WO2012131790A1 - リチウム含有化合物用熱処理容器 - Google Patents

リチウム含有化合物用熱処理容器 Download PDF

Info

Publication number
WO2012131790A1
WO2012131790A1 PCT/JP2011/003667 JP2011003667W WO2012131790A1 WO 2012131790 A1 WO2012131790 A1 WO 2012131790A1 JP 2011003667 W JP2011003667 W JP 2011003667W WO 2012131790 A1 WO2012131790 A1 WO 2012131790A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
containing compound
heat treatment
treatment container
mass
Prior art date
Application number
PCT/JP2011/003667
Other languages
English (en)
French (fr)
Inventor
康太 小池
敬 阿知波
孝広 神谷
Original Assignee
東京窯業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京窯業株式会社 filed Critical 東京窯業株式会社
Priority to CN201180069879XA priority Critical patent/CN103476733A/zh
Priority to US14/008,755 priority patent/US20140017424A1/en
Priority to KR1020137025869A priority patent/KR101503633B1/ko
Publication of WO2012131790A1 publication Critical patent/WO2012131790A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/1015Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]

Definitions

  • the present invention relates to a heat treatment container for a lithium-containing compound used when heat-treating a lithium-containing compound.
  • Various compounds, especially inorganic compounds, are produced through a heat treatment process.
  • the heat treatment is performed by heating in a state where a heat-treated compound (inorganic compound or a raw material thereof) is arranged in a heat-resistant heat treatment container.
  • the heat treatment container is required not only to have heat resistance but also to be stable with respect to the heat treatment compound.
  • Lithium-containing compounds are used, for example, as positive electrode active materials for lithium ion batteries.
  • the lithium-containing compound include LiMnO 2 compounds, LiNi 1/3 Co 1/3 Mn 1/3 O 2 compounds, LiMn 2 O 4 compounds, LiCoO 2 compounds, and LiNiO 2 compounds.
  • a positive electrode active material (lithium-containing compound) for a lithium ion battery is produced by firing a raw material powder.
  • Heat treatment (firing) of this lithium-containing compound is generally carried out by storing a heat-resistant material such as alumina, mullite, cordierite, spinel, etc. in a fired container (slag). Is called.
  • the mortar is described in, for example, Japanese Patent Application Laid-Open No. 2009-292704.
  • a bowl composed mainly of cordierite has high thermal shock resistance.
  • the reactivity with a lithium containing compound is high, there existed a problem that the purity of the lithium containing compound after heat processing fell by mixing of a reaction product.
  • the positive electrode active material of a lithium ion battery when such impurities are mixed, not only the battery performance of the lithium ion battery is deteriorated but also a source of short circuit may be caused.
  • the mortar composed mainly of alumina or spinel has low reactivity with the lithium-containing compound.
  • the higher the thermal expansion coefficient and the higher the content of these components the easier it is to crack due to thermal shock. For this reason, it has been difficult to increase the content of alumina or spinel.
  • Japanese Patent Application Laid-Open No. 2009-292704 describes a bowl made of spinel, cordierite, and mullite. These materials have the problems described above.
  • This invention is made
  • the present inventors have studied the heat treatment container for lithium-containing compounds, and as a result, have come to make the present invention.
  • the heat treatment container for a lithium-containing compound of the present invention is a heat treatment container for a lithium-containing compound in which a lithium-containing compound is disposed when heat-treating the lithium-containing compound. It contains alumina (Al 2 O 3 ) and has a porosity of 10 to 30%.
  • the heat treatment container for a lithium-containing compound of the present invention preferably contains silica (SiO 2 ) at 5 to 30 mass% when the whole is 100 mass%.
  • the heat treatment container for a lithium-containing compound of the present invention is preferably formed from alumina and mullite.
  • the heat treatment container for a lithium-containing compound of the present invention contains alumina in a large amount of 60 to 95 mass%, so that the reaction with the lithium-containing compound is suppressed. Further, by setting the porosity to 10 to 30%, the occurrence of cracks during thermal shock is suppressed.
  • the heat treatment container for a lithium-containing compound of the present invention suppresses the reactivity with the lithium-containing compound, thereby preventing the reaction product from contaminating the lithium-containing compound and cracking (breaking) due to thermal shock.
  • the container is suppressed.
  • the heat treatment container for a lithium-containing compound of the present invention (hereinafter referred to as the heat treatment container of the present invention) is a heat treatment container for a lithium-containing compound in which the lithium-containing compound is disposed when heat-treating the lithium-containing compound.
  • the lithium-containing compound to be heat-treated may be a compound containing lithium (Li) in its chemical formula. Furthermore, the mixture which mixed the compound containing lithium may be sufficient.
  • the heat treatment container of the present invention contains a large amount of a material (alumina) having low reactivity with respect to the lithium-containing compound (heat treatment compound) to be heat treated (main component) and adjusts the porosity (10 ⁇ 30%).
  • the heat treatment container of the present invention contains alumina (Al 2 O 3 ) at 60 to 95 mass% when the whole is 100 mass%.
  • Alumina which is the main constituent of the heat treatment container of the present invention, is a material that has low reactivity with lithium-containing compounds. That is, the heat treatment container of the present invention contains a large amount of alumina, so that when the lithium-containing compound is heat-treated, the lithium-containing compound reacts with the heat treatment container and a reaction product is prevented from being generated. As a result, it is possible to suppress contamination of the lithium-containing compound to be heat-treated with the reaction product.
  • the heat treatment container of the present invention contains 60 to 95 mass% of alumina when the entire mass is 100 mass%.
  • alumina at 60 to 95 mass%, the reaction with the lithium-containing compound can be suppressed, and the thermal shock resistance can be improved.
  • the content ratio is lower than 60 mass%, a reaction is likely to occur with the lithium-containing compound, and when the content ratio exceeds 95 mass%, the heat treatment container is likely to be cracked.
  • a more preferable content ratio is 70 to 90 mass%.
  • the heat treatment container of the present invention has a porosity of 10 to 30%. When the porosity falls within this range, the thermal shock resistance of the heat treatment container is improved. If the porosity is less than this range, cracks are likely to occur due to heat treatment, and if the porosity exceeds this range, peeling due to lithium erosion is caused.
  • the porosity is more preferably 15 to 25%.
  • the heat treatment container of the present invention preferably contains silica (SiO 2 ) in an amount of 5 to 30 mass% when the whole is 100 mass%.
  • Silica is a compound that exhibits the effect of improving the thermal shock resistance of the heat treatment container.
  • Silica has reactivity with the lithium-containing compound to be heat-treated, and it is preferable that the content thereof is small.
  • the silica content is less than this range, the alumina content is relatively increased, the thermal shock resistance is lowered, and cracking (damage) of the heat treatment container occurs.
  • a content rate becomes high exceeding this range it will become easy to produce a reaction with a lithium containing compound, and it will become easy to produce the contamination of the lithium containing compound resulting from a reaction product. For this reason, when the content of silica falls within this range, contamination of the lithium-containing compound can be suppressed while improving the thermal shock resistance of the heat treatment container.
  • the content ratio of silica is more preferably 10 to 20 mass%.
  • the heat treatment container of the present invention is preferably formed from alumina and mullite.
  • Alumina is a compound represented by the chemical formula of Al 2 O 3
  • mullite is a compound of alumina (Al 2 O 3 ) and silica (SiO 2 ) (aluminosilicate), and Al 6 O 13 Si 2 It has a composition formula. That is, by being formed from alumina and mullite, a substance (compound) that easily reacts with the lithium-containing compound is not included, and the heat treatment container of the present invention suppresses contamination of the lithium-containing compound while improving thermal shock resistance. Will be able to.
  • alumina and mullite includes not only forming from alumina and mullite alone, but also forming from alumina and mullite as main components. Furthermore, in the present invention, inevitable impurities may be included.
  • the heat treatment container of the present invention is preferably formed only from alumina and mullite.
  • alumina and mullite By forming only from alumina and mullite, other inorganic elements reactive with lithium-containing compounds are not included, and the heat treatment container of the present invention improves thermal shock resistance and suppresses contamination of lithium-containing compounds.
  • magnesia is contained in cordierite which is a main constituent material of a conventional mortar, and this magnesia reacts with a lithium-containing compound to produce a reaction product.
  • the heat treatment applied to the lithium-containing compound is not only a treatment in which the lithium-containing compound is arranged in the heat treatment container of the present invention, but also heating (firing) for generating the lithium-containing compound. Includes processing. That is, the heat treatment temperature is not limited. Also, the atmosphere during the heat treatment is not limited except that it is preferable not to cause a reaction with the heat treatment container.
  • the shape of the heat treatment container of the present invention is not particularly limited as long as the shape can arrange (hold) the lithium-containing compound.
  • a lithium-containing compound is arranged (held or fixed) on the upper surface thereof in a substantially plate shape, a tank shape (tubular shape) with an opening at the top or side, and a tank shape (tubular shape) opening is covered
  • the shape of a closed shape (so-called mortar) covered with a member can be given.
  • the portion that does not contact the lithium-containing compound may be formed of a different material.
  • the lithium-containing compound to be heat-treated in the heat-treatment container of the present invention may be disposed in the heat-treatment container in any form of a powder or a molded body.
  • the manufacturing method of the heat treatment container for lithium-containing compound of the present invention is not particularly limited as long as it can be manufactured from a predetermined material so as to have a porosity in a predetermined range.
  • it can be manufactured by mixing powders having different particle sizes (particle sizes), and molding and baking them into a predetermined shape of a heat treatment container. At this time, molding and firing are performed so that the porosity of the heat treatment container is within a predetermined range (10 to 30%). Moreover, you may give processes, such as a drying process, suitably.
  • Example 2 Alumina powder, mullite powder and other additives were weighed in parts by mass shown in Table 1 and mixed well. The sufficiently mixed powder was pressed into a square plate shape. This molding was performed by applying a pressure of 6 kN / cm 2 . Next, the molded body was naturally dried, and then sintered (fired) by holding at 1350 ° C. in an air atmosphere for 5 hours. After firing, the plate was allowed to cool to produce a plate-shaped heat treatment container for lithium-containing compound (Samples 1 and 2).
  • the measurement of the bending strength was carried out by a three-point bending test with a distance between fulcrums of 6 cm using an electronic universal testing machine (manufactured by Yonekura Co., Ltd., CATY).
  • the heat treatment vessel for the lithium-containing compound of Sample 1 contains alumina at 77.9 mass%, silica at 19.0 mass%, and has a porosity of 19.2%. It could be confirmed. In addition, it was confirmed that the heat treatment container for the lithium-containing compound of Sample 2 contained 87.2 mass% alumina, 10.9 mass% silica, and had a porosity of 20.0%.
  • lithium carbonate powder Li 2 CO 3
  • cobalt oxide powder Co 3 O 4
  • manganese dioxide powder MnO 2
  • nickel hydroxide powder Ni ( OH) 2
  • the produced pellets were placed on the surface of the heat treatment container for lithium-containing compound of each sample, placed in a firing furnace, and then heated and fired.
  • the pellets were fired in an air atmosphere by raising the temperature to 1100 ° C. over 4 hours, holding the temperature at 1100 ° C. for 4 hours, and then allowing to cool in the air.
  • Samples 3 to 6 have the compositions and characteristics shown in Table 2. The cross section of each sample after 20 firings was observed.
  • Sample 3 is a heat treatment container made of mullite, containing 75.9 mass% alumina, 21.8 mass% silica, and having a porosity of 34.1%. That is, it has a larger porosity than Samples 1 and 2.
  • Sample 4 is made of mullite and cordierite, contains 64.0 mass% alumina, 30.6 mass% silica, 3.3 mass% magnesia, and has a porosity of 30.2%. It is. That is, compared with Samples 1 and 2, not only contains magnesia but also has a large porosity.
  • Sample 5 is made of zirconia (ZrO 2 ) and cordierite, contains 34.7 mass% alumina, 41.8 mass% silica, 4.7 mass% magnesia, 15.7 mass% zirconia, and has a porosity. Is a heat treatment container with 33.9%. That is, compared with Samples 1 and 2, not only contains magnesia and zirconia, but also has a large porosity.
  • Sample 6 is made of spinel and cordierite, contains 56.8 mass% alumina, 25.9 mass% silica, 13.4 mass% magnesia, and has a porosity of 31.6%. It is. That is, compared with Samples 1 and 2, not only contains magnesia but also has a large porosity. Furthermore, the content of alumina is also very low.
  • the thermal shock resistance of the containers of Samples 1 and 2 is improved by increasing the coefficient of thermal expansion and increasing the strength.
  • the reaction with the lithium-containing compound is suppressed as described above, contamination of the lithium-containing compound is also suppressed.
  • the containers of Samples 1 and 2 which are heat treatment containers for lithium-containing compounds of the present invention, are contaminated with lithium-containing compounds by suppressing their reactivity with lithium-containing compounds by not containing magnesia or the like. It is a container that is suppressed and that is free from cracking (breakage) due to thermal shock.
  • the pellet-shaped lithium-containing compound was baked using a plate-shaped heat treatment container, but the shape of the heat-treatment container and the arrangement form of the lithium-containing compound are not limited to these.
  • the heat treatment container may have a shape of a tank shape (cylindrical shape) opened at the top or side, a closed shape (so-called mortar) in which the tank shape (cylindrical shape) opening is covered with a lid member, and the like. Further, the lithium-containing compound may be in a powder form.
  • the heat treatment container has a tank shape and the lithium-containing compound is in a powder form, the effects of the heat treatment container of the above-described embodiment can be further exhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

 本発明のリチウム含有化合物用熱処理容器は、リチウム含有化合物を熱処理するときにリチウム含有化合物が配されるリチウム含有化合物用熱処理容器において、全体を100mass%としたときに、60~95mass%でアルミナを含有し、かつ気孔率が10~30%であることを特徴とするものである。

Description

リチウム含有化合物用熱処理容器
 本発明は、リチウム含有化合物を熱処理するときに用いるリチウム含有化合物用熱処理容器に関する。
 種々の化合物、特に無機系化合物は、熱処理工程を経て製造される。通常、熱処理は、耐熱性の熱処理容器に被熱処理化合物(無機系化合物やその原料)を配した状態で加熱して行われる。熱処理容器には、耐熱性だけでなく、被熱処理化合物に対して安定であることが求められている。
 上記の熱処理工程を経て製造される無機系化合物のひとつに、リチウム含有化合物がある。リチウム含有化合物は、たとえば、リチウムイオン電池の正極活物質に用いられている。リチウム含有化合物としては、LiMnO系化合物、LiNi1/3Co1/3Mn1/3系化合物、LiMn系化合物、LiCoO系化合物、LiNiO系化合物、を例示できる。
 リチウムイオン電池用正極活物質(リチウム含有化合物)は、原料粉末を焼成して製造される。このリチウム含有化合物の熱処理(焼成)は、一般的にアルミナ、ムライト、コーディエライト、スピネル等の耐熱性を備えた材質を主な構成成分として焼成された容器(匣鉢)に収納して行われる。匣鉢は、たとえば、特開2009-292704号公報に記載されている。
 コーディエライトを主成分とする匣鉢は、高い耐熱衝撃性を有する。しかし、リチウム含有化合物との反応性が高いため、反応生成物の混入により熱処理後のリチウム含有化合物の純度が低下するという問題があった。特に、リチウムイオン電池の正極活物質においては、このような不純物が混入すると、リチウムイオン電池の電池性能の低下を引き起こすだけでなく、短絡の発生源となるおそれがある。
 また、アルミナやスピネルを主成分とする匣鉢は、リチウム含有化合物との反応性は低い。しかし、熱膨張係数が高く、これらの成分の含有率が高くなるほど、熱衝撃による割れが生じやすくなるという問題があった。このため、アルミナやスピネルの含有率を高くすることが困難となっていた。
 特開2009-292704号公報には、スピネル,コーディエライト,ムライトからなる匣鉢が記載されている。これらの材質は、上記した問題を有している。
特開2009-292704号公報
 本発明は上記実状に鑑みてなされたものであり、リチウム含有化合物を汚染することが抑えられ、かつ耐熱衝撃性に優れたリチウム含有化合物用熱処理容器を提供することを課題とする。
 上記課題を解決するために本発明者等はリチウム含有化合物用熱処理容器について検討を重ねた結果、本発明をなすに至った。
 すなわち、本発明のリチウム含有化合物用熱処理容器は、リチウム含有化合物を熱処理するときにリチウム含有化合物が配されるリチウム含有化合物用熱処理容器において、全体を100mass%としたときに、60~95mass%でアルミナ(Al)を含有し、かつ気孔率が10~30%であることを特徴とする。
 本発明のリチウム含有化合物用熱処理容器は、全体を100mass%としたときに、5~30mass%でシリカ(SiO)を含有することが好ましい。
 本発明のリチウム含有化合物用熱処理容器は、アルミナとムライトから形成されることが好ましい。
 本発明のリチウム含有化合物用熱処理容器は、アルミナを60~95mass%と多量に含むことで、リチウム含有化合物との反応が抑制されたものとなっている。そして、気孔率を10~30%としたことで、熱衝撃時の割れの発生が抑えられたものとなっている。
 すなわち、本発明のリチウム含有化合物用熱処理容器は、リチウム含有化合物との反応性が抑えられたことで、反応生成物がリチウム含有化合物を汚染することが抑えられ、かつ熱衝撃による割れ(破損)が抑えられた容器となっている。
 (リチウム含有化合物用熱処理容器)
 本発明のリチウム含有化合物用熱処理容器(以下、本発明の熱処理容器と称する)は、リチウム含有化合物を熱処理するときにリチウム含有化合物が配されるリチウム含有化合物用熱処理容器である。本発明の熱処理容器において、熱処理されるリチウム含有化合物は、その化学式中にリチウム(Li)を含んでいる化合物であればよい。さらに、リチウムを含んでいる化合物を混合した混合物であってもよい。
 そして、本発明の熱処理容器は、熱処理されるリチウム含有化合物(被熱処理化合物)に対して反応性の低い材質(アルミナ)を多量に含み(主な構成成分とし)、かつ気孔率を調節(10~30%)してなる。
 そして、本発明の熱処理容器は、全体を100mass%としたときに、60~95mass%でアルミナ(Al)を含有する。
 本発明の熱処理容器の主な構成成分であるアルミナは、リチウム含有化合物に対して反応性が低い材質である。つまり、本発明の熱処理容器は、アルミナを多量に含むことで、リチウム含有化合物を熱処理したときに、リチウム含有化合物が熱処理容器と反応を生じて反応生成物が生成することが抑えられる。この結果、熱処理されるリチウム含有化合物が反応生成物により汚染されることが抑えられる。
 そして、本発明の熱処理容器は、全体を100mass%としたときに、60~95mass%でアルミナを含有する。アルミナを60~95mass%で含有することで、リチウム含有化合物との反応を抑えられるとともに、耐熱衝撃性が向上する。ここで、含有割合が60mass%より低くなるとリチウム含有化合物との間で反応を生じやすくなり、95mass%を超えると熱処理容器に割れが生じやすくなる。より好ましい含有割合は、70~90mass%である。
 また、本発明の熱処理容器は、気孔率が10~30%である。気孔率がこの範囲内となることで、熱処理容器の耐熱衝撃性が向上する。気孔率がこの範囲未満となると熱処理による割れが発生しやすくなり、この範囲を超えて高くなるとリチウム浸食による剥離の原因となる。気孔率は、15~25%であることがより好ましい。
 本発明の熱処理容器は、全体を100mass%としたときに、5~30mass%でシリカ(SiO)を含有することが好ましい。シリカは、熱処理容器の耐熱衝撃性を向上する効果を発揮する化合物である。また、シリカは、熱処理されるリチウム含有化合物との反応性を有しており、その含有量が少ない方が好ましい。シリカの含有割合がこの範囲未満となると、相対的にアルミナの含有割合が増加し、耐熱衝撃性が低下して、熱処理容器の割れ(損傷)が生じるようになる。また、含有割合がこの範囲を超えて高くなると、リチウム含有化合物と反応を生じやすくなり、反応生成物に起因するリチウム含有化合物の汚染が生じやすくなる。このため、シリカの含有量がこの範囲となることで、熱処理容器の耐熱衝撃性を向上しつつ、リチウム含有化合物の汚染を抑えることができる。シリカの含有割合は、10~20mass%であることがより好ましい。
 本発明の熱処理容器は、アルミナとムライトから形成されることが好ましい。アルミナは、Alの化学式で表される化合物であり、ムライトは、アルミナ(Al)とシリカ(SiO)の化合物(アルミノケイ酸塩)であり、Al13Siの組成式を備えている。つまり、アルミナとムライトから形成されることで、リチウム含有化合物と反応を生じやすい物質(化合物)が含まれなくなり、本発明の熱処理容器が耐熱衝撃性を向上しつつ、リチウム含有化合物の汚染を抑えることができるようになる。本発明においては、リチウム含有化合物と反応を生じやすい物質(化合物)を含まないことが好ましく、このような物質としては、マグネシア(MgO)を例示することができる。ここで、アルミナとムライトから形成されるとは、アルミナとムライトのみから形成されることだけではなく、アルミナとムライトを主成分として形成することも含む。さらに、本発明においては、不可避不純物を含んでいてもよい。
 本発明の熱処理容器は、アルミナとムライトのみから形成されることが好ましい。アルミナとムライトのみから形成されることで、リチウム含有化合物と反応性を有する他の無機元素が含まれなくなり、本発明の熱処理容器が耐熱衝撃性を向上しつつ、リチウム含有化合物の汚染を抑えることができる。たとえば、従来の匣鉢の主要構成材料であるコーディエライトにはマグネシアが含有されており、このマグネシアはリチウム含有化合物と反応を生じて反応生成物を生成する。
 本発明の熱処理容器において、リチウム含有化合物に施される熱処理は、本発明の熱処理容器にリチウム含有化合物を配した状態で加熱する処理だけでなく、リチウム含有化合物を生成するための加熱(焼成)処理を含む。すなわち、熱処理温度が限定されるものではない。また、熱処理時の雰囲気についても、熱処理容器と反応を生じないことが好ましいこと以外は、限定されるものではない。
 本発明の熱処理容器は、リチウム含有化合物を配する(保持する)ことができる形状であれば、その形状が特に限定されるものではない。たとえば、リチウム含有化合物をその上面に配する(保持する,固定する)略板状の形状,上方又は側方が開口した槽状(筒状)の形状,槽状(筒状)の開口を蓋部材で覆う閉鎖形状(いわゆる、匣鉢),等の形状をあげることができる。なお、本発明の熱処理容器において、リチウム含有化合物と当接しない部分は、異なる材質で形成されていてもよい。
 このとき、本発明の熱処理容器で熱処理されるリチウム含有化合物は、粉末状,成形された成形体、のいずれの形態で熱処理容器に配されていてもよい。
 (リチウム含有化合物用熱処理容器の製造方法)
 本発明のリチウム含有化合物用熱処理容器は、その製造方法が特に限定されるものではなく、所定の材質から所定の範囲の気孔率をもつように製造できる製造方法であればよい。
 たとえば、粒度(粒径)が異なる粉末を混合し、熱処理容器の所定の形状に成形・焼成することで製造することができる。このとき、熱処理容器の気孔率が所定の範囲(10~30%)となるように成形・焼成が行われる。また、適宜、乾燥工程等の工程を施してもよい。
 以下、実施例を用いて本発明を具体的に説明する。
 本発明の実施例として、板状のリチウム含有化合物用熱処理容器を製造した。
 (実施例)
 アルミナ粉末,ムライト粉末及びその他の添加剤を、表1に示した質量部で秤量し、十分に混合した。
 十分に混合した混合粉末を、押圧して正方形の板状に成形した。この成形は、6kN/cmの圧力で加圧して行われた。
 次に、成形体を自然乾燥させ、その後、大気雰囲気1350℃で5時間保持して焼結させた(焼成した)。
 焼成後、放冷して、板状のリチウム含有化合物用熱処理容器(試料1~2)が製造された。
Figure JPOXMLDOC01-appb-T000001
 製造された試料1~2のリチウム含有化合物用熱処理容器の気孔率,嵩比重,曲げ強度をそれぞれ測定し、測定結果を表2に示した。
 気孔率及び嵩比重の測定は、日本工業規格[JIS R 1614(真空法)]に規定された方法で行われた。
 曲げ強度の測定は、電子式万能試験機(株式会社米倉製作所製、CATY)を用いて、支点間距離;6cmの3点曲げ試験により行われた。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、試料1のリチウム含有化合物用熱処理容器は、アルミナを77.9mass%,シリカを19.0mass%で含有し、かつ気孔率が19.2%となっていることが確認できた。また、試料2のリチウム含有化合物用熱処理容器は、アルミナを87.2mass%,シリカを10.9mass%で含有し、かつ気孔率が20.0%となっていることが確認できた。
 (評価)
 実施例のリチウム含有化合物用熱処理容器の評価として、リチウム含有化合物(LiNi1/3Co1/3Mn1/3系化合物)の焼成を繰り返し行い、焼成後の熱処理容器の状態を観察した。
 具体的には、以下のようにして行われた。
 まず、炭酸リチウム粉末(LiCO)を3/2mol%、酸化コバルト粉末(Co)を1/3mol%、二酸化マンガン粉末(MnO)を1mol%、水酸化ニッケル粉末(Ni(OH))を1mol%、となるように秤量し、十分に混合した後に円板状のペレット形状に成形した。このペレットは、φ18mm、厚さ5mm、ひとつ4gとなるように成形された。
 製造されたペレットを、各試料のリチウム含有化合物用熱処理容器の表面上に載置し、焼成炉内に配置した後に加熱し焼成した。
 ペレットの焼成は、大気雰囲気で、1100℃まで4時間で昇温し、昇温後1100℃で4時間保持し、その後、大気中で放冷した。
 放冷後、各試料のリチウム含有化合物用熱処理容器の表面上のペレットを取り除き、別の新たなペレット(未焼成)を載置し、焼成した。加熱は、同様の処理条件で行われた。
 このペレットの焼成を20回繰り返した。
 同様の評価試験を、市販のリチウム含有化合物用熱処理容器(試料3~6)についても行った。なお、試料3~6は、表2にあわせて示した組成及び特性を有している。
 20回の焼成後の各試料の断面を観察した。
 ここで、試料3は、ムライトよりなり、アルミナを75.9mass%,シリカを21.8mass%で含有し、かつ気孔率が34.1%となっている熱処理容器である。すなわち、試料1~2と比較して、大きな気孔率を有している。
 試料4は、ムライトとコーディエライトよりなり、アルミナを64.0mass%,シリカを30.6mass%,マグネシアを3.3mass%で含有し、かつ気孔率が30.2%となっている熱処理容器である。すなわち、試料1~2と比較して、マグネシアを含有するだけでなく、大きな気孔率を有している。
 試料5は、ジルコニア(ZrO)とコーディエライトよりなり、アルミナを34.7mass%,シリカを41.8mass%,マグネシアを4.7mass%,ジルコニアを15.7mass%で含有し、かつ気孔率が33.9%となっている熱処理容器である。すなわち、試料1~2と比較して、マグネシア,ジルコニアを含有するだけでなく、大きな気孔率を有している。
 試料6は、スピネルとコーディエライトよりなり、アルミナを56.8mass%,シリカを25.9mass%,マグネシアを13.4mass%で含有し、かつ気孔率が31.6%となっている熱処理容器である。すなわち、試料1~2と比較して、マグネシアを含有するだけでなく、大きな気孔率を有している。さらに、アルミナの含有量もかなり低くなっている。
 試料1~2では、ペレットとの当接部近傍において、リチウム含有化合物の浸食(浸透・拡散)が観察された。また、僅かな盛り上がり(体積変化)が確認できた。なお、ペレットとの当接部近傍において、試料1~2の表面は、ほぼ平滑な状態が維持されていることが確認できた。すなわち、試料1~2では、リチウム含有化合物の浸食(及び浸食による僅かな体積変化)が確認されたが、リチウム含有化合物との反応生成物は確認できなかった。つまり、リチウム含有化合物との反応性を有していない(殆ど有さない)ことが確認できた。
 試料3では、ペレットとの当接部近傍において、リチウム含有化合物の浸食(浸透・拡散)が観察された。また、ペレットとの当接部において、表面の荒れおよび盛り上がり(体積変化)が確認できた。この表面の荒れは、容器及びリチウム含有化合物の浸食した部分とは、異なる色をしており、リチウム含有化合物との反応生成物であることがわかる。さらに、この表面の荒れは、脆く、簡単に剥落した。この表面の荒れ(及び体積変化)は、ペレットとの当接部が、ペレットのリチウム含有化合物と反応を生じたことにより発生した。すなわち、試料3は、リチウム含有化合物と反応を生じて、簡単に剥離する反応生成物をその表面に形成したことが確認できた。
 試料4~6では、ペレットとの当接部近傍が、スポンジ状の発泡体状となって大きく盛り上がっていることが確認できた。この発泡体状の部分は、試料3の時と同様に、リチウム含有化合物との反応生成物であることがわかる。試料1~3との比較から、リチウム含有化合物との反応生成物は、マグネシア,ジルコニアとの反応生成物であると考えられる。このスポンジ状の発泡体状の部分は、その体積の大半が気孔となっており、特に脆く、簡単に破損して粉末が剥離した。すなわち、試料4~6は、リチウム含有化合物と反応を生じて、簡単に剥離する反応生成物をその表面に多量に形成したことが確認できた。
 次に、試料1,2,4の容器の1000℃での熱膨張率を測定し、表2にあわせて示した。
 表2に示したように、アルミナの含有割合が高くなるほど、熱膨張率が大きくなることが確認できた。さらに、表2に示したように、試料1~2は、試料3~6と比較して、かなり高い曲げ強度を有していることが確認できる。
 すなわち、試料1~2の容器は、熱膨張率が大きくなっていながら、強度も高くなっていることで、耐熱衝撃性が向上している。その上で、上記したようにリチウム含有化合物との反応が抑えられていることで、リチウム含有化合物の汚染も抑えられている。
 上記したように、本発明のリチウム含有化合物用熱処理容器である試料1~2の容器は、マグネシア等を含有しないことでリチウム含有化合物との反応性が抑えられたことでリチウム含有化合物の汚染が抑えられ、かつ熱衝撃による割れ(破損)が抑えられた容器となっている。
 (実施例の変形形態)
 上記の実施例では、板状の熱処理容器を用いて、ペレット状のリチウム含有化合物の焼成を行ったが、熱処理容器の形状及びリチウム含有化合物の配置形態は、これらに限定されるものではない。
 熱処理容器は、上方又は側方が開口した槽状(筒状)の形状,槽状(筒状)の開口を蓋部材で覆う閉鎖形状(いわゆる、匣鉢),等の形状としてもよい。また、リチウム含有化合物は、粉末状であってもよい。
 特に、熱処理容器が槽状の形状であり、リチウム含有化合物が粉末状であるときに、上記した実施例の熱処理容器の効果をより発揮できる。
 具体的には、槽状の容器の内部に粉末状のリチウム含有化合物を入れて焼成(熱処理)する時には、焼成後に、槽状の容器の開口を下方に向けて焼成後のリチウム含有化合物を取り出す。このとき、熱処理容器の内表面(リチウム含有化合物との当接面)に反応生成物による剥離が生じていないため、焼成後のリチウム含有化合物の汚染が生じない。
 対して、たとえば、本発明の比較例となる試料3~6の同様の形状の容器では、リチウム含有化合物との当接面に反応生成物に起因する剥離が生じている。そして、リチウム含有化合物を取り出すときに、リチウム含有化合物と同時に反応生成物が熱処理容器から取り出される。つまり、反応生成物が、リチウム含有化合物を汚染する。

Claims (3)

  1.  リチウム含有化合物を熱処理するときに該リチウム含有化合物が配されるリチウム含有化合物用熱処理容器において、
     全体を100mass%としたときに、60~95mass%でアルミナを含有し、かつ気孔率が10~30%であることを特徴とするリチウム含有化合物用熱処理容器。
  2.  全体を100mass%としたときに、5~30mass%でシリカを含有する請求項1記載のリチウム含有化合物用熱処理容器。
  3.  アルミナとムライトから形成される請求項1記載のリチウム含有化合物用熱処理容器。
PCT/JP2011/003667 2011-03-30 2011-06-28 リチウム含有化合物用熱処理容器 WO2012131790A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180069879XA CN103476733A (zh) 2011-03-30 2011-06-28 用于含锂化合物的热处理容器
US14/008,755 US20140017424A1 (en) 2011-03-30 2011-06-28 Container for heat treatment of lithium-containing compound
KR1020137025869A KR101503633B1 (ko) 2011-03-30 2011-06-28 리튬이온 전지용 양극활물질용 열처리 용기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011075441A JP5341124B2 (ja) 2011-03-30 2011-03-30 リチウムイオン電池用正極活物質用熱処理容器
JP2011-075441 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012131790A1 true WO2012131790A1 (ja) 2012-10-04

Family

ID=46929639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003667 WO2012131790A1 (ja) 2011-03-30 2011-06-28 リチウム含有化合物用熱処理容器

Country Status (5)

Country Link
US (1) US20140017424A1 (ja)
JP (1) JP5341124B2 (ja)
KR (1) KR101503633B1 (ja)
CN (1) CN103476733A (ja)
WO (1) WO2012131790A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028650A (zh) * 2020-09-03 2020-12-04 深圳市飞粤新材料科技有限公司 一种锂离子电池正极材料用匣钵
JP7356598B2 (ja) 2020-01-28 2023-10-04 サン-ゴバン インドゥストリーケラミク レーデンタール ゲゼルシャフト ミット ベシュレンクテル ハフツング 化学物質を輸送し加熱するための輸送トレイ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352708A (zh) * 2015-07-18 2017-01-25 王苗飞 一种制备锂离子电池正极材料过程中烧结用的装料匣钵
DE102017217283B3 (de) 2017-09-28 2018-07-26 Schott Ag Verfahren zur Herstellung von Glaskeramikartikeln mittels Schlickerguss sowie deren Verwendung
KR101988736B1 (ko) * 2017-09-28 2019-06-12 주식회사 포스코 이차전지 활물질 소성용 내화갑 및 이를 이용한 이차전지 활물질 제조방법
JP7194891B2 (ja) * 2018-03-28 2022-12-23 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、成形体、及び、非水系電解質二次電池の製造方法
CN109467422B (zh) * 2018-04-20 2021-07-02 湖南德景源科技有限公司 一种锂电专用高循环特种陶瓷坩埚及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280874A (ja) * 1991-03-05 1992-10-06 Toshiba Ceramics Co Ltd 匣鉢
JP2002274957A (ja) * 2001-03-23 2002-09-25 Mitsui Eng & Shipbuild Co Ltd 焼成用容器
JP2005257171A (ja) * 2004-03-11 2005-09-22 Mitsubishi Chemicals Corp 焼成容器、及びリチウム二次電池電極材料用リチウム遷移金属複合酸化物の製造方法
JP2008103100A (ja) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質およびその焼成用治具
JP2009292704A (ja) * 2008-06-09 2009-12-17 Noritake Co Ltd リチウムイオン電池の正極活物質製造用匣鉢及びその製造方法
JP2010236797A (ja) * 2009-03-31 2010-10-21 Ngk Insulators Ltd ローラーハースキルン
JP2011117663A (ja) * 2009-12-03 2011-06-16 Noritake Co Ltd リチウムイオン電池の正極活物質製造用匣鉢及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2323486A1 (de) * 1973-05-10 1974-11-21 Bosch Gmbh Robert Verfahren zur herstellung von weissen brennkapseln zum brennen von keramischen formteilen
EP1184637A1 (en) * 2000-08-28 2002-03-06 Mino Yogyo Co., Ltd. Firing setters and process for producing these setters
JP4967599B2 (ja) * 2006-10-23 2012-07-04 Tdk株式会社 チタン酸バリウム粉末、誘電体磁器組成物および電子部品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280874A (ja) * 1991-03-05 1992-10-06 Toshiba Ceramics Co Ltd 匣鉢
JP2002274957A (ja) * 2001-03-23 2002-09-25 Mitsui Eng & Shipbuild Co Ltd 焼成用容器
JP2005257171A (ja) * 2004-03-11 2005-09-22 Mitsubishi Chemicals Corp 焼成容器、及びリチウム二次電池電極材料用リチウム遷移金属複合酸化物の製造方法
JP2008103100A (ja) * 2006-10-17 2008-05-01 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質およびその焼成用治具
JP2009292704A (ja) * 2008-06-09 2009-12-17 Noritake Co Ltd リチウムイオン電池の正極活物質製造用匣鉢及びその製造方法
JP2010236797A (ja) * 2009-03-31 2010-10-21 Ngk Insulators Ltd ローラーハースキルン
JP2011117663A (ja) * 2009-12-03 2011-06-16 Noritake Co Ltd リチウムイオン電池の正極活物質製造用匣鉢及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356598B2 (ja) 2020-01-28 2023-10-04 サン-ゴバン インドゥストリーケラミク レーデンタール ゲゼルシャフト ミット ベシュレンクテル ハフツング 化学物質を輸送し加熱するための輸送トレイ
CN112028650A (zh) * 2020-09-03 2020-12-04 深圳市飞粤新材料科技有限公司 一种锂离子电池正极材料用匣钵

Also Published As

Publication number Publication date
US20140017424A1 (en) 2014-01-16
CN103476733A (zh) 2013-12-25
JP5341124B2 (ja) 2013-11-13
JP2012206915A (ja) 2012-10-25
KR20130133017A (ko) 2013-12-05
KR101503633B1 (ko) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5341124B2 (ja) リチウムイオン電池用正極活物質用熱処理容器
WO2012131791A1 (ja) リチウム含有化合物用熱処理容器およびその製造方法
JP5039640B2 (ja) リチウムイオン電池の正極活物質製造用匣鉢及びその製造方法
JP2019121601A (ja) リチウムイオン電池電極材料焼成用匣鉢及び匣鉢の保護層
JP5241868B2 (ja)
EP3475247B1 (en) Open vessels and their use
KR20200058383A (ko) 리튬이차전지 양극활물질 소성용 내화갑 및 그 제조 방법
JP5474126B2 (ja) リチウムイオン電池用正極活物質用熱処理容器
JP2006206338A (ja) 高耐食性耐火物
JP4488444B2 (ja) 多孔質セラミックスの製造方法及び多孔質セラミックス
KR101719823B1 (ko) 노재 및 노재의 제조 방법
KR20130051290A (ko) 이차전지의 양극소재 소성을 위한 요도구용 조성물 및 요도구
JP6396938B2 (ja) リチウム電池の正極活物質用熱処理容器
JP2007112670A (ja) 焼成容器
WO2017198506A1 (en) Open vessels and their use
JP7183214B2 (ja) 熱処理治具用組成物、及び熱処理治具の製造方法
JP2014227327A (ja) 熱処理容器
JP2021529148A (ja) さや状受容要素、特にリチウムイオン蓄電池用の粉末状のカソード材料を焼成するためのさや、およびそれのための混合物
WO2022176613A1 (ja) 熱処理冶具用組成物、及び熱処理冶具の製造方法
JP2014227326A (ja) 熱処理容器
KR101345001B1 (ko) 리튬화합물을 함유한 재료의 열처리용기 및 그 제조방법
CN113185307B (zh) 一种锂电池正极材料焙烧用回转窑炉衬及其制备方法
WO2021090778A1 (ja) 匣鉢及びその製造方法
JP2014227328A (ja) 熱処理容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862784

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20137025869

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008755

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11862784

Country of ref document: EP

Kind code of ref document: A1