び該装置を用いたデバイス製造方法
US11769650B2 (en) Multistage-connected multipole, multistage multipole unit, and charged particle beam device
JP5204277B2 (ja) 荷電粒子線装置
JP6737539B2 (ja) 荷電粒子線装置
US20230245852A1 (en) Multiple particle beam microscope and associated method with fast autofocus around an adjustable working distance
US20200185186A1 (en) Charged Particle Beam Device and Electrostatic Lens
JP2011040256A (ja) 走査荷電粒子線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765357

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000236

Country of ref document: US

Ref document number: 112012000586

Country of ref document: DE

Ref document number: 1120120005864

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765357

Country of ref document: EP

Kind code of ref document: A1